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Abstract

Voting district boundaries are often manipulated, or gerrymandered, by politicians in order to
give one group of voters an unfair advantage over another during elections. To make sure a
system of voting districts is not gerrymandered, the population size, the shape, and the voting
efficiency of each party in each district should be taken into consideration. Following recent
work of Boris Alexeev and Dustin G. Mixon, we discuss mathematical criteria for each of these
three aspects, and we prove how problems arise when attempting to apply all three at once to a
districting system–first to a simplified districting system and then to a more realistic districting
system.
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1
Background Information

1.1 Introduction

Gerrymandering is a way of dividing a geographic area into voting districts, that is, into a

districting system, in a way that unfairly favors one political group. Policymakers are usually

the people given the task of redrawing district boundaries and they often do so in a way that

gives more voting power to their party or takes away voting power from minority groups. To

learn more about gerrymandering, see [6].

One strategy used is called packing. When packing is used, many voters from one group are

packed into only a small amount of districts so that they cannot affect the outcome of any other

districts and will win only the ones they are packed into. One tell-tale sign of packing is when

district boundaries are irregularly shaped, so that they include all voters from the same group

even when they live in very different areas.

The opposite strategy, cracking, occurs when the voters from one group are divided up, putting

a small amount of them in each district. This ensures that they don’t have enough people in any

district to win it. To determine if cracking is being used, we can calculate the Efficiency Gap,

which was created by Nicholas Stephanopoulos and Eric McGhee in [5].

Mathematicians are working to come up with a standard to be used to determine if a districting

system is fair or gerrymandered. This is difficult and they are encountering many problems in
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the process. It is controversial which factors can determine district fairness and which cannot.

There have been many court cases on the issue.

Gerrymandering is a difficult mathematical problem because it involves looking at both geom-

etry of districts and the arrangement and amount of voters for each party. In real life cases, one

must take into consideration natural barriers that are often irregularly shaped, such as coasts,

mountains, and rivers, and human barriers such as infrastructure, city boundaries, and personal

property lines. These provide geometrical challenges for creating districts. Additionally, residents

of any place do not live in orderly rows, but rather scattered throughout, densely packed in cities

and sparsely sprinkled throughout rural farmland, which create challenges for providing fairly

represented districts. To complicate the matter further, oftentimes those who belong to the same

political party or racial minority live close to each other in one area, rather than spread evenly

throughout the land, making it more difficult to provide them with fair representation.

This project will work from [1], and takes ideas from previous work done by Moon Duchin

and Mira Bernstein in [2]. In the paper [1], Alexeev and Mixon, provide a theorem and proof

that there is a trade-off between regularly shaped, or compactness, of districts and partisan

efficiency, or the amount of votes per party which work towards a victory. I rewrite their paper

in a different way which will provide more details and be more clear to the reader than the

original one. I will provide examples and other proofs which build off of their ideas.



2
Background Information

2.1 Three Criteria for Fair Districts

There are “three well established desiderata” used to flag districts as potentially gerrymandered.

I will explain each, both formally and informally, and provide examples for clarity.

2.1.1 One Person, One Vote

This criterion ensures that each district has approximately the same population size. It is very

difficult to create districts with exactly the same population, so instead, we create an interval

window that the population has to fall between. This is the least controversial, and possibly

most important criterion because it makes sure that each voter has the same voting power. For

example, the outcome of a district of one voter would be entirely in the hands of that one voter.

In a district consisting of one million voters, each one would only have one millionth of a say in

the outcome of the election.

Definition 2.1.1. Let T be the population of voters in the state. Let k be the number of

districts in the state. Let Ti be the population of voters in district i for all i ∈ {1, . . . , k}. The

state satisfies Criterion (i), One Person One Vote if there exists δ ∈ [0, 1) such that

(1− δ)
⌊
T

k

⌋
≤ Ti ≤ (1 + δ)

⌈
T

k

⌉
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for all i ∈ {1, . . . , k}. 4

Having a smaller δ would mean that the populations of the districts must be closer together.

Having a larger δ means there is more leeway.

Example 2.1.2. Let T = 25 and k = 4. First, suppose δ = 0.1. Then (1 − δ)
⌊
T
k

⌋
= (1 −

0.1)
⌊
24
4

⌋
= 0.9 · 6 = 4.8 and (1 + δ)

⌈
T
k

⌉
= (1 + 0.1)

⌈
25
4

⌉
= 1.1 · 7 = 7.7 Therefore, 4.8 ≤ Ti ≤ 7.7

for all i ∈ {1, · · · , k}, and hence the population of the four districts must each be between 5 and

7. ♦

2.1.2 Polsby-Popper Compactness

When districts are drawn with the intent of including or excluding a certain demographic, the

boundary often looks strange, long and curving to dodge certain areas and include other non-

contiguous ones. In this case, the districts are often not compact, meaning they have a large

perimeter and a small area. Daniel D. Polsby and Robert D. Popper invented the Polsby-Popper

score in [3], which measures the ratio of area to perimeter of a district to determine compactness.

A higher ratio indicates that districts are more compact and a smaller ratio indicates that

districts are less compact and more likely to be gerrymandered.

Definition 2.1.3. Let k be the number of districts in the state. Let {D1, . . . , Dk} be the

districts in the state. Let Ri be the area of district i and let Pi be the perimeter of district i for

all i ∈ {1, . . . , k}. The state satisfies Criterion (ii), Polsby-Popper Compactness if there

exists γ ∈ (0,∞) such that

4πRi
P 2
i

≥ γ

for all i ∈ {1, . . . , k}. 4

It is very difficult to calculate the perimeter of a shape whose boundary is made of irregular

curves. For this reason, we include here the Grid Polsby-Popper Ratio which also measures

compactness, but for districts with more easy to measure perimeters.
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Definition 2.1.4. In a simplified district, one in which district boundaries are formed with

rectilinear lines, we can determine compactness of a district by using the Grid Polsby-Popper

Ratio. Let {D1, . . . , Dk} be the districts in the state. Let Ri be the area of district i and let Pi

be the perimeter of district i for all i ∈ {1, . . . , k}. The Grid Polsby-Popper Ratio is 16Ri

P 2
i

.

A state satisfies the Grid Polsby-Popper Compactness if there exists γ ∈ (0,∞) such that

16Ri
P 2
i

≥ γ

for all i ∈ {1, . . . , k}. 4

Example 2.1.5. Here we will calculate the Grid Polsby-Popper ratio of each district in Fig-

ure 2.1.1. In Figure 2.1.1, we have X represent one voter for Party X , and O represents one

voter for Party O. The bold lines represent the boundaries of the 6 districts. Going clockwise

starting in the top left corner, number the districts 1 through 5 and number the district in the

center 6.

Districts 1,2, 4 and 5 each have a perimeter of 12 and have a Grid Polsby-Popper Ratio of

16Ri

P 2
i

= 16·7
122

= 0.78. Districts 3 and 6 have a perimeter of 14, and are less compact, with a Grid

Polsby-Popper Ratio of 16Ri

P 2
i

= 16·7
142

= 0.57. ♦

Figure 2.1.1.
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2.1.3 Partisan Efficiency

Partisan efficiency measures how efficiently the votes of either party are used. For example, if

one party wins a district by a landslide, this is not an efficient use of its votes considering that it

only needed slightly more than half the votes to win. After receiving more than half the votes,

any remaining voters would have been more useful if they lived in other districts which lost by a

small amount of votes. A party is inefficient when the majority of voters belonging to one group

are packed into a few districts. Also, if one party loses many districts by only a small amount,

then each of the votes that went towards these districts are wasted. They would have been used

more efficiently if they were moved to a district that they had a chance of winning and had let

their district lose by a large amount.

If a state has a close number of voters for its two different parties, but still has one party win

the election by a large amount of districts, then there is reason to suspect that the efficiency gap

is large and gerrymandering is occurring. That is why the criterion states that if the difference

between total number of votes for a party is less than a certain amount, then we must ensure

that the efficiency gap is small. When an efficiency gap of a state is small, there is less of a

chance that it is gerrymandered.

Definition 2.1.6. Let T be the population of voters in the state. Let k be the number of

districts in the state. For each i ∈ {1, . . . , k}, let Ti be the population of voters in district i, and

let Ai and Bi be the number of voters in district i for Party A and Party B, respectively. Let A

and B be the number of voters in the state for Party A and Party B, respectively.

For each i ∈ {1, . . . , k}, if Party A wins district i, the wasted votes in that district are defined

as

WA,i = Ai −
⌈
Ti
2

⌉
and WB,i = Bi;

similarly if Party B wins the district. The Efficiency Gap is defined as

EG =
1

T

k∑
i=1

(WA,i −WB,i),
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The state satisfies Criterion (iii), Partisan Efficiency if there exist α, β ∈ (0,∞) such

that if |A−B| < βT , then |EG| < 1
2 − α. 4

Example 2.1.7. Here we will calculate the Efficiency Gap of the state in Figure 2.1.1. Going

clockwise starting in the top left corner, number the districts 1 through 5 and number the

district in the center 6. The wasted votes for Party O and Party X in each district are as

follows: WO,1 = 3, WX,1 = 0, WO,2 = 1, WX,2 = 2, WO,3 = 0, WX,3 = 3, WO,4 = 3, WX,4 = 0,

WO,5 = 3, WX,5 = 0, WO,6 = 0, WX,6 = 3. The efficiency gap for the entire state is

EG =
1

42
((3− 0) + (1− 2) + (0− 3) + (3− 0) + (3− 0) + (0− 3)) =

2

42
.

Let β = 0.4. Then |O−X| = |26− 16| = 10 < 16.8 = 0.4 · 42 = β · T . First, let α = 0.3. Then

|EG| = 2
42 = 0.048 < 0.2 = 1

2 − 0.3 = 1
2 − α, and Criterion (iii), Partisan Efficiency is satisfied.

Next, let α = 0.48. Then |EG| = 2
42 = 0.048 ≮ 0.02 = 1

2 − 0.48 = 1
2 − α, and Criterion (iii),

Partisan Efficiency is not satisfied. ♦
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3
Gerrymandering in a Simplified County Districting
System

3.1 A County Districting System

Realistically, voters live all over the place and it is really difficult to group them together in an

orderly way. This makes the task of creating fair voting districts very complicated. But first if we

suppose that voters do live in an orderly simplified way, we are able to work with the simplified

districts and draw conclusions that will help us when we next look at more realistic districts. To

simplify the state, here we assume that each voter lives in a county. In Theorem 3.2.2, we assume

each county has an equal population size. In reality, this would be very difficult to achieve, but

here it gives us a place to start.

Definition 3.1.1. A County Districting System is a subdivision of the state into smaller

shapes, called Counties, of population of at least 2, such that each voting district is a union of

these shapes. 4

Figure 3.1.1 shows an example of a state divided into districts using a County Districting

System.
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Figure 3.1.1.

3.2 Implication of Criterion (i)

Here, we look at Criterion (i), which ensures that all the districts are around the same size. We

show that when voters are organized into counties, it is much easier to ensure that each district

is the same size, and therefore, that each voter has the same amount of voting power.

First, we show a lemma that is needed in the proof and then we show the proof.

Lemma 3.2.1. Let T, k ∈ N. Suppose T, k ≥ 2. Then
⌈
T
k

⌉
+
⌊
T
k

⌋
≤ T .

Proof. For the first case, suppose T = kr for some r ∈ N. Then
⌈
T
k

⌉
+
⌊
T
k

⌋
=
⌈
kr
k

⌉
+
⌊
kr
k

⌋
= 2r ≤

kr = T . For the second case, suppose that T = kr+n for some r ∈ N and some n ∈ {1, . . . , k−1}.

Then
⌈
T
k

⌉
+
⌊
T
k

⌋
=
⌈
kr+n
k

⌉
+
⌊
kr+n
k

⌋
=
⌈
r + n

k

⌉
+
⌊
r + n

k

⌋
= 2r + 1 ≤ kr + n = T .

Theorem 3.2.2. Suppose there is population T who lives in a state which is divided into at least

2 districts using the county districting system. Suppose each county has the same population size.

Let δ ∈ [0, 1). If Criterion (i) holds and δ < 1
T , then all districts have the same population.
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Proof. Suppose Criterion (i) holds and suppose δ < 1
T . Let k be the number of districts and let

k ≥ 2. Let {T1, . . . , Tk} be the populations of the districts. Let Li be the number of counties in

district i for all i ∈ {1, . . . , k}. Let S be the population per county and let S ≥ 2. By Criterion

(i), we know

(1− δ)
⌊
T

k

⌋
≤ Ti ≤ (1 + δ)

⌈
T

k

⌉
for all i ∈ {1, . . . , k}. Let i, j ∈ {1, . . . , k}. Without loss of generality, suppose Ti ≥ Tj . Then

Ti ≤ (1 + δ)
⌈
T
k

⌉
and Tj ≥ (1 − δ)

⌊
T
k

⌋
. Therefore, Ti − Tj ≤ (1 + δ)

⌈
T
k

⌉
− (1 − δ)

⌊
T
k

⌋
=⌈

T
k

⌉
−
⌊
T
k

⌋
+ δ(

⌈
T
k

⌉
+
⌊
T
k

⌋
). Note that

⌈
T
k

⌉
−
⌊
T
k

⌋
∈ {0, 1}.

By Lemma 3.2.1, we know δ(
⌈
T
k

⌉
+
⌊
T
k

⌋
) < 1

T · T = 1. Therefore Ti − Tj < 2.

Note Ti = LiS and Tj = LjS. Then S(Li − Lj) = Ti − Tj < 2. Then 0 ≤ Li − Lj < 2
S ≤ 1.

Since Li and Lj are whole numbers, it must be the case that Li − Lj = 0. Then Ti = Tj .

3.3 An Impossibility Theorem for Gerrymandering a County Districting
System

The paper [1] by Boris Alexeev and Dustin G. Mixon proposed the idea that the three criteria

for a fair districting system that we defined in Chapter 2 cannot all be used at once because

there is some arrangement of voters that would never be able to satisfy all three, it is impossible.

Here, we take our simplified districting system, our county districting system, and show that

the efficiency gap cannot be used on it because no matter how the districts are drawn, there will

always be some arrangement of voters such that the efficiency gap is too large to be considered

fair.

First, we provide a lemma that will be needed for the proof.

Lemma 3.3.1. Let α, β ∈ (0,∞). There exists an a, b ∈ N such that

1. a > b,

2. a+ b is even,

3. a−b
a+b < min{12 , α, β}.
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Proof. By Archimedes, there exists n ∈ N such that 1
n < min{12 , α, β}. Let a = n+2 and b = n.

Then

a− b
a+ b

=
(n+ 2)− n
(n+ 2) + n

=
2

2n+ 2
=

1

n+ 1
<

1

n
< min{1

2
, α, β}.

Observe that a+ b = 2(n+ 1) which is even. Clearly, a > b.

Theorem 3.3.2. Let α, β ∈ (0,∞). For any county districting system, there are populations

A and B such that for every choice of districts, Criterion (iii) is violated. That is, there is no

county districting system that guarantees a small efficiency gap.

Proof. Suppose the state consists of n counties. Let a and b be as in Lemma 3.3.1. In each

county, there are a voters for Party A and b voters for Party B.

Suppose there are k districts in the county districting system. Let Li be the number of counties

in district i for all i ∈ {1, . . . , k}. Notice there are n counties in the state and that
∑k

i=1 Li = n.

Let Ai and Bi be the number of voters for Party A and Party B in district i, respectively, for

all i ∈ {1, . . . , k}. Notice that aLi = Ai and bLi = Bi. Let Ti be the population of district i, so

that Ai +Bi = Ti. Let A and B be the number of voters in the whole state who vote for Party

A and Party B, respectively. Notice that A = an and B = bn. Let T be the total population of

voters, and notice that A+B = T .

Since a > b, then aLi > bLi for all i ∈ {1, . . . , k} and therefore, Party A wins every district.

Using the formula for Efficiency Gap, stated in Criterion (iii), we see for each i ∈ {1, . . . , k}

that WA,i = aLi −
⌈
(a+b)Li

2

⌉
and WB,i = bLi. Since we let a + b be even, we can remove the

ceiling brackets, so WA,i = aLi − (a+b)Li

2 for all i ∈ {1, . . . , k}.

The Efficiency Gap is

EG =
1

n · (a+ b)

k∑
i=1

aLi −
(a+ b)Li

2
− bLi =

1

n · (a+ b)

k∑
i=1

Li(a−
a+ b

2
− b)

Since we know that
∑k

i=1 Li = n, this can be simplified to

EG =
n

n · (a+ b)
(a− a+ b

2
− b) =

a− b
a+ b

− 1

2
.

Since from Lemma 3.3.1 we know that a−b
a+b <

1
2 , then |EG| = |a−ba+b −

1
2 | =

1
2 −

a−b
a+b .
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From Lemma 3.3.1, we know that α > a−b
a+b . Therefore, it is true that 1

2 −
a−b
a+b >

1
2 − α, and

hence |EG| ≮ 1
2 − α.

But, from Lemma 3.3.1, we know that a−b
a+b < β. Hence

an− bn
an+ bn

< β,

and so

an− bn < β(an+ bn),

and substitution tells us that A−B < βT . Since A > B, we see that |A−B| < βT .

Hence, |A− B| < βT holds, but |EG| < 1
2 − α does not hold. Hence, for any grid districting

system, there are populations A and B such that every choice of districts violates Criterion

(iii).
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4
Gerrymandering in a Realistic Districting System

4.1 A Realistic Districting System

Now we will look at a districting system in which voters can live anywhere in the state and are

not confined to counties or any other way of organizing them. The boundaries of the districts

can be curvy, squiggly, straight, or drawn in any other way without restrictions.

Definition 4.1.1. Suppose the state is a square. A Districting System is a subdivision of the

state into areas called Districts.

Figure 4.1.1 shows an example of a state divided into districts using a Districting System.

4.2 An Impossibility Theorem for Gerrymandering

The paper [1] proves the same theorem that we prove here, that using the three criteria for

fair districts that we listed in Chapter 2 would not work because no matter how the district

boundaries are drawn, there is some arrangement of the population such that one of the criteria

would be violated. We chose to rewrite their proof because it left out many details that we found

necessary in order to accept the theorem as true and in order for the reader to be able to follow

the proof.

The following lemmas address details that were skipped in the original proof.
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Figure 4.1.1.

Lemma 4.2.1. Let δ ∈ [0, 1). Let α ∈ (0, 12). Let β, γ ∈ (0,∞). Let k ∈ N be such that k ≥ 2.

Let F =
√

1−δ
2k . There exist a, b, l, n ∈ N such that

1. b
a <

Fn2−4πγ−1F
√
2n−8π2γ−1

F 2n2+4πγ−1F
√
2n+8π2γ−1

2. b < a

3. a−b
a+b < β

4. a−2b
a+b ≤ α−

1
2

5. a+ b = l2

6. l is even.

Proof. By Archimedes, there exists m1 ∈ N such that 1
m1

< β.

Because α ∈ (0, 12), we know that α − 1
2 ∈ (−1

2 , 0). Observe limc→∞
−c+2
2c+2 = −1

2 . Therefore,

there is some m2 ∈ N such that if p ∈ N and p ≥ m2, then −p+2
2p+2 < α− 1

2 .

Next, let q = max{m1,m2}. Let m = 2q2 − 1. Note that m ≥ m1 and m ≥ m2.
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Let a = m+ 2 and b = m.

Then b < a and b
a < 1 and Part (2) is satisfied. Then a−b

a+b = 1
m+1 <

1
m ≤

1
m1

< β, hence

Part (3) is satisfied.

Next, because m ≥ m2 we know that a−2b
a+b = m+2−2m

m+2+m = 2−m
2m+2 = −m+2

2m+2 < α − 1
2 . Therefore,

Part (4) is true.

Let l = 2q. Then l is even, so Part (6) is true. Then a+ b = 2m+ 2 = (2q)2 = l2. Therefore,

Part (5) is true.

Next, we simplify the fraction in Part (1). Let y = 4πγ−1F
√

2, and let z = 8π2γ−1. Let r ∈ N.

Then

Fr2 − 4πγ−1F
√

2r − 8π2γ−1

F 2r2 + 4πγ−1F
√

2n+ 8π2γ−1
=
F − y

r −
z
r2

F + y
r + z

r2
.

Observe

lim
r→∞

F − y
r −

z
r2

F + y
r + z

r2
= 1.

Recall b
a < 1. Therefore, there is some n ∈ N such that if p ∈ N and p ≥ n, then b

a <
F− y

p
− z

p2

F+ y
p
+ z

p2
.

In particular, we have b
a <

F− y
n
− z

n2

F+ y
n
+ z

n2
. Hence

b

a
<

Fn2 − 4πγ−1F
√

2n− 8π2γ−1

F 2n2 + 4πγ−1F
√

2n+ 8π2γ−1
.

Therefore, Part (1) is true.

In the following lemma, and again later on, we will be referring to a square lattice in the

plane, as seen in figure 4.2.1.

Lemma 4.2.2. Suppose q points are arranged as vertices of a square lattice of unit u. Let P be

the perimeter of a region containing the points. Then P ≥ u√q.

Proof. The most compact way for points to be arranged on a square lattice is in a square.

The two furthest points from each other on a square are on corners diagonal from each other.

The distance between these two points can be found using the Pythagorean Theorem, where

the sides of the square are the sides of a right triangle and the distance between the two corner

points is the hypotenuse of the right triangle. The length of the side of the square is (
√
q− 1)u.
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Figure 4.2.1.

Therefore, the distance between the two corner points is
√

2((
√
q − 1)u)2 =

√
2(
√
q − 1)u. The

perimeter is at least twice the distance between the two corner points, so the perimeter is at

least 2
√

2(
√
q − 1)u. Since q = a + b and because a > b and b ≥ 1, it must be that a ≥ 2,

and therefore q ≥ 3. Then
√
q ≥

√
3, and it follows that (2

√
2 − 1)

√
q ≥ (2

√
2 − 1)

√
3. Since

2
√

2−1 ≈ 3.166 and 2
√

2 ≈ 2.828, it is follows that (2
√

2−1)
√
q ≥ 2

√
2. Adding

√
q to each side

gives us 2
√

2
√
q ≥ 2

√
2 +
√
q, and subtracting 2

√
2 from each side gives us 2

√
2(
√
q − 1) ≥ √q.

Therefore, 2
√

2(
√
q − 1)u ≥ √qu and so P ≥ √qu.

Lemma 4.2.3. Let δ ∈ [0, 1). Let k ∈ N and suppose k ≥ 2. Let F =
√

1−δ
2k . Let P be the

perimeter of a district and let R be the area of the district. Suppose P ≥ F . Let ε ∈ (0,∞), and

let E =
√
2P
ε + 2π. Let γ ∈ (0,∞). Suppose that Criterion (ii) holds for this district, that is, that

γ ≤ 4πR
P 2 .

1.

F 2 − 4πγ−1F
√

2ε− 8π2γ−1ε2

F 2 + 4πγ−1F
√

2ε+ 8π2γ−1ε2
≤ P 2 − 4πγ−1ε2E

P 2
1 + 4πγ−1ε2E

.

2.

P 2 − 4πγ−1ε2E

P 2 + 4πγ−1ε2E
≤ R− ε2E
R+ ε2E

.
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Proof. (1). Because P ≥ F , it is true that F
√

2P (P − F ) ≥ 0 and 2πε(F 2 − P 2) ≤ 0, since

F , P , and ε are all positive. Then 2πε(F 2 − P 2) ≤ F
√

2P (P − F ), and by multiplication,

that F 22πε − 2πεP 2 ≤ F
√

2P 2 − F 2
√

2P . Rearranging the terms gives us F 2
√

2P + F 22πε ≤

F
√

2P 2+2πεP 2, which is equivalent to F 2ε(
√
2P
ε +2π) ≤ (F

√
2+2πε)P 2. Substituting in E and

multiplying both sides by 4πγ−1ε gives us F 24πγ−1ε2E ≤ (4πγ−1F
√

2ε+8π2γ−1ε2)P 2. Next let

A = F 2, B = 4πγ−1F
√

2ε, C = 8π2γ−1ε2, x = P 2, and y = 4πγ−1ε2E and substitute these in,

to get Ay ≤ (B+C)x. By rearranging this, it is equivalent to Ay−Bx−Cx ≤ −Ay+Bx+Cx,

and furthermore, to Ax+ Ay − Bx− By − Cx− Cy ≤ Ax− Ay + Bx− By + Cx− Cy. From

factoring, this inequality is equivalent to (A − B − C)(x + y) ≤ (A + B + C)(x − y), which is

then equivalent to A−B−C
A+B+C ≤

x−y
x+y . By substituting the original values back in, we know that

F 2−4πγ−1F
√
2ε−8π2γ−1ε2

F 2+4πγ−1F
√
2ε+8π2γ−1ε2

≤ P 2−4πγ−1ε2E
P 2
1+4πγ−1ε2E

.

(2). Since Criterion (2) holds, we know γ ≤ 4πR
P 2 , which, by multiplying each side by ε2E

and by rearranging, is equivalent to P 2ε2E ≤ 4πγ−1ε2ER. Now, let x = P 2, let v = R, let

y = 4πγ−1ε2E, and let z = ε2E, and substitute in these values. Hence, xz ≤ yv. By multiplying

each side by 2, adding xv and −yz to each side, and rearranging terms, we see that xv + xz −

yv − yz ≤ xv + yv − zx − zy. We can factor, to see that (x − y)(v + z) ≤ (v − z)(x + y), and

furthermore, that x−y
x+y ≤

v−z
v+z . Now we can substitute back in the original values to see that

P 2−4πγ−1ε2E
P 2+4πγ−1ε2E

≤ R−ε2E
R+ε2E

.

Lemma 4.2.4. Let T, n ∈ N. Suppose k ≥ 2 and T ≥ 2k. Then
⌊
T
k

⌋
≥ T

2k .

Proof. First, suppose that T = kr for some r ∈ N. Because r > 0, it is true that r > r
2 . We

know that r =
⌊
kr
k

⌋
=
⌊
T
k

⌋
. We also know that r

2 = kr
2k = T

2k . Hence,
⌊
T
k

⌋
≥ T

2k . Next, suppose

that T = kr + n for some r ∈ N and some n ∈ {1, . . . , k − 1}. Since n
k < 1 and r

2 > 1, we

know that n
k <

r
2 and therefore r

2 + n
k < r. Because n

k > 0, we know n
2k <

n
k , and it follows that

r
2 + n

2k < r. Since
⌊
T
k

⌋
=
⌊
kr+n
k

⌋
=
⌊
r + n

k

⌋
= r and T

2k = kr+n
2k = kr

2k + n
2k = r

2 + n
2k < r, it is the

case that
⌊
T
k

⌋
≥ T

2k .
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Theorem 4.2.5. Let δ ∈ [0, 1) and let α, β, γ ∈ (0,∞). For every possible arrangement of at

least 2 districts in a square, there exists an arrangement of Party A voters and Party B voters

that violates one of Criteria (i), (ii), and (iii).

Proof. Without loss of generality, suppose our square is 1× 1. We assume Criteria (i) and (ii)

are true and show that Criterion (iii) does not hold. Let n, a, b, and l be as in Lemma 4.2.1.

Let ε = 1
n . Begin by dividing a 1 × 1 square into a grid of n2 smaller squares with edge length

ε, as shown in Figure 4.2.2.

Figure 4.2.2.

Further divide each ε× ε square into a grid with l2 smaller squares of edge length 1
nl , as shown

in Figure 4.2.3.

Suppose Party A has a voters in each ε× ε square and suppose Party B has b voters in each

ε×ε square. Since Lemma 4.2.1 states that a+b = l2, it would be possible to distribute the voters

so that each 1
ln ×

1
ln square contains one voter in its center, either from Party A or Party B. Let

us suppose that the voters are distributed in that way. Let T be the total population of voters

in the state. It follows that n2(a+ b) = n2l2 = T .

Let k ∈ N and let k ≥ 2. Let i ∈ {1, . . . , k}. Next, partition the 1× 1 square into k districts,

denoted D1, . . . , Dk, in a way so that Criteria (i) and (ii) are satisfied.

Let i ∈ {1, . . . , k}. The boundary of Di is denoted ∂Di, and the length of the boundary, which

is the perimeter of Di, is denoted Pi. We find the tube of Di, denoted Ui, by taking ∂Di and
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Figure 4.2.3.

thickening it by ε
√

2 on either side. We see that ∂Di is contained in a union of ε× ε squares in a

rectilinear shape. As shown in Figure 4.2.4, we see that Ui contains this union of ε× ε squares.

It can be shown that Ui has area of at most
√

2δiε + 2πε2; we omit the details. The area of

one ε × ε square is ε2, so the tube has at most
√
2δDiε+2πε2

ε2
=
√
2δDi
ε + 2π ε × ε squares. Let Ei

be the greatest possible number of ε× ε squares in Ui. Then Ei =
√
2δDi
ε + 2π.

Now we will determine the fewest and greatest amount of votes for Party A and Party B in

Di. First, suppose all of the voters for Party B that belong to the union of ε × ε squares that

∂Di intersects with lie inside of district i. Then Di contains the greatest amount of votes for

Party B, which is the amount of ε× ε squares contained in Di plus the amount of ε× ε squares

contained in Ui times the amount of votes for Party B per ε × ε square. Let Ri be the area of

Di. Then the amount of ε× ε squares in Di is Ri
ε2

and the greatest amount of votes for Party B

is b(Ri
ε2

+ Ei).

Next, suppose the voters for Party A that live in the ε× ε squares that intersect with ∂Di all

lie outside of Di. Then Di contains the fewest possible votes for Party A, which is the amount
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Figure 4.2.4.

of ε × ε squares contained in Di minus the amount of ε × ε squares contained in Ui times the

amount of votes for Party A per ε× ε square, which is a(Ri
ε2
− Ei).

Recall from Definition 2.1.1 that Ti is the total population for Di and (1 − δ)
⌊
T
k

⌋
≤ Ti ≤

(1+δ)
⌈
T
k

⌉
. Since T, k ∈ N, and k ≥ 2 and T ≥ 2k, from Criterion (i) and Lemma 4.2.4 it follows

that

Ti ≥ (1− δ)
⌊
T

k

⌋
≥ (1− δ) T

2k
= (1− δ)n

2l2

2k
.

Since Lemma 4.2.2 tells us that the smallest possible perimeter around q points arranged on

a square lattice of unit u is u
√
q, we know that we can take the number of points arranged on

a square lattice, multiply it by the unit length of the lattice squared and then take the square

root of that to find the smallest possible perimeter around around the points. Since Di contains

(1− δ)n2l2

2k points arranged on a square lattice of unit 1
nl , it follows that Pi ≥

√
1−δ
2k .

Now, recall from Lemma 4.2.1 that a
b ≤

F 2−4πγ−1F
√
2ε−8π2γ−1ε2

F 2+4πγ−1F
√
2ε+8π2γ−1ε2

. Since Criteria (i) and (ii) are

satisfied, since Pi ≥
√

1−δ
2k , since k ≥ 2 and since ε ∈ (0,∞), by Lemma 4.2.3 we know that

a
b ≤

F 2−4πγ−1F
√
2ε−8π2γ−1ε2

F 2+4πγ−1F
√
2ε+8π2γ−1ε2

≤ P 2
i −4πγ−1ε2E

P 2
1+4πγ−1ε2E

≤ Ri−ε2E
Ri+ε2E

. Therefore a
b ≤

Ri−ε2E
Ri+ε2E

. By multiplying

the top and bottom of the fraction on the right side of the inequality by 1
ε2

and rearranging,

we see that a(Ri
ε2
− E) ≥ b(Ri

ε2
+ E). Let Ai be the amount of votes for Party A in Di and let
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Bi be the amount of votes for Party B in Di. Since a(Ri
ε2
− Ei) is the fewest possible votes for

Party A in Di and b(Ri
ε2

+ Ei) is the greatest amount of votes for Party B in Di, it follows that

Ai ≥ a(Ri
ε2
− Ei) ≥ b(Ri

ε2
+ Ei) ≥ Bi, and so for each District i, Party A wins the vote.

Since Party B loses every district, according to Definition 2.1.6, all of its votes are wasted. It

has bn2 votes, since there are n2 ε× ε squares in the state and b votes per ε× ε square. Party A

wastes an2−
⌈
T
2

⌉
votes. Since b < a, then n22b

2 < n2(a+b)
2 <

⌈
n2(a+b)

2

⌉
=
⌈
T
2

⌉
, that is, bn2 <

⌈
T
2

⌉
.

Then an2 −
⌈
T
2

⌉
< an2 − bn2 and Party A wastes fewer than an2 − bn2 votes.

Then, by Definition 2.1.6 and Lemma 4.2.1,

EG <
an2 − 2bn2

n2(a+ b)
=
a− 2b

a+ b
≤ α− 1

2
< 0.

Hence,

|EG| > |a− 2b

a+ b
| ≥ 1

2
− α.

By Lemma 4.2.1, we know a > b and we know a−b
a+b < β. Hence, |A − B| = |an2 − bn2| =

n2(a − b) < βn2(a + b) = βT . For Criterion (iii) to be satisfied, it must be the case that if

|A−B| < βT , then |EG| < 1
2 − α. But we see that this criterion does not hold.
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5
Ideas for Further Study

5.1 Other Definitions of Compactness

The impossibility theorem for gerrymandering showed that using the three well-known criteria

for fair districting together does not work. Where can we look from here to keep searching

for solutions? The criteria given in Chapter 2 are not the only ways to measure compactness,

efficiency and individual voting power. For example, there are other well known methods for

calculating compactness of a district. One of these methods uses the Roeck Compactness Ratio,

from [4], where the area of the district is compared to the smallest possible circle it can fit

inside. If we wanted to use the Roeck Compactness ratio as a criterion in place of Polsby-Popper,

Criterion (ii) might look something like this:

Definition 5.1.1. Let k be the number of districts in the state. Let {D1, . . . , Dk} be the districts

in the state. Let Ri be the area of district i and let Ci be the area of the smallest possible circle

that can contain district i for all i ∈ {1, . . . , k}. The state satisfies Criterion (ii), Roeck

Compactness if there exists γ ∈ (0,∞) such that

Ri
Ci

> γ

for all i ∈ {1, . . . , k}. 4
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In this case, the number γ would be between 0 and 1, where if γ = 1, the district would be as

compact as possible and if γ were very small, the district would not be compact. This also is true

if we used Polsby-Popper Compactness. Therefore, the impossibility theorem for gerrymandering

may still hold if we replaced Polsby-Popper Compactness with Roeck Compactness.

There are even more methods for determining compactness besides these two. And there may

be other methods of determining voter efficiency that are yet to be discovered.

Perhaps there will never be a standard for fair districting systems that can apply to all districts

and each one’s fairness will have to be determined individually.

Perhaps, allowing a party who wins 51% of the votes to take the entire district is just not fair

and voting districts should be done away with.
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