
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2022 Bard Undergraduate Senior Projects

Spring 2022

The Algebra of Type Unification The Algebra of Type Unification

Verity James Scheel
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2022

 Part of the Logic and Foundations Commons, and the Programming Languages and Compilers

Commons

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation Recommended Citation
Scheel, Verity James, "The Algebra of Type Unification" (2022). Senior Projects Spring 2022. 230.
https://digitalcommons.bard.edu/senproj_s2022/230

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for inclusion
in Senior Projects Spring 2022 by an authorized
administrator of Bard Digital Commons. For more
information, please contact digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2022
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2022?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://digitalcommons.bard.edu/senproj_s2022/230?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

The Algebra of Type Unification

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Verity James Scheel

Annandale-on-Hudson, New York
May, 2022

ii

Abstract

Type unification takes type inference a step further by allowing non-local flow of information.
By exposing the algebraic structure of type unification, we obtain even more flexibility as well
as clarity in the implementation. In particular, the main contribution is an explicit descrip-
tion of the arithmetic of universe levels and consistency of constraints of universe levels, with
hints at how row types and general unification/subsumption can fit into the same framework of
constraints. The compositional nature of the algebras involved ensure correctness and reduce
arbitrariness: properties such as associativity mean that implementation details of type infer-
ence do not leak in error messages, for example. This project is a discovery and implementation
of these ideas by extending the type theory of the Dhall programming language, with imple-
mentation in PureScript.

iii

iv

Contents

Abstract iii

Acknowledgments vii

1 Introduction 1
1.1 Type Theory . 3

1.1.1 Consistency of a Type Theory . 4
1.2 Tools and Methodology . 5

2 Background and Setup 7
2.1 Datatypes . 7
2.2 Semilattices . 8

2.2.1 Monoids . 8
2.2.2 Partial orders . 9

2.3 Abstract Syntax Trees . 10
2.4 Variables . 10

2.4.1 Metavariables . 11

3 Type Inference 13
3.1 Intrinsic vs Extrinsic Typing . 14
3.2 Constraints . 15

3.2.1 Polymorphism . 17

4 Universes 19
4.1 The Algebra of Universe Levels . 20
4.2 Universe Levels in Judgments . 23
4.3 Normal Form for Universe Levels . 25

v

vi Contents

4.3.1 Normal Form Without Impredicative Maximum 25
4.3.2 Normal Form With Impredicative Maximum 26
4.3.3 Implementing Impredicative Maximum Through If 30

4.4 Relating Universe Levels . 31
4.4.1 Relations Without Impredicative Maximum 32
4.4.2 Relations With Impredicative Maximum 33
4.4.3 Proofs . 35

4.5 Constraining Universe Levels . 36
4.5.1 Consistency . 38

5 Row Types 41

6 Unification 45

7 Properties 49

8 Future Work 51

Appendices 55

A Judgments 55
A.1 Syntax . 55
A.2 Substitution . 57
A.3 Typing . 59

A.3.1 Builtins . 59
A.3.2 Functions and Variables . 59
A.3.3 Rows . 60

A.4 Unification/Subsumption . 60
A.5 Evaluation . 63

B PureScript Reference 65

Acknowledgments

I would like to thank my advisor, Bob McGrail, for giving me the latitude and encouragement
to explore these topics on my own and with his guidance.

Many thanks to Gabriella Gonzalez for not only creating Dhall and maintaining a welcoming
community around it but also being supportive of my exploration andmeeting with me several
times to discuss ideas.

I would also like to thank other members of the Type Theory community for short but inter-
esting conversations each: Robert Harper, Reed Mullanix, Callan McGill, Asad Saeeduddin,
Philippa Cowderoy, Gabriel Scherer, and more.

vii

viii

1
Introduction

The Dhall language is designed to be a straightforward, strongly-typed programming language

for specifying and generating configurations for system software. Despite having sophisticated

type system features such as dependent types, its standard is kept simple for ease of implemen-

tation. This is done by requiring each expression to contain extra type information, which is

often redundant and tedious for the user to specify. In particular, lambda abstractions have to

specify their input type, even though it can often be figured out from context:

\(n : Natural) =� n + 1

In this example, the user has to specify that the variable n has type Natural, even though that is

the only type that makes the expression typecheck: since the addition operator + in Dhall is not

overloaded, it can only take two arguments of type Natural! However, because this information

requires looking at context (the usage of n as an argument to +), it is not covered by the current

rules of type inference in Dhall.

Even before inferring whole types, though, there are two subproblems that must be tackled:

universe levels and row types. These are aspects of types that can be detached from the structure

of the types, and analyzed on their own.

As it stands, the user has to commit to exactly what fields must be present in records and

unions, as in the following example:

\(r : { x : Natural, y : Natural }) =� r.x + r.y

1

2 Introduction

This function can only take a record with fields x and y (of the appropriate type), even though

any record with additional fields would work just as well! A formalism of row types will loosen

this restriction and allow a most general type to be given to functions like this that will encom-

pass all potential usages.

Universe levels will be introduced later, but they suffer from similar problems. As one

example, Universe 0 here can be replaced with any other universe to produce a valid identity

function, but without universe polymorphism these identity functions will all require separate

definitions, for Universe 1 and Universe 2 and so on:

\(T : Universe 0) =� \(v : T) =� v

This project will increase the flexibility of Dhall while still keeping the same philosophy of

straightforward type inference rules. In particular this means adding universe and row polymor-

phism plus general type unification to the language. Universes are a technical detail of type theory:

they arewhat allow types to be first-class, however, to ensure the theory remains consistent, they

require some bookkeepingwhich is of little interest from a programmer’s perspective. Rows are

certainly more interesting from a programmer’s point of view: they allow coding to open inter-

faces of data addressed by labels, but they have their own challenges in bookkeeping. In fact,

these concepts are already lurking in the existing rules for Dhall, and this project is allowing

them to come into their own as concepts represented within the type theory in their own right.

The third idea is the main motivation for this project: general type unification. In order to

allow the programmer to omit more types while writing Dhall, it must be possible to infer what

type should have been written in the program, and this is done through unification. Every

omitted type starts off as an unknown type, and the task of unification is to stitch together

what partial information is known about a type from its occurrences scattered throughout the

program. But to support the features already in the Dhall language, in this setting of partially

unknown types, more or less necessitates the introduction of universe and row variables. And

polymorphism is the natural next step from there: not only will the unknown variables stand

1.1. Type Theory 3

for unique-but-unspecified types, but they will actually be able to be instantiated differently

across different call sites.

The goal is to maintain bottom-up inference rules in this description of type unification of

Dhall. Traditional unification algorithms inmajor compilers traverse throughprogram source in

a linear fashion, mutating the “current” state of unification variables as they go. Thismeans that

information cannot be untangled from the evaluation order the compiler takes, and so the error

messages that occur differ depending on program order. By maintaining the independence of

parallel branches of code, the new ideas in this project ensure that errors remain predictable

and clear.

The ideas contained in this project should give clearer type errors than both bidirectional type-

checking and the usual unification algorithms (which silentlymutate unification variables), and

it should keep evaluation safe when given partial type information.

1.1 Type Theory

Type theory studies programs (in the broadest sense) by giving types to expressions in a compo-

sitional manner. Type theories are set up as a system of formal judgments that give meaning

to programs, considered as terms in some language. Terms are ascribed types in typing judg-

ments, and then evaluation rules describe how terms reduce to other terms in order to run the

program. The primary judgment has the form t : T saying that term t has type T. Informally

we might say that term t “lives in” type T. In may be thought of as analogous to 𝑡 ∈ 𝑇 in the

language of set theory, and indeed, older literature often uses this notation, even though types

and sets are conceptually quite different.

While the rules are formally laid out in a logical framework (the metalanguage), the rules

often fit well into a computational framework. The process of checking whether a term has

a particular type is called type checking. The process of coming up with a type for a term is

called type inference. And of course evaluation often has computational meaning, although it

4 Introduction

is typically specified as a term rewriting system that need not terminate and may not even be

confluent (though these are both desirable properties).

The difference between type inference and type checking is that the former must come up

with the type of an expression, whereas the latter is given the type of an expression and has to

verify that it does indeed have the type. In some type systems, there is a significant difference

between these modes: if the same expression could be assigned different types, type checking

has more information to nudge the types in a particular direction, while type inference sort of

has to make a guess as to which is intended. They certainly should be compatible in the sense

that an inferred type should also satisfy type checking, but type checking in general may give

different results. However, for the purposes of this research, type inference is primary, and type

checking is implemented in terms of type inference, so they may be conflated. Additionally,

since there is no term for a program that carries out type inference, “typechecker” covers both.

1.1.1 Consistency of a Type Theory

A key property of type theories is that of consistency. There are two forms of consistency. As a

computational calculus, the evaluation rules of a type theory would be regarded as inconsistent

if all terms were equatable under the rules of evaluation. This is the sense in which untyped

lambda calculus is consistent. As a system of logic, however, the more relevant notion is that a

logic system is consistent when not all types are inhabited by terms. (In considering proposi-

tions as types, this corresponds to not all propositions being provable.)

Most type theories have one or several types that, if inhabited, would imply all other types

are inhabited. For example, in Dhall, the empty union type =�would be one example of such a

type, since a function forall (T : Type) =� =� =� T is derivable inDhall. By flipping those

arguments, =� =� (forall (T : Type) =� T) suggests another type that is in fact equiva-

lent: the type forall (T : Type) =� T obviously implies all other types. These “false” types,

then, must be uninhabited in a consistent type theory, and it is sufficient to prove that one is

uninhabited.

1.2. Tools and Methodology 5

The goal of consistent type theories, then, is to establish a typing system that preserves this

form of consistency.

This consistency is also important from a programming perspective, as it relates to termina-

tion of evaluation. There is no normal form for false types, so if there is a term that inhabits

them, it must have an infinite chain of reductions, demonstrating that evaluation is not termi-

nating if the theory is inconsistent.

Though Dhall has a formal standard specifying its type theory (with typechecking and eval-

uation semantics), it does not currently have a proof of consistency. However its rules are based

on systems known to be consistent, and the extensions in this paper are simple extensions to

that, with constraint solving for metavariables, subsumption, and let-polymorphism. In partic-

ular, let-polymorphism should be a conservative extension, since every term written with a

polymorphic let can instead be written with the substitution applied directly.

1.2 Tools and Methodology

The gold standard for research like this would be an implementation of the ideas and corre-

sponding proofs formalized in a proof assistant, like Agda or Lean. However, this would be

too ambitious: computer-assisted proofs are notoriously exacting, frustrating, and difficult to

produce. So for this project, the scope is more modest and colloquial: an implementation in

PureScript along with informal proofs in the language of common mathematics practice.

PureScript is a functional programming language that is quite similar to Haskell, but with

strict evaluation and compilation to JavaScript. Since PureScript is much newer than Haskell,

it has the chance to revisit some of Haskell’s design decisions. One of PureScript’s innova-

tions is the addition of row types. However, the row types for Dhall discussed in this project

differ significantly in implementation and scope from PureScript’s, although the basic ideas are

similar.

PureScript is great for specifying executable code, but there’s an impedance mismatch

between PureScript and mathematical practice. PureScript, for the most part, has a concrete

6 Introduction

syntax for its datatypes, which is great for clarity of algorithms, but it lacks the ability to form

subtypes, which complicates proofs of correctness. For example, from the type of lists in Pure-

Script, one cannot formally construct a type of ordered lists in PureScript. Instead, properties like

thismust bemaintained as informal invariants of PureScript programs instead of being bundled

into the datatypes and checked for type safety.

On the other hand, set theory (the supposed language of mathematical practice) is great at

forming subtypes (i.e. subsets), but is less clear with inductive types. In fact, many things

that PureScript models with inductive types (such as the SemigroupMap type of unordered

associative lists, considered as monoids under keywise appending) are best denoted by very

different objects in set theory (like functions of finite support). Similarly, there is also differences

of vocabulary between Dhall and PureScript, the same concept goes by different names, for

example, Text in Dhall is String in PureScript.

2
Background and Setup

2.1 Datatypes

Modern programming languages feature inductive types, which are least fixed points of spec-

ified constructors. In their simplest form they are called Algebraic Data Types (ADTs), which

are what PureScript supports. ADTs encompass both sum types and product types, and more

general recursive types.

Product types have one constructor and multiple fields:

data Bounds = MkBounds (Max Int) (Maybe (Min Int))
MkBounds =� Max Int =� Maybe (Min Int) =� Bounds

This datatype has one constructor MkBounds which has the type shown above.

Records in both PureScript and Dhall allow naming the fields of a product type:

{ min =� Max Int, max =� Maybe (Min Int) }

Sum types have multiple constructors:

data Maybe a = Nothing | Just a
Nothing =� forall a. Maybe a
Just =� forall a. a =� Maybe a

This datatype has two constructors: Nothing, a constructor with zero arguments, and Just, a

constructor with one argument.

7

8 Chapter 2. Background and Setup

Union types in Dhall allow anonymously creating this pattern with named fields, and a

library provides Variant for PureScript which serves a similar purpose:

< Nothing | Just : a >

Variant (Nothing =� Unit, Just =� a)

One special type in PureScript is Map, and its companions SemigroupMap and Set. Internally

they are implemented as balanced trees, but this representation is not visible to the user: all the

matters is that they are sorted collections indexed on a fixed type of key. Mathematically they

can be viewed as partial functions from the key type to the value type. The semigroup operation

on SemigroupMap appends two maps in the obvious keywise manner: if the key is present in

both, append the two values, otherwise take the single value that is present.

2.2 Semilattices

While groups are optimal for capturing the symmetries of various systems, semilattices are

ideal for tabulating knowledge obtained incrementally. Therefore, semilattices are one tool that

regularly show up in type inference.

Semilattices can be viewed from an algebraic perspective, as idempotent commutative

monoids, and also from an order-theoretic perspective, as a partially-ordered set with finite

joins – that is, least upper bounds of finite sets. (Dually they can be thought of as having finite

meets/greatest lower bounds, but wewill solely consider semilattices as join-semilattices in this

work.)

2.2.1 Monoids

Monoids are sets with one associative binary operation that has an identity. That is, they are

semigroups with an identity, or groups without inverses.

1. Associativity:

(𝑥𝑦)𝑧 = 𝑥𝑦𝑧 = 𝑥(𝑦𝑧)

2.2. Semilattices 9

2. Two-sided identity:

𝑒𝑥 = 𝑥 = 𝑥𝑒

Most monoids considered here additionally have the property that their identity is adjoined:

the identity only factors trivially as 𝑒 = 𝑒𝑒 (this is true for semilattices in particular, since if 𝑒

factors as 𝑥𝑦, then 𝑥 = 𝑥𝑒 = 𝑥𝑥𝑦 = 𝑥𝑦 = 𝑒 and likewise 𝑦 = 𝑒 by idempotence). This means these

monoids are really semigroups reflected through the adjunction that freely adjoins an identity

element.

Monoids are ubiquitous in programming. For example, strings form amonoid under concate-

nation. But this is really an instance of a more general fact: lists form the free monoid, and strings

are abstractly just lists of characters.

Natural numbers form monoids in several ways: under addition (with identity 0), under

maximum (also with identity 0), under multiplication (with identity 1), under 𝑙𝑐𝑚 (also with

identity 1), and other operations as well. Note that these three operations are commutative, but

only maximum and 𝑙𝑐𝑚 are idempotent. This idempotency is the key to semilattices.

Finite sets form the free semilattice, with the monoid operation being set unions. They can be

constructed by quotienting lists by commutativity and idempotence, or as a subtype by choosing

an ordering and requiring that the underlying list appears in sorted order without duplicates.

This is the key underlying reason why we often think of operations like maximum and 𝑙𝑐𝑚 as

operating on finite sets.

So when asking how to keep track of information like constraints during typechecking, the

most general answer will always be “Freely, by tabulating what constraints have occurred in a

finite set”. But there often is more structure to be noticed, and it can be factored into a more

specific algebraic structure (carried in some datatype) that precisely captures how constraints

interact.

2.2.2 Partial orders

Partial orders have the following axioms:

10 Chapter 2. Background and Setup

1. Reflexivity:

𝑥 ≤ 𝑥

2. Transitivity:

If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 ≤ 𝑧.

3. Antisymmetry: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦.

From a commutative idempotent monoid, we can form a partial order by taking 𝑥 ≤ 𝑦 to be

defined as 𝑥𝑦 = 𝑦, which can intuitively thought as 𝑦 absorbing 𝑥 under the monoid operation.

Transitivity and antisymmetry are immediate from the semigroup properties, and reflexivity

comes from idempotence. The identity of the monoid becomes the least element under this

ordering. This ordering additionally respects the monoid operation: if 𝑥 ≤ 𝑦 and 𝑢 ≤ 𝑣 then

𝑥𝑢 ≤ 𝑦𝑣 since 𝑥𝑢𝑦𝑣 = 𝑥𝑦𝑢𝑣 = 𝑦𝑣 by commutativity.

2.3 Abstract Syntax Trees

Abstract syntax trees are the bread and butter of computer science research. By thinking of

syntax as a tree, the recursion patterns of algorithms (particularly typechecking) is clarified.

All of the algorithms, such as typechecking and evaluation, are best thought of as operating

on the abstract syntax. Substitution is particularly straightforward: other than the cases that

mention variables, the rest of substitution is the obvious recusion down the syntax tree.

2.4 Variables

Variables are a big topic in programming language design, and this is compounded when

formalizing programming languages.

Variables are placeholders for values, so .

Variables in the programming language.

Formalizing variables in a rigorous way is a surprisingly hard issue. The main issue is

resolving variables when there are multiple with the same name in scope. If one variable

2.4. Variables 11

binding clobbers another already in scope, with no way to disambiguate, then the semantics

of the program could drastically change! It can be responsible for subtle bugs in theory and

implementation.

Nevertheless, there are many known solutions, such as capture-avoiding substitution, which

renames bound variables during the process of substitution, and de Bruijn indices, which

replace variables with numbers that track levels of scope, thus allowing . We will gloss over

the issue here, but in the Dhall standard it is formalized with variable shifting that combines

the power of de Bruijn indices with the convenience of named variables. Adding this method

of variable shifting onto existing rules is a straightforward process, since it mirrors the obvious

structure of how variable contexts are already embedded in the rules.

2.4.1 Metavariables

The term “metavariable” is somewhat ambiguous: It could refer to variables in the metalan-

guage, like the placeholders for variable names, other syntax fragments, or complete expres-

sions that are used in rules. However, this is not usually talked about, because we are not

analyzing the metalanguage, we are employing it.

What they usually refer to, then, is placeholders for undetermined structure. That is, they are

implicitly existentially quantified and may have constraints placed on their value, potentially

including an exact value being determined later.

Because these metavariables are existentially quantified, with no particular scope nor explicit

abstraction/instantiation rules, they are global variables. In order to support polymorphism,

therefore, their scope must be contained. We will see rules for determining their scope in this

framework of metavariables and constraints during type inference.

Implicit Metavariables and Elaboration

The goal is for the user to not have to supply universes and row types, since to produce themost

general type, they could all be metavariables. However, users may want to specify more restric-

12 Chapter 2. Background and Setup

tive types – if a definition does not need to be polymorphic and would produce more confusing

errors, the user could specify a concrete universe level for it, also for efficiency reasons.

3
Type Inference

Type theory rules are typically written in horizontal bar style, writing assumptions above the

line that are required to deduce the judgment below the line.

Most judgments in type theory take place in a context, traditionally denoted Γ. This tracks

variables in scope and associates them with their types, and sometimes values (for let-bound

variables). Thus when examining the body of a forall or lambda term, the context is extended

with the variable name and the type declared by the forall or lambda. And when examining

the body of a let term, the context is extended with not only the variable name and type, but

also its declaration value (and later we will add more information here to support polymor-

phism).

The main judgment is denoted Γ ⊢ 𝑡 ∶ 𝑇 and reads “term 𝑡 has type 𝑇 in context Γ”.

Judgments in this sense belong to a logicalmetatheory, but theymay be given a computational

interpretation by a type inference algorithm. In the computational interpretation, Γ and 𝑡 are

inputs to the algorithm, and the result is the inferred type 𝑇 or an error if no proof tree could

be constructed for it.

Type inference usually satisfies particular nice properties. For example, if a piece of syntax

typechecks in an environment, every sub-piece of syntax also typechecks in same environment,

but extended with variables to reflect the deepening of scope.

13

14 Chapter 3. Type Inference

Another property, useful for implementation, is that each piece of syntax typically only has

one rule that could apply to it, so there is no ambiguity. This is called syntax-directed type-

checking.

Besides type-theoretical judgments, there are other side-conditions that may appear as

assumptions for judgments. Normally they involve values that are static in the source code,

so the assumptions are trivially checked immediately while applying the rule.

The goal of this project is to show how these side-conditions can instead be deferred, with

less of it being known statically and more being figured out during type inference. In doing

so, the side-conditions need to be more tightly integrated with the presentation of the type

inference judgments. Now type inferencewill produce constraints, and these constraints need to

be tabulated and checked for consistency. In particular, universe levelswill produce arithmetical

constraints that are essential to ensuring termination of program evaluation, and row types will

produce other kinds of constraints to ensure that when a record has its field accessed, that label

definitely exists in the record (and with the right type).

The unification judgment will be written 𝐴 ≡ 𝐵 ↦ 𝐶 for the unification of 𝐴 and 𝐵 resulting

in a new unified term 𝐶 (along with constraints to make them unify), and computationally this

is a part of typechecking.

3.1 Intrinsic vs Extrinsic Typing

Each rule for type checking judgments can be viewed as an introduction rule for a formal deduc-

tive derivation. A typing derivation, then, is a tree of these judgments arranged in the appro-

priate way.

There are two extremes: intrinsic typing and extrinsic typing.

Intrinsic typing says that the syntax contains enough information about types that there is

only one possible typing derivation for a particular syntax tree. For example, it is common to

have lambda terms require a type for their argument. The role of type inference is then to verify

that the details check out, and to find the unique type associated with the expression in the end.

3.2. Constraints 15

Extrinsic typing at the other extreme says that programs exist on their own, independent

of types, and types are imposed on top of existing programs via formal typing derivations,

which may now involve creativity and choices not written into the structure of the program!

For example, an untyped lambda term like \x =� x can be compatible with many types, like

Natural =� Natural or Text =� Text, since the program itself does not impose one choice

of type on its argument and is consistent with all choices.

This project then starts from the intrinsic point of view, and weakens the static requirements

of programs slightly to approximate the freedom of extrinsic typing, while still retaining the

structure of the intrinsic. In particular, one goal is that once all constraints are satisfied, an

intrinsically-typed syntax tree could still be produced.

3.2 Constraints

Nowwe represent constraints explicitly during type inference. Constraints should be thought of

as finite sets of not incompatible atomic constraints. These atomic constraints will be constraints

on universe levels (like 𝑢 ≤ max(𝑣, 2)), on row types (like 𝑟1⩕𝑟2 = 𝑟3), or a unification constraint

between terms.

The new judgment looks like Γ ⊢ 𝑒 ∶ 𝑇 ⇐ 𝐶 and is read as “In context Γ, expression 𝑒 is

inferred to have type 𝑇 once the constraints 𝐶 are satisfied”. Algorithmically, Γ and 𝑒 are the

inputs to the type inference procedure and 𝑇 and 𝐶 are the outputs. This might be surprising

under an interpretation of the judgment as “𝑒 has type 𝑇 if 𝐶 is satisfied”. But it is really making

the claim “𝑒 can only have type 𝑇, and that only occurs when 𝐶 is satisfied”.

16 Chapter 3. Type Inference

Note

Looking forward, it would be cool to see if Γ could also be an output of the algorithm. This

relates to a concept called principal typings. See the conclusion for more.

Of course we will have judgments that are trivially true, returning the trivial constraint ∅,

like the following:

Γ ⊢ 0 ∶ Natural⇐ ∅

Other judgments will require combining the constraints produced, under constraint union:
Γ ⊢ 𝑒1 ∶ Text⇐ 𝐶1 Γ ⊢ 𝑒2 ∶ Text⇐ 𝐶2
Γ ⊢ [𝑒1,𝑒2] ∶ List Text⇐ 𝐶1 ∪ 𝐶2

Note that we only want to mention constraints that are satisfiable (or not known to be

unsatisfiable!). That is, we want type inference to stop on assert : 2 + 2 ==� 5 instead of

continuing with the unsatisfiable unification constraint 2 + 2 ≡ 5. So every time we mention

constraints in a judgment, there is an implicit check that they are still satisfiable. (Unfortunately,

this is an undecidable problem in general, given equality of open terms is undecidable, so we

will have to settle for ensuring they are not unsatisfiable.)

As written, the Dhall standard suggests inferring the type of the binding, and then substi-

tuting it in and inferring the type of the resulting expression:

Γ ⊢ 𝑒1 ∶ 𝑇1 Γ ⊢ 𝑒2[𝑥 ≔ 𝑒1] ∶ 𝑇2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝑇2

However, in practice what most implementations do is to extend the context by including

both the inferred type of the variable and its defined value:
Γ ⊢ 𝑒1 ∶ 𝑇1 Γ, (𝑥 ≔ 𝑒1 ∶ 𝑇1) ⊢ 𝑒2 ∶ 𝑇2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝑇2[𝑥 ≔ 𝑒1]

Notice that this requires the substitution be performed in the output type now, but this is gener-

ally less work – in particular, for value-level variables that do not occur in the type! Maybe

the output substitution isn’t necessary if the type judgment is well-crafted, i.e. producing a

normalized type, but it would still require shifting to keep track of variables.

3.2. Constraints 17

Note

Under lazy evaluation, if the variable 𝑥 is never used, it will not be evaluated. Thus it would

still be safe (with respect to evaluation and type-safety) to wholly omit the first assumption

Γ ⊢ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1, since it is unnecessary when 𝑥 does not appear in 𝑒2 and it would

merely be deferred to the usage sites when 𝑥 does occur. However, this is a bad idea for a

couple reasons: First it breaks the formal assumption that if an expression typechecks, its

subexpressions typecheck (in the appropriate context). Second, it would be surprising for

users of the languagewho rely on this property, even informally through their intuition but

also formally. As a particular example, assertion expressions are often used in let bindings

to formally assert properties of programs. These assertion expressions are never evaluated:

there is no way to force their evaluation in Dhall! Third, it also makes error messages more

unpredictable: the errorwould be deferred and look like it was coming from inside 𝑒2when

it really occurred in 𝑒1, which just happened to get embedded into 𝑒2.

3.2.1 Polymorphism

These judgments do not get us polymorphism yet, though, because metavariables are global.

Instead, we need to track what metavariables to generalize over, and then instantiate them at

use sites.

There are two ways to do this, corresponding to the two styles of let-inference above: If we

are doing inference on the substituted expression 𝑒2[𝑥 ≔ 𝑒1], we can simply make sure that the

metavariables are generalized for each instantiation, which should be direct (once we are sure

what metavariables to generalize). The second style requires a bit more work, but it amounts to

keeping track of the unresolved constraints on the generalized metavariables, and then gener-

alizing.

We will prefer the second style for the same reasons: the inference work is memoïzed, and

the instantiating work is substantially smaller.

18 Chapter 3. Type Inference

For now, we will only make let-bound variables polymorphic. Higher-order polymorphism,

with polymorphic function arguments, will be more difficult (and less clear if it is consistent).

In order to do so, we want to keep a whole type inference constraint in context:

Γ ⊢ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1 Γ, (𝑥 ≔ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1) ⊢ 𝑒2 ∶ 𝑇2 ⇐ 𝐶2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝑇2[𝑥 ≔ 𝑒1] ⇐ 𝐶1 ∪ 𝐶2

The magic happens in the variable judgment:

𝑣𝑠 to generalize over with corresponding fresh 𝑢𝑠
Γ, (𝑥 ≔ 𝑒 ∶ 𝑇 ⇐ 𝐶), Δ ⊢ 𝑥 ∶ 𝑇[𝑣𝑠 ≔ 𝑢𝑠] ⇐ 𝐶[𝑣𝑠 ≔ 𝑢𝑠]

Whenwe see a variable, we look it up in the context, complete with its type and constraints, and

then we reinstantiate the generalizable metavariables while copying the type and constraint.

Note

We may need to inspect 𝑒 to catch some metavariables to be generalized in the constraints,

but maybe they should be already discarded. That is, if there are metavariables that occur

in 𝑒 but not 𝑇, we should try to eliminate them from the constraints.

How do we know what metavariables to generalize over? By examining the context and

tracking which metavariables already occurred in lambda-bound places.

The distinction is that variables that are let-bound never introduce new boundmetavariables,

since the metavariables they would introduce are instead generalized over; but lambda-bound

variables do bind their metavariables, since we do not yet support polymorphism for them.

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒) = {… }

𝑏𝑜𝑢𝑛𝑑(Γ, 𝑥 ∶ 𝑇) = 𝑏𝑜𝑢𝑛𝑑(Γ) ∪ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑇) 𝑏𝑜𝑢𝑛𝑑(Γ, 𝑥 ≔ 𝑒 ∶ 𝑇 ⇐ 𝐶) = 𝑏𝑜𝑢𝑛𝑑(Γ)

𝑣𝑠 ≔ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒 ∶ 𝑇) ⧵ 𝑏𝑜𝑢𝑛𝑑(Γ) 𝑢𝑠 ≔ 𝑓𝑟𝑒𝑠ℎ(𝑣𝑠)
Γ, (𝑥 ≔ 𝑒 ∶ 𝑇 ⇐ 𝐶), Δ ⊢ 𝑥 ∶ 𝑇[𝑣𝑠 ≔ 𝑢𝑠] ⇐ 𝐶[𝑣𝑠 ≔ 𝑢𝑠]

4
Universes

How do you study something in type theory? By giving it a type! Universes are a way to give

types to types, and they would be uninteresting if not for some difficulties that arise in ensuring

their consistency.

The naïve way of doing it would be to say that all types live in a single universe, call it Type.

This universe is in fact a type, so it must be the case that Type : Type. However, this “Type-

in-Type” rule makes most type theories inconsistent, due to results such as Girard’s paradox

and its simplification as Hurkens’ paradox [3]. These are in some ways analogous to Russell’s

paradox: just like there can be no set of all sets in a consistent set theory, there can be no type

of all types in a consistent type theory. In type theory, the inconsistencies are visible as terms

that can be ascribed types, but do not reduce to any normal form in a finite number of steps.

This particular type of inconsistency was exhibited in an issue on the Dhall respository when

impredicativity was allowed for two universes, which is enough to exhibit the above paradoxes,

but the issue was quickly fixed [1].

The solution, therefore, is to stratify types into levels. Only small types can live in Type, while

Type itself (and other “large” types) will live in Kind and Kind lives in Sort, and so on. In fact

it is customary to assume an infinite hierarchy of universes indexed by natural numbers, where

19

20 Chapter 4. Universes

Type = Universe 0 denotes the smallest, then Kind = Universe 1, Sort = Universe 2,

and the rest are unnamed but exist as Universe 3, Universe 4, and so on.

However, these universe levels cannot be understood as natural numbers internal to the type

theory. They must be accorded special status, because abstracting over them works differently

to normal values and also because they should not support all operations that natural numbers

do. In fact, four operations suffice as we will see, plus a fifth to obtain a normal form.

It is conventional to elide concrete universe levels from programs, in so-called “typical ambi-

guity”, and instead assume that there is a consistent assignment of levels that makes it work.

This is the role of metavariables here, to keep track of universes with various constraints placed

on them during typechecking. The question is how to design a type theory to check consistency

of universes in as much generality as possible, and much has been written about this problem,

including papers on similar type theories [2]. Here we just dive straight in to the arithmetic and

give explicit description of most of the details necessary to check universe constraints.

4.1 The Algebra of Universe Levels

The actual algebraic language that expresses universe levels only has four operations: nullary

zero, unary successor, and two binary operations maximum and impredicative-maximum.

Thus this language only allows addition by fixed natural numbers: adding two universe levels

together is not meaningful.

There are actually three related languages under discussion here: ℒ, the language of universe

levels with only maximum, no impredicative maximum; ℒimax, extended with the impredica-

tive maximum; and ℒif, with an alternative binary operator that is used to simplify normal

forms for impredicative maximum but does not appear directly in the typing judgments.

Obviously wewill use natural numbers to denote the appropriate sequence of successors and

zero, and addition by a natural number represents the appropriate sequence of successors. The

issue of variables in the metatheory already rears its head here: by writing 𝑢 + 𝑘 we mean that

4.1. The Algebra of Universe Levels 21

𝑢 is a variable (or possibly a whole universe level expression), and 𝑘 is a fixed natural number

to shift 𝑢 by.

For clarity, we will usually denote maximum of 𝑢 and 𝑣 by max(𝑢, 𝑣) and their impredicative-

maximumby imax(𝑢; 𝑣), but sometimeswewill leave the function labels off and treat the comma

and semicolon as binary operators, with the comma having higher precedence. Obviously the

ordinary maximum will be associative, commutative, idempotent, with identity 0, so there is

no disambiguation required. The impredicative maximum, however, is neither associative nor

commutative, only idempotent, and so by convention it will be regarded as left-associative. That

is, (𝑢, 𝑣; 𝑥, 𝑦) reads as imax(max(𝑢, 𝑣);max(𝑥, 𝑦)) and (𝑢; 𝑣; 𝑤) as imax(imax(𝑢; 𝑣); 𝑤).

We define 𝑢 ≤ 𝑣 by max(𝑢, 𝑣) = 𝑣 as is standard.

Axioms:

1. Successor is injective:

𝑢 = 𝑣 ⟺ 𝑢 + 1 = 𝑣 + 1

2. Maximum is commutative:

max(𝑢, 𝑣) = max(𝑣, 𝑢)

3. Maximum is associative:

max(𝑢,max(𝑣, 𝑤)) = max(max(𝑢, 𝑣), 𝑤)

4. Maximum is idempotent:

max(𝑢, 𝑢) = 𝑢

5. Zero is least:

max(0, 𝑢) = 𝑢

6. Successor distributes across maximum:

max(𝑢, 𝑣) + 1 = max(𝑢 + 1, 𝑣 + 1)

7. Forℒimax:

22 Chapter 4. Universes

(a) Impredicative maximum:

imax(𝑢; 0) = 0

(b) Non-impredicative maximum:

0 < 𝑣 ⟹ imax(𝑢; 𝑣) = max(𝑢, 𝑣)

8. Forℒif:

(a) If zero:

if(𝑢; 0) = 0

(b) If nonzero:

0 < 𝑣 ⟹ if(𝑢; 𝑣) = 𝑢

(c) Definition of impredicative maximum in terms of if:

imax(𝑢; 𝑣) = max(if(𝑢; 𝑣), 𝑣)

Some key consequences derived from the above fundamental axioms:

1. 0 ≤ 𝑢

2. 𝑢 ≤ max(𝑢, 𝑣)

3. 𝑢 ≤ 𝑣 ⟺ 𝑢 + 1 ≤ 𝑣 + 1

4. imax(𝑢;max(𝑣, 𝑤)) = max(imax(𝑢; 𝑣), imax(𝑢; 𝑤))

5. max(imax(𝑢; 𝑣), imax(𝑢; 𝑤)) = imax(max(𝑢, 𝑣); 𝑤)

6. imax(𝑢, imax(𝑣, 𝑤)) = imax(max(𝑢, 𝑣); 𝑤)

In the following, whenwe speak of a “model”, wemean an assignment of variables to natural

numbers. The set of all models is the space which gets carved out by constraints: certainmodels

are compatible with some constraints while others are not. In particular, the challenge is to

narrow down .

4.2. Universe Levels in Judgments 23

4.2 Universe Levels in Judgments

Here we go over how the universe levels are used in judgments.

Of course the successor operation, as mentioned above, is used to find the type of a universe,

and the zero is used for types like Natural and Text that automatically live in the lowest

universe. The maximum operation is used to find a common universe that contains two (or

more) types, particularly in constructions like record and union types.

The impredicative-maximum is used to determine what universe function types live in.

Here is how the universe level constraints come up during type inference:

Universes themselves live in the next highest universe:

Γ ⊢ Universe 𝑢 ∶ Universe (𝑢 + 1) ⇐ ∅

Function types live in the impredicative-maximum of their input and output universes:

Γ ⊢ 𝑇1 ∶ Universe 𝑢 ⇐ 𝐶1 Γ, 𝑥 ∶ 𝑇1 ⊢ 𝑇2 ∶ Universe 𝑣 ⇐ 𝐶2
Γ ⊢ (∀(𝑥 ∶ 𝑇1) → 𝑇2) ∶ Universe imax(𝑢; 𝑣) ⇐ 𝐶1 ∪ 𝐶2

That is, functions with a codomain in the lowest universe live in the lowest universe, regardless

of what universe the domain is in.

Impredicativity is particularly useful in programming because it allows polymorphic func-

tions to remain in the lowest universe, if they return data in the lowest universe. In particular,

custom recursive types (analogous to the builtin List) require an encoding with polymor-

phic functions that quantify over types (e.g. Böhm–Berrarducci encoding), and impredicativity

allows this to live in the lowest universe (assuming all of the data does). Most importantly, it

still produces a consistent logic system and terminating programming language, though some

have philosophical objections to it.

The obvious rules hold for record types, union types, and the like. In particular, these rules

take the maximum of levels of their arguments.

24 Chapter 4. Universes

A common additional rule is the universe cumulativity rule, which says that any type in a

particular universe also lives in all larger universes:

Γ ⊢ 𝑇 ∶ Universe 𝑢 𝑢 ≤ 𝑣
Γ ⊢ 𝑇 ∶ Universe 𝑣

As stated, it means that terms no longer have a unique type and requires generating fresh vari-

ables for universe levels. Instead, a subsumption rule is incorporated in the appropriate places

to emulate the cumulativity. This is because the type information is propagated anyways.

Universe 𝑢E Universe 𝑣 ⇐ {𝑢 ≤ 𝑣}

𝐴2 E𝐴1 ⇐ 𝐶1 𝐵1 E 𝐵2 ⇐ 𝐶2
∀(𝑥 ∶ 𝐴1) → 𝐵1 E ∀(𝑥 ∶ 𝐴2) → 𝐵2 ⇐ 𝐶1 ∪ 𝐶2

The unification rule produces an equality constraint:

𝑢 ≡ 𝑣 ↦ 𝑤
Universe 𝑢 ≡ Universe 𝑣 ↦ Universe 𝑤

Because 𝑢 ≡ 𝑣 emits as a side-condition, there’s no specific expression that denotes 𝑤, so we just

take𝑤 = max(𝑢, 𝑣) as themost symmetric result, though there should be no difference returning

either 𝑢 or 𝑣 instead.

The subsumption rule acts a lot like the unification rule in that it ensures the two types have

similar structure overall, but incorporates an inequality constraint on the universe levels at the

leaves according to the variance of the judgment.

Besides cumulativity, the big challenge is polymorphism: letting the same definitions be

instantiated at various universes. For built-in functions (e.g. Natural/fold) this is easy

enough to postulate in the type theory (again, it requires fresh variables for universe levels),

but extending this to let-bound user functions is more work, and function arguments evenmore

so (i.e. higher-order polymorphism). Cumulativity takes care of some examples where poly-

morphism would ordinarily be required.

4.3. Normal Form for Universe Levels 25

4.3 Normal Form for Universe Levels

First we introduce normal forms for the three-operation languagewithout imax, thenwe extend

it to a normal form for the full language.

4.3.1 Normal FormWithout Impredicative Maximum

The normal form forℒ is max(𝑢1 + 𝑘1, … , 𝑢𝑛 + 𝑘𝑛, 𝑐), where 𝑐 ≥ 𝑘1, … , 𝑘𝑛 ≥ 0 and the 𝑢𝑖 occur in

order. This is clearly closed under the operations inℒ, since max is associative, commutative,

and idempotent, and successor distributes across it. The PureScript datatype that represents

the normal form is as follows:

data UnivMax = UnivMax (SemigroupMap String (Max Int)) (Max Int)

With this setup, taking the maximum is clearly just the obvious semigroup append operation.

There are some details to worry about here, though. The first is the use of integers instead of

natural numbers: for one it is easier to work with integers in PureScript due to built-in support,

and later, when subtracting constants from expressions based on their relationships, it will be

convenient to temporarily allownegative integers to appear in constraints, although in the global

picture nothing will actually be negative: no variables will be assigned negative values and no

expressions will evaluate to negative values. Certainly it will be the case that all the inputs are

nonnegative integers, and this can be enforced syntactically when parsing programs.

And as was discussed in the introduction, there is no way in PureScript to enforce the

restriction corresponding to 𝑐 ≥ 𝑘1, … , 𝑘𝑛. This restriction comes from the fact that variables

(and all expressions) are nonnegative. So instead, there is a normalization function that sets

𝑐′ = max(𝑐, 𝑘1, … , 𝑘𝑛, 0).

normalizeUnivMax =� UnivMax =� UnivMax
normalizeUnivMax (UnivMax us u) = UnivMax us
(fold1 (NonEmpty u us) =� Max zero)

Thus we see that an expression input asmax(𝑢+1, 𝑣+3) has a normal form ofmax(𝑢+1, 𝑣+3, 3),

just by applying the nonnegativity axiom, max(𝑢 + 1, 𝑣 + 3) ≥ 𝑣 + 3 ≥ 3. One nice property of

26 Chapter 4. Universes

this normalization is that appending two normalized expressions results in another normalized

expression.

4.3.2 Normal FormWith Impredicative Maximum

Instead of a normal form forℒimax (which would require making somewhat arbitrary choices),

expressions are written in the larger language ℒif which admits nice normal forms. One

example of why this is crucial is that the expression (𝑐; 𝑏; 𝑎), (𝑐; 𝑎; 𝑏) = ((𝑐; 𝑏), 𝑏; 𝑎), 𝑎, ((𝑐; 𝑎), 𝑎; 𝑏), 𝑏

could have two normal forms that are equivalent up to choice of order on the variables:

(𝑐; 𝑏; 𝑎), 𝑎, 𝑏 = (𝑐; 𝑎; 𝑏), 𝑎, 𝑏. One of the two has to win in this case, but imax does not commute like

that: only if does.

In particular,ℒif has normal forms that are the maximum of cases with values fromℒ, satis-

fying some normality properties. Syntactically an expression in normal form looks like

max(if(𝑎1; 𝑏1,1; … ; 𝑏1,𝑚1); … ; if(𝑎𝑛; 𝑏1,1; … ; 𝑏1,𝑚𝑛)) where 𝑎𝑖 are normal forms forℒ and 𝑏𝑖,𝑗 occur in

sorted order, no duplicates, plus some other conditions on how the cases interact. However,

this is more clearly expressed in the PureScript type:
newtype UnivIMax = UnivIMax (SemigroupMap (Set String) UnivMax)

Again, the obvious semigroup operation represents taking the maximum of two expressions,

though it may not be in normal form anymore even if its operands are.

Mathematically, this should be seen as a monotonic function from hypotheticals (sets of vari-

ables) to the aboveℒ normal form. Indeed comparing any two normal forms of this type essen-

tially requires computing that function at all the relevant hypotheticals. This PureScript func-

tion computes that by folding together all the hypotheticals that are included in the desired

hypothetical:
foundAt =� Set String =� UnivIMax =� UnivMax
foundAt vars (UnivIMax c) = withMinimumAt vars $
fromMaybe (UnivMax mempty (Max zero)) $
c # foldMapWithIndex \ks v =�
if Set.subset ks vars then Just v else mempty

However, for the purposes of a finite normal form, it is better to store the minimal amount

of information to recover the function. So, along with the above conditions, there is the extra

4.3. Normal Form for Universe Levels 27

restriction that there is no redundancy: if one hypothetical is a subset of another, then whatever

constraints are forced in the smaller (general) hypothetical should not be included in the larger

(more specific) hypothetical. More on that later, but for example, max(if(𝑢; 𝑣), 𝑢 + 1, 𝑣) is not

a normal form: the 𝑢 under the hypothetical {𝑣} is redundant, since 𝑢 + 1 already occurs at

the hypothetical ∅. The correct normal form of that expression is simply max(𝑢 + 1, 𝑣). See

reduceBySelf below for the logic implementing this.

There are two additional details to take care of, relating to variables appearing under their

own hypotheticals.

The easier detail is exemplified by the two facts that 𝑥 + 3 = max(3, 𝑥 + 3) but imax(𝑥 + 3; 𝑥) =

imax(max(4, 𝑥+3); 𝑥). That is, under a hypothetical that includes {𝑣}, the variable 𝑣 is (by defini-

tion) strictly positive, so the constant factor representing the minimum value needs to take that

account. See withMinimumAt below for this step of normalization.

The more subtle detail can be seen in max(imax(𝑥 + 5; 𝑥), 6) = max(imax(𝑥 + 5; 𝑥), 6, 𝑥 + 5) =

max(6, 𝑥+5), where the second step is handled by the first detail above (removing redundancy),

but the first step requires a new approach. Whenever the variable appears in a hypothesis that

also mentions it, it is added to the hypothesis that excludes it, shifted by the minimum of its

observed shift and the constant factor at the reduced hypothesis. This preserves equality since

there it will only be observed as zero anyways as the nonzero case is appropriately handled by

the hypothesis that includes it. See promoting below for this step of normalization.

Again, these conditions cannot be imposed on valueswithin PureScript’s system of datatypes,

but they lend themselves to being expressed as a normalization function:

normalizeUnivIMax =� UnivIMax =� UnivIMax
normalizeUnivIMax (UnivIMax uz) =
UnivIMax (mapWithIndex withMinimumAt uz) # promoting # reduceBySelf

withMinimumAt =� Set String =� UnivMax =� UnivMax
withMinimumAt ks (UnivMax us u) = UnivMax us $
apply maybe append (Max zero =� u) $
us # foldMapWithIndex \k (Max v) =�
Just (Max (v + if Set.member k ks then 1 else 0))

promoting =� UnivIMax =� UnivIMax

28 Chapter 4. Universes

promoting (UnivIMax uz) = UnivIMax $ append uz $
uz # foldMapWithIndex \ks (UnivMax us _) =�
us # foldMapWithIndex \k n =�
let ks' = Set.delete k ks in
if ks' =� ks then mempty else
case foundAt ks' (UnivIMax uz) of
UnivMax _ n' =�
let n'' = min n' n in
SemigroupMap $ Map.singleton ks' $
UnivMax (SemigroupMap (Map.singleton k n'')) n''

-- | Remove information that is implied already.
-- | This is used for normalizing constants.
reduceBy =� UnivMax =� UnivMax =� Maybe UnivMax
reduceBy
(UnivMax (SemigroupMap source) (Max sv))
(UnivMax (SemigroupMap target) (Max tv)) =
let
target' = target # Map.mapMaybeWithKey \k v =�
case Map.lookup k source of
Just v2 | v2 >= v =� Nothing
_ =� Just v

in if Map.isEmpty target' && sv >= tv then Nothing
else Just (UnivMax (SemigroupMap target') (Max tv =� Max sv))

-- | Reduce by itself.
reduceBySelf =� UnivIMax =� UnivIMax
reduceBySelf (UnivIMax (SemigroupMap source)) =
UnivIMax $ SemigroupMap $ source #
Map.mapMaybeWithKey \ks =�
reduceBy (foundBy ks (UnivIMax (SemigroupMap source)))

Unlike normalizeUnivMax, however, normalizeUnivIMax is not preserved by the naïve semi-

group operation, since redundancymay be introducedwith the expressions in combination that

was not present individually.

A normal form 𝑁 in ℒif is in ℒimax exactly when under each nontrivial hypothetical, the

variables of that hypothetical are included. This can be characterized more directly in terms of

the normal form. Wewill see that this property is maintained throughout, to ensure the normal

form ofℒimax is indeed closed.

4.3. Normal Form for Universe Levels 29

Proof of Normal Forms

To show that we have normal forms for the respective languages, for two expressions with

different normal forms, we need to demonstrate a model where they differ.

Forℒmax, the proof of normal form is simple:

1. If the normal forms differ at a constant (for example, max(𝑥 + 1, 4) versus max(𝑥 + 1, 7)),

because the normal form guarantees that those constants are greater than the shifts of the

variables, a model witnessing their difference is found by simply setting all variables to

zero.

2. If the normal forms differ at a variable, a model witnessing their difference is found by

setting all variables to zero except the one they differ at, which can be set to the maximum

of the constants appearing in the expressions. Thismakes it so that that variable dominates

and the difference can be observed. For example, for the expressions max(𝑥 + 3, 13) and

max(𝑥 + 4, 13), they are the same for 𝑥 ≤ 9, but of course once 𝑥 > 9 the 𝑥 + 3 and 𝑥 + 4

terms will dominate, showing the difference, so the model 𝑥 = 13 certainly suffices. Note

that this model works even if the variable is ommitted from one side.

Forℒimax ⊂ ℒif, the proof of normal form is more intricate.

The first step is to find an inclusion-minimal hypothesis where they differ. This is to ensure

that the difference corresponds to an actual difference in the functional realization.

The basic model is to set the variables in the hypothesis to 1, and other variables to 0, but there

are three slightly different cases:

1. If the normal forms differ at a constant, then the basic model works, in particular since the

normalized constant factor takes into account the basic model! (Recall that imax(𝑥 + 3; 𝑥)

has the normal form imax(max(4, 𝑥 + 3); 𝑥).)

2. If the normal forms differ at a variable which appears in the hypothesis already, the model

simply needs that variable to dominate like above, which again can be found by setting it

to be larger than the constants found within.

30 Chapter 4. Universes

3. If the normal forms differ at a variable which is not mentioned in the hypothesis, this variable

can still be made to dominate, but it needs a little more explanation why this difference

is still visible at the hypothesis including this new variable. Two examples, max(𝑥 + 4, 8)

versus max(𝑥 + 6, 8), or max(𝑥 + 4, 8) versus 8 (note that since we are not in case 1, the

constants must be the same in both expressions!). Thus the variable must be missing

from the hypothesis with the new variable added, since otherwise normalization would

move it to this smaller hypothesis.

4.3.3 Implementing Impredicative Maximum Through If

This is the part that shows that the language is closed forℒif andℒimax.

First we set up two helper functions. Thenwe calculate the combination of variables that have

to be zero for the constant to be zero. Note that this.

An expression is zero when:

1. imax(𝑎; 𝑏) = 0 iff 𝑏 = 0.

2. if(𝑎; 𝑏) = 0 iff 𝑏 = 0 or 𝑎 = 0.

3. max(𝑎, 𝑏) = 0 iff 𝑎 = 0 and 𝑏 = 0.

4. 0 is always zero, 𝑎 + 1 is never zero.

Knowing the exact combination of variables that make an expression zero, it can be used to

construct the appropriate expression out of if operations. In particular, an expression 𝑒 under

the disjunction of some variables 𝑣𝑠 is expressed by if(𝑒; 𝑣𝑠) (if one of those variables is zero,

then that expression is), and conjunction is further expressed by taking the maximum of those

expressions (if any of the conjuncts are nonzero, then the expression is has value 𝑒). Thus it

is convenient to have this information in conjunctive normal form (CNF). The disjunctions are

not even needed if the expression is inℒimax, so a simpler implementation can be given for that

special case, though it is omitted below.

zeroableUnivMax =� UnivMax =� Boolean
zeroableUnivMax (UnivMax us (Max u)) =

4.4. Relating Universe Levels 31

u <= zero && all (\(Max v) =� v <= zero) us

skimUnivMax =� UnivMax =� Maybe (Set String)
skimUnivMax t@(UnivMax (SemigroupMap us) _) =
if zeroableUnivMax t then Just (Map.keys us) else Nothing

-- | The expression is only zero when combinations of variables are zero.
peruse =� UnivIMax =� Set (Set String)
peruse (UnivIMax (SemigroupMap uz)) =
let
-- distr =:: CNF =-> DNF =-> CNF
distr k1s k2s =
k2s # Set.map \k2 =�
Set.insert k2 k1s

in uz # foldMapWithIndex \k1 t =�
-- k1 is DNF
-- skimUnivMax is CNF
-- we need CNF
case skimUnivMax t of
Just k2 =� distr k2 k1
Nothing =� Set.singleton k1

ifop =� UnivIMax =� UnivIMax =� UnivIMax
ifop (UnivIMax (SemigroupMap us)) v
= fromMaybe uempty $
peruse v # foldMap \ks =�
us # foldMapWithIndex \ks' u =�
Just $ UnivIMax $ SemigroupMap $ Map.singleton (ks =� ks') u

4.4 Relating Universe Levels

Relating two level expressions is one of the key components of the constraint solving.

Besides equality of normal forms (that is, equality across all models), there are three funda-

mental relations that work together to inform about how expressions relate across models. The

simplest relation is one is always strictly less than the other: e.g. max(𝑢, 𝑣) < max(𝑢+1, 𝑣+1). The

next simplest relation is that one is always less than or equal to the other and there are models

where they are equal and arbitrarily large: e.g. max(𝑢, 𝑣) ≲ max(𝑢, 𝑣 + 1). The third and final

relation is that one is always less than or equal to the other, but equality is only achieved when

both expressions are small: 0 ⩽ max(𝑢, 𝑣). The bonus relation is 𝑢 ⋈ 𝑣, for expressions that

32 Chapter 4. Universes

are uncomparable: sometimes greater, sometimes less than, and necessarily arbitrarily large in

either direction.

4.4.1 Relations Without Impredicative Maximum

These three relations can be wrapped up into a single semigroup that describes how two

level expressions are related. The difference between the last two relations, then, is how they

combine: the former is infectious, in that it takes priority over the strict inequality, while the

latter is subsumed by it.

data Rel
= H_EQ -- equal (and arbitrarily large)
| S_LT | S_GT -- strict inequality
| H_LE | H_GE -- weak inequality, with arbitrarily large equality
| L_LE | L_GE -- weak inequality, but only equal at small values
| UNCOMP -- uncomparable

This has a commutative, idempotent semigroup structure. A selection of key cases are shown

below:

instance semigroupRel =� Semigroup Rel where
append UNCOMP _ = UNCOMP

append S_LT H_EQ = H_LE
append H_LE H_EQ = H_LE
append L_LE H_EQ = L_LE

append H_LE L_LE = H_LE

append S_LT H_LE = H_LE
append S_LT L_LE = S_LT

To get a monoid out of this, we just adjoin an identity. The functor in PureScript that canon-

ically does this is Maybe, which has two constructors: Nothing =� forall a. Maybe a and

Just =� forall a. a =� Maybe a. Of course the monoid Maybe Rel is still commutative

and idempotent.

In fact, a commutative, idempotent semigroup is a semilattice. Adjoining the identity for the

semigroup operation is the same as adjoining a bottom element for the semilattice, producing

a bounded semilattice. These are the Hasse diagrams for Rel and Maybe Rel.

4.4. Relating Universe Levels 33

Figure 4.4.1: Hasse diagrams for Rel and Maybe Rel

UNCOMP ⋈

H_LE ≲H_GE ≳

S_LT <

H_EQ ≂

S_GT >

L_LE ⩽L_GE ⩾

Just UNCOMP ⋈

Just H_LE ≲Just H_GE ≳

Just S_LT <

Just H_EQ ≂

Just S_GT >

Just L_LE ⩽Just L_GE ⩾

Nothing =0

For theℒ normal form UnivMax, the expressions are compared variablewise and these results

are combined together with the semilattice operation. There is one annoying detail: this infor-

mation cannot be combined with the information from the constant using the same semilattice

operation (which should be Nothing, Just S_LT, or Just S_GT as appropriate). It is almost

correct, except for one small detail: on cases where the constants are equal but the rest of the

expression is strictly comparable, as when comparing max(𝑥 + 4, 5) with max(𝑥, 5), the result

would be a high inequality H_LE or H_GE instead of the expected low inequality L_LE or L_GE,

since those two example expressions are only equal for 𝑥 = 0, 1 and not arbitrarily high. In fact,

for the rest of this logic, the difference is not essential, but it is nice to maintain it. Thus we add

this small check as a special case, since it goes against the monotonicity of the semilattice.

Just L_LE

4.4.2 Relations With Impredicative Maximum

For the ℒif normal form UnivIMax, the expressions are compared for each relevant hypothet-

ical and combined with new semilattice operation. A new operation is needed because if two

impredicative expressions can be equal at one hypothetical, they of course can be equal overall,

not matter if it is a low equality or a high equality. So in this new operation, L_GE dominates

S_GT and L_LEdominates S_LT instead of the otherway around. That is, the distinction between

L_GE and H_GE is not so useful anymore (they are adjacent in the semilattice), but it might as

34 Chapter 4. Universes

well be kept around since the information is available! In addition there is a “middle” notion of

equality M_EQ for when constants are equal in the empty hypothetical (this is somewhat analo-

gous to the above discussion of promoting from S_LT to L_LE and S_GT to L_GE).

This means that there are some annoying details, but the core of the algorithm is comparing

the expressions hypothetical-by-hypothetical, and in fact it all fits into the semilattice structure

this time. The first annoying detail is the aforementioned one about constants at the empty

hypothetical being considered Just M_EQ instead of Nothing. The other is that a minor correc-

tion of the same type: if two expressions are being compared at hypothetical ℎ and at ℎ ∪ { 𝑥 },

then the comparison at the hypothetical ℎ can discard the variable 𝑥, since it will contribute zero

at the smaller hypothetical and will be instead picked up at the larger one. This corrects some

comparisons from H_GE to L_GE and H_LE to L_LE, such as when comparing max(if(𝑥 + 2; 𝑥), 𝑥)

and max(if(𝑥 + 3; 𝑥), 𝑥), which are only equal when 𝑥 = 0, not at arbitrarily high values. Again,

this is not a concern for correctness of the overall algorithm, where the difference between H_GE

and L_GE is no longer relevant.

data IRel = IRel Rel | M_EQ

Figure 4.4.2: Hasse diagrams for IRel and Maybe IRel

UNCOMP ⋈

H_LE ≲H_GE ≳

L_LE ⩽

H_EQ ≂

L_GE ⩾

S_LT <

M_EQ =

S_GT >

Just UNCOMP ⋈

Just H_LE ≲Just H_GE ≳

Just L_LE ⩽

Just H_EQ ≂

Just L_GE ⩾

Just S_LT <

Just M_EQ =

Just S_GT >

Nothing =0

compareUnivIMax =� UnivIMax =� UnivIMax =� Maybe IRel
compareUnivIMax uz1' uz2' =
foldMap compRel hypotheses

4.4. Relating Universe Levels 35

where
Pair uz1 uz2 = normalizeUnivIMax ==� Pair uz1' uz2'
hypotheses =
-- always compare at the empty hypothetical
Set.singleton Set.empty
-- and at the hypotheticals from each expression
=� Map.keys (unwrap (unwrap uz1))
=� Map.keys (unwrap (unwrap uz2))

-- Don't include a variable in the comparison if we are going to
-- explicitly include it in the next hypothesis
-- (This will only correct some comparisons from H_LE to L_LE)
discarding ks (UnivMax (SemigroupMap us) u) =
UnivMax (SemigroupMap (Map.mapMaybeWithKey (discardKey ks) us)) u

discardKey ks k =
if not (Set.member k ks) && Set.member (Set.insert k ks) hypotheses
then _ =� Nothing
else Just

compRel ks = liftAt ks $ compareUnivMax
(discarding ks (foundAt ks uz1))
(discarding ks (foundAt ks uz2))

liftAt ks Nothing | Set.isEmpty ks = Just M_EQ
liftAt _ v = IRel ==� v

4.4.3 Proofs

Here we present proofs that justify why these relations combine in the ways they do. Some

parts of the proofs are trivial: for example, if 𝑥 < 𝑦 and 𝑎 ≤ 𝑏, then max(𝑥, 𝑎) ≤ max(𝑦, 𝑏)

by monotonicity. This example goes halfway towards showing that S_LT =� H_LE = H_LE is

a valid deduction: it covers the half that states “if 𝑥 is always less than 𝑦 across models, and

𝑎 is always less than or equal to 𝑏, then max(𝑥, 𝑎) is always less than or equal to max(𝑦, 𝑏)”.

The other half of the propositions is more tricky: “if there are no models where 𝑥 equals 𝑦,

but there are models where 𝑎 equals 𝑏 arbitrarily large, then there are models where max(𝑥, 𝑎)

equalsmax(𝑦, 𝑏) arbitrarily large”. The ability to manipulate models like this is not true without

additional assumptions: for example, it fails when 𝑥 = 𝑢 and 𝑦 = 𝑢 + 1 and 𝑎 = max(𝑢, 𝑣) and

𝑏 = max(𝑢, 𝑣 + 2), since the composite is max(𝑢, 𝑣) versus max(𝑢 + 1, 𝑣 + 2) which are strictly

incomparable!

36 Chapter 4. Universes

What went wrong? The fact that the expressions had overlapping variables causes the

comparison to behave unpredictably. As a result, simple assumption that 𝑥, 𝑦 have disjoint vari-

ables from 𝑎, 𝑏makes the lattice structure work as it should.

For example, this immediately shows that UNCOMP is the absorbing element of the semilattice:

of 𝑥 ⋈ 𝑦 and 𝑥, 𝑦 have disjoint variables from 𝑎, 𝑏, then since 𝑥 can be made arbitrarily large with

𝑦 under it, and vice-versa with 𝑦 arbitrarily large over 𝑥, thenmax(𝑥, 𝑎) ⋈ max(𝑦, 𝑏) clearly holds

since 𝑥 can dominate 𝑎 and 𝑦 can dominate 𝑏.

Let 𝑥, 𝑦, 𝑎, 𝑏 be universe expressions. Clearly if 𝑥 ≤ 𝑦 and 𝑎 ≤ 𝑏 then max(𝑥, 𝑎) ≤ max(𝑦, 𝑏),

since max(max(𝑥, 𝑎),max(𝑦, 𝑏)) = max(max(𝑥, 𝑦),max(𝑎, 𝑏)) = max(𝑦, 𝑏). Similarly if 𝑥 < 𝑦 and

𝑎 < 𝑏 then max(𝑥, 𝑎) < max(𝑦, 𝑏). This justifies S_LT =� S_LT = S_LT.

Compare max(𝑣 + 𝑘, 𝑒1) and max(𝑣 + 𝑘, 𝑒2), where 𝑣 does not occur in 𝑒1 or 𝑒2: add H_EQ to

comparing 𝑒1 and 𝑒2. Compare max(𝑣 + 𝑘, 𝑒1) and max(𝑣 + 𝑘 + 𝑚 + 1, 𝑒2) where 𝑣 does not occur

in 𝑒1 or 𝑒2: add S_LT to comparing 𝑒1 and 𝑒2.

The idea is that by comparing variable against variable, we don’t run into conflicts in the

models we want to produce. If we have 𝑢 = 𝑢, then the models we want to produce to obtain

arbitrarily large equalities hold after consideringmax(𝑢, 𝑒1) = max(𝑢, 𝑒2). This is because we can

always consider 𝑢 to be larger that max(𝑒1, 𝑒2) – as long as 𝑒1 and 𝑒2 do not mention 𝑢. More

exactly: to construct a model where max(𝑢, 𝑒1) = max(𝑢, 𝑒2) we set all the other variables to 0

and then take 𝑢 = max(𝑒1, 𝑒2), where 𝑒1 and 𝑒2 can now be evaluated in the model with all the

other variables being 0.

Note

Normalization of UnivMax expressions helps, but is an orthogonal concern, merely

enforcing that 𝑢 ≥ 0 for all variables/expressions.

4.5 Constraining Universe Levels

As type inference progresses, more constraints are added to universe levels that need to be

checked for consistency. The actual state that is kept is a map from level expressions to level

4.5. Constraining Universe Levels 37

expressions, where each key-value pair represents the constraint that the key is greater than the

value.

newtype GEConstraints = GEConstraints (Map UnivIMax UnivIMax)

The reason for this choice is that the conjuction of 𝑢 ≥ 𝑣 with 𝑢 ≥ 𝑤 is 𝑢 ≥ max(𝑣, 𝑤). So

having a single level expression as a lower bound for each key suffices.

The primary aspect of solving is just saturating all of the known relations between expres-

sions, startingwith reflexivity. For example, if 𝑢 ≥ 𝑣 is a constraint and 𝑣 ≥ 𝑤 is also a constraint,

then 𝑢 ≥ 𝑤 is a constraint, by transitivity. In practice, this means looking at all pairs of key-

value pairs and adding 𝑘𝑖 ≥ 𝑣𝑗 when 𝑣𝑖 ≥ 𝑘𝑗. However, this does not capture the distributivity

of successor. In general we want to adjust values by a constant that expresses when 𝑘𝑗 becomes

less than 𝑣𝑖: for the largest 𝑐 ∈ ℤ such that 𝑣𝑖 ≥ 𝑘𝑗 + 𝑐, we can add 𝑘𝑖 ≥ 𝑣𝑗 + 𝑐 as a constraint,

justified by the chain 𝑘𝑖 ≥ 𝑣𝑖 ≥ 𝑘𝑗 + 𝑐 ≥ 𝑣𝑗 + 𝑐.

If 𝑘𝑖 < 𝑣𝑖 is always true (across all models) for some pair, then an errormust be thrown since it

is no longer consistent (this is important for termination of the saturation algorithm too). In fact,

more generally one wants to reduce the key if there are parts of 𝑣𝑖 that are strictly greater than

the corresponding parts of 𝑘𝑖. For example, if there is the constraint max(𝑢, 𝑣) ≥ max(𝑤, 𝑣 + 1),

that is max(𝑢, 𝑣) ≥ 𝑤 and max(𝑢, 𝑣) ≥ 𝑣+ 1. But the latter can only be satisfied by 𝑢 ≥ 𝑣+ 1, since

𝑣 ≱ 𝑣+1. Somax(𝑢, 𝑣) = 𝑢 in fact, thus the constraint can be reduced to the entry 𝑢 ≥ max(𝑤, 𝑣+1).

Finally there are a couple wrinkles to be figured out with imax. For example, if imax(𝑢; 𝑣) > 0

then imax(𝑢; 𝑣) ≥ max(𝑢, 𝑣), but recall that it is encoded in ℒif as max(if(𝑢; 𝑣), 𝑣). As a more

complicated situation with two variables,max(imax(𝑙; 𝑎), imax(𝑟; 𝑏)) > 0 implies thatmax(𝑎, 𝑏) >

0 somax(imax(𝑙; 𝑎), imax(𝑟; 𝑏)) ≥ min(𝑙, 𝑟), it would be weird to have to add aminimum operator,

and again, it is not so obvious to see how this applies in theℒif normal form in full generality

and whether it does influence satisfiability.

However, by brute-force case analysis, it is possible to decide ℒimax in at worst exponential

time over the plainℒ algorithm. So that is what we do. This involves looking for constraints of

𝑣 + 𝑘 ≥ 𝑘 + 1 (forcing 𝑣 to be positive) or 𝑘 ≥ 𝑣 + 𝑘 (forcing 𝑣 to be zero) in the context.

38 Chapter 4. Universes

4.5.1 Consistency

The goal is for the algorithm to detect the collective consistency of the constraints. Using the

ingredients discussed above (normal forms, seeing how levels compare across all models, and

applying all known axioms to derive new constraints), this should be the case, but we only

sketch the direction of a proof here, especially since the challenge is intertwined with verifying

that the algorithm terminates, given that there is no fixed base case, simply looping until it

generates no new constraints.

The first direction is the most reasonable: since only known axioms are applied at each stage

of the algorithm, it should be the case that no consistent set of constraints is ruled inconsistent.

The other direction is a bit more tricky: did we cover all possible combinations of axioms and

constraints, in order to detect the inconsistent sets of constraints? It is a bit tricky to identify

where each axiom is used, since some are embedded in the very structure of the normal forms

(like how successor distributes across maximum), or in the normalization functions (like how

zero is the least element), and the rest do appear at various points during the constraint solving

process. But there is reason to think that it is complete: all applicable axioms are used.

There is a more direct way to show this too: we should be able to exhibit at least one model

that satisfies the constraints, if it is consistent. We can do this relatively easily from a saturated

constraint context, which essentially does the work of finding lower bounds for each variable.

However, there are two challenges: the saturated constraint context will give lower bounds not

for variables, but for expressions, and generally speaking, simply setting all variables to their

lower bounds all at once will result in a model that does not satisfy the constraints anymore.

The algorithm then is to look at the saturated constraint context and pick the smallest possible

move towards a model that still makes progress. Then that change is added to the constraint

context, which propagates the new information to create a new saturated context and step

towards creating a model with all variables assigned.

The smallest possible move consists of finding a constraint that has some variables on the left

(preferring ones with the fewest variables) and some expression on the right, and then setting

4.5. Constraining Universe Levels 39

one of the variables to the smallest value that makes the left expression larger than the constant

on the right. For example, if max(𝑢 + 2, 𝑣, 5) ≥ max(𝑤, 𝑣 + 1, 8) is a constraint in the saturated

context, then 𝑢 = 6 may be chosen (reducing it to max(𝑣, 8) ≥ max(𝑤, 𝑣 + 1, 8) or 𝑣 = 8 may be

chosen (reducing it tomax(𝑢+2, 8) ≥ max(𝑤, 8)). If nomoves are found, the remaining variables

are set to 0, since they only appear with upper bounds.

The key claim is that if a claimed lower bound 𝑣 = 𝑘 is actually inconsistent with the

other constraints, the saturated constraint context should have “detected” that and included

a constraint equivalent to 𝑣 ≥ 𝑘 + 1. If this is true, then the new constraint context will retain

its consistency after every choice, and eventually terminate because the algorithm should make

progress with each choice, even though more constraints may be added as a result each time

during saturation.

At least empirically these claims all seem true: in the test cases run, they all check out in

that the algorithm terminates, correctly detects inconsistencies, accepts consistent contexts, and

produces concrete models for those consistent contexts.

40 Chapter 4. Universes

5
Row Types

Typechecking records andunions is one of themost complex parts of theDhall standard already.

Dhall mitigates some of this complexity by requiring that all records and unions have statically

known shapes. Nevertheless, hiding behind the scenes are the outlines of a concept called row

types that capture the shared shapes of records and unions. Row types have been explored

before, such as byDidier Rémywho explores a similar system of constraints [6]. Herewe sketch

what it would look like for the operators Dhall supports in particular.

Row types consist of an unordered set of labels associated with types. “Open” rows have

some known labels at the “head” along with a “tail” row of unknown fields. There may also be

some labels that are known to be absent from the tail of the row. “Closed” rows are completely

known, with an empty tail.

For simple constraints on rows, open rows over row variables are sufficient to express them.

For example, getting a single field from an open record is trivial with open rows.

However, merging two open rows cannot be solved in the language of open rows. To allow

more complex programs to be polymorphic over these shapes, we need to introduce a system

of constraints similar to the case of universe polymorphism.

41

42 Chapter 5. Row Types

In order for information to flow backwards, instead of introducing functions on row types,

we introduce constraint relations that track inputs and outputs equally. Of course, the primary

mode of learning information is learning about presence and absence of labels.

Since row types contain other types, this requires some machinery on types (namely unifica-

tion and apartness); see the next chapter for that. In particular, apartness will direct the path of

solving, while unification constraints are part of the resultant data generated by solving.

Unlike universe constraints, which do not necessarily “solve” for universe level variables, row

constraints are best expressed by solving for variables and filling in information partially. One

challenge is the fact that information comes in in a quasi-ordered fashion, while rows have to

conceptually be completely unordered.

Todo

How to disallow duplicate labels? Just show it never introduces duplicate labels?

Todo

Generate the “backwards” rules from the forwards?

We write { …𝑟 } for the record type with fields specified by the record row (…𝑟). A record row

(𝑙 ∶ 𝑡, …𝑟) contains type 𝑡 at a known label 𝑙 in the head, and 𝑟 as the tail.

We write ⟨ …rm ⟩ for the union type with fields specified by the union row ⧼ …rm ⧽. A union

row ⧼ 𝑙 ∶?mt, …𝑟 ⧽ contains an optional type mt at a known label 𝑙 in the head, and 𝑟 as the tail.

That is, ⧼ 𝑙, …𝑟 ⧽ denotes the union row with a label 𝑙 but no type associated to that label, and

⧼ 𝑙 ∶ 𝑡, …𝑟 ⧽ associates to it a type as usual.

We write 𝑟 ⧵ 𝑙 to denote the row 𝑟with label 𝑙 removed.

First we describe the constraint 𝑟1 ⩕ 𝑟2 = 𝑟3 for typing the recursive record merge operator

using a fresh row metavariable 𝑟3:

𝑎 ∶ { …𝑟1 } 𝑏 ∶ { …𝑟2 } 𝑟1 ⩕ 𝑟2 = 𝑟3
𝑎 ∧ 𝑏 ∶ { …𝑟3 }

43

Learning that the label is not in the output tells us that the label is in neither of the inputs,

and vice-versa:
𝑟1 = (𝑟1 ⧵ 𝑙) 𝑟2 = (𝑟2 ⧵ 𝑙)

𝑟1 ⩕ 𝑟2 = (𝑟3 ⧵ 𝑙)
𝑟3 = (𝑟3 ⧵ 𝑙)

(𝑟1 ⧵ 𝑙) ⩕ (𝑟2 ⧵ 𝑙) = 𝑟3

Learning the label is in the left or right side tells us that the label is in the output, but the

constraint is stuck because the types cannot be related yet:

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙))
(𝑙 ∶ 𝑡1, …𝑟1) ⩕ 𝑟2 = 𝑟3

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙))
𝑟1 ⩕ (𝑙 ∶ 𝑡2, …𝑟2) = 𝑟3

Learning the label is in the left or right side and absent from the other does make progress:

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙)) 𝑡1 = 𝑡3 𝑟1 ⩕ 𝑟2 = (𝑟3 ⧵ 𝑙)
(𝑙 ∶ 𝑡1, …𝑟1) ⩕ (𝑟2 ⧵ 𝑙) = 𝑟3

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙)) 𝑡2 = 𝑡3 𝑟1 ⩕ 𝑟2 = (𝑟3 ⧵ 𝑙)
(𝑟1 ⧵ 𝑙) ⩕ (𝑙 ∶ 𝑡2, …𝑟2) = 𝑟3

Finally, learning the label is in both sides triggers the recursive case:

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙)) 𝑡1 = { …𝑟′1 } 𝑡2 = { …𝑟′2 } 𝑡3 = { …𝑟′3 } 𝑟′1 ⩕ 𝑟′2 = 𝑟′3 𝑟1 ⩕ 𝑟2 = (𝑟3 ⧵ 𝑙)
(𝑙 ∶ 𝑡1, …𝑟1) ⩕ (𝑙 ∶ 𝑡2, …𝑟2) = 𝑟3

Next we describe the constraint 𝑟1 /// 𝑟2 = 𝑟3 for typing the right-biased record merge operator:

𝑎 ∶ { …𝑟1 } 𝑏 ∶ { …𝑟2 } 𝑟1 /// 𝑟2 = 𝑟3
𝑎 // 𝑏 ∶ { …𝑟3 }

Again, the label is absent from the output if and only if it is absent from both inputs:

𝑟1 = (𝑟1 ⧵ 𝑙) 𝑟2 = (𝑟2 ⧵ 𝑙)
𝑟1 /// 𝑟2 = (𝑟3 ⧵ 𝑙)

𝑟3 = (𝑟3 ⧵ 𝑙)
(𝑟1 ⧵ 𝑙) /// (𝑟2 ⧵ 𝑙) = 𝑟3

On the left side it gets stuck until it is known to be absent from the right:

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙))
(𝑙 ∶ 𝑡1, …𝑟1) /// 𝑟2 = 𝑟3

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙)) 𝑡1 = 𝑡3 𝑟1 /// 𝑟2 = (𝑟3 ⧵ 𝑙)
(𝑙 ∶ 𝑡1, …𝑟1) /// (𝑟2 ⧵ 𝑙) = 𝑟3

But it always makes progress on the right side:

𝑟3 = (𝑙 ∶ 𝑡3, …(𝑟3 ⧵ 𝑙)) 𝑡2 = 𝑡3 𝑟1 /// 𝑟2 = (𝑟3 ⧵ 𝑙)
𝑟1 /// (𝑙 ∶ 𝑡2, …𝑟2) = 𝑟3

Finallywe describe the constraint 𝑟1 $ 𝑟𝑚2 → 𝑡3 for typing the record–unionmerge expression:

𝑎 ∶ { …𝑟1 } 𝑏 ∶ ⟨ …rm2 ⟩ 𝑟1 $ 𝑟𝑚2 → 𝑡3
merge 𝑎 𝑏 ∶ 𝑡3

44 Chapter 5. Row Types

Both rows must have the same labels, but it gets partially stuck if it is not know whether the

union type has data at a label:

rm2 = ⧼ 𝑙 ∶?mt2, …(rm2 ⧵ 𝑙) ⧽
(𝑙 ∶ 𝑡1, …𝑟1) $ rm2 → 𝑡3

𝑟1 = (𝑙 ∶ 𝑡1, …(𝑟1 ⧵ 𝑙))
𝑟1 $ ⧼ 𝑙 ∶?mt2, …rm2 ⧽ → 𝑡3

Knowing that makes progress:

𝑡1 = 𝑡3 𝑟1 $ rm2 → 𝑡3
(𝑙 ∶ 𝑡1, …𝑟1) $ ⧼ 𝑙, …rm2 ⧽ → 𝑡3

𝑡1 = 𝑡2 → 𝑡3 𝑟1 $ rm2 → 𝑡3
(𝑙 ∶ 𝑡1, …𝑟1) $ ⧼ 𝑙 ∶ 𝑡2, …rm2 ⧽ → 𝑡3

Since the type problem is undecidable (and computationally expensive), the row type

problem is no better. However, it might still be possible to make an algorithm for the row type

problem that is complete with respect to an oracle for the type problem or to restrict types to a

decidable subset (say, one base type like Text, function types, and record types).

6
Unification

Unification is a relation on terms that indicates what needs to be the case for two types to be

equal, and what their unified result will be. It expresses a demand by the typechecker: the term

will not be well-typed unless it can find evidence that the types to be unified are in fact equal in

context. Thus it fits well into the constraint system of this paper, as each unification constraint

can be kept in the constraints produced by typechecking, and then later solved (partially or

fully). Because unification can affect things like evaluation, unlike universe and row constraints,

all unification constraints must be solved fully to produce a program: there can be no metavari-

ables left.

A related problem is to quickly determine some cases in which two values can never be

equal. This is used above to make progress on row constraints, and in fact it may use unifi-

cation constraint context to make these determinations because it is operating on the constraint

context instead of creating constraints.

Unification is a powerful tool for implementing typechecking, but also involves difficult trade-

offs because it ultimately faces an impossible problem: determining whether two values might

be equal is undecidable, and so is the same problem for types, since types can mention values

in dependently-typed systems. So the actual evidence that unification may search for depends

on the theory and implementation.

45

46 Chapter 6. Unification

There are many papers on the topic. One approach is “Type checking through unification”,

which uses unification in key ways to domuch of the work of type checking via unification, and

navigates the tight weave between typechecking, unification, and evaluation [5].

Subsumption adds a twist on unification by allowing for an order, as if one type is larger than

another. The philosophy of subsumption is that one type is subsumed by a second type if all

values of the first type may be used where values of the second type are expected.

In the system of this paper then, the only substantial difference between unification and

subsumption is for the universe judgment, which introduces the inequality 𝑢 ≤ 𝑣 for

Universe 𝑢 E Universe 𝑣. This asymmetry propagates through type constructors, including

contravariantly in function argumentswhile covariantly in function outputs and also record and

union types.

The key detail here is that the structure of the terms is still required to be the same for

subsumption, it is just the values of universe levels that may differ (and recursively through

rows too). This means that the unification algorithms still apply.

Unification and subsumption are reflexive and transitive. Unification and apartness are

symmetric.

Unification and subsumption are the same judgment, just parameterized over a relation-

ship ((=) for unification, (≤) or (≥) for subsumption) which is only used as the constraint for

comparing universe levels right now. This means that it does not handle row expansion or

contraction – but hopefully row polymorphism is sufficient for that.

Maybe apartness should be called disunifiability, since it does not serve the same purpose as

it does in PureScript/Haskell. Namely, it will consider distinct (lambda-)bound variables apart,

because they could never be unified, though they could be instantiated to the same.

We use metavariables for unification, to represent types that used to be required but can

now be ommitted. Technically they can also represent non-types, but unification is much less

useful for non-types because computations are not necessarily injective or generative, unlike

type constructors.

47

Metavariables can of course be unified with anything (as long as scope matches up?), and so

will be apart from nothing.

48 Chapter 6. Unification

7
Properties

To deliver on the promise that universes really are the type of types, it must be the case that

each typing judgment produces a type whose type is a universe, and this is easily verified by

inspection of the typing rules:

Γ ⊢ 𝑒 ∶ 𝑇 ⇐ 𝐶1
Γ ⊢ 𝑇 ∶ Universe 𝑢 ⇐ 𝐶2 𝐶2 ⊆ 𝐶1

This is true in the current Dhall standard except for the lack of universes above Sort (that is

Universe 2).

All subterms typecheck, and their constraints appear in the result. This is true from the struc-

ture of the typechecking judgments, which typecheck all immediate subterms and include those

constraints in the result. Thus transitive subterms are also included.

All type-level functions automatically respect subsumption, because all universe-level expres-

sions are monotonic, and term structure is otherwise preserved.

Let-substitution typechecks. This requires the substitution to respect the variable instantia-

tions chosen during typechecking, but then with this set-up it is mostly trivial. I believe the

resultant type and constraints will be verbatim, just with the same substitution applied.

Γ, (𝑥 ≔ 𝑒2 ∶ 𝑇2 ⇐ 𝐶2), Γ ′ ⊢ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1
Γ, Γ ′[𝑥 ≔ 𝑒2] ⊢ 𝑒1[𝑥 ≔ 𝑒2] ∶ 𝑇1[𝑥 ≔ 𝑒2] ⇐ 𝐶1[𝑥 ≔ 𝑒2]

49

50 Chapter 7. Properties

Context subsumption. A term typechecks under a more specific context too, resulting in a

similar but potentially more specific type/constraints. This is true mainly for structural reasons

like the above property: since the constraints propagate through type inference in a way that

respects subsumption, it is enough that typechecking each variable produces a more specific

type – but this is exactly what the assumption of context subsumption gives us, possibly under

some extra constraints𝐶3 that will help ensure that the resultant constraints𝐶2 aremore specific

than the original ones 𝐶1.

Γ1 ⊢ 𝑒 ∶ 𝑇1 ⇐ 𝐶1 Γ2 E Γ1 ⇐ 𝐶3
Γ2 ⊢ 𝑒 ∶ 𝑇2 ⇐ 𝐶2 (𝑇2 ⇐ 𝐶2)E (𝑇1 ⇐ 𝐶1) ⇐ 𝐶3

Type preservation. For a given context Γ, if 𝑒1 typechecks with type 𝑇1 under constraints 𝐶1,

and it evaluates to 𝑒2, then 𝑒2 also typechecks, possibly with a more general type/constraints.

More specifically, 𝑒2 will have type 𝑇2 which is subsumed by 𝑇1 (that is, 𝑒2 can be used every-

where an expression of type 𝑇1 is expected) under the constraints 𝐶3. The constraints 𝐶2 ∪ 𝐶3

must be implied by the first constraints 𝐶1. (Note: this is semantic: they may not literally be a

subset of the atomic constraints from 𝐶1.)

Γ ⊢ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1 Γ ⊢ 𝑒1 ↦ 𝑒2
Γ ⊢ 𝑒2 ∶ 𝑇2 ⇐ 𝐶2 𝑇2 E 𝑇1 ⇐ 𝐶3 𝐶2 ∪ 𝐶3 ⊆ 𝐶1

Γ2 E Γ1 ⇐ 𝐶3 Γ1 ⊢ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1
Γ2 ⊢ 𝑒2 ∶ 𝑇2 ⇐ 𝐶4

Everything that typed before still types, since the rules are strictly more general.

Constraints don’t affect evaluation.

8
Future Work

Some obvious technical challenges remain with universes. In order to enable better handling of

the contravariance of function inputs, itwould be great to extend the arithmeticwith aminimum

operation in addition to the maximum, making it a lattice (not merely a semilattice), but that

represents a significant extension in scope. It would also be beneficial to come up with a clear

way to present universe errors to users, since they can be arcane and hard to debug, especially

if the user is given some random-seeming universe level constraint(s) no specific indication of

why they occurred, how they were derived, and where the conflicts are in the source code.

One key optimization is minimizing constraint contexts. When a universe variable is

mentioned in a term but not the type of the term, the variable can still appear in the constraint

context, even though it will have no interaction since it does not appear in the type (the public

interface)! In many cases these variables can be eliminated, but setting them to appropriate

values (usually lower bounds). The implementation of universe polymorphism in Coq is much

more aggressive about this kind of minification, but it has led to some bugs and unexpected

behavior by making assumptions that reduce the generality of the polymorphism, whereas an

ideal algorithm would preserve full generality [7].

To give an example of how common it is to have constraints that can be minimized, polymor-

phic functions like the built-in Natural/fold take a type of any universe level in as an argu-

51

52 Chapter 8. Future Work

ment, and the subsumption rule invoked during function application says this universe level

instantiated by Natural/fold just needs to be large enough to contain the argument, poten-

tially being larger as well. But once it is applied, that universe variable does not appear in the

output anymore, and in fact it is always enough to assume that it is in fact the same level as the

argument, thus eliminating it from the constraints.

Another direction is the obvious one of higher-order polymorphism, where arguments that

are functions can in fact be invoked as polymorphic functions, and their constraints tracked in

the body of the function and then checked when an argument is applied. The main challenge

here is consistency: whereas let-polymorphism was clearly consistent since it is just syntactic

sugar for substitution with a sprinkle of polymorphism, it’s not clear what universe to assign to

polymorphism functions such that it remains consistent. One option is to then index universes

by infinite ordinals, such as 0 < 1 < ⋯ < 𝜔, but that seems like a lot more work to stratify

universes across that new layer.

At a more practical level, higher-order polymorphism will require understanding functions

over universe levels and row types. For example, if 𝐹 ∶ Universe ? → Universe ? is a input

to a function, it is reasonable to expect it to still be polymorphic: that is, instead of having type

Universe 𝑢 → Universe 𝑣 for some fixed 𝑢 and 𝑣, it rather would have type Universe 𝑢 →

Universe 𝑣(𝑢), implicitly quantified over the input level 𝑢, with the output level 𝑣(𝑢) depending

on the input level. Particular values for 𝐹will have different behaviors:

1. Constant functors like Const 𝑙 = Natural will have 𝑣(𝑢) also constant (0 in this case),

since the output does not depend on the input.

2. The identity functor and builtin functor List will both have 𝑣(𝑢) = 𝑢.

3. Some functors may increase the level, e.g. 𝑣(𝑢) = max(𝑢, 1).

Nevertheless, all universe level functions will have certain properties: they will be monotonic,

in fact they will distribute over maximum as all operators in the algebra do: 𝑣(max(𝑢, 𝑤)) =

max(𝑣(𝑢), 𝑣(𝑤)).

53

Similarly, row types will need to be extended handle row functions. Again, there are only a

few building blocks that dictate how the output will relate to the input, so the structure of row

functions is pretty restricted.

There is clearly much more work to do with unification/subsumption and integrating them

into the framework of the other constraints, though it should be possible. It is obvious that they

produce constraints of the other kind, but it is not clear how this process interact with poly-

morphic variables. That is, if the type of a let-binding or higher-order argument is (initially)

unknown, how can the system know what metavariables to generalize over, if it is later discov-

ered to be a function?

Finally, it would be amazing if this work could be extended to a principal typing algorithm

for Dhall. The idea of principal typing is that each term can produce the constraints that its

context must satisfy to make it well-typed, and it feels like if the unification algorithm is good

enough, it should work for Dhall. There is some work on doing this for other type theories,

though mostly in the absence of higher-order polymorphism [4][8]. Hopefully this technique

of pushing the polymorphism out to the leaves (universe levels and row types exclusively)

makes it more tractable.

54 Chapter 8. Future Work

Appendix A
Judgments

A.1 Syntax

Definition of the reduced Dhall syntax. The 𝑒𝑖 denote expressions, 𝑛 denotes a natural number

literal, and 𝑥 denote names (both variable names and labels for records/unions). Note that the

merge keyword cannot occur on its own; instead, it must always occur applied to two argu-

ments, with an optional type annotation (this is necessary when the union and record are

empty).

55

56 Chapter A. Judgments

𝑒𝑖, 𝑇𝑖 ∶∶= Universe 𝑢 | Natural | List

| 𝑛 | [] ∶ 𝑒 | [𝑒1, 𝑒2, … , 𝑒𝑛]

| \(𝑥 ∶ 𝑒1) → 𝑒2 | forall(𝑥 ∶ 𝑒1) → 𝑒2

| let 𝑥 = 𝑒1 in 𝑒2

| 𝑒1𝑒2 | 𝑒1 ∶ 𝑒2

| {} | { 𝑥1 ∶ 𝑒1, 𝑥2 ∶ 𝑒2, … , 𝑥𝑛 ∶ 𝑒𝑛 }

| {=} | { 𝑥1 = 𝑒1, 𝑥2 = 𝑒2, … , 𝑥𝑛 = 𝑒𝑛 }

| <> | < 𝑥1 ∶ 𝑒1, 𝑥2 ∶ 𝑒2, … , 𝑥𝑛 ∶ 𝑒𝑛 >

| < 𝑥 = 𝑒 > | < 𝑥 = 𝑒, 𝑥1 ∶ 𝑒1, 𝑥2 ∶ 𝑒2, … , 𝑥𝑛 ∶ 𝑒𝑛 >

| 𝑥 | 𝑒.𝑥 | merge 𝑒1 𝑒2 | merge 𝑒1 𝑒2 ∶ 𝑒3

| 𝑒1 ∧ 𝑒2 | 𝑒1 ⩕ 𝑒2 | 𝑒1 // 𝑒2 | 𝑒1 /// 𝑒2

| Natural/fold | List/fold

𝑢𝑖 ∶∶= 𝑛 | 𝑥 | 𝑢1 + 𝑛 | max(𝑢1, 𝑢2) | imax(𝑢1; 𝑢2)

𝑛 ∶∶= 0 | 1 | 2 | …

Contexts

Γ, Δ ∶∶= ⋅ | Γ, (𝑥 ∶ 𝑇1) | Γ, (𝑥 ≔ 𝑒1 ∶ 𝑇2 ⇐ 𝐶1)

Constraints 𝐶𝑖 have the form of a set of atomic constraints �̂�𝑖, which can be universe

constraints or row constraints or unification/subsumption constraints:

𝐶𝑖 ∶∶= ∅ | {�̂�} | 𝐶1 ∪ 𝐶2

�̂� ∶∶= 𝑢1 = 𝑢2 | 𝑟1 ⩕ 𝑟2 = 𝑟3 | 𝑟1 /// 𝑟2 = 𝑟3 | 𝑟1 $ 𝑚𝑟2 → 𝑒3 | 𝑒1 E 𝑒2

A.2. Substitution 57

A.2 Substitution

The only nontrivial rules for substitution are for applying a substitution to a variable: if the

variable matches, substitution needs to return the substitution value instead. This simplicity

is because we assume all variables are distinct, otherwise variable bindings would need to be

handledmore carefully. Thismeans that aside from the base case, all expressions are substituted

recursively in the obvious manner.

However, just substituting the literal value upon seeing a variable does not do what we want,

since this will preservemetavariables that should be instantiated to fresh variables for polymor-

phism. What needs to happen is that during typechecking, the decision of how to instantiate

the metavariables needs to be encoded in the syntax tree at each variable occurrence, and this

subsitution performedwhen a value is chosen for the variable. Of course, this seems redundant

since polymorphism is only for let-bound variables at themoment, but supporting higher-order

58 Chapter A. Judgments

polymorphism would require it for lambda- and forall-bound variables.

𝑥[𝑥 ≔ 𝑣] = 𝑣

𝑥[𝑦 ≔ 𝑣] = 𝑥

𝑛[𝑦 ≔ 𝑣] = 𝑛

([] ∶ 𝑒)[𝑦 ≔ 𝑣] = [] ∶ 𝑒[𝑦 ≔ 𝑣]

[𝑒1, 𝑒2, … , 𝑒𝑛][𝑦 ≔ 𝑣] = [𝑒1[𝑦 ≔ 𝑣], 𝑒2[𝑦 ≔ 𝑣], … , 𝑒𝑛[𝑦 ≔ 𝑣]]

(\(𝑥 ∶ 𝑒1) → 𝑒2)[𝑦 ≔ 𝑣] = \(𝑥 ∶ 𝑒1[𝑦 ≔ 𝑣]) → 𝑒2[𝑦 ≔ 𝑣]

(forall(𝑥 ∶ 𝑒1) → 𝑒2)[𝑦 ≔ 𝑣] = forall(𝑥 ∶ 𝑒1[𝑦 ≔ 𝑣]) → 𝑒2[𝑦 ≔ 𝑣]

(let 𝑥 = 𝑒1 in 𝑒2)[𝑦 ≔ 𝑣] = let 𝑥 = 𝑒1[𝑦 ≔ 𝑣] in 𝑒2[𝑦 ≔ 𝑣]

(𝑒1 ∶ 𝑒2)[𝑦 ≔ 𝑣] = 𝑒1[𝑦 ≔ 𝑣] ∶ 𝑒2[𝑦 ≔ 𝑣]

{}[𝑦 ≔ 𝑣] = {}

{ 𝑥1 ∶ 𝑒1, … , 𝑥𝑛 ∶ 𝑒𝑛 }[𝑦 ≔ 𝑣] = { 𝑥1 ∶ 𝑒1[𝑦 ≔ 𝑣], … , 𝑥𝑛 ∶ 𝑒𝑛[𝑦 ≔ 𝑣] }

{=}[𝑦 ≔ 𝑣] = {=}

{ 𝑥1 = 𝑒1, … , 𝑥𝑛 = 𝑒𝑛 }[𝑦 ≔ 𝑣] = { 𝑥1 = 𝑒1[𝑦 ≔ 𝑣], … , 𝑥𝑛 = 𝑒𝑛[𝑦 ≔ 𝑣] }

<> [𝑦 ≔ 𝑣] = <>

< 𝑥1 ∶ 𝑒1, … , 𝑥𝑛 ∶ 𝑒𝑛 > [𝑦 ≔ 𝑣] = < 𝑥1 ∶ 𝑒1[𝑦 ≔ 𝑣], … , 𝑥𝑛 ∶ 𝑒𝑛[𝑦 ≔ 𝑣] >

< 𝑥 = 𝑒 > [𝑦 ≔ 𝑣] = < 𝑥 = 𝑒 >

< 𝑥 = 𝑒, 𝑥1 ∶ 𝑒1, … , 𝑥𝑛 ∶ 𝑒𝑛 > [𝑦 ≔ 𝑣] = < 𝑥 = 𝑒[𝑦 ≔ 𝑣], 𝑥1 ∶ 𝑒1[𝑦 ≔ 𝑣], … , 𝑥𝑛 ∶ 𝑒𝑛[𝑦 ≔ 𝑣] >

𝑒.𝑥[𝑦 ≔ 𝑣] = 𝑒[𝑦 ≔ 𝑣].𝑥

(merge 𝑒1 𝑒2)[𝑦 ≔ 𝑣] = merge 𝑒1[𝑦 ≔ 𝑣] 𝑒2[𝑦 ≔ 𝑣]

(merge 𝑒1 𝑒2 ∶ 𝑒3)[𝑦 ≔ 𝑣] = merge 𝑒1[𝑦 ≔ 𝑣] 𝑒2[𝑦 ≔ 𝑣] ∶ 𝑒3[𝑦 ≔ 𝑣]

Natural/fold[𝑦 ≔ 𝑣] = Natural/fold

List/fold[𝑦 ≔ 𝑣] = List/fold

A.3. Typing 59

A.3 Typing
A.3.1 Builtins

Γ ⊢ 𝑛 ∶ Natural Γ ⊢ Natural ∶ Universe 0

𝑢 ≔ 𝑓𝑟𝑒𝑠ℎ
Γ ⊢ Natural/fold ∶ Natural→ ∀(𝑟 ∶ Universe 𝑢) → (𝑟 → 𝑟) → 𝑟 → 𝑟

𝑇 ≔ 𝑓𝑟𝑒𝑠ℎ Γ ⊢ 𝑒1 ∶ 𝑇1, … , 𝑒𝑛 ∶ 𝑇𝑛 ⇐ 𝐶1 𝑇1 E 𝑇,… , 𝑇𝑛 E 𝑇 ⇐ 𝐶2
Γ ⊢ [𝑒1, … , 𝑒𝑛] ∶ List 𝑇 ⇐ 𝐶1 ∪ 𝐶2

Γ ⊢ 𝑒 ⇥ List 𝑒1
Γ ⊢ ([] ∶ 𝑒) ∶ List 𝑒1

𝑢 ≔ 𝑓𝑟𝑒𝑠ℎ
Γ ⊢ List ∶ Universe 𝑢 → Universe 𝑢

𝑢 ≔ 𝑓𝑟𝑒𝑠ℎ 𝑣 ≔ 𝑓𝑟𝑒𝑠ℎ
Γ ⊢ List/fold ∶ ∀ (𝑎 ∶ Universe 𝑣) → List 𝑎 → ∀(𝑟 ∶ Universe 𝑢) → (𝑎 → 𝑟 → 𝑟) → 𝑟 → 𝑟

A.3.2 Functions and Variables

Concrete and abstract variables:

𝑣𝑠 ≔ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒 ∶ 𝑇) ⧵ 𝑏𝑜𝑢𝑛𝑑(Γ) 𝑢𝑠 ≔ 𝑓𝑟𝑒𝑠ℎ(𝑣𝑠)
Γ, (𝑥 ≔ 𝑒 ∶ 𝑇 ⇐ 𝐶), Δ ⊢ 𝑥 ∶ 𝑇[𝑣𝑠 ≔ 𝑢𝑠] ⇐ 𝐶[𝑣𝑠 ≔ 𝑢𝑠]

Γ, (𝑥 ∶ 𝑇), Δ ⊢ 𝑥 ∶ 𝑇 ⇐ ∅

Let bindings:
Γ ⊢ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1 Γ, (𝑥 ≔ 𝑒1 ∶ 𝑇1 ⇐ 𝐶1) ⊢ 𝑒2 ∶ 𝑇2 ⇐ 𝐶2

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝑇2[𝑥 ≔ 𝑒1] ⇐ 𝐶1 ∪ 𝐶2

Lambdas and foralls:

Γ ⊢ 𝑇1 ∶ Universe 𝑢1 ⇐ 𝐶1 Γ, (𝑥 ∶ 𝑇1) ⊢ 𝑒1 ∶ 𝑇2 ⇐ 𝐶2
Γ ⊢ (𝜆(𝑥 ∶ 𝑇1) → 𝑒1) ∶ ∀(𝑥 ∶ 𝑇1) → 𝑇2 ⇐ 𝐶1 ∪ 𝐶2

Γ ⊢ 𝑇1 ∶ Universe 𝑢1 ⇐ 𝐶1 Γ, (𝑥 ∶ 𝑇1) ⊢ 𝑇2 ∶ Universe 𝑢2 ⇐ 𝐶2
Γ ⊢ (∀(𝑥 ∶ 𝑇1) → 𝑇2) ∶ Universe imax(𝑢1; 𝑢2) ⇐ 𝐶1 ∪ 𝐶2

Function application:

Γ ⊢ 𝑒1 ∶ ∀ (𝑥 ∶ 𝑇1) → 𝑇2 ⇐ 𝐶1 Γ ⊢ 𝑒2 ∶ 𝑇3 ⇐ 𝐶2 Γ ⊢ 𝑇2 E 𝑇3 ⇐ 𝐶3
Γ ⊢ 𝑒1𝑒2 ∶ 𝑇2[𝑥 ≔ 𝑒2] ⇐ 𝐶1 ∪ 𝐶2 ∪ 𝐶3

60 Chapter A. Judgments

A.3.3 Rows

Γ ⊢ {=} ∶ {} Γ ⊢ {} ∶ Universe 0 Γ ⊢ <> ∶ Universe 0
Γ ⊢ 𝑒 ∶ { 𝑙 ∶ 𝑇, … 𝑟 }

Γ ⊢ 𝑒.𝑙 ∶ 𝑇
Γ ⊢ 𝑒1 ∶ 𝑇1 ⋯ Γ ⊢ 𝑒𝑛 ∶ 𝑇𝑛

Γ ⊢ { 𝑙1 = 𝑒1, … , 𝑙𝑛 = 𝑒𝑛 } ∶ { 𝑙1 ∶ 𝑇1, … , 𝑙𝑛 ∶ 𝑇𝑛}
Γ ⊢ 𝑇1 ∶ Universe 𝑢1 ⋯ Γ ⊢ 𝑇𝑛 ∶ Universe 𝑢𝑛
Γ ⊢ { 𝑙1 ∶ 𝑇1, … , 𝑙𝑛 ∶ 𝑇𝑛 } ∶ Universe max(𝑢1, … , 𝑢𝑛)

Γ ⊢ 𝑒 ∶ 𝑇 Γ ⊢ 𝑇1 ∶ Universe 𝑢1 ⋯ Γ ⊢ 𝑇𝑛 ∶ Universe 𝑢𝑛
Γ ⊢ < 𝑙 = 𝑒, 𝑙1 ∶ 𝑇1, … , 𝑙𝑛 ∶ 𝑇𝑛 > ∶ < 𝑙 ∶ 𝑇, 𝑙1 ∶ 𝑇1, … , 𝑙𝑛 ∶ 𝑇𝑛 >

Γ ⊢ 𝑒1 ∶ { … 𝑟1} Γ ⊢ 𝑒2 ∶ { … 𝑟2}
Γ ⊢ 𝑒1 ∧ 𝑒2 ∶ { … 𝑟1 ⩕ 𝑟2 }

Γ ⊢ 𝑒1 ∶ Universe 𝑢1 𝑒1 ≡ { … 𝑟1} Γ ⊢ 𝑒2 ∶ Universe 𝑢2 𝑒2 ≡ { … 𝑟2}
Γ ⊢ 𝑒1 ⩕ 𝑒2 ∶ Universe max(𝑢1, 𝑢2)
Γ ⊢ 𝑒1 ∶ { … 𝑟1} Γ ⊢ 𝑒2 ∶ { … 𝑟2}

Γ ⊢ 𝑒1 // 𝑒2 ∶ { … 𝑟1 /// 𝑟2 }
Γ ⊢ 𝑒1 ∶ Universe 𝑢1 𝑒1 ≡ { … 𝑟1} Γ ⊢ 𝑒2 ∶ Universe 𝑢2 𝑒2 ≡ { … 𝑟2}

Γ ⊢ 𝑒1 /// 𝑒2 ∶ Universe max(𝑢1, 𝑢2)
𝑎 ∶ { …𝑟1 } 𝑏 ∶ ⟨ …rm2 ⟩ 𝑟1 $ 𝑟𝑚2 → 𝑡3

merge 𝑎 𝑏 ∶ 𝑡3

A.4 Unification/Subsumption

We extend subsumption to cover contexts, for stating properties of the type theory. Of course

the empty context is subsumed by the empty context with no constraints, and it is extended for

abstract variables (those bound by foralls and lambdas) in the obvious way:

⋅E ⋅ ⇐ ∅
Γ1 E Γ2 ⇐ 𝐶1 𝑇1 E 𝑇2 ⇐ 𝐶2

Γ1, (𝑥 ∶ 𝑇1)E Γ2, (𝑥 ∶ 𝑇2) ⇐ 𝐶1 ∪ 𝐶2

We can also specialize abstract variables to concrete variables: this is needed for showing that

function application preserves typing.

Γ1 E Γ2 ⇐ 𝐶2 𝑇1 E 𝑇2 ⇐ 𝐶3
Γ1, (𝑥 ≔ 𝑒 ∶ 𝑇1 ⇐ 𝐶1)E Γ2, (𝑥 ∶ 𝑇2) ⇐ 𝐶1 ∪ 𝐶2 ∪ 𝐶3

Context subsumption can also specialize the type of a concrete variable (which only occurs if

an annotation is changed or removed), but its value cannot change since it might be involved in

unification constraints.

Γ1 E Γ2 ⇐ 𝐶3 (𝑇1 ⇐ 𝐶1)E (𝑇2 ⇐ 𝐶2) ⇐ 𝐶4
Γ1, (𝑥 ≔ 𝑒 ∶ 𝑇1 ⇐ 𝐶1)E Γ2, (𝑥 ≔ 𝑒 ∶ 𝑇2 ⇐ 𝐶2) ⇐ 𝐶3 ∪ 𝐶4

A.4. Unification/Subsumption 61

Similarly for convenience, subsumption is extended to pairs of types combined with the

constraints they need to typecheck:

𝑇1 E 𝑇2 ⇐ 𝐶3 𝐶1 ⊆ 𝐶2 ∪ 𝐶3
(𝑇1 ⇐ 𝐶1)E (𝑇2 ⇐ 𝐶2) ⇐ 𝐶3 ∪ ((𝐶2 ∪ 𝐶3) ⧵ 𝐶1)

The intution here is that the constraints 𝐶3 determine how 𝑇1 and 𝑇2 must be compatible (since

they might mention different metavariables that need to be aligned somehow), and this forces.

Ugh maybe we want to know what variables are bound. Or emit 𝐶1 ⧵ (𝐶2∪𝐶3) to answer “what

needs to be added to make 𝐶1 satisfied”. Maybe it’s okay to make it semantic like that because

it’s only a meta property.

Examples:

Universe 𝑢 ⇐ Universe 𝑣 ⇐ { 𝑢 ≤ 𝑣 }
(Universe 𝑢 ⇐ { 𝑢 ≥ 4 })E (Universe 𝑣 ⇐ { 𝑣 ≤ 2 }) ⇐ 𝑓𝑎𝑙𝑠𝑒

Universe 𝑢 ≡ Universe 𝑣 ↦ Universe max(𝑢, 𝑣) ⇐ {𝑢 = 𝑣}

Universe 𝑢E Universe 𝑣 ⇐ {𝑢 ≤ 𝑣}

Row type subsumption requires the same labels in each row, merely subsuming the corre-

sponding types (covariantly). This is because the row merge operators in Dhall would have

different behavior depending on whether subsumption is performed on their result or their

operands.
𝑇1 E 𝐸1 ⇐ 𝐶1 ⋯ 𝑇𝑛 E 𝐸𝑛 ⇐ 𝐶𝑛

{ 𝑙1 ∶ 𝑇1, … , 𝑙𝑛 ∶ 𝑇𝑛 }E { 𝑙1 ∶ 𝐸1, … , 𝑙𝑛 ∶ 𝐸𝑛 } ⇐ 𝐶1 ∪⋯∪ 𝐶𝑛
𝑇1 E 𝐸1 ⇐ 𝐶1 ⋯ 𝑇𝑛 E 𝐸𝑛 ⇐ 𝐶𝑛

< 𝑙1 ∶ 𝑇1, … , 𝑙𝑛 ∶ 𝑇𝑛 > E < 𝑙1 ∶ 𝐸1, … , 𝑙𝑛 ∶ 𝐸𝑛 >⇐ 𝐶1 ∪⋯∪ 𝐶𝑛

Functions are contravariant in their domain and covariant in their codomain.
𝐴2 E𝐴1 ⇐ 𝐶1 𝐵1 E 𝐵2 ⇐ 𝐶2

∀(𝑥 ∶ 𝐴1) → 𝐵1 E ∀(𝑥 ∶ 𝐴2) → 𝐵2 ⇐ 𝐶1 ∪ 𝐶2

The list functor preserves subsumption:

𝑇1 E 𝑇2 ⇐ 𝐶1
List 𝑇1 E List 𝑇2 ⇐ 𝐶1

62 Chapter A. Judgments

Natural is only subsumed by itself:

NaturalE Natural⇐ ∅

Helpers for keeping track of free and bound metavariables, in terms, universe expressions,

and row expressions:

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(Universe 𝑢) = 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑢)

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑥) = { 𝑥 }

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑢 + 𝑘) = 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑢)

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(max(𝑢, 𝑣)) = 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑢) ∪ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑣)

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(if(𝑢, 𝑣)) = 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑢) ∪ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑢(𝑣)

…

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠({… 𝑟}) = 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑟(𝑟)

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑟(𝑥) = { 𝑥 }

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑟((𝑙 ∶ 𝑇1, … 𝑟)) = 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑇1) ∪ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑟(𝑟)

…

𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒1𝑒2) = 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒1) ∪ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒2)

𝑏𝑜𝑢𝑛𝑑(⋅) = ∅

𝑏𝑜𝑢𝑛𝑑(Γ, 𝑥 ∶ 𝑇) = 𝑏𝑜𝑢𝑛𝑑(Γ) ∪ 𝑚𝑒𝑡𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑇)

𝑏𝑜𝑢𝑛𝑑(Γ, 𝑥 ≔ 𝑒 ∶ 𝑇 ⇐ 𝐶) = 𝑏𝑜𝑢𝑛𝑑(Γ)

It is extended in the obvious way to the remaining cases.

A.5. Evaluation 63

A.5 Evaluation

Evaluation is extended to take place in a context, simply by substituting let-bound variables.

𝑒1 ⇥ 𝑒2
⋅ ⊢ 𝑒1 ⇥ 𝑒2

Γ ⊢ 𝑒1 ⇥ 𝑒2
Γ, (𝑥 ∶ 𝑇1) ⊢ 𝑒1 ⇥ 𝑒2

𝑒1[𝑥 ≔ 𝑒0] = 𝑒2 Γ ⊢ 𝑒1 ⇥ 𝑒3
Γ, (𝑥 ≔ 𝑒0 ∶ 𝑇1 ⇐ 𝐶1) ⊢ 𝑒1 ⇥ 𝑒3

Evaluation rules need to preserve typing, so we record proofs of that right after each rule.

The most important evaluation rule is applying a lambda literal to an argument, and we go

through the proof that it preserves typing in the most detail:

𝑒1 ⇥ 𝜆(𝑥 ∶ 𝑇1) → 𝑒2 𝑒2[𝑥 ≔ 𝑒3] = 𝑒4 𝑒4 ⇥ 𝑒5
𝑒1𝑒3 ⇥ 𝑒5

By the typing derivation of application, 𝑒1 must have a function type and 𝑒2 must have an

argument that fits its codomain, so there are three main steps working from that hypothesis:

ensuring that the type of the evaluated lambda expression matches the original type of 𝑒1,

ensuring that the substitution is well-typed, and then the final step of evaluating the substi-

tution.

1.
Γ ⊢ 𝑒1𝑒3 ∶ 𝑇2[𝑥 ≔ 𝑒3] ⇐ 𝐶2
Γ ⊢ 𝑒1 ∶ ∀ (𝑥 ∶ 𝑇0) → 𝑇2 ⇐ 𝐶3 𝑒1 ⇥ 𝜆(𝑥 ∶ 𝑇1) → 𝑒2

Γ ⊢ 𝜆(𝑥 ∶ 𝑇1) → 𝑒2 ∶ ∀ (𝑥 ∶ 𝑇1) → 𝑇3 ⇐ 𝐶4 𝑇0 E 𝑇1 𝑇3 E 𝑇2
Γ, (𝑥 ∶ 𝑇1) ⊢ 𝑒2 ∶ 𝑇3 ⇐ 𝐶4

2.
1.

Γ, (𝑥 ∶ 𝑇1) ⊢ 𝑒2 ∶ 𝑇3 ⇐ 𝐶4
Γ ⊢ 𝑒1𝑒3 ∶ 𝑇2[𝑥 ≔ 𝑒3] ⇐ 𝐶2

Γ ⊢ 𝑒3 ∶ 𝑇4 ⇐ 𝐶5 𝑇4 E 𝑇0 ⇐ 𝐶6
Γ ⊢ 𝑒2[𝑥 ≔ 𝑒3] ∶ 𝑇2[𝑥 ≔ 𝑒3]

3.
2.

Γ ⊢ 𝑒2[𝑥 ≔ 𝑒3] ∶ 𝑇2[𝑥 ≔ 𝑒3] 𝑒2[𝑥 ≔ 𝑒3] = 𝑒4 ⇥ 𝑒5
Γ ⊢ 𝑒5 ∶ 𝑇?[𝑥 ≔ 𝑒3]

By the rule for typing function application, it must be that the type of 𝑒4 is subsumed by the

codomain of the function.

64 Chapter A. Judgments

The fallback rule for function application, when the function does not normalize to a lambda

yet, is well-typed by the contravariance of subsumption on the input, meaning that evaluating

the function actually makes its input potentially larger:

𝑒1 ⇥ 𝑒3 𝑒2 ⇥ 𝑒4
𝑒1𝑒2 ⇥ 𝑒3𝑒4

𝑒2[𝑥 ≔ 𝑒1] = 𝑒3 𝑒3 ⇥ 𝑒4
let 𝑥 = 𝑒1 in 𝑒2 ⇥ 𝑒4

The proof for this is very similar to function application, but with fewer details.

𝑒1 ⇥ 𝑒3
𝑒1 ∶ 𝑒2 ⇥ 𝑒3

This proof is trivial, since the typing assumption of 𝑒1 ∶ 𝑒2 is that the intrinsic type of 𝑒1 is

subsumed by 𝑒2 via constraints already included in the typing judgment.

𝑒1 ⇥ 𝑒2
{ 𝑥 = 𝑒1, … }.𝑥 ⇥ 𝑒2

Instead of laboring through the syntax for the row operators, we describe their behavior in

prose. The right-biased merge operators // (for values) and /// (for types) simply return the

combination of the two rows, with the right side taking priority in terms of duplicates. The

unbiased merge operators ∧ (for values) and⩕ (for types) are a bit more complicated because

they act recursively: if the same label appears in both sides, it must be a record (value/type

respectively), and so the same operator is applied recursively to it.

𝑒1 ⇥ { 𝑙 = 𝑒3, … } 𝑒2 ⇥< 𝑙 = 𝑒4,⋯ > 𝑒3𝑒4 ⇥ 𝑒5
merge 𝑒1𝑒2 ⇥ 𝑒5

𝑒 ⇥ 𝑒

Appendix B
PureScript Reference

List of datatypes, functions, typeclasses, and typeclass instances referenced in the code listings

in this paper.

apply =� forall a b. (a =� b) =� a =� b
infixr 0 apply as $
applyFlipped =� forall a b. a =� (a =� b) =� b
infixl 1 applyFlipped as #

data Map k a
data Set k
instance (Ord k) =� Semigroup (Set k)
instance (Ord k) =� Monoid (Set k)
newtype SemigroupMap k a = SemigroupMap (Map k a)
instance (Ord k, Semigroup a) =� Monoid (SemigroupMap k a)
Set.map =� forall a b. Ord b =� (a =� b) =� Set a =� Set b
Set.insert =� forall a. Ord a =� a =� Set a =� Set a
Set.member =� forall a. Ord a =� a =� Set a =� Boolean
Set.delete =� forall a. Ord a =� a =� Set a =� Set a
Set.singleton =� forall a. a =� Set a
Map.singleton =� forall k v. k =� v =� Map k v
Map.lookup =� forall k v. Ord k =� k =� Map k v =� Maybe v
Map.isEmpty =� forall k v. Map k v =� Boolean
Map.mapMaybeWithKey =� forall k a b. Ord k =�
(k =� a =� Maybe b) =� Map k a =� Map k b

newtype Max a = Max a
instance (Ord a) =� Semigroup (Max a)
instance (Ord a) =� Ord (Max a)
data NonEmpty f a = NonEmpty a (f a)
instance (Foldable f) =� Foldable (NonEmpty f)
instance (Foldable f) =� Foldable1 (NonEmpty f)

65

66 Chapter B. PureScript Reference

data Maybe a = Nothing | Just a
instance Foldable Maybe
instance (Semigroup a) =� Monoid (Maybe a)
maybe =� forall a b. b =� (a =� b) =� Maybe a =� b
fromMaybe =� forall a. a =� Maybe a =� a

class Eq a where
eq =� a =� a =� Boolean

infix 4 eq as =�
data Ordering = LT | GT | EQ
class (Eq a) <= Ord a where
ord =� a =� a =� Ordering

lessThanOrEq =� forall a. Ord a =� a =� a =� Boolean
infixl 4 lessThanOrEq as <=
greaterThanOrEq =� forall a. Ord a =� a =� a =� Boolean
infixl 4 greaterThanOrEq as >=

class Semigroup m where
append =� m =� m =� m
infixr 5 append as =�

class Semigroup m <= Monoid m where
mempty =� m

class Foldable (t =� Type =� Type) where
fold =� forall m. Monoid m =� t m =� m
foldMap =� forall a m. Monoid m =� (a =� m) =� f a =� m

class (Foldable t) <= Foldable1 t where
fold1 =� forall m. Semigroup m =� t m =� m
all =� forall a. (a =� Boolean) =� f a =� Boolean

class Functor (f =� Type =� Type) where
map =� forall a b. (a =� b) =� f a =� f b

class (Functor f) <= Apply f where
apply =� forall a b. f (a =� b) =� f a =� f b

class (Functor t, Foldable t) <= Traversable t where
traverse =� forall a b m. Applicative m =� (a =� m b) =� t a =� m (t b)

class (Foldable f) <= FoldableWithIndex i f | f =� i where
foldMapWithIndex =� forall a m. Monoid m =� (i =� a =� m) =� f a =� m

class (Functor f) <= FunctorWithIndex i f | f =� i where
mapWithIndex =� forall a b. (i =� a =� b) =� f a =� f b

class
(
FunctorWithIndex i t,
FoldableWithIndex i t,
Traversable t

) <= TraversableWithIndex i t | t =� i where
traverseWithIndex =� forall a b m. Applicative m =�
(i =� a =� m b) =� t a =� m (t b)

67

Note: (apply maybe append) =� forall m. Semigroup m =� m =� Maybe m =� m is

an idiom equivalent to \x y =� maybe x (append x) y that appends the two arguments in

order if the second is Just, otherwise it returns just the first argument. If m is a Monoid, this is

equivalent to \x y =� x =� fromMaybe mempty y.

68 Chapter B. PureScript Reference

Bibliography

[1] Fabrizio Ferrai, Hurkens’ paradox? · issue 250 · dhall-lang/dhall-lang, Dhall-Lang, 2018.
[2] Robert Harper and Robert Pollack, Type checking with universes, Theoretical Computer Science 89 (1991), no. 1,

107–136.
[3] Antonius J. C. Hurkens,A simplification of girard’s paradox, Proceedings of the second international conference on

typed lambda calculi and applications, 1995, pp. 266–278.
[4] Trevor Jim, What are principal typings and what are they good for?, Proceedings of the 23rd acm sigplan-sigact

symposium on principles of programming languages, 1996, pp. 42–53.
[5] Francesco Mazzoli and Andreas Abel, Type checking through unification, 2016.
[6] Didier Rémy, Type inference for records in natural extension of ml, MIT Press, Cambridge, MA, USA, 1994.
[7] Matthieu Sozeau andNicolas Tabareau,Universe polymorphism in coq, Interactive theoremproving, 2014, pp. 499–

514.
[8] J. B. Wells, The essence of principal typings, Proceedings of the 29th international colloquium on automata,

languages and programming, 2002, pp. 913–925.

69

	The Algebra of Type Unification
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Type Theory
	Consistency of a Type Theory

	Tools and Methodology

	Background and Setup
	Datatypes
	Semilattices
	Monoids
	Partial orders

	Abstract Syntax Trees
	Variables
	Metavariables

	Type Inference
	Intrinsic vs Extrinsic Typing
	Constraints
	Polymorphism

	Universes
	The Algebra of Universe Levels
	Universe Levels in Judgments
	Normal Form for Universe Levels
	Normal Form Without Impredicative Maximum
	Normal Form With Impredicative Maximum
	Implementing Impredicative Maximum Through If

	Relating Universe Levels
	Relations Without Impredicative Maximum
	Relations With Impredicative Maximum
	Proofs

	Constraining Universe Levels
	Consistency

	Row Types
	Unification
	Properties
	Future Work
	Appendices
	Judgments
	Syntax
	Substitution
	Typing
	Builtins
	Functions and Variables
	Rows

	Unification/Subsumption
	Evaluation

	PureScript Reference

