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Abstract

Programmers tend to split their code into multiple files or sub-modules. When a program is
executed, these sub-modules interact to produce the desired effect. One can, therefore, represent
programs with graphs, where each node corresponds to some file and each edge corresponds to
some relationship between files, such as two files being located in the same package or one file
importing the content of another. This project trains Graph Neural Networks on such graphs
to learn to predict future imports in Java programs and shows that Graph Neural Networks
outperform various baseline methods by a wide margin.
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1
Introduction to the Import Prediction Task

Code tends to be less ambiguous than natural language and allows one to prove statements

about it. For this reason, code analysis had originally been a proof-oriented discipline. In re-

cent years, however, machine learning has become prominent in static code analysis research.

Bavishi et al. (2018) used statistical methods to infer original variable names from code that

was intentionally minified, that is in which all the variable identifiers were replaced with ran-

dom meaningless strings. Allamanis et al. (2017) used machine learning to locate bugs in large

open-source projects. These are but a few examples of machine learning being employed to solve

problems that would previously have been approached from a purely analytical standpoint. For

a thorough review of the literature on the matter, see a paper by Allamanis, Barr, Devanbu,

and Sutton (2017).

In this project, I build on past machine learning and static code analysis research in an attempt

to develop a novel approach to code completion in Java. Code completion aims to speed up the

coding process by predicting what a programmer would want to type next. More specifically,

I focus on predicting which local classes or interfaces a programmer might want to use among

those not yet imported. Local classes are classes defined within the same project a programmer

is currently working on.
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Prediction of future imports in Java code is a problem that has been addressed before, but

existing approaches are relatively inaccurate in predicting class-level imports and even less so in

predicting local class-level imports. The most recent work on import prediction relies on gath-

ering global information about import co-occurrence to then compute vector representations of

each potential import (Theeten et al., 2019). This approach appears to be effective at predicting

library-level imports, but it is unlikely to be feasible for class prediction: this would require one

to compute and store vector representations of every single widely-used Java class. Moreover,

this method can hardly be used to predict local imports because there is unlikely to be enough

co-occurrence statistics to be gathered from a single project.

Figure 1.0.1. An example of a potentially inaccurate import prediction by Intellij IDEA (Version 2020.1).
The IDE proposes to import class “Ring” from the “jewelry” package even though the context suggests
that importing the identically named class from the “locations” package might be preferable. Note that
the “locations” package is more extensively used in the code. Moreover, all written constructors of the
“Match” class take an instance of a class extending “Location” as the first parameter.
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Local imports can sometimes be successfully predicted by IDEs like IntelliJ IDEA. As far as I

have been able to determine experimentally, IntelliJ IDEA relies on computationally inexpensive

rule-guided heuristics to guide local import prediction. At times, these heuristics are not enough:

Figure 1.0.1 shows one scenario, in which IntelliJ IDEA ranks a less probable import candidate

above everything else.

This report presents a new method for predicting local imports. The core idea is to model

relationships between classes and interfaces in a Java project with a graph and then use Graph

Neural Networks to infer future imports from the graph. A node in such a graph corresponds to a

particular file (more properly referred to as a compilation unit), in which some class or interface

is defined. An edge between two nodes marks some relationship between the two corresponding

files.

Figure 1.0.2 presents an example of such a graph built for one of the GitHub repositories in

my dataset. Grey undirected edges connect compilation units defined within the same package.

Black directed edges correspond to import statements. Blue edges mark class inheritance or

interface implementation. I call graphs like this repository graphs.

In my approach, I gather a dataset of Java repositories from GitHub (Chapter 3), build

corresponding repository graphs, and extract some relevant information about each class in the

repository from the source code (Chapter 4). Graph Neural Networks (GNNs) are then trained

to predict future imports from the geometry of a repository graph (Chapter 2). During testing,

a network is presented with several potential imports that could be added to some file in a

repository, one of the candidates corresponding to the actual import statement found in the

code. The accuracy with which the network selects the correct import is used as the evaluation

metric. The accuracy naturally varies with the number of candidates the network is presented

with; it is at its highest when the network has to make a choice between just two candidates,

which is the scenario referred to as the binary import prediction task throughout this text.

As detailed in Chapter 5, the comparison between the baseline results achieved by other means

suggests that GNNs are well suited for this task.
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Figure 1.0.2. An example of a repository graph built for the GitHub Minecraft Open Proxy Monitor
project (github.com/0x277F/mopm). Grey undirected edges connect compilation units defined within the
same package. Black directed edges correspond to import statements. Blue edges mark class inheritance
or interface implementation.

The notion of embedding is critical in this report: embedding is a vector that encodes the

properties of a particular word, image, sentence, or some other object. Such vectors are commonly

used as inputs to neural networks and some neural networks learn to compute embeddings. Unlike

symbols, which are arbitrary, embeddings are a semantically rich form of representation. Unless

an embedding is manually constructed according to some rule, it is usually very difficult to tell

what exact property each particular dimension in a vector encodes. Most often, embeddings

https://github.com/0x277F/mopm
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are used to compare objects: if embeddings are constructed properly, similar embeddings will

correspond to similar objects. For example, one can use an unsupervised learning algorithm to

construct embeddings such that the embedding for word “king” minus that for word “man” plus

that for word “woman” would be very close to the embedding for word “queen” (Mikolov et al.,

2013).

All of my code is available on GitHub1. Most of the code is written in Python, although there

are several files written in SQL and Java, and a few lines of JavaScript. The reader can reproduce

all the steps described in this text by running the code on GitHub provided that they have the

necessary libraries installed.

1github.com/Dargones/import prediction

https://github.com/Dargones/import_prediction
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2
Graph Neural Networks: Motivation and
Implementation

Graph Neural Networks (GNNs) are a type of neural network designed to make inferences

about graphs and particular nodes in these graphs. One can think of GNNs as consisting of

two separate components. During a forward pass, a GNN first computes node embeddings (also

referred to as node representations), which are a set of vectors each describing a single node

in the graph. Gated Graph Neural Networks (GGNNs) use Gated Recurrent Units to compute

node representations. I outline the algorithm for computing node embeddings at the end of this

chapter (Section 2.4), but I do not alter it in any way in my code and refer the reader to the

original paper on the topic (Li et al., 2017).

After the node embeddings are computed, a GNN maps from node representations to the

output, whatever form the output might take. This final step is highly problem-specific and there

are many different ways it could be performed. In my implementation, I mirror the approach

that Allamanis et al. (2017) take in solving the VarMisuse task. I describe the VarMisuse task

below in order to compare it to the import prediction task and highlight the motivation behind

using GNNs to solve both.
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2.1 VarMisuse task: A similar GNN

VarMisuse stands for variable misuse, a situation in which a programmer types the name of

an incorrect variable at a specific location in the code. Most often, variable misuse leads to

compilation errors; sometimes it leads to runtime errors; and sometimes there are no errors at

all, but the program acts in an unintended way. Allamanis et al. train a Graph Neural Network

to detect locations in the code, where an incorrect variable might have been used.

To do this, they first parse the piece of code they want to examine to obtain its abstract

syntax tree (AST), which is a tree representation of source code with each node corresponding

to a programming language construct (such as a while loop or an identifier). They then modify

the AST by connecting various nodes with edges according to a set of predefined rules. For

instance, for every variable, they introduce edges to connect together all the references to that

variable. Figure 2.1.1, which is reproduced from their paper, shows how Allamanis et al. convert

an AST to a program graph.

Figure 2.1.1. “Examples of graph edges used in program representation.” This figure along with its title
is reproduced from the paper by Allamanis et al. (2017). Note in particular the LastUse edges with which
all the references to the same variable are connected together.

Having constructed a program graph in this way, Allamanis et al. specify a single location in

the code that they want to check for variable misuse. That location corresponds to some node

in the program graph, and Allamanis et al. remove any edges between this and other nodes

that depend on the particular variable referenced at that location. In this manner, information

about the variable used in the code at the given location is completely erased from the program
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graph. Next, Allamanis et al. run a GGNN to obtain an embedding for the node in question.

That embedding encodes the variable usage context.

Finally, Allamanis et al. compile a list of n possible variable identifiers that could have been

inserted at the given location (which includes the variable identifier appearing in the code).

For each candidate variable, they then update the graph as if that variable had actually been

referenced and run the network to obtain a new embedding for that location.

In the end, Allamanis et al. compute n+ 1 embeddings: a context embedding and n variable-

specific embeddings. The variable that the network selects as “correct” is the one that corre-

sponds to an embedding most similar1 to the context embedding. If an already trained network

cannot accurately predict the variable name for some location, it might be the case that the pro-

grammer made a mistake and typed an incorrect variable name. With their networks, Allamanis

et al. have been able to locate several bugs in widely used software libraries.

Allamanis et al. write that they train the whole system end-to-end with a max-margin objec-

tive. It is unclear from the paper what kind of max-margin objective they use, but I have opted

for a modified version of the triplet loss described in the next section.

2.2 Adapting GNNs for the import prediction task

The motivation behind using GNNs for the VarMisuse task rests on the assumption that the

most logical variable choice must correspond to the smallest change in the structure of the

program graph. Graph structure serves as input to GNNs and, therefore, is encoded in the

representations GNNs create, meaning that this type of neural network is perfectly suited for

the task. The same logic can be applied to import prediction and repository graphs: the addition

of a “plausible” import statement to a file should lead to smaller changes in the graph structure

and the corresponding embedding than the addition of a completely random import statement.

My implementation of GNNs is, therefore, quite similar to that of Allamanis et al.

1Similarity is computed by a single-layer neural network trained jointly with the GGNN
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Given a repository and a set of potential import statements to be added to a certain file

in that repository, I first run the network on the repository graph and record the contextual

embedding of the file in question. For every potential import, I then update the graph by

adding the corresponding edge to it and run the network on this new graph recording the new

embedding for the file under consideration. The import option selected as “correct” corresponds

to the embedding most similar to the original one.

During the training stage, I randomly select a file for which the model will make a prediction

and a particular import statement in that file which the model will learn to predict. I then

remove from the repository graph the edge encoding that import statement and perform the

steps described in the previous paragraph.

I train the network with a slightly modified version of the triplet loss, which makes the

network learn that embeddings of similar objects must also be similar. In its canonical form,

triplet loss takes three embeddings as input. Two embeddings, referred to as the anchor (A)

and the positive (P ), encode objects that are elements of the same class. The third embedding,

known as the negative (N), encodes an object from a different class. Triplet loss minimizes the

squared Euclidean distance between the anchor and the positive and maximizes the squared

distance between the anchor and the negative. More formally, triplet loss is defined as:

L(A,P,N) = max(|A− P |2 − |N − P |2 + α, 0)

For the purposes of the input prediction task, the anchor is the contextual embedding com-

puted when the target import edge is removed from the graph. The positive is the embedding

computed when the graph is left unmodified. There can be arbitrary many negatives, one for

each potential import that the network must recognize as illogical. I compute the triplet loss for

every one of these and make the network backpropagate the mean. Following Allamanis et al., I

use a linear layer to compute the distance between a pair of embeddings. Since this linear layer is

trained jointly with the network, I formulate my version of the triplet loss in terms of distances

rather than embeddings themselves. The loss function used can, therefore, be described by the

following equation:
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L(Da,p, {Da,n|n ∈ N}) =
∑

n∈N max(Da,p−Da,n+α,0)

|N |

Here a is the anchor, p is the positive, N is the set of negatives, Dx,y is the distance between

x and y, and α is a hyper-parameter, which I set to 0.5 as is commonly done.

2.3 PyTorch vs. Tensorflow

The code for both the original paper on Gated Graph Neural Networks (Li et al., 2017) and

the paper on the VarMisuse task (Allamanis, Brockschmidt, et al., 2017) makes use of the

TensorFlow library. Nevertheless, I decided to use PyTorch instead of TensorFlow because I have

more experience with the former and because PyTorch allows for more convenient debugging,

which makes it easy to track a program’s execution and to verify that the program behaves as

intended.

As the basis for my implementation, I selected one of several GitHub repositories implementing

Gated Graph Neural Networks’ functionality.2. Modifications I made to the network architecture

pertain to the step where node embeddings are converted to the output; the code computing

node embeddings themselves is left unchanged. I have, however, verified that the implementation

is correct by comparing the code to the equations I refer to in the next section and making sure

that the network can learn to predict simple things such as node degree or distance between

nodes.

2.4 Computing Node Representations

This section outlines the algorithm by which Gated Graph Neural Networks compute node

embeddings. I begin with a high-level overview of the process and turn to specific equations at

the end.

Before a graph can be passed to a Gated Graph Neural Network, each node in it must be

annotated with a feature vector.3 The network updates each vector a fixed number of times

2github.com/chingyaoc/ggnn.pytorch
3I describe the node annotation process in Sections 4.4, 4.5, and 4.6.

https://github.com/chingyaoc/ggnn.pytorch
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with a Gated Recurrent Unit (GRU) and the resulting embeddings are then used to compute

the output as described in Sections 2.1 and 2.2.

A Gated Recurrent Unit is a type of Recurrent Neural Network with two kinds of input. The

output produced by a GRU at timestep i is referred to as the “hidden state” and is passed to

the GRU at timestep i+ 1. Along with the hidden state from the previous iteration, GRU also

takes as input a second vector obtained from an external source. In the context of the import

prediction task, the hidden state is the node embedding computed at a previous iteration and the

second input vector contains the messages passed along the edges from the neighbouring nodes.

These messages are collected by passing representations of the neighbouring nodes through a

linear layer and then summing the results.

Edges in the graph can represent different kinds of relationships between nodes, and separate

linear layers are learned for each type of edges. For each type, a GGNN automatically constructs

a reverse edge type such that if there is an edge from v to u of type e, there will always be an

edge from u to v of the “reverse e” type. For the purposes of the import prediction task, there

are three non-reverse edge types. First, there are edges that represent import statements. Edges

of the second type link together files defined within the same package. Finally, there are edges

that mark extension or implementation of one public class or interface by another.

Table 2.4.1 contains the equations which summarize the process of updating an embedding of

a single node in the graph. The equations are reproduced from the original paper about GGNNs

(Li et al., 2017). D stands for the dimensionality of a node embedding and V is the set of nodes

in the graph. Vector hiv ∈ RD is the embedding of node v ∈ V at timestep i. The original node

annotation constructed prior to running the neural network is denoted as xv. Li et al. allow the

original node annotation to be of smaller size than the resulting word embedding (Equation 1),

but for the purposes of this project, h
(1)
v = xv.

Equations 3 to 6 form the canonical definition of a GRU. W, U, Wz, Uz, Wr, and Ur

are learnable parameters, ztv is the update gate vector, and rtv is the reset gate vector. The

update vector regulates how much the embedding is changed at each timestep: if ztv = 0, then
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h
(1)
v =

[
xTv ,0

]T
(1) rtv = σ

(
Wra

(t)
v + Urh

(t−1)
v

)
(4)

a
(t)
v = AT

v:

[
h

(t−1)
1

T
...h

(t−1)
|V|

T
]T

+ b (2) h̃
(t)
v = tanh

(
Wa

(t)
v + U

(
rtv � h

(t−1)
v

))
(5)

ztv = σ
(
Wza

(t)
v + Uzh

(t−1)
v

)
(3) h

(t)
v =

(
1− ztv

)
� h

(t−1)
v + ztv � h̃

(t)
v (6)

Table 2.4.1. Equations describing an update of the embedding of a single node in the graph.
These equations can be found in the original paper on Gated Graph Neural Networks (Li et al.,
2017).

h
(t)
v = h

(t−1)
v and the embedding stays the same. The reset gate vector determines whether the

changes made to the embedding should depend on the embedding itself: if rtv = 0, the changes

only depend on the new information. Figure 2.4.1, which can be found on Wikipedia (Gated

recurrent unit, 2020), visualizes the process described in Equations 3 to 6.

Figure 2.4.1. Visual representation of a GRU, which is formally defined by Equations 3 to 6. Note that

the output ỹt is irrelevant in the Graph Neural Network context. The figure can be found on Wikipedia
(Gated recurrent unit, 2020).

The matrix A ∈ RD|V|×2D|V| in Equation 2 is two-dimensional only because this makes the

equation shorter and easier to read. In practice, implementations of GGNNs, including the one

used in this project, split the data stored in A between two matrices: an adjacency matrix and

an edge type matrix. For each edge type and a pair of nodes, the adjacency matrix encodes



14 2. GRAPH NEURAL NETWORKS: MOTIVATION AND IMPLEMENTATION

whether there is an edge of the given type between the given nodes. The edge type matrix

contains parameters for linear layers corresponding to different edge types. It might be easier

to think of A, which combines all of this information together, as a resized version of the five-

dimensional matrix Ã ∈ R|V|×|V|×2×D×D. The entry Ãv,u,0 is a zero matrix if and only if there

are no edges from v to u in the graph. Similarly, the entry Ãv,u,1 is a zero matrix if and only

if there are no edges from u to v in the graph. If there is an edge of type e from v to u, then

the entry Ãv,u,0 will contain the parameters of the linear layer corresponding to type e, and the

entry Ãu,v,1 will contain the parameters of the linear layer corresponding to the reverse e type.

Note that this formulation of graph neural networks allows there to be only one pair of edges

between any two nodes. Figure 2.4.2 reproduced from the original GGNN paper along with its

caption might help to visualize the structure of matrix A.

Figure 2.4.2. (a) Example graph. Color denotes edge types. (b) Unrolled one timestep. (c) Parameter
tying and sparsity in recurrent matrix. Letters denote edge types with B’ corresponding to the reverse
edge of type B. B and B’ denote distinct parameters.

In Equation 2, Av: ∈ R|V|D×2D stands for what could also be denoted as Ãv. Consequently,

a
(t)
v ∈ R2D contains the output of the linear layers from edges in both directions, which is the

information based on which the GRU updates the node embeddings.

As I hope it is clear from this chapter, data preparation becomes a complicated process when

GGNNs are involved. One has to define different types of edges, convert the data to a graph

format, annotate every node in every graph with a feature vector and perform many other pre-

processing steps before training and evaluating the networks themselves. The next chapter is
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devoted to the way the data for this project was collected, and the following chapter deals,

among other things, with the node annotation process.
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3
Data Collection and Preliminary Analysis

In order to successfully train a neural network to predict imports, one has to compile a large

enough dataset of Java projects. In recent years, mining GitHub has become the go-to method for

collecting code-related data (Lacomis et al., 2019; Vasilescu et al., 2017; Allamanis and Sutton,

2013; Allamanis, Brockschmidt, et al., 2017). As of August 2019, GitHub houses an impressive

100 million repositories, many of which are publicly available, making the website an invaluable

source of information. Google’s BigQuery provides an efficient way to examine GitHub in its

current state, and GH Archive records all the user activity since 2011. Even so, it can be difficult

to select the repositories relevant to a particular research task. Moreover, much of the GitHub

code is obsolete, cannot be compiled or is otherwise deficient, and there is little agreement over

how to filter out the repositories that are likely to contain faulty code.

3.1 Selecting the Repositories

I examine the information available through BigQuery and GH Archive and use the following

criteria to select the repositories for my dataset:

1. If a repository is a fork, it is not included it the dataset. Forks are a major source

of duplicated code on GitHub, which is why it is best to avoid them. I identify forks by
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Figure 3.1.1. The pipeline for selecting repositories for the dataset. Each arrow represents a process of
filtering out repositories that for one reason or another should not be included. The final 43 repositories
are the intersection of the 8,5 million forked repositories, 5,5 million starred repositories, and 240 thousand
repositories relevant to the import prediction task.

scanning GH Archive, which records a ForkEvent, whenever someone forks a repository. It

is worth mentioning that GH Archive does not record events that occurred prior to 2011.

This, coupled with the fact that the syntax of ForkEvents has changed multiple times

throughout GitHub’s history, means that some forks might be inadvertently included.

Moreover, GitHub users often publish modified versions of cloned repositories without

explicitly marking them as forks. For these reasons, I return to the problem of filtering out

duplicates at a later stage (Section 3.3).

2. For a repository to be included in the dataset it has to be starred at least

twice and forked at least once. These requirements are aimed to ensure that selected

repositories are of sufficient quality. It is, of course, impossible to design a perfect criterion

for filtering out faulty code, just as it is impossible to define what faulty code is; however,

the two criteria I use have been previously employed by Theeten et al. (2019) and Allamanis

and Sutton (2013), respectively.



3.2. PARSING 19

3. Each repository in the dataset must contain at least 8 Java source files in at

least 2 packages. Since there is no need to explicitly import classes from within the same

package in Java, each repository in the dataset must have at least two packages. I also

require that each repository has at least 8 source files to filter out potentially incomplete

projects. Establishing such a threshold makes sense for another reason as well: for projects

with 8 files or less, import prediction could potentially be guided by simple heuristics. I

chose the value of 8 because the number of possible different undirected graphs of n nodes

(OEIS, n.d.) becomes larger than the number of GitHub repositories with n Java source

files at n=8 (12346 vs. 7995).

The resulting data amounts to 43 thousand repositories, 8.4 million files and 52 GB of code.

Figure 3.1.1 illustrates the process of selecting this set of repositories relevant to the import

prediction task.

3.2 Parsing

After downloading these 8.4 million files, I parse them with JavaParser. For each file, the parser

extracts the name of the corresponding package and all of the import statements. Additionally,

for each public non-static class or interface (which can only be one per file or compilation unit),

the parser extracts the names of all extended or implemented classes or interfaces. This is the

information later used to construct repository graphs.

JavaParser fails to parse a small portion of these files. Manual inspection of several dozens of

such files revealed syntactical errors in every one of them. For this reason, I consider repositories

containing at least one non-parsable file to be faulty and remove them from the dataset. There are

also some files whose names do not match the names of the public non-static classes or interfaces

defined in them. Such files would never compile, which is why any repository containing such

files is removed from the dataset.
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3.3 Filtering

After parsing the code, I proceed to remove duplicate repositories. Duplicates can be identified

by packages: packages are supposed to be unique, so if two repositories share a package, one of

them must be a duplicate. Given a pair of such repositories, one must decide which one to keep

and which one to remove. Lacking a better criterion, I keep the repository that has been forked

most and remove the one that has been forked least. If both repositories have been forked the

same number of times, one repository is removed at random. I also remove repositories that

have classes in unnamed packages or have several identically-named classes located in the same

package.

Figure 3.3.1. Distribution of repository sizes in the final dataset. The bucket size is 10.

This leaves a dataset of approximately 25 thousand repositories. Of these, 95 percent have

300 or fewer source files. Several repositories in the remaining five percent are very large. In

particular, 3 repositories have over ten thousand files each. Running graph neural networks on

such repositories is problematic because standard GNN implementations represent graphs with
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adjacency matrices. Hence, to run a GNN on a graph with thousands of nodes one would have

to support sparse matrix computation. There exists a TensorFlow implementation of GGNNs

that supports sparse matrices, but for several reasons - one being that this implementation

is inherently slower than others - I do not employ it. Instead, I remove from the dataset any

repository that has more than 300 files. This results in the final dataset of 24,269 repositories.

Figure 3.3.1 shows the distribution of repositories in the dataset by the number of source

files in them. One can immediately see that most repositories are small: the median is 33 files

per repository. This raises the question of whether a network trained on such a dataset would

perform well on large repositories, when there are many of different import candidates to choose

from. Perhaps surprisingly, both the network and the baselines performs better in such scenarios,

as is discussed in Section 5.2.
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4
Features and Baselines

To prove that Gated Graph Neural Networks are efficient at predicting future imports I compare

their performance to that of several widely-used classifiers. Conceptually, all these classifiers

make predictions in the same way that GNNs do. Given a repository R, a file f to which a

new import statement must be added and a set C of classes that are candidates for import,

the classifier evaluates each possible import on its own with a classifier-specific function g. The

correct candidate is then computed as argmaxc∈Cg(R, f, c). The performance of a classifier,

therefore, depends entirely on the way the classifier-specific function g is defined.

The two types of machine learning methods employed as baselines are Random Forests (RFs)

and simple Feed-Forward Neural Networks (FFNNs). Feed Forward Neural Networks are a good

baseline because they are what Gated Graph Neural Networks default to when there are no edges

in the graph.1 Were GGNNs to perform no better than FFNNs, it would mean that representing

repositories with graphs is a useless enterprise. Random Forests are good at making predictions

based on sets of unrelated features, such as some of the features described below, which is why

I pick them as a second baseline. Both methods take a single feature vector normalized as a

z-score as input. Below I described the features of which this vector is composed.

1More precisely, in the absence of other edges in the graph, GGNNs make predictions based on two embeddings: that
of the import candidate and that of the file for which the new import is to be predicted. A GGNN would make such a
prediction with a GRU, but whatever function a GRU can express, an FFNN should be able to express as well. Given that
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4.1 Import frequency

In the absence of other information future import prediction can be based on prior likelihood:

one selects a class that has been imported most frequently in the past. On the repository graph,

such class would correspond to the node with the highest indegree.

4.2 Shortest Path

Another feature based on the repository graph is the minimum distance between the file f and

a given candidate c. The assumption is that nodes that are close to each other on the graph

correspond to compilation units that share some functionality or are created to solve some

common problem. The closer two classes are on the graph, therefore, the more likely it is that

there is an import statement linking the two together.

4.3 Edit Distance

A programmer will often use similar names for classes with similar functionality. Sometimes,

similarity between two class-names betrays their import relationship: it is not at all surprising

that the AudioSystem class in javax.sound.sampled package imports the AudioFileReader

class from a different package. One of the most popular measures of string similarity is edit

distance, and I include the normalized edit distance in the list of features based on which the

classifiers make their predictions.

4.4 Filename Embeddings

While edit distance can be useful for detecting pairs of filenames that share words or prefixes,

it does not reflect the semantic similarity between filenames. A way to capture the semantic

similarity between a pair of filenames is to construct embeddings for both strings. The similarity

an FFNN would have fewer parameters than a GRU, it should perform better in such a scenario, which makes it a good

baseline classifier.
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can then be defined as Euclidean distance between the embeddings: the smaller the distance,

the more semantically similar the strings are.

To construct a filename embedding, I first split a filename into individual words based on

camelCase (e.g. HashMap is split into Hash and Map). I then look up an embedding for each of these

words in the GloVe dataset (Pennington et al., 2014)2 and take the unweighted average to be

the resulting filename embedding. This is similar to how Koc et al. (2019) construct embeddings

for program dependency graph nodes and how Allamanis et al. (2017) construct embeddings for

variable identifiers, except that the latter use a linear layer instead of the unweighted average

to compute the final embedding. Whether using a linear layer is a more adequate approach can

only be determined experimentally.

Their usefulness in obtaining a semantic similarity feature is only one reason why filename

embeddings are relevant to this project. The other reason is that each node passed to a GGNN

must be annotated with a vector, as explained in Chapter 2. It is quite common to annotate nodes

with vectors ultimately derived from pre-trained word embeddings. Among others, Allamanis

et al. (2017) and Koc et al. (2019) take this approach. I follow them and annotate nodes in my

network with filename embeddings, albeit with one difference which I discuss in the next section.

4.5 External Import Embeddings

The goal of this project is to predict local imports, that is imports of files defined in a repository

to other files within that same repository. For each class in the repository, there is a corresponding

node in the repository graph that serves as input to graph neural networks. However, classes

defined in external libraries and edges representing external imports do not appear in this

graph: putting them there would dramatically increase the number of nodes and slow down

the network’s performance. Moreover, it is not always possible to obtain the source code for an

arbitrary external library and one cannot always determine the relationship between files within

2While there are many similar datasets available on the web, GloVe is easy to download and is maintained by a group

of well-known NLP researchers at Stanford.
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it. In other words, the geometry of repository graphs as I define them does not encode external

imports.

Intuitively, however, external imports must facilitate future import prediction and it is im-

portant that the classifiers have access to information about external imports in one form or

another. For this reason, I compute what I call external import embeddings, which one can

compare to learn whether two files make similar external imports. There are several ways such

embeddings could be constructed, as discussed in Chapter 6. At present. however, I use the

simplest method possible. For each external import in a file, a class-name embedding is com-

puted using the approach used for filenames (Section 4.4). These class-name embeddings are

then averaged to get a single external import embedding for the file in question.

For each file in a repository, therefore, there are two embeddings: a filename embedding and

an external import embedding. The node annotations passed to GGNNs are concatenations

of these two embeddings. If embeddings have the dimensionality of 10, for instance, the node

annotations have dimensionality of 20. Similarly, these two embeddings are concatenated into a

single vector and passed to Feed-Forward Neural Networks. Unlike FFNNs and GGNNs, Random

Forests cannot compare embeddings, which is why I compute the Euclidean distance between

embeddings and pass that distance as a feature to the Random Forest baseline.

4.6 Reducing Embedding Dimensionality

This gives rise to the final question addressed in this chapter: what dimensionality is optimal

for node annotations? Previous studies show that the dimensionality of word embeddings used

in NLP is usually much higher than that needed for node annotations in a GGNN. All publicly

distributed GloVe embeddings, for example, have at least 25 dimensions. By contrast, Koc et al.

(2019) report that they found embedding dimensionality of 8 to be optimal for their problem.

Unlike Koc et al. I do not construct word embeddings myself, because using a well-known

dataset trained on natural text seems preferable to training an entirely new set of embeddings

of unknown quality. However, I do conduct a series of experiments to determine the optimal



4.6. REDUCING EMBEDDING DIMENSIONALITY 27

embedding size for the import prediction task. To reduce the dimensionality of filename- and

external import embeddings I use simple autoencoders, Feed-Forward Neural Networks with a

single hidden layer trained to predict their own input. The loss function typically used for this

task is Mean Squared Error Loss. The size of the hidden layer is smaller than the size of the

input layer and so the output of the former can be used as an embedding of its own.

By reducing embedding dimensionality one unavoidably loses some information preserved in

the original vector: Figure 4.6.1 shows how MSE Loss increases with decreasing hidden layer

size. Nonetheless, large embeddings are not necessarily better: the larger the embeddings are,

the more free parameters a graph neural network has. An excessive number of free parameters

can prevent the network from converging and decreases the training speed.

Figure 4.6.1. The influence of the hidden layer size (horizontal axis) on the MSE Loss of embedding
autoencoder (vertical axis) trained on the Glove dataset (400K words, each encoded with an embedding
of size 50). Because the mean square error appears to be increasing linearly with decreasing hidden layer
size, the mean absolute error must increase ever more slowly as hidden layer size is reduced.
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I experimented with different embedding sizes and found embedding dimensionality of 8 to

be optimal for the import prediction task.3 Figure 4.6.2 shows how network accuracy on the

binary import prediction task increases as embedding size decreases until the accuracy reaches

the peak at an embedding size of 8.

Figure 4.6.2. Correlation between GNN accuracy on the binary prediction task (in percentages, vertical
axis) and embedding size in use (horizontal axis). Embedding size is the only hyper-parameter changed;
all other hyper-parameters are fixed. Note that the hyper-parameters used to create this graph were
slightly sub-optimal and so it is possible to achieve a slightly better performance in all cases.

3Note that embedding dimensionality of 8 translates to node annotation dimensionality of 16, as described in Section

4.5.
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Results

In this chapter, I compare the results that the baselines and the GGNNs achieve on the import

prediction task. I also discuss the effect that the values of several hyper-parameters have on

GGNNs’ performance and analyze the usefulness of different features defined in Chapter 4. The

results presented here shed light on some interesting aspects of the import prediction problem.

5.1 Best Hyper-Parameters

To ensure optimal performance from the GGNNs, I perform greedy hyper-parameter search to

determine the learning rate, embedding size, and the number of node embedding updates that

lead to the best performance. I start by determining the optimal base learning rate because

this is the parameter to which neural networks are most sensitive. Note that the networks are

trained with Adam optimizer, which adjusts the learning rate for each individual parameter.

These individual learning rates are, however, expressed in terms of the base learning rate which

must be specified manually. As can be seen from Figure 5.1.1, the accuracy of the network on

the binary import prediction task increases with a decreasing base learning rate until it reaches

a plateau at a learning rate of approximately 10−3.

Next, I determine the optimal embedding size. As discussed in Chapter 4 and illustrated by

Figure 4.6.2, the network performs best with embeddings of size 8.
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Figure 5.1.1. Correlation between GGNN accuracy on the binary prediction task (in percentages, vertical
axis) and the base learning rate used (horizontal axis, log scale). All other hyper-parameters are fixed.

Finally, I identify the number of node embedding updates (see Section 2.4) that correlates

with the highest GGNN accuracy. Allamanis et al. (2017) note that the performance of their

networks increases with the number of updates but that after a certain point, the increase

becomes negligible. In my case, as is evident from Figure 5.1.2, the performance stops improving

after just three updates. One update is associated with passing messages from the neighbouring

nodes to the target node as described in Section 2.4. Therefore, when the number of updates

is equal to three, the prediction that a GGNN makes for a certain node on the graph depends

on embeddings of all the nodes that are within the distance of at most three edges from the

target node. It is often the case that any node on a repository graph is within the distance of

three edges from any other node, in which case an additional update would not introduce new

information to the system.
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Figure 5.1.2. Correlation between GGNN accuracy on the binary prediction task (in percentages, vertical
axis) and the number of times node embeddings are updates (horizontal axis). All other hyper-parameters
are fixed.

5.2 Predictive Power of Individual Features

Before comparing the results that the baselines and the GGNNs achieve on the import prediction

task, I discuss the predictive power of individual features defined in Chapter 4. Table 5.2.1

summarizes the accuracy that one can achieve on the import prediction task by selecting an

import candidate that maximizes or minimizes some particular feature. The accuracy is given

for four scenarios which differ in the number of import candidates (classes) the classifier is

presented with.

While the accuracy decreases with the number of classes - as it should - it decreases more

slowly than one might expect it to. The classifier based on the edit distance feature, for instance,

achieves the accuracy of .619 on the binary classification task. One would, therefore, expect it

to have the accuracy of .6194 ≈ .147 when presented with five candidates to choose from.

Nonetheless, the figure is significantly higher (.314), which means that relationships between
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N of
classes

Rand. Edit
dist.

Import
freq.

Shortest
path

Filename
embeds.
distance

Import
embeds.
distance

FFNN
(embeds.
only)

2 .5 .619 .742 .623 .508 .502 .605

5 .2 .314 .518 .312 .251 .244 .283

25 .04 .129 .253 .091 .093 .067 .063

125 .008 .065 .098 .025 .041 .017 .017

Table 5.2.1. Comparison of the predictive power of individual features on the import prediction
task. The value recorded in each cell is the accuracy that a particular baseline (column) achieves
given a certain number of import candidates to choose from (row). The “Rand.” column records
the performance of a hypothetical random classifier. The following five columns correspond to
baselines that select an import candidate by minimizing or maximizing a particular feature. The
final column records the accuracy that Feed-Forward Neural Networks achieve when given con-
catenated import- and filename embeddings of the target file and hypothetical import candidate
as input.

import statements are not independent. Perhaps the difficulty of predicting imports has more

to do with the particular import one is learning to predict than with the fake candidate imports

one must learn to ignore.

Consider the example drawn in Section 4.3 to illustrate the importance of the edit distance

feature. Suppose that a classifier is given a set of import statements only one of which really

appears in the AudioSystem class and that the classifier has to identify the correct import.

If that correct import happens to be the AudioFileReader class, the classifier would have no

problem identifying it based on the edit distance between the two class-names. In this case, the

deciding factor would be that “AudioSystem” is similar to “AudioFileReader”; the number of

fake import statements the classifier is presented with would not play much of a role.

While edit distance is useful, it is not the most reliable of features. For any number of classes,

the highest accuracy is achieved by selecting the import candidate that has been imported most

frequently in the past (see Section 4.1) . This reflects the fact that certain classes and interfaces

are designed to be imported more frequently than others.

The features that seem to be least important are those based on the Euclidean distance

between pairs of embeddings (see Sections 4.4 and 4.5). This underscores the need for having

a separate linear layer to measure embedding similarity, a layer trained jointly with the GNN
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N of
classes

Import
freq.

RF FFNN GNN

2 .742 .775 .778 .835

5 .518 .553 .54 .614

25 .253 .281 .279 .368

125 .098 .108 .083 .133

Table 5.3.1. Summary of the accuracy achieved by different classifiers on the import prediction
task. The value recorded in each cell is the accuracy that a particular classifier (column) achieves
given a certain number of import candidates to choose from (row). The “Import freq.” column
records the performance of a classifier that selects a candidate that has been imported most in
the part. The next three columns summarize the performance of baselines that take all features
into account. The last column records the accuracy achieved by the GNNs. “RF” stands for
“Random Forest”, “FFNN” - for “Feed-Forward Neural Network”.

as described in Section 2.2. The failure of Euclidean distance as a feature does not mean that

embeddings themselves do not encode relevant information: a Feed-Forward Neural Network

trained on pairs of embeddings achieves results that are noticeably better than random (see

Table 5.2.1). Rather, the relationship between embeddings relevant to import prediction and

learned by Feed-Forward Neural Networks must have very little to do with Euclidean distance.

5.3 Baselines vs. GNNs

Table 5.3.1 shows the accuracy that a Random Forest Classifier, a Feed-Forward Neural Network,

and a Graph Neural Network achieve on the import prediction task. The GNN outperforms both

baselines in all scenarios. Because it takes a relatively long time to train a GNN, I was not able to

run the network with optimal parameters enough times to prove that the difference is statistically

significant. Nevertheless, one might expect statistical significance because GNNs outperform the

baselines on the binary prediction task even when hyper-parameters are sub-optimal: see, for

instance, the results recorded in Figure 5.1.2 for different number of embedding updates.

The difference between the baselines and the GNN is most pronounced on 25- and 125-class

classification tasks. So, for instance, the accuracy achieved by the GNN on the 25- classification

task is .368
.281 ≈ 1.3 times the accuracy of the best baseline (RF), whereas for the binary classifi-

cation task, the GNN is just 1.07 times better than FFNN. This is probably because 25- and
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125-class classification is done on relatively large repository graphs which allows the GNN to

take the most out of the graph geometry. Large repositories can also have more local imports

per file: a follow-up experiment could be conducted to determine whether higher mean node

indegree is associated with better GNN performance.
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Future Work and Conclusion

This project consists of three major components: graph neural network implementation, data

pre-processing, and comparison between GNNs and various baselines. Numerous changes could

have been made to the way each of these sub-problems is addressed in the code and this text but

for each sub-problem, there is one particular avenue that would be most important to explore

going forward. In this chapter, I discuss what the three potential problems with the import

prediction project are and offer tentative solutions to each of them.

6.1 GNN Deployment: the Issues of Speed and Memory

Speed is paramount to any code completion system because code completion has to be done

in real-time as the user types new code. For this reason, even though Graph Neural Networks

outperform other classifiers by a large margin, they are unlikely to be deployed by IDEs any

time soon, unless the computation process can be accelerated.

The bottleneck of the current implementation both in terms of speed and in terms of memory

is associated with the need to store information about edges in a fixed-size adjacency matrix.

In the current implementation, all the matrices are padded to be of the same size allowing for

up to 300 nodes per graph, which was originally done to facilitate batch computation. However,

given that the mean repository size in the dataset is 33 source files (3.3.1), this means that half
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of the time, 1− 332

3002
≈ 99% of the entries in a matrix are zeros, and most of the computations

are done on zero vectors. This is not to mention that even without padding, adjacency matrices

tend to be quite sparse: a single file would rarely import all the other files from all the other

packages in a repository. Finally, because the matrix size grows quadratically with the number

of files in a repository, the computation process becomes intractable for repositories that have

more than 300 files.

For these reasons, as mentioned in Section 3.1, supporting sparse matrix computation would

significantly reduce the amount of processing time and memory needed to make a prediction.

6.2 Node Annotations: Additional Features would Help

When a Graph Neural Network computes an embedding for a particular node, it takes into

account the embeddings of all the neighbouring nodes. Sometimes, however, there might only

be a few neighbouring nodes or even none at all, in which case the prediction will mostly be

based on the node annotation constructed before the network was run. This means that node

annotations must be designed to encapsulate as much information as possible.

Currently, node annotations are constructed by concatenating filename- and import embed-

dings into one vector. Import embeddings are in turn constructed by taking the weighted average

of embeddings of all the words found in external import statements (Section 4.5). This approach

is easy to understand and replicate, but it has one potential drawback: when there are many

external imports in a file, computing import embeddings involves averaging over a large set

of words. This is problematic because by averaging over a large set of vectors, one might lose

information. In fact, the average of all known word embeddings is commonly used as an embed-

ding for out-of-vocabulary words because, being like any other embedding in the dataset, such

a vector has little meaning.

An alternative way of constructing import embeddings would be to first annotate each file

with a vector that for each potential external import would indicate whether this import is

present in the file or not. One could then use an autoencoder to reduce the dimensionality of
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these new vectors to the desired size. Files with common import statements would then have

similar embeddings.

One might also try to encode information about identifier names or commonly used syntactic

structures - it is best to include as much of the relevant information about a file as possible

when constructing node annotations.

6.3 New Baseline: Item to Item Collaborative Filtering

While Graph Neural Networks do perform significantly better than the baseline classifiers de-

scribed in Chapter 4, there is one prediction method to which the GNNs have not been compared

yet. This method is referred to as item-to-item collaborative filtering and has been invented by

Amazon.com to make personalized recommendations by showing a customer the products simi-

lar to those that the customer had bought in the past. In the context of the import prediction

task, products correspond to import statements and customers - to Java source files. The idea is

to compute similarities between different import statements and to then rank potential imports

based on their similarity to the imports already present in the file. Without delving into too

much detail, item-to-item collaboration filtering should work significantly faster than a Graph

Neural Network. However, this method would arguably under-perform whenever there are not

enough import statements already present in the file because existing import statements are the

sole source of information on which the predictions can be based. The same is only partially true

for GNNs, which can make predictions based on filename embedding similarity or based on the

import statements in other files in the same package. In any case, this project would definitely

benefit from a direct comparison between the two methods.

6.4 Conclusion

This chapter shows that there is still a long way to go before Graph Neural Networks could

be deployed by IDEs to predict future import statements. Nonetheless, it is not inconceivable

that this might happen in the future because, as I hope I have demonstrated in this project,
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GNNs can successfully reason about Java programs. Their application should not be restricted

to Java or the import prediction task only; one can, for example, imagine a GNN being used as

an encoder in the pipeline generating natural language descriptions of repositories.
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