
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2017 Bard Undergraduate Senior Projects

Spring 2017

Content-Aware Image Resizing Content-Aware Image Resizing

Race Darwin Morel
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2017

 Part of the Graphics and Human Computer Interfaces Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Morel, Race Darwin, "Content-Aware Image Resizing" (2017). Senior Projects Spring 2017. 301.
https://digitalcommons.bard.edu/senproj_s2017/301

This Open Access work is protected by copyright and/
or related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any
way that is permitted by the copyright and related
rights. For other uses you need to obtain permission
from the rights-holder(s) directly, unless additional
rights are indicated by a Creative Commons license in
the record and/or on the work itself. For more
information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2017
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2017?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2017/301?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Content-Aware
Image Resizing

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by

Race D. Morel

Annandale-on-Hudson, New York

May, 2017

Acknowledgements

My sincerest gratitude goes to my advisor Keith O’Hara, who always made time for me

despite taking on a huge number of advisees. I know that advising so many students must

feel like herding cats, but we couldn’t have asked for a better shepherd.

I am forever grateful to my parents for their unconditional love and support, for teaching

me to be a free thinker and a problem solver, but mostly for the coffee maker they sent

me that was instrumental to my completion of this project.

Table of Contents

Abstract 1

1 Introduction 2

 1.1 The Problem . 2

 1.2 Cropping & Scaling . 2

 1.3 Seam Carving Overview . 5

 1.4 Motivation & Evolution of Project Goals . 7

2 Implementation 9

 2.1 Saliency Map . 9

 2.2 Finding Lowest Saliency Seams . 13

 2.3 Removing Seams. 17

 2.4 Seam Insertion. 25

3 Results 27

 3.1 Vertical Seam Carving . 27

 3.2 Horizontal Seam Carving . 38

 3.3 Seam Insertion . 41

 3.4 Failure Cases . 43

4 Analysis 45

 4.1 The “10% Rule” . 45

 4.2 Vertical Seam Carving Analysis . 49

 4.3 Horizontal Seam Carving Analysis . 49

 4.4 Seam Insertion Analysis . 50

 4.5 Failure Case Analysis . 53

 4.6 Conclusion . 55

Bibliography 56

Resources 57

Appendix 59

1

Abstract

The purpose of this project is to implement and explore the use of seam carving —

 a tool used to select and remove “seams” of low-importance pixels from an image in

order to reduce its height or width. I also cover the process of seam insertion, creating

new seams of pixels to increase the image’s size rather than reducing it. Using these

content-aware algorithms, I investigate the process of intelligently resizing an image.

Using edge detection, dynamic programming, and pixel manipulation, I push the limits of

seam carving and attempt to quantify the qualitative concept of salience.

2

1
Introduction

1.1 The Problem

Digital images come in all shapes and sizes, as do the devices they are displayed on. A

classic problem of image manipulation is to resize a still image in order to fit it onto a

screen of a different size or aspect ratio. The simplest ways of resizing an image are

cropping and scaling, each with their own limitations. In this section I will detail the uses

and limitations of these basic methods of image resizing before introducing the

alternative this project is centered around.

1.2 Cropping & Scaling

Cropping an image will cut out a rectangular portion of the image at the desired size and

aspect ratio. This method of image resizing cannot increase an image’s size. It will

always reduce the vertical and/or horizontal dimensions. This means cropping will

always result in the loss of rows of pixels from one or more edges of the image. If you are

reducing an image’s width, cropping the image will invariably cut off the left or right side

of the picture. For images that have important information on opposite sides of the image,

this is obviously not an ideal solution.

3

Fig 1.1: Cropping an image

Scaling can be used to either increase or decrease the image’s size, and is

probably the most common method of image resizing. Scaling an image will change its

size, but is limited by the image’s aspect ratio. The aspect ratio (i.e. the width of the

image vs. the height of the image) must remain constant when scaling an image in order

to avoid stretching the image content. This severely limits the ways that scaling can be

used to resize images. For example, a 4x5” image can be scaled to an 8x10” image (or

vice-versa) without problem, but a 4x5” image cannot be scaled to a 4x10” image without

risk of severe warping.

4

Fig 1.2: Image Scaling

Fig 1.3: Result of scaling without preserving Aspect Ratio

Scaling an image without maintaining the aspect ratio often resulting in objects

appearing either too skinny or too thick. When using scaling to change an image’s size by

small amounts, this may not be noticeable. Therefore it is often perfectly acceptable to

scale an image without locking the width/height ratio. However, an extreme change in the

image’s aspect ratio (see Fig 1.3 above) will result in the image content being visibly

warped.

5
1.3 Seam Carving Overview

Seam carving is a more intelligent method of image resizing. It was originally developed

by Shai Avidan and Ariel Shamir who published a paper about it in 2007 [1]. Since then

it has been implemented in Adobe Photoshop starting with CS4 under the name “Content

Aware Scaling.” The algorithm works by finding the path of least importance across the

image, then removing all the pixels in that path.

The core concept that seam carving revolves around is saliency. Saliency refers to

one member of a group standing out relative to its neighbors. In the case of seam carving,

we are referring to groups of pixels. A high-saliency pixel is one that stands out from its

neighbors, whereas a low-saliency pixel would be close to identical to its neighbors.

Seam carving works by finding low-saliency seams — paths across the image. A seam

can traverse the image either vertically from bottom to top, or horizontally from left to

right. The idea is to find the path across the image with the lowest saliency and then

remove it in order to make the image one pixel shorter or thinner, depending on whether

it is a vertical or horizontal seam. Removing vertical seam from an image will result in

the image’s width being reduced by one pixel, and removing a horizontal seam will

reduce the image’s height.

In theory, removing only the lowest saliency seam or seams will reduce the

image’s size without disrupting the actual content of the image. Since the seams are

comprised of pixels that ideally are quite similar to their neighbors, it should be difficult

to tell that they have been removed. The content of the image should remain mostly

undisturbed, hence this algorithm being labeled as “content-aware.” However, the

6
removal of numerous seams can begin to disrupt the image content, since each

subsequent seam that is removed will naturally tend to have a higher saliency than those

preceding it.

Fig 1.4: Using Seam Carving to reduce an image’s width

7
1.4: Motivation & Evolution of Project Goals

It took me a long time to decide that I wanted to implement this particular project. At first

I spent some time studying cellular automata, thinking I could do something interesting

involving Langton’s Ants or Conway’s Game of Life. As it turns out, the Game of Life is

Turing complete, making it difficult to write an original paper about.

 I realized that the part of the appeal I found in cellular automata was that it was

visually stimulating. I decided that I wanted to create something visual for my senior

project. One of my hobbies involves making “glitch art,” created by manipulating image

files on a computer to break down the image’s coherency and reveal visual artifacts.

Fig 1.5: “Solitude” — Some original glitch art by yours truly

8

After that revelation, I began to think about image manipulation. Initially, I had

the idea to create a project not just about resizing images, but reshaping them —

changing rectangular images to fit irregularly shaped borders, be they ovals, triangles, or

any strange shape in-between.

 In my research into this topic, I was trying to find a way to resize the image

without disrupting the content of the image. This is when I stumbled across the concept

of seam carving. Initially I was planning to use seam carving to reduce the image size to

within the bounds of the irregular border, and then using a form of texture synthesis

called image quilting to fill the rest of the border [2]. However, after some consideration,

I realized that there was a very slim chance that this would result in a cohesive or natural-

looking image. Software gore, while sometimes visually stimulating, probably shouldn’t

be the goal of my project.

 Instead, I chose to focus solely on seam carving, which I was already in the

process of implementing. I noticed that while there exists a good deal of documentation

on the implementation of seam carving, I hadn’t seen any detailed analysis on the cases in

which it fails or how it affects the saliency of the image. I decided to test what specific

quantitative elements, if any, cause the algorithm to destroy image coherency.

9

2
Implementation

2.1 Saliency Map

In order to find low-saliency seams across the image, the saliency (or energy) of each

pixel must be evaluated. The most common way to go about calculating the saliency of a

pixel is through the image gradient — the directional change in color/intensity of an

image. The magnitude of the gradient for each pixel corresponds to differences in color

or intensity between that pixel and its neighbors. A high gradient magnitude is typically

associated with the edges of objects in the image — probably not something we want to

remove if we wish the image to remain cohesive. Really it’s the low magnitude pixels

that are of interest to us; the pixels that blend in with their neighbors are less noticeable

and therefore much easier to remove.

 Once the saliency of each pixel has been determined, a saliency map of the image

is created. This map, usually a grayscale representation of the original image, will

brighten the high-saliency pixels and darken the low-saliency pixels. Hopefully this

results in the focus points of the image appearing as bright white objects, while the

background is mostly black.

For this project I created a saliency map using a sobel filter [3]. The sobel filter

(or “sobel operator”) is an edge detection algorithm that calculates the approximate image

gradient of each pixel. It does this by convolving each pixel with a pair of 3x3 kernels

10
designed to calculate the approximate difference in intensity between the pixel in

question and its neighbors.

One kernel will approximate the horizontal derivative, while the other calculates

the vertical derivative.

 X Y

Fig 2.1: X and Y kernels used in Sobel Filters

When applied to every pixel in the image, these kernels will produce two gradient values

for each pixel — Gx and Gy. The final gradient value of each pixel of the new image is

then:

G = √(Gx2 + Gy2)

 The result of this filter will be a grayscale version of the original image with all

the edges and more salient content highlighted in white, while the lower energy content is

darker.

-1

0

+1

-2

0

+2

-1

0

+1

+1

+2

+1

0

0

0

-1

-2

-1

11

Fig 2.2: Black & white image put through a Sobel Filter

 It should be noted that this is a grayscale image. In order to create a color saliency

map, I took the same sobel filter and applied it to each color value (RGB) separately

before adding them together.

//	For	this	pixel	in	the	new	image,	set	the	RGB	values	
//	based	on	the	sums	from	the	kernel	
magnituder	=	Math.sqrt((sumxr	*	sumxr)	+	(sumyr	*	sumyr));	
magintr	=	(int)Math.round(magnituder);	
magnitudeg	=	Math.sqrt((sumxg	*	sumxg)	+	(sumyg	*	sumyg));	
magintg	=	(int)Math.round(magnitudeg);	
magnitudeb	=	Math.sqrt((sumxb	*	sumxb)	+	(sumyb	*	sumyb));	
magintb	=	(int)Math.round(magnitudeb);	
edgeImg.pixels[y*img.width	+	x]	=	color(magintr,	magintg,	
magintb);	

Fig 2.3: Calculating gradient magnitudes for red, green, and blue values

12

Fig 2.4: Color image put through the Color Sobel Filter

 Now that the sobel filter has been modified to work on color images, it can be

used as a saliency map to find the lowest energy seams across the image. However,

because the act of carving a seam changes the image, this saliency map can only be used

to carve a single seam. To reduce the image size by multiple pixels, a new saliency map

must be computed for each seam that is to be carved from the image.

13
2.2 Finding Lowest Saliency Seams

Once the saliency map is complete, it’s time to find the seams. A seam is a vertical or

horizontal path, one pixel in width, which connects one side of the image to the other

(either top to bottom or left to right). This path is computed to minimize the total energy

of the pixels that it crosses. The intention is then to remove all the pixels in the path from

the image, resulting in the image being either one pixel shorter or thinner. Because this

removes the lowest-energy pixels possible, this process hopefully does not disrupt the

focal points of the image.

 The computation of seams is not as complex as it may seem, and is achieved

using dynamic programming. When attempting to compute a vertical seam, the algorithm

works something like this:

14

 Each square in the Fig 2.5 (below) represents a pixel with its energy value

displayed as the red number in the top left corner. The black number represents the sum

of each pixel’s energy added to the sum of the energy of all the pixels in the seam above

it. For the top row of pixels, of course, this sum will be equal to the energy of that pixel.

For the row of pixels below that, however, we must first determine which “parent” pixel

we are going to use. The pixels in a seam must all be touching, so each pixel could be

part of a seam with the pixel above and to the left, directly above, or above and to the

right of it. Thus, for each pixel in the second row, we examine the three pixels above it

and find the one that has the least sum. (For pixels on the edge of the image, we only

examine two potential parent pixels.)

Fig 2.5: First step of seam-finding algorithm

15
 For example, the middle pixel in the second row has energy value 5. It checks the

sums of the three pixels above it (4,3, and 5) and chooses the pixel with the least sum as

its parent — namely the pixel with the sum of 3. Because it has energy 5 and the seam’s

current sum is 3, it adds itself to that seam and the seam’s sum becomes 8. This process is

then repeated for the third row, and so on until the bottom of the image is reached.

Fig 2.6: Second step of seam-finding algorithm

 Once all the seams have been computed, we can easily find the lowest energy

seams by looking at the sums of the pixels in the bottom row. In this case we have a tie

— there are two pixels in the bottom row that have the sum of 5.

16

Fig 2.5: Final step of seam-finding algorithm

We can trace the seam upwards by looking at the “parent” of each pixel to

highlight these two seams. Since both of these seams are tied for lowest energy, it doesn’t

really matter which one we remove. Neither seam contains high-saliency content, and

removing either will make the image one pixel thinner.

In order to find horizontal seams whose removal will make the image shorter, one

only has to rotate this algorithm 90 degrees.

This process can be repeated until the image has reached the desired aspect ratio.

However, since the seams that are removed first are the lowest energy paths across the

image, the subsequent seams that are removed will tend to be of a higher total energy.

Thus, removing too many seams will inevitably result in the removal of high saliency

pixels and the noticeable distortion of prominent objects in the image.

17
2.3: Removing Seams

The actual removal of the seams is dependent on the software used to edit the images. For

this project, I implemented seam carving using Processing 2.2.1. Processing technically

has its own programming language, but it is heavily based on Java and uses the same

syntax. Processing handles images by using a datatype called a PImage. This datatype

has attributes width and height, as well as an array called pixels[] which

(unsurprisingly) contains all the pixels in the image. This is not a two-dimensional array,

so pixels cannot be directly referenced by their x and y values alone. The pixels are

placed in the array starting at the top left corner of the image as pixels[0] and

continuing from left to right.

Fig 2.6: Graph of pixels in a 10x10 image by index number

18

However, since the PImage must have a value for width and height, a pixel’s x

and y coordinates can be easily found with the following formulae:

 x = i - (y * PImage.width);

 y = i/PImage.width;

where i is the index of the pixel within pixels[].

The index of the pixel can also easily be found using x and y values.

 i = y * PImage.width + x;

Removing seams from a PImage must be done differently depending on whether

the seam is a horizontal or vertical one. In both cases, a new PImage is created and pixels

from the original image are copied into it, with the exception of the pixels in the seam. A

vertical seam is simpler to remove, so let’s start with that one.

To remove a vertical seam from an image, we create a new PImage with the same

height as the original, but one less pixel in width. Then all one must do to remove the

seam is to iterate through the original array of pixels, copying the ones that are not part of

the seam into the pixels[] array of the new image.

19
PImage	post	=	createImage(img.width	-	1	,	img.height,	RGB);	

//final	image	
post.loadPixels();	
int	j	=	0;	
boolean	inSeam	=	false;	
for	(int	i	=	0;	i	<	img.pixels.length;	i++){	
		for	(int	x	=	0;	x	<	seamIndex.length;	x++){	
				if	(i	==	seamIndex[x]){	//	check	to	see	if	pixel	is	in	the	

seam	
							inSeam	=	true;	
				}	
		}	
		if	(inSeam	==	false)	{	//	if	pixel	is	not	in	seam,	copy	it	into	

new	image	
post.pixels[j]	=	original.pixels[i];	
j++;	

		}	
		else	{	inSeam	=	false;	}	//	if	pixel	is	in	seam,	skip	it	and	

reset	inSeam	variable	
			}	
post.updatePixels();	
image(post,0,0);	
return(post);			

Fig 2.7: Removing a vertical seam from an image in Processing

20

Fig 2.8: Graph of pixels before and after removing seam (in red)

As you can see from Fig 2.8, the result of removing a vertical seam from a 10x10

image is a 9x10 image in which all pixels except those in the seam retain their relative

position. Notice that all the pixels to the right of the seam in each row seem to have

moved one square to the left to fill the void that the seam previously occupied. Thus,

pixel 3, which was at position (3,0) in the original image, is now at position (2,0) in the

resulting image. It has also moved in the pixel array from pixels[3] to pixels[2].

Similarly, pixel 13, which was at position (3,1) is now at (2,1) and has moved

from pixels[13] to pixels[11]. It has moved two spaces in the pixel array

because two pixels have been removed before it in the array — pixel 2 and pixel 12. Note

this discrepancy: graphically, the pixel has only moved one space, but in the array of

pixels it has moved more.

21
Let’s see what happens when we try to apply the same algorithm to a horizontal seam:

Fig 2.9: Results of using vertical seam removal algorithm for horizontal seam

As you can see, the image is indeed one pixel shorter. However, a large number of

pixels that were originally on the left side of the image have wrapped around and wound

up on the right side of the image (highlighted in blue) in order to fill the space left over in

that row once the seam has been removed. And since those pixels wrap around, they

leave space on the left side to be filled. So some pixels from the right side will be shifted

to the left. This will obviously be highly disruptive to the content of the image.

22

Fig 2.10: The disastrous results of removing a horizontal seam incorrectly

Obviously this doesn’t meet our standards for leaving the image content

undisturbed. So what should the removal of the horizontal seam look like?

23

Fig 2.11: Horizontal seam carving done right

 This is how we want seam removal to work. In this version of horizontal seam

carving, we can see that every pixel that is below the seam has been moved up one space.

In order to perform this operation we must iterate through the vertical columns of the

image until we hit the seam, rather than iterating through the horizontal rows of the image

as we did when removing the vertical seam. (This is more difficult to do in Processing

because the array of pixels is one dimensional, but since we know the dimensions of the

image, we can calculate a pixel’s x and y coordinates to work around this.) Before hitting

the seam, we are simply copying each pixel in the column as we iterate down it into the

new image. When we hit a pixel in the seam we skip it, and continue iterating through the

column. But now that we’ve passed the seam, we copy every pixel we find into the space

directly above its original location. Thus, the resulting image will be one pixel shorter

than the original image.

24
PImage	post	=	createImage(img.width,	img.height	-1,	RGB);	

//finalimage	
post.loadPixels();	
			for	(int	x	=	0;	x	<	original.width;	x++){	//for	each	x	
					boolean	carved	=	false;	
					for	(int	y	=	0;	y	<	original.height-1;	y++){	//iterate	

through	the	column	
							if	(carved	==	false){	
									for	(int	i	=	0;	i	<	seamIndex.length;	i++){	
											if	(y*img.width	+	x	==	seamIndex[i]){	//	check	to	see	

if	pixel	is	in	seam	
													carved	=	true;	
													int	y2	=	y;	
													while	(y2	<	post.height){	//	copy	pixels	into	space	

above	original	location	
post.pixels[y2*original.width	+	x]	=	

original.pixels[(y2+1)*img.width	+	x];	
y2++;	

													}	
											}	
											else{	//	if	above	seam,	just	copy	pixel	normally	

post.pixels[y*original.width	+	x]	=	
original.pixels[y*original.width	+	x];	

											}					
									}	
							}	
					}			
			}	
				
post.updatePixels();	
image(post,0,0);	
return(post);	

Fig 2.12: Removing a horizontal seam from an image in Processing

25
2.4 Seam Insertion

The process of seam insertion is nearly identical to that of seam carving. It follows all the

same steps up until the actual removal of the seam. The image is put through a sobel filter

in order to create a saliency map, and a seam of lowest saliency is found using the

dynamic programming algorithm detailed in Section 2.2. However, instead of removing

this seam, a new one is created adjacent to it. The pixels in this new seam are created by

finding the average color of the pixels neighboring them. For a vertical seam, the average

is taken from the pixels directly to the left and right of the seam in each row. Once the

average has been found for that row, a pixel is inserted directly adjacent to the seam,

pushing the rest of the row over. This happens for each row in the image until a new

vertical seam of pixels has been added and the image’s width has increased by one pixel.

The horizontal version of this is similar, the average being found from the pixels directly

above and below the seam.

Fig 2.13: Inserting Horizontal Seams to increase image height

26

 The seam insertion process for both vertical and horizontal seam insertion is

nearly identical to the seam removal process for horizontal seams outlined in Section 2.3.

We still iterate through the pixels array (either vertically or horizontally), but instead of

pulling the pixels we encounter after the seam over the hole left from the seam’s removal,

instead we push them away from the seam to create a gap that is filled with the new

pixels we generate. For details, see the addvert() and addhoriz() methods within

the full code in the appendix.

27

3
Results

3.1 Vertical Seam Carving

For the results section, I will be including examples of seam carving and seam insertion,

as well as some tables/graphs that show the relationship between the image’s saliency

and the number of seams carved. Saliency does not have a specific unit of measurement,

as there are many ways to measure it. For our purposes, the saliency value of pixels are

calculated by taking the sum of their red, green, and blue values after having been put

through the color sobel filter detailed in Section 2.1.

 I will be examining the relationship between the number of seams carved and the

total saliency of the pixels making up the lowest-saliency seam, as well as the

relationship between the number of seams carved and the total saliency of all pixels in the

image divided by the number of pixels in the image (i.e. the average saliency of each

pixel). My goal is to better understand the effect that carving out a large number of seams

has on the image’s salient content.

28

Fig 3.1.1: Original Image “Tower.jpg” — Dimensions: 600x407 pixels

Fig 3.1.2: Color Saliency Map

29

Fig 3.1.3: Seams Carved: 50, vSeam Saliency: 16752, Saliency/Pixel: 159

Fig 3.1.4: Seams Carved: 150, vSeam Saliency: 22851, Saliency/Pixel: 180

30

Fig 3.1.5: Seams Carved: 250, vSeam Saliency: 27172, Saliency/Pixel: 210

31
Seams Carved vSeam Saliency

0 11919

50 16752

100 21251

150 22851

200 24719

250 27172

300 30049

Fig 3.1.6: Total saliency of pixels in vertical seam vs. Number of seams carved for

“Tower.jpg”

32
vSeams Carved Saliency/Pixel

0 149

50 159

100 169

150 180

200 194

250 210

300 231

350 258

400 295

Fig 3.1.7: Saliency per pixel vs. Number of seams carved for “Tower.jpg”

33

Fig 3.2.1: Original image “Giraffe.jpg” — Dimensions: 860x460 pixels

Fig 3.2.1: Color Saliency Map

34

Fig 3.2.3: Seams Carved: 150, vSeam Saliency: 36882, Saliency/Pixel: 204

Fig 3.2.4: Seams Carved: 300, vSeam Saliency: 41106, Saliency/Pixel: 228

35

Fig 3.2.5: Seams Carved: 450, vSeam Saliency: 46946, Saliency/Pixel: 263

Seams Carved vSeam Saliency

0 25145

50 32461

100 33978

150 36882

200 38373

250 39341

300 41106

350 43188

400 45111

450 46946

36

Fig 3.2.6: Total saliency of pixels in vertical seam vs. Number of seams carved for

“Giraffe.jpg”

37
vSeams Carved Saliency/Pixel

0 186

50 192

100 198

150 204

200 212

250 220

300 228

350 238

400 250

450 263

Fig 3.2.7: Saliency per pixel vs. Number of seams carved for “Giraffe.jpg”

38
3.2 Horizontal Seam Carving

Fig 3.3.1: Original Image “Tower.jpg” — Dimensions: 600x407 pixels

Fig 3.3.2: Seams Carved: 50, hSeam Saliency: 52145, Saliency/Pixel: 150

39

Fig 3.3.3: Seams Carved: 100, hSeam Saliency: 54242, Saliency/Pixel: 160

Fig 3.3.4: Seams Carved: 150, hSeam Saliency: 53794, Saliency/Pixel: 165

40

Fig 3.3.5: Total saliency of pixels in horizontal seam vs. Number of seams carved for

“Tower.jpg”

Fig 3.3.6: Saliency per pixel vs. Number of seams carved for “Tower.jpg”

41
3.3 Seam Insertion

Fig 3.4.1: Original Image to be expanded — Dimensions: 600x407 pixels

Fig 3.4.2: Seams inserted — New dimensions: 630x430 pixels

42

Fig 3.4.1: Original Image to be expanded — Dimensions: 425x299 pixels

Fig 3.4.2: Seams inserted — New dimensions: 450x330 pixels

43
3.4 Failure Cases

Fig 3.5.1: Original Image to be carved — Dimensions: 220x147 pixels

Fig 3.5.2: Carving failure — New dimensions: 150x147 pixels

44

Fig 3.6.1: Original Image to be carved — Dimensions: 880x704 pixels

Fig 3.6.2: Carving failure — New dimensions: 600x704 pixels

45

4
Analysis

4.1 The “10% Rule”

While measuring the saliency per pixel in the vertical seam carving images, I noticed a

trend. The first 150 or so seams that were carved seemed to increase the average pixel

saliency by a regular amount. In Fig 3.1.7, we can see that from 0 seams carved to 150

seams carved, every 50 seams carved reduces the average pixel saliency by about 10.

Once 200 seams had been carved, this number jumped to 15, and began to steadily

increase. Carving seams 250 to 300 resulted in an increase of 21 in the average pixel

saliency, and carving seams 400 to 450 increased the average saliency by a whopping 37.

 In Fig 3.2.7, we see a similar trend. From 0 to 150 seams carved, the average

pixel saliency increased by 6 for every 50 seams carved. From 150 to 300 seams carved

that average increase rose to 8 per 50 seams carved. After 300 seams carved, this rate of

increase only became greater.

 So what’s so special about the 150-seam mark? Time for some math…

Fig 3.1.1 started with dimensions 600x407 pixels and an average pixel saliency of

149. This would make the total saliency of the image 36,385,800. After 150 seams

carved, the image is now 450x407 pixels with an average pixel saliency of 180. This

makes the total saliency 32,967,000, which is roughly 90.6% of the original saliency.

Fig 3.2.1 started with dimensions 860x460 pixels and an average pixel saliency of

186. The total saliency of Fig 3.2.1 would then be 73,581,600. After carving 150 seams,

46
the image is now 710x460 pixels with an average pixel saliency of 204. The total saliency

is then 66,626,400, or roughly 90.4% of the original saliency.

It seems as though removing a seam from the image will increase the average

pixel saliency by about the same amount for all seams removed before 10% of the

image’s original saliency has been carved. After that, removing seams will begin to

increase the average saliency by more and more for each seam removed.

But don’t take my word for it. Let’s look at some data…

This time, let’s use a much wider image, so that it will take the removal of more

than 150 seams to reduce the image to 90% original saliency.

Fig 4.1: Original Image “Landscape.jpg” — Dimensions: 1280x404 pixels

47
vSeams Carved Saliency/Pixel

0 132

75 138

150 144

225 150

300 155

375 164

450 173

525 184

600 196

675 210

750 228

Fig 4.2: Saliency per pixel vs. Number of seams carved for “Landscape.jpg”

 For this image, the original size is 1280x404 pixels with an average pixel saliency

of 132, making the total saliency 68,259,840. By 300 seams removed, the size is 980x404

pixels with an average pixel saliency of 155. The total saliency is then 61,367,600, or

89.9% of the original saliency.

 So let’s find out if our hypothesis holds — that after 10% of the original saliency

has been removed, the rate at which removing seams increases the average pixel saliency

begins to grow.

48
 From 0 seams carved to 225 seams carved, every 75 seams removed increases the

average pixel saliency by 6. From 255 to 300, it only increases the average by 5, but

that’s still not an increase. From 300 to 525 seams removed (after 10% of the original

saliency is gone) the average saliency goes up to an increase of 9 per 75 seams. Then it

grows to 12 per 75 seams, then 14, then 18…

 We can see that the increase in average pixel saliency growth per seam removed

isn’t tied to the 150 seam mark, but rather to the removal of 10% of the original saliency.

 Whatever is happening at the 10% mark must be a characteristic of these images,

not of seam carving itself. Seam carving can take any rectangular image as an input,

including images that have previously been carved. Since this is the case, one could

therefore take an image that has already had 10% of the original saliency carved out of it

and define that as an original image. Seam carving can’t tell whether the image is original

or not.

 This “10% rule” therefore cannot possibly apply to all images, and must have

something to do with the image content. Whether this “10% rule” is a figment of my

imagination or there is some explanation involving the distribution of saliency in

landscape images, I don’t know. Perhaps someone else will write a senior project

involving saliency and solve this mystery for me.

49
4.2 Vertical Seam Carving Analysis

When examining the saliency of seams that are being carved, it became apparent that the

more seams that had been carved before the seam in question, the higher the saliency of

that seam was likely to be. This does not, however, mean that every seam will have a

higher saliency than the one carved before it. Despite the saliency of the seam having an

upward trend as more of them are carved, it appears quite common for seams to drop in

saliency.

 When a seam is removed, pixels on opposite sides of the seam that were

previously not in contact with each other may now touch. This opens up new pathways

for the seam-finding algorithm described in Section 2.2, and can potentially lead to the

discovery of new low-saliency seams. This could also be the result of the saliency map

changing. Since the saliency map must be recalculated after every seam is carved, it is

certainly possible that areas of the map that previously had high saliency could have

reduced saliency as the image around them changes.

4.3 Horizontal Seam Carving Analysis

Carving the horizontal seams showed a much less consistent trend in seam saliency vs.

seams carved. While there was still a definite upward trend, the value of the seam’s total

saliency tended to jump around quite a bit more than the vertical seam. This is probably

due to the fact that it is much harder to draw a horizontal path across the image that

doesn’t intersect with the content of the image. Vertical seams can simply go between

50
objects, but horizontal seams have to try to go above or below them. When you have a

tall object like the tower in the example used, it is quite difficult to carve horizontal

seams without going through the tower. This also means that horizontal seam carving can

tend to be less “clean” than vertical seam carving as it is more likely to disrupt salient

content.

4.4 Seam Insertion Analysis

While the idea of using the seam-finding algorithm to insert seams is quite promising, in

practice it has issues. When inserting a seam, the colors of the pixels inserted are chosen

by finding the average of their neighbor’s colors. This is to make the new pixels blend

into the image well. However, they seem to blend too well for their own good. The fact

that these pixels are very similar to their neighbors means they will naturally have very

low saliency. Thus, after a seam is inserted, the next seam that is chosen is very likely to

be the same as the first. The lowest-saliency seam is not removed — its saliency is

lowered even further by the introduction of the new seam of pixels that strongly

resembles it.

 When inserting multiple seams, this can result in seams of the image being

repeated over and over. If this seam only passes through a clear blue sky it may not be

noticeable, but if there is salient content involved it can create a disruption in the image.

Take for example Fig 3.4.2 from Section 3.3…

51

Fig 3.4.2: Seams inserted — New dimensions: 630x430 pixels

Fig 4.3: Clouds being disrupted by inserted horizontal seams

52

Fig 4.4: Grass disturbed by inserted vertical seams

While in some cases these disruptions in image coherency are not noticeable, for

many images this is a major distraction. This problem makes seam insertion less desirable

than other texture synthesis methods.

I would like to see someone take an approach on this that would prevent the

seam-finding algorithm from selecting the same seam over and over again, perhaps by

artificially increasing the saliency of that seam after insertion. The seam insertion idea is

sound if the seams are not bunched together.

53
4.5 Failure Case Analysis

Fig 3.5.2: Carving failure — New dimensions: 150x147 pixels

In this case, the algorithm fails to realize that the giant rubber duck is actually the focus

of the image. Because the majority of the duck is made up of one uniform color, the

saliency map gives that whole area a low saliency value, allowing seams to be carved

through the poor, defenseless duck.

54

Fig 3.6.2: Carving failure — New dimensions: 600x704 pixels

This is just a case of trying to condense an image further than it should go. If you really

wanted to reduce the width of this image this much, you should probably just crop out the

man’s feet. But because seam carving is trying to preserve them, it ends up squishing his

body/limbs and messing with his proportions. I would stress, however, that unlike the

previous failure case, this image is relatively clean. Yes, his proportions are a bit off, but

for a “failure case” it looks pretty god.

55
4.6 Conclusion

On the whole I am highly impressed with seam carving. If I had more time to work on

this project, I would be trying to improve the runtime of my seam carving

implementation. At present it can take quite a while to work on a larger images (1000

pixels or more pixels per seam). I am certain that the version I wrote can be improved

upon and optimized to streamline the algorithm’s efficiency.

 I would also have liked to implement a version of seam insertion that doesn’t

choose the same seam repeatedly. It may be possible to restructure the code so that the

saliency map for the next seam is actually generated as a part of each seam insertion. This

would mean that I would be able to artificially increase the saliency of both the seam

selected for that iteration of insertion and the seam it inserts, forcing the seam-finding

algorithm to find a new place to insert pixels. This would theoretically make seam

insertion far less disruptive to the image.

As for the actual results, seam carving works quite consistently, though it is

definitely a tool for a very specific job. For some images it can seem like nothing more

than a glorified cropping tool, but it still gets the job done. Where this algorithm really

shines is in images with salient content on both sides of the image. Those images are

quite difficult to resize using traditional methods, but seam carving will almost always

give you a clean result. Sure, there are some cases in which it fails to meet the goal of

leaving salient content undisturbed, but I had to go through countless images that were

carved properly in order to find just a few that weren’t. For most images this tool will spit

out a beautiful result that is, for lack of a better word, seamless.

56

Bibliography

 [1] Shai Avidan and Ariel Shamir. 2007. Seam carving for content-aware image

resizing. ACM Trans. Graph. 26, 3, Article 10 (July 2007).

[2] Alexei A. Efros and William T. Freeman. 2001. Image Quilting for Texture

Synthesis and Transfer. Proceedings of the 28th annual conference on computer graphics

and interactive techniques. Pages 341 - 346 (August 2001).

[3] Irwin Sobel. 2014. History and Definition of the so-called "Sobel Operator", more

appropriately named the Sobel-Feldman Operator. (2014).

https://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient

_Operator

57

Resources

If a source is not listed for a figure, then was either derived from a previous figure that

does have a source, or was created by the author of this paper.

Fig 1.1: http://www.jqueryscript.net/images/jQuery-Plugin-for-Image-Cropping-

Functionality-imgAreaSelect.jpg

Fig 1.2: https://www.wildgratitude.com/wp-content/uploads/2015/07/ladybug-spirit-

animal.jpg

Fig 1.3:

http://www.acfe.com/uploadedImages/ACFE_Website/Content/images/membership-

certification/graduate-member.jpg

Fig 1.4: https://en.wikipedia.org/wiki/Seam_carving

Fig 2.2: http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

Fig 2.5 - 2.7: https://en.wikipedia.org/wiki/Seam_carving

Fig 2.13: http://www.costafarms.com/CostaFarms/Costa-Farms-Cactus-Notocactus-

Leninghausii.jpg?height=257&width=256&scale=both&crop=auto

Fig 3.2:

https://www.sciencenews.org/sites/default/files/main/blogposts/wt_giraffeneck_free.jpg

Fig 3.4: https://www.allaboutbirds.org/guide/PHOTO/LARGE/canada_goose_3.jpg

58
Fig 3.5:

https://upload.wikimedia.org/wikipedia/commons/thumb/1/14/Rubber_Duck_%2883748

02487%29.jpg/220px-Rubber_Duck_%288374802487%29.jpg

Fig 3.6: http://static.boredpanda.com/blog/wp-content/uploads/2016/06/1970-stock-

photos-robert-armstrong-14-575ea42b5e336__880.jpg

Fig 4.2: https://www.vancouvertrails.com/images/hikes/panorama-ridge.jpg

59

Appendix

Full Code:

//	Seam	Carving
//	as	implemented	by	Race	D.	Morel	
		
double[][]	kernelx	=	{{	-1,	+0,	+1},	
																						{	-2,	+0,	+2},	
																						{	-1,	+0,	+1}};	
																				
double[][]	kernely	=	{{	+1,	+2,	+1},	
																						{	+0,	+0,	+0},	
																						{	-1,	-2,	-1}};	
		
PImage	img;	
int	targetwidth	=	600;	//set	target	dimensions	
int	targetheight	=	407;	
		
void	setup(){	
		img	=	loadImage("tower.jpg");	
		size(targetwidth,	targetheight);	
		img.loadPixels();	
		carve(img);			
}	
		
void	carve(PImage	img){	
		
		while	(targetwidth	<	img.width){	

img	=	vertseam(img,	sobel(img));	
		}	
		
		while	(targetheight	<	img.height){	

img	=	horizseam(img,	sobel(img));	
		}	
		while	(targetwidth	>	img.width){	

img	=	addvert(img,	sobel(img));	

60
		}	
		while	(targetheight	>	img.height){	

img	=	addhoriz(img,	sobel(img));	
		}	
		
		img.save("carved.jpg");	
		System.out.println("carved");	
}	
		
PImage	vertseam(PImage	original,	PImage	filtered){	
		img	=	filtered;	//	image	that	has	been	put	through	sobel	filter	
		img.loadPixels();	
		
		VNode[]	nodeArray	=	new	VNode[img.pixels.length];	

//	create	array	of	Nodes	
			for	(int	i	=	0;	i<img.pixels.length;	i++){//	for	each	pixel,	
	 	 	 	 	 	 	 create	corresponding	Node	
					int	ypos	=	i/img.width;	//	calculating	x	and	y	coordinates	

based	on	position	in	array	
					int	xpos	=	i	-	(ypos	*	img.width);	

nodeArray[i]	=	new	VNode	(xpos,	ypos,	nodeArray,	img,	i);	
nodeArray[i].setY();	
nodeArray[i].setX();	

			}	
			for	(int	i	=	0;	i<nodeArray.length;	i++){	

nodeArray[i].setParent();//	set	parent	for	each	node	
			}	
			int[]	bottomRow	=	new	int[img.width];//	array	containing	

positions	of	bottom	nodes	in	nodeArray	
			int	num	=	0;	
			for	(int	i	=	0;	i<nodeArray.length;	i++){	
					if	(nodeArray[i].getY()	==	img.height	-	1){	

bottomRow[num]	=	i;num++;	
					}	
			}	
			int	root	=	bottomRow[0];	//	root	=	index	of	bottom	node	in	the	

lowest	energy	seam	
			double	lowest	=	nodeArray[root].getSum();	
			for	(int	i	=	1;	i	<	bottomRow.length;	i++){	
					double	summ	=	nodeArray[bottomRow[i]].getSum();	
					if	(summ	<	lowest){	

lowest	=	summ;	
root	=	bottomRow[i];	

					}	
			}	
			VNode[]	vertSeam	=	new	VNode[img.height];	//	contains	all	

61
nodes	in	lowest	energy	seam	

			int[]	seamIndex	=	new	int[vertSeam.length];//	array	containing	
indexes	of	all	pixels	in	seam	

			VNode	pixel	=	nodeArray[root];	
			for	(int	i	=	0;	i<vertSeam.length;	i++){	

vertSeam[i]	=	pixel;	
seamIndex[i]	=	pixel.getIndex();	
pixel	=	pixel.getparent();	

			}	
				
			img.updatePixels();	
				
			PImage	post	=	createImage(img.width	-	1	,	img.height,RGB);		

//final	image	
			post.loadPixels();	
			int	j	=	0;	
			boolean	inSeam	=	false;	
			for	(int	i	=	0;	i	<	img.pixels.length;	i++){	
					for	(int	x	=	0;	x	<	seamIndex.length;	x++){	
							if	(i	==	seamIndex[x]){	//	check	to	see	if	pixel	is	in	the	

seam	
inSeam	=	true;	

							}	
					}	
					if	(inSeam	==	false)	{	//	if	pixel	is	not	in	seam,	copy	it	

into	new	image	
post.pixels[j]	=	original.pixels[i];	
j++;	

					}	
					else	{	inSeam	=	false;	}	//	if	pixel	is	in	seam,	skip	it	and	

reset	inSeam	variable	
			}	
			post.updatePixels();	
			image(post,0,0);	
			return(post);			
}	
		
PImage	horizseam(PImage	original,	PImage	filtered){	
		img	=	filtered;	//	image	that	has	been	put	through	sobel	filter	
		img.loadPixels();	
		HNode[]	nodeArray	=	new	HNode[img.pixels.length];//	create	

array	of	Nodes	
		for	(int	i	=	0;	i<img.pixels.length;	i++){//	for	each	pixel,	

create	corresponding	Node	
				int	ypos	=	i/img.width;	//	calculating	x	and	y	coordinates	

based	on	position	in	array	

62
			int	xpos	=	i	-	(ypos	*	img.width);	
			nodeArray[i]	=	new	HNode	(xpos,	ypos,	nodeArray,	img,	i);	
			nodeArray[i].setY();	
			nodeArray[i].setX();	
		}	
		for	(int	i	=	0;	i<nodeArray.length;	i++){	
			nodeArray[i].setParent();//	set	parent	for	each	node	
		}	
		int[]	leftSide	=	new	int[img.height];//	array	containing	

positions	of	leftmost	nodes	in	nodeArray	
		int	num	=	0;	
		for	(int	i	=	0;	i<nodeArray.length;	i++){	
				if	(nodeArray[i].getX()	==	0){	

leftSide[num]	=	i;	
num++;	

				}	
		}	
		int	root	=	leftSide[0];	//	root	=	index	of	leftmost	node	in	the	

lowest	energy	seam	
		double	lowest	=	nodeArray[root].getSum();	
		for	(int	i	=	1;	i	<	leftSide.length;	i++){	
				double	summ	=	nodeArray[leftSide[i]].getSum();	
				if	(summ	<	lowest){	

lowest	=	summ;	
root	=	leftSide[i];	

				}	
		}	
		HNode[]	horizSeam	=	new	HNode[img.width];	//	contains	all	nodes	

in	lowest	energy	seam	
		int[]	seamIndex	=	new	int[horizSeam.length];//	array	containing	

indexes	of	all	pixels	in	seam	
		HNode	pixel	=	nodeArray[root];	
		for	(int	i	=	0;	i<horizSeam.length;	i++){	
			horizSeam[i]	=	pixel;	
			seamIndex[i]	=	pixel.getIndex();	
			pixel	=	pixel.getparent();	
		}			
		img.updatePixels();	
				
		PImage	post	=	createImage(img.width,	img.height	-1,	RGB);	

//final	image	
		post.loadPixels();	
		for	(int	x	=	0;	x	<	original.width;	x++){	//for	each	x	
			boolean	carved	=	false;	
			for	(int	y	=	0;	y	<	original.height-1;	y++){	//iterate	through	

the	column	

63
						if	(carved	==	false){	
									for	(int	i	=	0;	i	<	seamIndex.length;	i++){	
												if	(y*img.width	+	x	==	seamIndex[i]){	//	check	to	see	

if	pixel	is	in	seam	
												 carved	=	true;	
												 int	y2	=	y;	
												 while	(y2	<	post.height){	//	copy	pixels	into	

space	above	original	location	
post.pixels[y2*original.width	+	x]	=	
original.pixels[(y2+1)*img.width	+	x];	
y2++;	

												 }	
								 }	
								 else{	//	if	above	seam,	just	copy	pixel	normally	

post.pixels[y*original.width	+	x]	=	
original.pixels[y*original.width	+	x];	

								 }					
								}	
					}	
			}			
		}	
				
		post.updatePixels();	
		image(post,0,0);	
		return(post);	
}	
		
PImage	addvert(PImage	original,	PImage	filtered){	
		img	=	filtered;	//	image	that	has	been	put	through	sobel	filter	
		img.loadPixels();	
		
		VNode[]	nodeArray	=	new	VNode[img.pixels.length];//	create	

array	of	Nodes	
		for	(int	i	=	0;	i<img.pixels.length;	i++){//	for	each	pixel,	

create	corresponding	Node	
			int	ypos	=	i/img.width;	//	calculating	x	and	y	coordinates	

based	on	position	in	array	
			int	xpos	=	i	-	(ypos	*	img.width);	
			nodeArray[i]	=	new	VNode	(xpos,	ypos,	nodeArray,	img,	i);	
			nodeArray[i].setY();	
			nodeArray[i].setX();	
		}	
		for	(int	i	=	0;	i<nodeArray.length;	i++){	
			nodeArray[i].setParent();//	set	parent	for	each	node	
		}	
	

64
		int[]	bottomRow	=	new	int[img.width];//	array	containing	

positions	of	bottom	nodes	in	nodeArray	
		int	num	=	0;	
		for	(int	i	=	0;	i<nodeArray.length;	i++){	
				if	(nodeArray[i].getY()	==	img.height	-	1){	

bottomRow[num]	=	i;	
num++;	

			}	
		}	
		int	root	=	bottomRow[0];	//	root	=	index	of	bottom	node	in	the	

lowest	energy	seam	
		double	lowest	=	nodeArray[root].getSum();	
		for	(int	i	=	1;	i	<	bottomRow.length;	i++){	
				double	summ	=	nodeArray[bottomRow[i]].getSum();	
				if	(summ	<	lowest){	

lowest	=	summ;	
root	=	bottomRow[i];	

				}	
		}	
		VNode[]	vertSeam	=	new	VNode[img.height];	//	contains	all	nodes	

in	lowest	energy	seam	
		int[]	seamIndex	=	new	int[vertSeam.length];//	array	containing	

indexes	of	all	pixels	in	seam	
		VNode	pixel	=	nodeArray[root];	
		for	(int	i	=	0;	i<vertSeam.length;	i++){	
			vertSeam[i]	=	pixel;	
			seamIndex[i]	=	pixel.getIndex();	
			pixel	=	pixel.getparent();	
		}	
				
		img.updatePixels();	
				
		PImage	post	=	createImage(img.width	+	1	,	img.height,	RGB);	

//final	image	
		post.loadPixels();	
		for	(int	y	=	0;	y	<	original.height;	y++){	
				for	(int	x	=	0;	x	<	original.width;	x++){	
					for	(int	i	=	0;	i	<	seamIndex.length;	i++){	
						if	(y*original.width	+	x	==	seamIndex[i]){	

post.pixels[y*post.width	+	x]	=	
original.pixels[y*img.width	+	x];	
color	first	=	original.pixels[y*img.width	+	x	-	1];	
color	second	=	original.pixels[y*img.width	+	x	+	1];	
color	avg	=	
color	((red(first)	+	red(second))/2,	(green(first)	+	
green(second))/2,	(blue(first)	+	blue(second))/2);	

65
post.pixels[y*post.width	+	x	+	1]	=	
avg;	//original.pixels[y*img.width	+	x];	
x++;	

											while	(x	<	original.width){	
			post.pixels[y*post.width	+	x	+	1]	=	

				 			original.pixels[y*img.width	+	x];	
			x++;	

											}	
											break;	
						}	
						else{	

			post.pixels[y*post.width	+	x]	=	
			original.pixels[y*original.width	+	x];	

						}					
				}	
			}	
		}	
		post.updatePixels();	
		image(post,0,0);	
		return(post);			
}	
		
PImage	addhoriz(PImage	original,	PImage	filtered){	
		img	=	filtered;	//	image	that	has	been	put	through	sobel	filter	
		img.loadPixels();	
		
		HNode[]	nodeArray	=	new	HNode[img.pixels.length];//	create		

Array	of	Nodes	
		for	(int	i	=	0;	i<img.pixels.length;	i++){//	for	each	pixel,	

create	corresponding	Node	
			int	ypos	=	i/img.width;	//	calculating	x	and	y	coordinates	

based	on	position	in	array	
			int	xpos	=	i	-	(ypos	*	img.width);	
			nodeArray[i]	=	new	HNode	(xpos,	ypos,	nodeArray,	img,	i);	
			nodeArray[i].setY();	
			nodeArray[i].setX();	
		}	
		for	(int	i	=	0;	i<nodeArray.length;	i++){	
			nodeArray[i].setParent();//	set	parent	for	each	node	
		}	
		int[]	leftSide	=	new	int[img.height];//	array	containing	

positions	of	leftmost	nodes	in	nodeArray	
		int	num	=	0;	
		for	(int	i	=	0;	i<nodeArray.length;	i++){	
			if	(nodeArray[i].getX()	==	0){	

leftSide[num]	=	i;	

66
num++;	

			}	
		}	
		int	root	=	leftSide[0];	//	root	=	index	of	leftmost	node	in	the	

lowest	energy	seam	
		double	lowest	=	nodeArray[root].getSum();	
		for	(int	i	=	1;	i	<	leftSide.length;	i++){	
				double	summ	=	nodeArray[leftSide[i]].getSum();	
				if	(summ	<	lowest){	

lowest	=	summ;	
root	=	leftSide[i];	

				}	
		}	
		HNode[]	horizSeam	=	new	HNode[img.width];	//	contains	all	nodes	

in	lowest	energy	seam	
		int[]	seamIndex	=	new	int[horizSeam.length];//	array	containing	

indexes	of	all	pixels	in	seam	
		HNode	pixel	=	nodeArray[root];	
		for	(int	i	=	0;	i<horizSeam.length;	i++){	
			horizSeam[i]	=	pixel;	
			seamIndex[i]	=	pixel.getIndex();	
			pixel	=	pixel.getparent();	
		}	
		img.updatePixels();	
				
		PImage	post	=	createImage(img.width,	img.height	+	1,	RGB);	

//final	image	
		post.loadPixels();	
		for	(int	x	=	0;	x	<	original.width;	x++){	
				boolean	carved	=	false;	
				for	(int	y	=	0;	y	<	original.height-1;	y++){	
						if	(carved	==	false){	
								for	(int	i	=	0;	i	<	seamIndex.length;	i++){	
										if	(y*img.width	+	x	==	seamIndex[i]){	
											carved	=	true;			
											post.pixels[y*original.width	+	x]	=	
											original.pixels[y*original.width	+	x];	
										y++;	
										color	first	=	
										original.pixels[(y-1)*img.width	+	x];	
										color	second	=	original.pixels[(y+1)*img.width	+	x];	
										color	avg	=	
										color	((red(first)	+	red(second))/2,	(green(first)	+	
										green(second))/2,	(blue(first)	+	blue(second))/2);	
										post.pixels[y*original.width	+	x]	=	avg;	
										int	y2	=	y;	

67
										while	(y2	<	original.height){	

		post.pixels[(y2+1)*original.width	+	x]	=	
		original.pixels[(y2)*img.width	+	x];	
		y2++;	

										}	
							}	
							else{	

		post.pixels[y*original.width	+	x]	=	
		original.pixels[y*original.width	+	x];	

									}					
							}	
					}	
			}			
		}	
				
		post.updatePixels();	
		image(post,0,0);	
		return(post);	
}	
		
PImage	sobel(PImage	img){	
		img.loadPixels();	
		PImage	edgeImg	=	createImage(img.width,	img.height,	RGB);	
		//	Loop	through	every	pixel	in	the	image.	
		for	(int	y	=	1;	y	<	img.height-1;	y++)	{	//	Skip	top	and	bottom	
		 	 	 	 	 	 	 	 edges	
			for	(int	x	=	1;	x	<	img.width-1;	x++)	{	//	Skip	left	and	right	

edges	
						double	sumxr	=	0;	//	Kernel	sum	for	this	pixel	-	red,	

horizontal	
						double	sumyr	=	0;	//	red,	vertical	
						double	sumxg	=	0;	//	green,	horizontal	
						double	sumyg	=	0;	//	etc.	
						double	sumxb	=	0;	
						double	sumyb	=	0;	
						double	magnituder	=	0;	//	magnitude	red	
						double	magnitudeg	=	0;	//	magnitude	green	
						double	magnitudeb	=	0;	//	magnitude	blue	
						int	magintr	=	0;	//	going	to	convert	magnitudes	to	ints	
						int	magintg	=	0;	
						int	magintb	=	0;	
						for	(int	ky	=	-1;	ky	<=	1;	ky++)	{	
								for	(int	kx	=	-1;	kx	<=	1;	kx++)	{	
										//	Calculate	the	adjacent	pixel	for	this	kernel	point	
										int	pos	=	(y	+	ky)*img.width	+	(x	+	kx);	
										//	find	RGB	values	for	pixel	

68
										double	valred	=	red(img.pixels[pos]);	
										double	valgreen	=	green(img.pixels[pos]);	
										double	valblue	=	blue(img.pixels[pos]);	
										//	Multiply	RGB	values	for	pixels	based	on	the	kernel	

values	
sumxr	+=	kernelx[ky+1][kx+1]	*	valred;	
sumyr	+=	kernely[ky+1][kx+1]	*	valred;	
sumxg	+=	kernelx[ky+1][kx+1]	*	valgreen;	
sumyg	+=	kernely[ky+1][kx+1]	*	valgreen;	
sumxb	+=	kernelx[ky+1][kx+1]	*	valblue;	
sumyb	+=	kernely[ky+1][kx+1]	*	valblue;	

								}	
						}	
						//	For	this	pixel	in	the	new	image,	set	the	RGB	values	
						//	based	on	the	sums	from	the	kernel	
			magnituder	=	Math.sqrt((sumxr	*	sumxr)	+	(sumyr	*	sumyr));	
			magintr	=	(int)Math.round(magnituder);	
			magnitudeg	=	Math.sqrt((sumxg	*	sumxg)	+	(sumyg	*	sumyg));	
			magintg	=	(int)Math.round(magnitudeg);	
			magnitudeb	=	Math.sqrt((sumxb	*	sumxb)	+	(sumyb	*	sumyb));	
			magintb	=	(int)Math.round(magnitudeb);	
			edgeImg.pixels[y*img.width	+	x]	=	color(magintr,	magintg,	

magintb);	
			}	
		}	
		for	(int	i	=	0;	i	<	edgeImg.pixels.length;	i++){	
			int	ypos	=	i/img.width;	
			int	xpos	=	i	-	(ypos	*	img.width);	
			if	(ypos	==	0){	

edgeImg.pixels[i]	=	edgeImg.pixels[i+img.width];	
				}	
				else	if	(ypos	==	img.height	-	1){	

		edgeImg.pixels[i]	=	edgeImg.pixels[i-img.width];	
				}	
				if	(xpos	==	0){	

		edgeImg.pixels[i]	=	edgeImg.pixels[i+1];	
				}	
				else	if	(xpos	==	img.width-1){	

		edgeImg.pixels[i]	=	edgeImg.pixels[i-1];	
				}	
			}	
			edgeImg.updatePixels();	
			//edgeImg.save("filtered.jpg");	
			return(edgeImg);	
}	
		

69
public	class	VNode	{//	each	node	corresponds	to	a	pixel	
		int	x,	y;	
		double	valred,	valgreen,	valblue,	energy,	sum;	
		PImage	image;	
		VNode[]	nodeArray;	
		VNode	parent;	
		int	index;	
		
		public	VNode(int	xpos,	int	ypos,	VNode[]	arrayOfNodes,	

PImage	imge,	int	ind){	
				image	=	imge;	
				x	=	xpos;	
				y	=	ypos;	
				valred	=	red(image.get(x,y));	
				valgreen	=	green(image.get(x,y));	
				valblue	=	blue(image.get(x,y));	
				energy	=	valred	+	valgreen	+	valblue;	

//	energy	=	sum	of	RGB	values	
				nodeArray	=	arrayOfNodes;	
				sum	=	energy;	//	for	now	-	will	be	updated	in	setParent()	
				index	=	ind;	
		}	
		
		//	basic	getter/setter	functions	for	Node	attributes	
		public	int	getX()	{	return	this.x;	}					
		public	int	getY()	{	return	this.y;	}			
		public	double	getEnergy()	{	return	this.energy;	}	
		public	double	getSum()	{	return	this.sum;	}	
		public	VNode	getparent()	{	return	this.parent;	}	
		public	int	getIndex()	{	return	this.index;	}	
		
		public	void	setX()	{	this.x	=	this.getIndex()	-
	(this.getY()	*	img.width);	}	
		public	void	setY()	{	this.y	=	this.getIndex()/img.width;	}	
		public	void	setEnergy(double	en)	{	this.energy	=	en;	}	
		public	void	setSum(double	sm)	{	this.sum	=	sm;	}	
		public	void	setIndex(int	ind)	{	this.index	=	ind;	}	
		
		public	void	setParent(){	

//	finds	parent	with	least	sum	and	sets	sum	for	this	node	
				double	sum1;	
				double	sum2;	
				double	sum3;	
				VNode	n1;	
				VNode	n2;	
				VNode	n3;	

70
				this.setY();	
				this.setX();	
				if	(this.y	==	0){	//	top	row	
						this.parent	=	this;	//	sum	is	already	set	to	energy	
				}	
				else	if	(this.x	==	0){	//	left	column	

sum1	=	this.getSum()	+	nodeArray[(this.getIndex()	-	
	 img.width	+	1)].getSum();	//	node	above	&	right	

n1	=	nodeArray[(this.getIndex()	-	img.width	+	1)];	
sum2	=	this.getSum()	+	nodeArray[(this.getIndex()	-	

	 img.width)].getSum();	//	node	above	
n2	=	nodeArray[(this.getIndex()	-	img.width)];							

						if	(sum1	<=	sum2){//	compare	sums	&	assign	sum	and	parent	
								this.sum	=	sum1;	
								this.parent	=	n1;	
						}	
						else{	
								this.sum	=	sum2;	
								this.parent	=	n2;	
						}	
				}	
				else	if	(this.getX()	==	this.image.width	-	1){	//	right	

		column	
	sum1	=	this.getSum()	+	nodeArray[(this.getIndex()	-
	img.width	-	1)].getSum();	//	node	above	&	left	
	n1	=	nodeArray[(this.getIndex()	-	img.width	-	1)];	
	sum2	=	this.getSum()	+	nodeArray[(this.getIndex()	-	
	img.width)].getSum();	//	node	above	
	n2	=	nodeArray[(this.getIndex()	-	img.width)];			

						if	(sum1	<=	sum2){//	compare	sums	&	assign	sum	and	parent	
								this.sum	=	sum1;	
								this.parent	=	n1;	
						}	
						else{	
								this.sum	=	sum2;	
								this.parent	=	n2;	
						}	
				}	
				else{	//	not	on	edge	

sum1	=	this.getSum()	+	nodeArray[(this.getIndex()	-	
img.width	-	1)].getSum();	//	node	above	&	left	
n1	=	nodeArray[(this.getIndex()	-	img.width	-	1)];	
sum2	=	this.getSum()	+	nodeArray[(this.getIndex()	-	

	 img.width)].getSum();	//	node	above	
n2	=	nodeArray[(this.getIndex()	-	img.width)];	

71
sum3	=	this.getSum()	+	nodeArray[(this.getIndex()	-	

	 img.width	+	1)].getSum();	//	node	above	&	right	
n3	=	nodeArray[(this.getIndex()	-	img.width	+	1)];	

						if	(sum1	<=	sum2	&&	sum1	<=	sum3){//	compare	sums	&	assign	
parent	

								this.sum	=	sum1;	
								this.parent	=	n1;	
						}	
						else	if	(sum2	<=	sum1	&&	sum2	<=	sum3){	
								this.sum	=	sum2;	
								this.parent	=	n2;	
						}	
						else	if	(sum3	<=	sum1	&&	sum3	<=	sum2){	
								this.sum	=	sum3;	
								this.parent	=	n3;	
						}	
				}	
		}	
}	
		
public	class	HNode	{//	each	node	corresponds	to	a	pixel	
		int	x,	y;	
		double	valred,	valgreen,	valblue,	energy,	sum;	
		PImage	image;	
		HNode[]	nodeArray;	
		HNode	parent;	
		int	index;	
		
		public	HNode(int	xpos,	int	ypos,	HNode[]	arrayOfNodes,	

PImage	imge,	int	ind){	
				image	=	imge;	
				x	=	xpos;	
				y	=	ypos;	
				valred	=	red(image.get(x,y));	
				valgreen	=	green(image.get(x,y));	
				valblue	=	blue(image.get(x,y));	
				energy	=	valred	+	valgreen	+	valblue;	

//	energy	=	sum	of	RGB	values	
				nodeArray	=	arrayOfNodes;	
				sum	=	energy;	//	for	now	-	will	be	updated	in	setParent()	
				index	=	ind;	
		}	
		
		//	basic	getter/setter	functions	for	Node	attributes	
		public	int	getX()	{	return	this.x;	}					
		public	int	getY()	{	return	this.y;	}			

72
		public	double	getEnergy()	{	return	this.energy;	}	
		public	double	getSum()	{	return	this.sum;	}	
		public	HNode	getparent()	{	return	this.parent;	}	
		public	int	getIndex()	{	return	this.index;	}	
		
		public	void	setX()	{	this.x	=	this.getIndex()	-
	(this.getY()	*	img.width);	}	
		public	void	setY()	{	this.y	=	this.getIndex()/img.width;	}	
		public	void	setEnergy(double	en)	{	this.energy	=	en;	}	
		public	void	setSum(double	sm)	{	this.sum	=	sm;	}	
		public	void	setIndex(int	ind)	{	this.index	=	ind;	}	
		
		public	void	setParent(){//	finds	parent	with	least	sum	and	sets	

sum	for	this	node	
		double	sum1;	
		double	sum2;	
		double	sum3;	
		HNode	n1;	
		HNode	n2;	
		HNode	n3;	
		this.setY();	
		this.setX();	
		if	(this.x	==	img.width	-	1){	//	right	column	
				this.parent	=	this;	//	sum	is	already	set	to	energy	
		}	
		else	if	(this.getY()	==	0){	//	top	row	

sum1	=	this.getSum()	+	nodeArray[(this.getIndex()	+	img.widt
h	+	1)].getSum();	//	node	right	&	below	
n1	=	nodeArray[(this.getIndex()	+	img.width	+	1)];	
sum2	=	this.getSum()	+	
nodeArray[(this.getIndex()	+	1)].getSum();	//	node	right	
n2	=	nodeArray[(this.getIndex()	+	1)];							

						if	(sum1	<=	sum2){//	compare	sums	&	assign	sum	and	parent	
								this.sum	=	sum1;	
								this.parent	=	n1;	
						}	
						else{	
								this.sum	=	sum2;	
								this.parent	=	n2;	
						}	
				}	
				else	if	(this.getY()	==	this.image.height	-	1){	//	bottom	row	

sum1	=	this.getSum()	+	nodeArray[(this.getIndex()	-	
	 img.width	+	1)].getSum();	//	node	right	&	above	

n1	=	nodeArray[(this.getIndex()	-	img.width	+	1)];	
sum2	=	this.getSum()	+	

73
nodeArray[(this.getIndex()	+	1)].getSum();	//	node	right	
n2	=	nodeArray[(this.getIndex()	+	1)];					

						if	(sum1	<=	sum2){//	compare	sums	&	assign	sum	and	parent	
								this.sum	=	sum1;	
								this.parent	=	n1;	
						}	
						else{	
								this.sum	=	sum2;	
								this.parent	=	n2;	
						}	
				}	
				else{	//	not	on	edge	

sum1	=	this.getSum()	+	nodeArray[(this.getIndex()	+	img.widt
h	+	1)].getSum();	//	node	right	&	below	
n1	=	nodeArray[(this.getIndex()	+	img.width	+	1)];	
sum2	=	this.getSum()	+	
nodeArray[(this.getIndex()	+	1)].getSum();	//	node	right	
n2	=	nodeArray[(this.getIndex()	+	1)];			
sum3	=	this.getSum()	+	nodeArray[(this.getIndex()	-	

	 img.width	+	1)].getSum();	//	node	right	&	above	
n3	=	nodeArray[(this.getIndex()	-	img.width	+	1)];	

						if	(sum1	<=	sum2	&&	sum1	<=	sum3){//	compare	sums	&	assign	
parent	

								this.sum	=	sum1;	
								this.parent	=	n1;	
						}	
						else	if	(sum2	<=	sum1	&&	sum2	<=	sum3){	
								this.sum	=	sum2;	
								this.parent	=	n2;	
						}	
						else	if	(sum3	<=	sum1	&&	sum3	<=	sum2){	
								this.sum	=	sum3;	
								this.parent	=	n3;	
						}	
				}	
		}	
}

	Content-Aware Image Resizing
	Recommended Citation

	Microsoft Word - SeniorProject.docx

