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Abstract

Artificial intelligence and machine learning systems are becoming ever more prevalent; at every
turn these systems are asked to make decisions that have lasting impacts on peoples’ lives. It
is becoming increasingly important that we ensure these systems are making fair and equitable
decisions. For decades we have been aware of biased and unfair decision making in many sectors
of society. In recent years a growing body of evidence suggests these biases are being captured
in data that are then used to build artificial intelligence and machine learning systems, which
themselves perpetuate these biases. The question is then, can we detect these biases in the
data before it is used to create these systems? In this paper we will be exploring the feasibility
and effectiveness of using a technique from topological data analysis to detect unfair bias in a
criminal sentencing dataset.
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1
Introduction

Artificial intelligence (AI) and Machine Learning (ML) are often championed as some of the

most significant technological innovations of the twenty-first century. With ever increasing

pools of computing power and a myriad of advanced algorithms, we have both the capacity and

motivation to begin offloading significant levels of decision making to computational systems.

Tools from the field of artificial intelligence have already become indispensable across industry

and government. (For a brief primer on AI, see the appendix.) There is an implicit logic in

the justification of the use of these AI systems. The thinking goes, algorithms and AI systems

are mathematical constructs, and as such they are not susceptible to the whims and biases that

are so prevalent in human decision making, so they have the capability to be neutral arbiters.

However, this reasoning is flawed. In designing and training AI and ML systems, developers

will often unintentionally leave the fingerprints of human biases in these systems. To train these

systems, developers gather large collections of data that are then used to teach the AI or ML

system to determine relevant patterns for the task at hand. This is where the fallacy of AI

comes into play. While the AI or ML system will usually find relevant patterns in the data, the

system is not aware of the larger context in which the data was collected. As such it is unable

to differentiate between true patterns in the data and artifacts introduced due to human biases.

1



2 INTRODUCTION

In her 2016 book, Weapons of Math Destruction: How Big Data Increases Inequality and

Threatens Democracy, Cathy O’Neil describes how the myths surrounding AI allow its use to go

unchecked, and the subsequent dangers this can bring. “... if it becomes clear that automated

systems are screwing up on an embarrassing and systematic basis, programmers will go back in

and tweak the algorithms. But for the most part, the programs deliver unflinching verdicts, and

the human beings employing them can only shrug” [2].

We often celebrate the ability of ML systems to analyze patterns that are often too subtle for

humans to pick out, and make predictions and decisions based on these patterns. While this

is a powerful tool, it is one that requires oversight. One of the ways in which we can start to

ensure that AI and ML systems do not perpetuate and exacerbate the biases held by people is

to attempt to detect such biases in datasets before they are used to train these systems.

Given that AI and ML seem to be here to stay, how can we ensure that their use does not

further harm disenfranchised and marginalized groups and individuals? One answer is to more

thoroughly screen the data that is used to build AI. The terms artificial intelligence and machine

learning often go hand in hand with the phrase “big data,” which generally refers to the practice

of gathering large quantities of data on which to train AI and ML systems. As large datasets are

at the core of these systems, there is good reason to turn to the field of topological data analysis

for assistance in these issues. Topological data analysis is concerned with the macro scale of a

dataset, and is primarily concerned with questions like “what is the underlying shape of this

data?”. The goal of this work is to determine if the presence of systemic and unfair biases in a

dataset is represented in its fundamental underlying topology.

1.1 Defining Discrimination & Bias

Much of the power that predictive models and machine-learning algorithms leverage comes from

finding and applying patterns found in historical data. The issue here is that while these systems

make unbiased decisions relative to the data, there is no guarantee that historical precedent does

not contain bias or discriminatory decisions [5]. Machine-learning models are built with the
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assumption that the data they will be trained on aptly represents a population, this is not

always the case.

In the context of machine learning, non-discrimination can be defined as: (1) people that

are similar in terms of non-protected characteristics will receive similar predictions, and (2)

differences in predictions across groups of people can only be as large as justified by non-protected

characteristics [5]. In this context a protected characteristic is an attribute of a dataset that

historically has been the defining factor in unfair treatment.

The problem with the above definition is that it falls to the developers of a system to decide on

protected and non-protected characteristics. For example, using geographical location as part

of a decision for loan approval, if an area has historically been at an economic disadvantage and

people from that area have historically defaulted on loans due to discriminatory practices based

on socioeconomic status or race, then using this historical precedent will only serve to exacer-

bate existing disparities. That is, protected characteristics may be hidden behind unprotected

characteristics

To remedy the issue of choosing protected and non-protected characteristics outlined above,

the emerging fields of discrimination-aware machine learning and data mining assume that some

regulatory body will define these characteristics. So given a set of protected characteristics and

groups, the goal is to use them to formulate constraints on ML algorithms to avoid algorithmic

discrimination. [5]

Despite a number of discrimination-aware ML models and performance metrics being de-

veloped in the past few years, researchers have yet to reach a consensus on how to define a

fair predictive model. This makes it difficult to compare the relative effectiveness of various

approaches to this problem [5].

The 2015 paper [5] describe several discrimination measures that have been used to analyze

the discriminatory decision making of ML systems. These measures can be defined in one of four

categories: statistical tests, absolute measures, conditional measures, and structural measures.

In statistical testing, discrimination is measured by the results of classical statistical tests, where



4 INTRODUCTION

the null hypothesis assumes there is no significant difference in treatment between the general

population and protected groups. Absolute measure tests seek to capture the magnitude of

difference between two groups of people, differentiated by a protected attribute. Given multiple

groups of people differentiated by a protected attribute, conditional measure seeks to tell how

much of differences in treatment between the groups can be explained by other factors, outside

of the protected attribute. Finally, structural measures look to see if each individual in a dataset

has been discriminated against.

In this paper, we are concerned with ascertaining the presence of bias in data. This prompts

the question; can we define a notion of bias that is quantifiable? This may seem like a trivial

question, simply a matter of finding some underlying metric to capture; however giving a rigorous

definition for conceptual ideas as nebulous as “bias” and “fairness” that precisely capture the

colloquial meaning of these words is a task that has proven quite difficult. In this work we seek

to interrogate the hypothesis that bias is present if the underlying topology of a dataset differs

significantly when partitioned along a protected attribute.

1.2 Preprocessing

The idea of data preprocessing is common in the fields of data science and machine learning.

Ultimately, every dataset comes from collecting information from the real world, a messy and

imperfect practice. Data collection is an inherently noisy process due to a number of factors

from missing data to human error. In light of this, data preprocessing is a way to clean up

this messy data so that it will fit nicely into an algorithm. Preprocessing is a vast collection

of techniques and only a handful are ever used on a given dataset. Some of the more common

techniques include reformatting data so that all the same information is included, but in a way

that is acceptable to an algorithm. Another is normalizing the data, so that each attribute

in the dataset has it’s original distribution, but all attributes are measured on the same scale.

Yet another common technique is to strip each data point that contains a null value (null

values usually corresponds to a value that was not collected). Preprocessing can also include
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preliminary tests on data to see what values have correlations to desired target values, and

removing values from each data point that do not seem to have strong correlations in order to

save on computational resources. Therefore, preprocessing is a powerful tool that allows for a

given dataset to be used more effectively and in a wider variety of contexts.

Given a dataset that has some bias embedded into it, finding ways to remove the bias from

the data before it is used in an AI system is advantageous. The 2011 paper [4] proposes four

methods of filtering data in order to address the discrimination-aware classification problem.

Once a dataset has been preprocessed in such a way, they claim that that data can be used to

train a classifier such that it will not emulate the biases in the original data.

Another reason we consider preprocessing techniques in this paper, is to understand the limits

of how one can alter a dataset so that it is better suited for training an AI or ML system. In

the case that it is possible to show the existence of a systemic bias in a dataset, we can then ask

the question; “can we preprocess this data to eliminate that bias?”, a question that will first

require us to be able to see such a bias in the dataset with tools from topological data analysis.

1.3 Outline

Before we are able to explore the effectiveness of topological data analysis in detecting bias,

we first must understand the theoretical under-pining of these tools. In Chapter 2 we will

review some basic ideas from the sub-field of mathematics known as topology, which is generally

concerned with the study of shapes and spaces, without concern for geometric properties like

distance and orientation. We will then, in Chapter 2.4, move onto a more in-depth look at a

particular idea from topology called homology, which is concerned with notions of equivalence

of objects based on the number of various dimensional “holes” that they contain. From there

we step into the fields of computational topology and topological data analysis by defining one

of the principle tools from topological data analysis, persistent homology. In Chapter 3.2 we

will examine a tool from classical data analysis; bottleneck matching. This is a tool that we

will use for comparing and interpreting the results of persistent homology. After defining the
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theoretical concepts, we will quickly discuss the software and tools used for this paper. Finally

in Chapter 4 we see these tools in action, and discuss their use in detecting biases in a set of

criminal sentencing data.



2
Basic Topology and Homology

The goal of this chapter is to provide a working understanding of homology by giving some

intuition, and by stating the formal definitions. In service building this understanding, we will

first review some key basics of topology.

2.1 Basic Topology

Topology is one of the main fields of study in modern mathematics. It is the generalization of

ideas from geometry, and is generally concerned with the study and classification of complex

objects and spaces. In topology there is a notion of “continuous deformation” where one can

think of objects being made out of infinitely stretchy rubber. If one is able to stretch one object

into the shape of another without tearing it, or gluing parts of the object back onto itself, we

consider these objects to be equivalent. The classic introductory example topologists will use to

explain this concept is the following: consider a doughnut and a coffee mug (Figure 2.1.1). At

first these may seem like completely distinct shapes. Indeed if we were concerned with geometric

features like volume and concavity, they would be. However if we imagine these objects to be

infinitely stretchy, we can think about squishing most of the mass of the doughnut to one side.

Then we can imagine pressing a divot into the outside of the thicker part of the doughnut,

and pinch the divot until a well forms. Hence we can form a coffee mug out of a doughnut

7
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Figure 2.1.1: The doughnut and coffee mug example of continuous deformation.

without needing to tear or glue the material, so we say that these objects are equivalent up to

homeomorphism.

Another way we can think about this notion of topological equivalence is to think about a

graph, or a collection of nodes connected by a collection of edges. The graph is defined by which

nodes are connected and which are not; but is not reliant on the spacial position of any nodes or

edges. We can think about taking a graph and moving the nodes around on the page without

removing any edges, the resulting graph will be the same. So we would say that the topology

of the graph is unaffected by the location of the nodes and edges in space.

2.2 Homeomorphism and Topological Equivalence

When first building intuition about topology, thinking about objects as made of a magical,

infinitely stretchy material is helpful for building an understanding of topological equivalence.

However, it would be quite difficult to do rigorous mathematics with this notion alone. The

rigorous way of understanding this idea is with the notions of continuous deformation and

homeomorphism. Informally we can say two objects are equivalent if one can be continuously

deformed into the other, or equivalently; there exists a homeomorphism from one object to the

other.



2.3. SIMPLICIAL COMPLEXES 9

Definition 2.2.1. A function f : X → Y where X and Y are topological spaces is said to be a

homeomorphism if and only if f is a continuous function and its inverse, f−1 is also a continuous

function.

Figures 2.1.1 and 2.2.1 are both examples of homeomorphisms. Figure 2.1.1 is a 3-dimensional

example, while Figure 2.2.1 is a 2-dimensional example. In each case we can describe a function

that maps points in the first object to points in the second, constrained by the conditions of

a homeomorphism, however it is often helpful to have these visualizations in order to better

conceptualize these functions.

Figure 2.2.1: Visual example of a homeomorphism mapping a triangle to a circle.

2.3 Simplicial Complexes

An important idea from topology is that of simplicial complexes. Abstractly, a simplicial complex

is a collection of connected elements where an element is either a point, a line, a triangle, a

tetrahedron, or a higher dimensional simplex (which can be thought of as the analog for a

triangle in greater than three dimensions). Simplicial complexes are important because they

can be used to define a topological space. To rigorously define simplices, we will state a few

definitions that will be helpful.

Definition 2.3.1. Let x be a point in a topological space, S. A neighborhood Nx is a subset

of S, where for all points p ∈ S the euclidean distance between x and p is less than some real

value d > 0.

Definition 2.3.2. Let A be a subset of a topological space S. Any point x ∈ S is a boundary

point of A if for every neighborhood Nx of x, has a non empty intersection with A and a
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non empty intersection with the complement of A. The set of all points in A that meet these

conditions is the boundary of A.

Now we can formally define a simplicial complex as a finite collection of cells, also called

complexes, where cells are defined by the following.

Definition 2.3.3. An n−cell is a set whose interior region is homeomorphic to an n-dimensional

disk, and whose boundary is a finite set of cells of lower dimension.

With this definition of cells, we can formally define a simplicial complex:

Definition 2.3.4. Let K = {K1,K2, ...,Kn} be a set of simplices. We call K a simplicial

complex if for every k ∈ K, every face of k is also in K, and the non-empty intersection of any

two cells, k1 and k2 ∈ K, is a face of both k1 and k2.

Let us now consider an example of a simplicial complex. The left diagram in Figure 2.3.1 is

a simplicial complex comprised of some 2-cells (yellow triangles), each of which is bounded by

three lines, these are 1-cells. Each of the 1-cells is bounded by two points, these are 0-cells. The

0-cells are not bounded as they are single points and so have no boundary. We also have five

1-cells that are not faces of any 2-cells, this is not an issue, as we can have cells that are not

faces of higher dimensional cells; so long as a cell is bounded by lower dimensional cells, and

the intersection of any two cells is itself a cell, we have a valid complex. A non-example of a

simplicial complex is shown in the right diagram of Figure 2.3.1. While each of the 2-cells is

bounded by 1-cells, and each 1-cell is bounded by 0-cells, the intersection of the two 2-cells is

not a cell in and of itself, thus this example is not a simplicial complex.

We consider simplicial complexes in part because they can represent other topological spaces,

are often easier to conceptualize, and contain quite a bit of information about an object. It is

important to note that a simplicial complex is itself a topological space. As such all the tools

of topology apply to the simplicial complex, yet they are relatively easy to understand. By

adding a notion of direction or orientation to each cell in a k-complex, we can define a notion of

equivalent faces that can be thought of as “gluing” instructions, where faces are identified. In
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Figure 2.3.1: (Left) An example of a simplicial complex comprised on 0,1, and 2-cells. (Right)
A non example of a simplicial complex that is a set of 0, 1, and 2-cells.

such a way we are able to reconstruct a topological space from only a simplicial complex, and

given a topological space, represent it as a simplicial complex.

We will see simplicial complexes applied in Chapter 3.1. There we will see how we can

construct a special type of simplicial complexes, called the Vietoris-Rips complex, from a set

of points sitting in some n-dimensional space. We can then use this particular complex to

approximate the topological space that these points are sitting on. This will allow us to use

topological ideas to analyze a set of discrete points.

2.4 Homology

The critical idea from topology that allows for the persistent homology algorithm to work is

unsurprisingly something called homology. Homology is a complex concept that associates al-

gebraic objects (usually groups) to topological spaces, but it can also tell us about features of a

space, for example the connectedness of the space or how many “holes” an object has in some

number of dimensions.

Homology is a concept that comes from algebraic topology. As is explained in [13], it serves as

a reasonably powerful topological invariant and is thus useful for differentiating between spaces.

We will not go in depth into invariants, but in this context it will suffice to say that an invariant

is something that can be used to differentiate topological spaces. It is important to note that

if two spaces have different invariants, they are guaranteed to be distinct, however having the
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same invariant does not imply that the spaces are the same. In this case the invariant is a set

of groups (where the cardinality of the set is the number of dimensions in which the topological

space lives) called the homology groups, that are derived from imposing something called a

simplicial complex chain on a simplicial complex representation of the space. This gives us a

set of groups that depends only on the topological space, and not on the simplicial complex [9].

In [9] it is shown that it can be proven that these groups are in fact invariants, although such a

proof is beyond the scope of this paper.

2.4.1 Chain Complexes

We will now defined all the components we need to define homology groups. This section is not

intended to prove these ideas, or even give an in-depth description. It is simply an introduction

of the basic terminology needed to state the definition of homology groups. For a more in depth

explanation on the topic see [13].

It is not obvious how one would generate a group from a topological space. If you are just

given a space, say a torus, how might we find a group that captures meaningful information

about it? The answer lies in examining a simplicial complex representation of the space. The

homology groups that we will define in section 2.4.2 are generated from chains of simplicial

complexes. Again, this is an involved topic that we will not go into in too much depth, however

it is important to have an understanding of how homology emerges.

As we saw in section 2.3, we can represent a topological space by a simplicial complex. Given

this complex we can obtain an orientation from a direction on each k-cell that is inherited from

the manifold that originally produced the simplicial complex. This lets us define a p-chain for

some dimension p on this complex to be the weighted sum of a subset of the p-simplices, or

formally:

Definition 2.4.1. A p-chain of a directed simplicial complex K, is the sum c =
∑

aiσi, where

ai ∈ Z are coefficients, and σi ∈ K are the p-simplices in K. The p-chains form the p-chain

group, denoted by Cp.
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We can think of p-chains as analogous to polynomials, in that they can be added together

component-wise, and are values over which we can perform a notion of algebra [9]. This additivity

will serve as the binary operation for the p-chain group. It is shown in [9] that such a group is

abelian.

Note that there can be many chain groups formed from a single directed complex. We would

like to be able to relate these groups in order to build the homology groups. We do this by

introducing a notion of boundary. In this context we define the boundary as follows.

Definition 2.4.2. Given any p-chain c, the boundary of c is the sum of the p − 1 dimensional

faces of c, this is itself a (p− 1)-chain, denoted ∂pc.

Taking the boundary of a p-chain results in a (p − 1)-chain. This should be intuitive as the

faces of the p-chain, are themselves (p − 1) dimensional complexes, hence the boundary maps

p-chains to (p − 1)-chains. It can be shown that addition is commutative over the boundary

mapping, meaning that taking the boundary is a homomorphism, we denote these boundary

maps as ∂p [9].

We can now define the chain complex.

Definition 2.4.3. A chain complex is a sequence of chain groups

· · · → Cn+1 → Cn → Cn−1 → · · · related by functions b1, b2, b3, · · · where each function,

bi : Cn+1 → Cn, is a boundary homomorphism.

We will use the concept of boundary to define another important component we will need to

define homology groups; p-cycles.

Definition 2.4.4. A p-cycle c on a directed chain complex K is a p-chain with empty boundary,

∂c = 0. The set of all p-cycles for a dimension p is denoted Zp

It can be shown that Zp is actually a subgroup of the p-chain group. The other special type

of p-chain we need to consider is the p-boundary. A p-boundary is a p-chain that itself is the

boundary of a (p+ 1)-chain.
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Definition 2.4.5. A p-boundary b ∈ Cp on a directed complex K is a p-chain such that there

exists a (p+ 1)-chain, c ∈ Cp+1 where ∂c = b. The p-boundaries form a subgroup of the chain

group, known as the boundary group, denoted Bp.

Now we have all the necessary definitions, we are prepared to approach homology groups.

2.4.2 Homology and Homology Groups

Given that we have a directed simplicial complex, a chain group defined over that complex, and

the boundary and cycle subgroups, we can define the homology groups on that complex.

We note that the p-th boundary group Bp is a normal subgroup of the p-th cycle group Zp

Definition 2.4.6 (Homology group). For a given directed complex K and some dimension

p, the p-th homology group of K is the p-th cycle group modulo the p-th boundary group,

Hp = Zp/Bp.

Another important aspect of homology groups are their Betti numbers. Informally this is the

number that corresponds with the n-dimensional holes in a space for each dimension the space

lives in. For example the 0-th Betti number of a topological space is the number of connected

components in the space, while the 1-st Betti number is the number of loops present. The 3-rd

Betti number is the number of 3-dimensional voids enclosed by the topological space, we can

think of these as any pockets in the space that could be filled up with water without leaking it

out.

Definition 2.4.7. Given a topological space S, and a natural number k, the k-th Betti number

βk(S) is the rank of the k-th homology group.

Remark 2.4.8. Here the rank of a homology group is the number of linearly independent

generators.

Now that we have developed an understanding of some basic topological principles, and a

working intuition on homology groups, we can explore the topic at the core of this paper;

persistent homology.



3
Persistent Homology, Bottleneck Matching,
and Tools

3.1 Persistent Homology

We will now turn to the field of computational topology. One of the main tools from this area

of study is persistent homology; an algorithm for computing how topological features persist as

we examine a point cloud at different resolutions and scales. The topological features that are

captured by persistent homology are, of course, homology groups.

Topological data analysis (TDA) is a relatively new field that began gaining traction in the

early 1990’s. It leverages ideas from algebraic topology, along with modern computational

power to glean insights from data that cannot be easily seen with standard data analysis, and

to give a new way to summarize and compare entire datasets without concern for individual

datum. Topological data analysis has been used for a variety of tasks, from computational

biology, to shape recognition, and has been suggested as a possible tool for studying bias in the

context of detecting gerrymandering [6] and in examining financial bias [10]. The underlying

assumption behind topological data analysis is that the topological features or the “shape” of a

space constructed from a dataset will contain relevant information about the dataset as a whole,

and the phenomena it represents. It seeks to give algorithmic tools to analyze that underlying

topological structures and its features [11].

15
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Figure 3.1.1: An example of how we build a simplicial complex by increasing the radius of 2-balls
(discs) around the points as we go to the right.

Before we explore the details of persistent homology, we will take a brief look into some of its

applications and the field of topological data analysis in general. One area in particular where

TDA and persistent homology have seen some success is in the study of electoral redistricting.

The 2020 paper [6], looks to classify redistricting plans as “partisan gerrymandering” (where lines

of voting districts are drawn to favor victory in one political party) or not, by using persistent

homology. Towards this end, they look at a set of many possible redistricting plans, called an

ensemble, to form a backdrop on which to compare the redistricting plan in question.

3.1.1 Persistent Homology Intuition

As noted above, the primary tool of topological data analysis is a technique called persistent

homology. This is an algorithm that keeps track of the various topological features of a dataset

as we vary the notion of what it means for data points to be “close” to each other. Given a

dataset in n-dimensional space, we can surround each point with a n-dimensional ball. For a

given radius of these spheres, we can construct a n-simplex for every non-empty intersection of

n− 1 sphere. This will give us a cell complex, a construct that we can use to extract topological

features. As we vary the radii of these spheres, we can see how long each topological feature

persists. Using the tool of persistent homology, we can compare features of datasets as a whole,

without concern for individual points. Figure 3.1.1 is a simple example of this process.

The topological features captured by persistent homology are the homology groups; informally

one can think of the n-th homology group as capturing information about the n-dimensional

voids in the topological space. The 0-dimensional homology group tells us the number of con-
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nected components in the space. While 1-dimensional homology gives information on the circles

present in the space. Similarly the 2-dimensional homology captures information on the voids

encapsulated by the space. It is important to note here that we consider all these features up

to homeomorphism.

The persistence, or “lifespan” of a homology group is considered to be all the radius values,

α, of the expanding n-balls that result in a simplicial complex that will produce that homology

group. Hence there is some α0 where a homology group will first appear, and an αd where it will

disappear. This persistence is recorded in a persistence diagram. Figure 3.1.3 is an example of

such a diagram. The persistence diagram is a two dimensional graph, where both axes represent

the range of α values of the growing n-balls that define the complexes. The horizontal axis,

labeled birth, is the α value for which a given feature appears (eg. a value of α that first makes

a connected component appear); while the vertical axis, labeled death, is the α value for which

a given feature disappears. Hence each point on the diagram shows the beginning and end of

some feature (this is also why points will only ever appear above the birth = death line. This

may not seem like a lot of information, however when we consider the points of the persistence

diagram in relation to each other, we realize there is quite a depth of information present in

these figures.

3.1.2 Definition of Persistent Homology

At this point we have built an intuitive understanding for persistent homology. However our

notion of expanding n dimensional balls and visualizing the induced topological features is far

from a formal definition.

The first concept we will be defining in this section is the Vietoris-Rips Complex. The idea

behind this type of complex, is to be able to bridge the gap between a set of discrete data points

and a complete topological space.

Definition 3.1.1. Let X be a set of points in a metric space, and let α ≥ 0. The Vietoris-Rips

complex Ripsα(X) is the set of simplices {x0, ..., xk} where every x ∈ X is a 0-simplex, and the
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the distance, dX , between every pair of vertices on every simplex x, dX(xi, xj) ≤ α for all pairs

(i, j) [11].

Figure 3.1.2: Example of the filtration generated by increasing the α value in a Vietoris-Rips
complex.

The notion of expanding n-balls we use to build intuition, corresponds directly to varying

the α value used to define the Vietoris-Rips complex. The resulting Vietoris-Rips complex for

a given α can be thought of as a subcomplex of some other complex K, the subcomplexes we

obtain by varying α will form a filtration, a concept that we will now define.

Given that we have a complex, K, we need to define a notion of filtration of a complex in

order to give a definition for persistent homology. A filtration can be thought of as constructing

K by sequentially adding small collections of simplices (this addition of simplices comes directly

from the simplices that appear as we vary α in the Vietoris-Rips complex). We first define

a monotonic function f : K → R, where in this context monotonic means that f(ρ) ≤ f(σ)

whenever ρ is a face of σ. Because f is monotonic, it follows that K(a) = f−1(−∞, a] is a

subcomplex of K. If there are m simplices in K, then we get n+1 subcomplexes, where n ≤ m.

These subcomplexes are then arranged in ascending order, giving us a filtration, denoted

∅ = K0 ⊆ K1 ⊆ ... ⊆ KN = K.

We now wish to relate through homomorphisms the homology groups on this sequence of sub-

complexes in order to see the topological evolution as more simplices are added to the complex.

For every i, j where i ≤ j, there exists a homomorphism from the homology groups of Ki to

those of Kj . As is explored in [9], These homomorphisms are called f i,j
p : Hp(Ki) → Hp(Kj).

Thus the filtration can be represented as a sequence of homology groups related through homo-
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morphisms. As we go through this sequence, we record when new homology groups appear, and

when they disappear and become trivial. Figure 3.1.2 is a visualization of such a filtration over

a small set of 2-dimensional points.

Definition 3.1.2. The p-th persistent homology groups are the images of the homeomorphisms

induced by inclusion, denoted H i,j
p = im(f i,j

p ) = Zp(Ki)/Bp(Kj) ∩ Zp(Ki) for 0 ≤ i ≤ j ≤ n.

The associated p-th persistent Betti numbers, βp, are the ranks of these groups.

While the persistent homology groups are themselves homology groups, they are defined in

this way to be more flexible, and to allow us to capture more information from the original data.

This is necessary because of the limited topological information that is innate in a collection of

points.

3.1.3 Algorithmic Implementation and Run-time of Persistent Homology

It is perhaps surprising, but persistent homology is polynomial-time reducible to Gaussian elim-

ination (matrix reduction). This reduction is done by first ordering the simplices of the complex

σ1, σ2, σ3...σm such that i < j is implied by f(σi) < f(σj). This ordering is valid due to the fact

that f is monotone. We then use this ordering to set up an m ×m matrix, ∂ of boundaries of

simplices, where ∂[i, j] = 1 if σi is a co-dimension one face of σj , and ∂[i, j] = 0 otherwise [9].

This is sufficient to populate the matrix. Gaussian elimination is a well known algorithm, and is

computable in O(n3) time, meaning that after a linear time reduction, the persistent homology

groups are computable in at least cubic time. We can then read off the rank of the homology

groups by counting the zero columns corresponding to p-simplices, these ranks correspond the

Betti numbers of the persistent homology groups [9].

Remark 3.1.3. The rank of a matrix A is the dimension of the vector space generated by its

columns.
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3.1.4 Results of Persistent Homology

The persistent homology algorithm is a powerful tool for summarizing large amounts of infor-

mation pertaining to the underlying topological features of a dataset. In order to understand

this summary, we need to be able to interpret the resulting output. As mentioned before, this

is known as a persistence diagram. Figure 3.1.3 is an example of such a diagram, a scatter

plot with multiple colors of points, all above the main diagonal. As stated above, both axes of

these diagrams represent the radii of the n-balls growing around each data point. The objects

that are spawning and then die are the homology groups, or more concretely the topological

features. Each point on the plot is colored according to the type of feature it represents (the

dimension of the topological feature), with its horizontal position representing the n-balls radius

for which that feature first appeared, and the vertical position representing the last radius for

which it existed. We can also see how long a feature persists by its distance from the diagonal;

if a point is close to the diagonal it vanished quickly after it first appeared. If a point is far off

the diagonal, then its death was long after its birth, meaning it persisted and is likely a feature

of the space the original data was sampled from. Hence the persistence diagram serves as a

compact summary of all the topological information captured by persistent homology.

Let us now put our theoretical understanding to work with a simple example. Figure 3.1.4

is an example of a filtration for which we will compute persistent homology. Each simplex is

labeled 1 through 7, we will now define the simplicial complex shown in part “d” of Figure 3.1.4

to be K. The simplicial complex K is comprised of simplices 1 through 7. The 0-simplices; 1, 2

and 3 are our initial data points, with simplices 4 through 7 being introduced as we increase the

radius of the discs. We can define Ki to be the subcomplex of K where Ki is the subcomplex

obtained after adding simplex i (i ∈ {1, 2, 3, 4, 5, 6, 7}) to Ki−1. This gives us the filtration

∅ = K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ K4 ⊆ K5 ⊆ K6 ⊆ K7 ⊆= K, where Ki = {1, ..., i}. In this example

we will only look at the 0-th and 1-st persistent Betti numbers, they can be thought of as the

number of connected components and loops respectively. We can simply read the persistent

Betti numbers from each simplicial complex in the filtration, giving us the rank of the persistent
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Figure 3.1.3: Example output of persistent homology. This persistence diagram was generated
from a random subset of the data used in this research.

homology groups at each point in the filtration. We can refer to the radius of the discs when

each new simplex i was added to the filtration as αi, thus we can see what the persistent Betti

numbers are at “times” αi for each i ∈ {1, 2, 3, 4, 5, 6, 7}. From table 3.1.1, we can see that the

number of connected components starts at 1 when the first simplex is added, goes up to 3 as

simplices 2 and 3 are added, goes back down to 2 as simplices 2 and 3 are connected by simplex

4, then goes back down to 1 as simplices 1 and 2 are connected by simplex 5. Similarly we

can see that the number of rings is 0 until simplex 6 is added, then drops back to 0 as soon as

simplex 7 is added.

While this approach to persistent homology does not explicitly calculate the homology groups,

it yields the persistent Betti numbers that contain the relevant information about the topological

features of the space.
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Figure 3.1.4: Example of a simplicial complex filtration.

αi β0 β1

α1 1 0

α2 2 0

α3 3 0

α4 2 0

α5 1 0

α6 1 1

α7 1 0

Table 3.1.1: Table of persistent Betti numbers for Figure 3.1.4

3.2 Bottleneck Matching

In section 3.1.4 we built an understanding for interpreting the persistence diagrams that are

produced by persistent homology. While understanding any one of these diagrams can provide

much insight, the question then becomes; how can we compare these diagrams? How can

we tell if they are summarizing a similar or distinct underlying topological space? There are

several algorithms that have been designed to address just this problem, including; the modified

Gromov–Hausdorff distance, sliced Wasserstein kernel, heat kernel, and bottleneck distance.

For the purposes of this paper, we will be using bottleneck matching to compare persistence

diagrams, as it is an intuitive approach to comparing any two diagrams, and is computable in

O(n1.5log(n)) time [7], something that is necessary for this work due to the large quantity of

diagrams that must be compared. Simply put, the bottleneck distance between two diagrams
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is the largest distance between any associated pairs of points, one from each diagram, in an

optimal matching of points.

3.2.1 Bottleneck Matching Intuition

In the most basic case, we can think of bottleneck matching as pairing up points from some

diagram A, to the closest corresponding point from a second diagram, B. Once we have these

pairs, we can find all the distances between them, record the largest distance and define it to

be the “bottleneck”. We then consider this to be the distance between A and B. While this

may seem like a simple idea, finding an optimal matching of the points from the two diagrams is

anything but. We have to consider all possible matchings and see what the greatest distance is

for a given matching, then minimize across all possible matchings. We also need to consider the

case where the two diagrams that we are comparing have different numbers of points. To address

the case where the cardinality of the two diagrams is different, we add all points on the diagonal

to our consideration, if we see a point from one diagram that has no good corresponding point

in the other, we match that outlying point to the nearest point on the diagonal.

We may also consider this problem through the lens of graph theory. If we consider the points

in a diagram A and points in a diagram B we can consider their disjoint union M = A ⊔ B to

be the nodes of a bipartite graph. We then define the weighted edges of such a graph to be the

distance between associations of pairs of points. We can now think of this problem as minimizing

the maximal weights on all edges of the graph by considering all possible bipartite graphs, where

the disjoint sets are defined to be A and B. While we will formally define bottleneck matching

in terms of bijections from one diagram to another, it is this graph theoretic view of the problem

that allows for a speedy algorithmic implementation, namely in O(n1.5log2n) time [7].
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Figure 3.2.1: Here we see two possible matchings of points on a Red and Blue persistence
diagram; one with high cost (left), and one with low cost (right).

3.2.2 Definition of Bottleneck Matching

The immediate goal of bottleneck matching is to take two diagrams and record their similarity

or dissimilarity in a single scalar value, which is referred to as the bottleneck distance. To this

end, we will formalize this concept by first defining the p-th persistence diagram as follows:

Definition 3.2.1. A persistence diagram of some dimension p, denoted Hp, is a finite multi-set

of points union all points on the diagonal with infinite multiplicity;

Hp = {(x, y)|y ∈ [0,∞) and y > x} ∪ {∪∞
i=1{(x, y)|x = y}}.

Remark 3.2.2. Recall that the multiplicity of an element x in a multi-set is the number of

times x appears in the multi-set.

Given two persistence diagrams A and B we wish to define a bijection between them, we will

denote such a bijection η : A → B. By defining a bijection we have a well defined association

between pairs of points, as every point in A must be mapped to a unique point in B, and every

point in B must have a unique point in A as its inverse image. We then record the supremum

of all distances between pairs of points x = (x1, x2) ∈ A and η(x) = (y1, y2) ∈ B where the

distance between x and η(x) is defined to be ||x − η(x)||∞ = max{|x1 − y1|, |x2 − y2|}. This

gives us a single cost value for a particular η.
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Figure 3.2.2: All possible mappings η : A → B where A is the set of red points, and B is the set
of blue points.

We now wish to consider all possible bijections between our two diagrams A and B, and

minimize the cost value of η. To do this we simply take the infimum of all η.

Hence the definition of the bottleneck distance follows directly from the values described

above. We define the bottleneck distance as follows:

Definition 3.2.3. Let A and B be persistence diagrams. The bottleneck distance between A

and B, denoted W∞ is

W∞ = inf
η:A→B

(
sup
x∈A

||x− η(x)||∞
)

.

Let us now look at a small example of bottleneck matching. Figure 3.2.2 shows us all the

possible mappings from one persistence diagram (red) to another (blue). We will refer to the

mappings described in each sub-figure as ηi where i ∈ {a, b, c, d, e, f}. First we must find the

supx∈A ||x− ηi(x)||∞ for each i. Let us start with ηa. We then see that ||x− ηa(x)||∞ is 12, 5.5

and 6 for each paring of (x, ηa(x)) respectively. Hence supx∈A ||x − ηa(x)||∞ must be 12. We

repeat this computation to obtain the values in table 3.2.1 .
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ηi(x) supx∈A ||x− ηi(x)||∞
ηa(x) 12

ηb(x) 8

ηc(x) 5.5

ηd(x) 12

ηe(x) 9

ηf (x) 8.5

Table 3.2.1: Table of supremum distance values for all bijections between the sets in Figure 3.2.2
.

Now we wish to find the infη:A→B(supx∈A ||x− η(x)||∞) which is simply

inf({12, 8, 5.5, 12, 9.8.5}). Hence our bottleneck distance is W = 5.5.

Remark 3.2.4. We use inf and sup instead of maximum and minimum when defining bottleneck

distances because homology groups can persist infinitely, so it is common to have points in a

persistence diagram of the form (x,∞).

3.3 Software and Tools

While the algorithms and techniques described in Chapters 3.1 and 3.2 are theoretically compli-

cated, so too are their practical implementations. There have been several implementations of

both persistent homology and bottleneck matching created over the past several years. As the

goal of this work is not to modify or improve upon either of these algorithms, simply to assess

their sensitivity to unfair bias in data, we do not write new implementations of these algorithms,

but rather leverage powerful versions that are available as open source libraries.

3.3.1 Data

The data used in this paper is a dataset of criminal sentencing practices from the state of Min-

nesota, collected by the Minnesota Sentencing Guidelines Commission. The data was pulled

from state records and made publicly available according to the statutory roll of the commis-

sion. The dataset was obtained through the Institute for the Quantitative Study of Inclusion,

Diversity, and Equity (QSIDE).
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In their 2021 paper, [12], Smith et. al. find significant racial disparities in the sentencing

practices of federal judges. Given this, and given that our dataset is criminal sentencing data,

we conclude that there is good reason to assume that unfair bias exists in this dataset.

The entire dataset consists of approximately 300,000 data points, with 81 attributes. Each

data point represents an individual that has gone through the sentencing process. The attributes

of the data cover a wide range of information, from the defendants’ demographic information,

to the statute violated, details about the offense, and sentencing length.

In order to use this data in a meaningful way, we used standard preprocessing techniques.

First, we dropped all non-numerical attributes. While we could have used dummy variables to

capture this information in a way that could be processed, this was unnecessary as there were

only a handful of non-numerical attributes, and we did not think the additional dimensions

would add meaningful insights. We then normalized the remaining attributes using z-score

normalization. This was an imperative step as some attributes ranged in the thousands, while

other attributes were binary. In an early attempt at running the persistent homology on the un-

normalized data, we saw very messy results, as attributes like “sentencing year”, which ranged

from 2001 to 2019, completely drowned out attributes like race which only contained nominal

values one through six. Hence normalizing the data allowed for each attribute to contribute

equivalently to the computation.

3.3.2 RIPSER

The software package we use to compute persistent homology is called RIPSER, named for the

Vietoris-Rips complexes that are crucial in computing the persistent homology. For this work we

used the Python wrapper of the C++ library of the same name. RIPSER is a standard imple-

mentation of persistent homology, originally developed in C++ by Ulrich Bauer, and wrapped

for Python by Tralie et. al. [3]. RIPSER stands out among other persistent homology libraries

as it has taken into account all known computational speedups and combined them into one

library. This allowed us to compute higher dimensional persistent homology on relatively large
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datasets in a reasonable amount of time. Much research using persistent homology is limited

by computational resources, so only computes 0-dimensional homology, however thanks to the

speedups offered by RIPSER, we were able to compute 0, 1, 2-dimensional homology easily.

3.3.3 Persim

For comparing the persistence diagrams that are output by RIPSER, we use a package called

Persim. It is a library explicitly built for the comparison of persistence diagrams, and has a

handful of useful algorithms. However for our purposes, we used it specifically for bottleneck

matching. The implementation of bottleneck matching in Persim is based on the Hopcroft-Karp

algorithm for finding maximal matchings on a bipartite graph. This algorithm uses the graph

theory framing of the bottleneck matching problem discussed in section 3.2.1

3.3.4 Framework

For this work, all algorithms and data processing were run using the Python programming

language. Due to its ease of development, vast library system, and status as one of the primary

languages used in data science, it was the clear choice to use. Both RIPSER and Persim are

available as Python packages allowing for simple integration into our data processing pipeline.

Data preprocessing was done with the standard data processing tools from the Pandas library.



4
Applying Persistent Homology to Sentencing
Data

4.1 Experimental Pipeline

The central question this paper seeks to answer is as follows: is persistent homology sensitive

to unfair bias in data? For this to be the case, it would mean that partitioning the data along a

particular protected attribute would yield subsets that had different underlying topologies. To

approach this question we start with a dataset that we have good reason to believe contains

unfair bias, and partition it along attributes that have historically been cause for discrimination.

The hope being that in doing so we will either see distinct underlying spaces, providing evidence

in support of our claim, or similar underlying spaces, providing evidence against.

In this chapter we will outline the experimental pipeline that we use in this work. It consists

primarily of three steps; pre-processing data, applying persistent homology and, subsequently,

bottleneck matching to the data, and finally analyzing and interpreting the results. The method-

ology for pre-processing the data is outlined in section 3.3.1 We apply this pipeline to three

distinct partitions of the data. Firstly we partition based on the county where the sentencing

was issued, we then partitioned the data by race and then by sex, as these are two of the biggest

factors that lead to discrimination.

29
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4.1.1 Use of Persistent Homology

Given a particular attribute that we wish to examine for bias, we partition the dataset along

this attribute. This gives us n disjoint subsets, where n is the number of distinct values for this

attribute. For each of the subsets in the partition, we apply the persistent homology algorithm

supplied by the RIPSER package, and save the resulting persistence diagram for later processing.

For each subset, we computed the 0th, 1st, and 2nd persistent homology groups. Due to the

slower run-time of higher dimensional persistent homology, these were the only dimensions we

computed. Our dataset contains over 300, 000 data points and as a result every subset in

every partition had several thousand data points. However due to limitations in computational

resources, and to the fact that some partitions contained just above 1000 data points, we ran

all persistent homology computations with 1000 data points. This served to ensure that all

computations were run with the same number of data points for consistency.

Despite the relative speed of the RIPSER implementation of persistent homology, it took

about 12 hours to run due to the size of our data partitions, and the number of dimensions of

homology groups we wanted to compute.

4.1.2 Use of Bottleneck Matching & Analysis of Bottleneck Distances

The next step is to compare our persistence diagrams. As discussed previously, we use the

bottleneck matching algorithm provided in the Persim library. For any pair of persistence

diagrams, we are well equipped to compare them. A direct comparison is simple for cases when

we partition data along a binary value, such as sex, but what about when there are many distinct

values in the partition? This would give us many distance values, the question then becomes

what information can we see from a collection of distance values? To address this we take two

approaches to analyzing bottleneck distances, depending on how many persistence diagrams

are being considered. If there are six or fewer diagrams, we analyze them directly, by visually

comparing the diagrams, and determine if the handful of distance values we get are large or
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small as compared to the scale of the diagram. When we have more diagrams to compare, we

calculate all possible distances, and examine their distribution.

To see how all the diagrams relate to each other we compute all
(
n
2

)
distances, where n is

the number of persistence diagrams we get from a given data partition. From an algorithmic

design point of view, this approach is incredibly slow. One might think a work-around would

be to select a single diagram to be a base line, and calculate the bottleneck distances of the

remaining diagrams to the baseline. However due to the fact that bottleneck distances are not

transitive knowing two diagrams distances to a third diagram does not give much information

about the relative distance of the first two diagrams. In order to gain as much information

about the relationships between the diagrams, we take this naive approach and calculate the

distance between all distinct pairs of diagrams. Despite how quick the bottleneck matching

algorithm is for comparing a pair of diagrams, computing all combinations took quite some time

for experiments that partitioned on an attribute with more than a couple dozen distinct values.

To speed up this process we employed a multiprocessing approach to gain a linear time speed

up, where up to 12 distances were computed simultaneously. We were able to do this as each

bottleneck distance computation is independent of any others.

We want to see how all the diagrams are related to each other. If all of the persistence diagrams

are describing similar underlying topologies, then we expect the persistence diagrams to all be

close to each other as measured by the bottleneck distance. If however they are describing

two different underlying spaces, representative of biased and unbiased practices, then we expect

there to be two distinct clusters of diagrams. In the first case, where they are all clustered near

each other, we would expect to see a normal distribution of distance values. In the second case,

we would expect a bimodal distribution, where we see lots of small distance values representing

the distances between diagrams in a cluster, and lots of large distances between diagrams in one

cluster versus diagrams in the other.
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Our analysis thus becomes a search for bimodal versus unimodal distributions of distance

values for the data partitioned by an attribute we suspect to be a determining factor of an

unfair bias.

4.1.3 Experiments

Using the pipeline outlined above, we performed three experiments by partitioning the data

along three attributes; county, race, and sex.

Given that our dataset relates to criminal sentencing practices in the state of Minnesota, we

look to see if the data reveals discrepancies between different counties sentencing practices. If

we expect that a subset of judges in the state will deliver biased sentencing, then we expect the

diagrams representing the counties with those judges to have a high distance from the remainder

of the diagrams. We also use this attribute to validate our approach to this sort of analysis.

Because there are 87 distinct counties, we get
(
87
2

)
distances, with this large number of distances

we will be able to clearly see a unimodal or bimodal distribution if present.

The second experiment we run is partitioning the data by the ‘race’ attribute. There have

been many reports like that done by Smith et. al. [12] that have empirically shown that criminal

sentences are much harsher on people of color as opposed to their white counterparts. Given

that this bias is so well documented, we expect to see vastly different persistence diagrams if it

is the case that the bias results in different underlying topologies.

The third experiment we run is partitioning the data by the ‘sex’ attribute. We run this

experiment for similar reasons as experiment two, a sex is historically a determinant of unfair

bias. In addition, we wish to see how the persistence diagrams differ when we partition only on

a binary value, as the dataset only provides ‘male’ and ‘female’ values.
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4.2 Results

For this paper, we performed three experiments by partitioning the data by the attributes labeled

County, Race, and Sex, and performing the analysis pipeline outlined in the previous section

over each partition respectively.

4.2.1 Experiment 1: Partition by County

We first divided the data into collections by the county where each sentencing took place. Using

this partition, there 87 subsets of data on which to perform persistent homology. By performing

bottleneck matching on every pair of the resulting persistence diagrams, we get the distributions

of bottleneck distances shown in Figure 4.2.1.

In Figure 4.2.1 we can clearly see unimodal distributions of bottleneck distances in each

histogram plot. Based on the reasoning we outlined in section 4.1.2, the unimodality of these

plots implies that we are unable to support the claim that an unfair bias results in significantly

different underlying topologies.

While this is evidence the there is no real significant difference between the underlying topo-

logical spaces of this data partition, this is evidence that supports the idea that by looking at

the modality of the bottleneck distance histograms, we can glean insight into how similar the

subsets of a particular partition are. The fact that we see clear unimodal distributions, implies

that all persistence diagrams are describing similar underlying topological spaces.

4.2.2 Experiment 2: Partition by Race

For the second experiment we partitioned the data by an attribute that we expect to show

significant bias, and thus significantly different underlying topologies.

When performing the experiment with this partition, we get just 6 subsets, as the dataset

only contains 6 distinct race labels. The analysis of bottleneck distances proceeds in the same

manner as Experiment 1, we get the distributions shown in Figure 4.2.2.
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(a) 0-dimensional homology persistence diagram comparisons

(b) 1-dimensional homology persistence diagram comparisons

(c) 2-dimensional homology persistence diagram comparisons

Figure 4.2.1: Histogram distribution of bottleneck distances between 0, 1, and 2-dimensional
persistence diagrams of data partitioned by county. The horizontal axis is the bottleneck dis-
tance, and the vertical axis is the count.



4.2. RESULTS 35

(a) 0-dimensional homology persistence diagram comparisons

(b) 1-dimensional homology persistence diagram comparisons

(c) 2-dimensional homology persistence diagram comparisons

Figure 4.2.2: Histogram distribution of bottleneck distances between 0, 1, and 2-dimensional
persistence diagrams of data partitioned by race. The horizontal axis is the bottleneck distance,
and the vertical axis is the count.
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The distributions of these bottleneck distances shown in 4.2.2 appear to be bimodal, however

as there are only 15 distinct distance values, it is possible this is simply noise, so we examine

the persistence diagrams in Figure 4.2.3 directly. Upon this examination we note that 5 of the 6

diagrams are quite similar, with the 6th being much more sparse. The fact that this single set in

the partition is much more sparse is due to the fact that this value had much fewer data points

than the others. This leads to a high distance between the first 5 distances and the last one,

and low distance between the first 5. This accounts for the bimodality we see in the histogram.

Because the bimodality we see is explained by noise, and the majority of the diagrams are quite

close together, we must conclude that we do not see a difference in the underlying topologies

when partitioning the data by the race attribute.

4.2.3 Experiment 3: Partition by Sex

For our third experiment, we partition our data by the sex attribute. Because this is a binary

attribute we only get two persistence diagrams. To compare them we both visually examine

the persistence diagrams, and look at the single distance value. If we examine the diagrams

in Figure 4.2.4 we can see that they look quite similar. So we look at the absolute bottleneck

distance values for each dimension, those values being: 0.1772, 0.1189, and 0.0818 for dimensions

0, 1, and 2 respectively. As these values are quite small, each being less than 5% of the 3.5 unit

axis, we conclude that these diagrams are not significantly different from each other, meaning

that they do not describe different underlying topologies.
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Figure 4.2.3: Persistence diagrams for each subsets partitioned by race.
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Figure 4.2.4: Persistence diagrams for each subset of the data partitioned by sex.



5
Future Directions

To more rigorously interrogate the question posed in this work there are a few steps that could

be taken. Firstly before topological data analysis is used, analyzing a dataset with classical

statistical tools to show a bias is present may be advantageous. While in this work we have

good reason to suspect bias was present in our dataset, we did not see it directly through classical

statistics.

Given that real world data is often messy, and statistical models might struggle to see an unfair

bias even if one is present, another possible way to address the problem is to generate artificial

data to perform topological data analysis techniques on. However there may be a potential

problem with this approach. Real world data may have significant correlations between many

if not all attributes, something that may not be simulated by randomly generated datasets.

One limitation of the approach we outlined in this work, is that we do not get a lot of

information when partitioning data along an attribute with few distinct values. One way to

address this is to partition along multiple attributes simultaneously. For example in our dataset

we might partition along both race and county attributes.

Due to constraints on computational resources, we only performed persistent homology for

0, 1, and 2 dimensions. Future work could explore the effectiveness of using multiprocessing to

compute the persistent homology, and using that speed up to apply persistent homology to all

39
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dimensions up to the dimensionality of the data, as it is conceivable that discrepancies in the

topological spaces only appear in higher dimensional homology groups.

Another avenue to explore is using alternate coefficient fields when running the persistent

homology, the coefficient field corresponds to the scalar values used in defining the chains. By

default the field Z/2Z is used. The Persim documentation suggest that some features of a space

are only seen when using alternate coefficient fields. They show that a notion of twisting can be

captured by using the field Z/3Z. It may be illuminating to repeat the experimental pipeline

outlined in this work any vary the coefficient field.

The final idea we will present as a possible area to explore in future work is using alternate

metrics for persistence diagram comparison. While bottleneck matching is robust against noise,

other metrics like q-Wasserstein distance are more sensitive to slight variations in the persistence

diagrams. It may also be worthwile to look at metrics that map a persistence diagram to a

continuous metric space so the entire collection can be compared together, rather than pairwise.

Over the course of our experimentation, we failed to find any evidence to support the claim

that unfair bias in datasets is represented by different underlying topological spaces, and could

be captured by persistent homology. However there are many avenues that could be taken in

future works that would further examine this question and provide more definitive evidence.
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Artificial Intelligence is a sub-field of computer science that looks to develop computation sys-

tems that emulate the decision making abilities of sentient organisms. While there are several

advanced approaches to AI that take inspiration directly from biology, many forms of AI are

little more than statistical models. The ultimate goal of an AI system is for it to be able to make

a decision when presented with a novel situation that is similar to situations that the model has

seen before. One thing that the vast majority of AI techniques have in common, is “learning”

how to make decisions based on patterns in large collections of data. The idea of “learning”

in AI corresponds to detection of complicated patterns in a set of data called “training data”

that a programmer will give to a model. Once an AI model has learned from a significant

quantity of training data, the hope is that when given novel data that is in the same format

as the training data, the AI model will be able to correctly make some decision based on it.

One of the most powerful and widely used forms of AI is Machine Learning, an approach to AI

that vaguely approximates the structure of a brain as a neural network. In Machine Learning,

a neural network simulates neurons as nodes in a directed graph, where each node activates

with some intensity based on the input from another node. Each node contains a function that

modifies the input, and dictates the strength of the signal that the node will pass on to the

next node. By systematically varying the parameters of each function in each node, the neural

network can encode decision making abilities.

41
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