
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2018 Bard Undergraduate Senior Projects

Spring 2018

Using Byte Code to Find Idiosyncratic Android Camera Apps Using Byte Code to Find Idiosyncratic Android Camera Apps

Christopher Blake Burnley
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2018

 Part of the Computer Sciences Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Burnley, Christopher Blake, "Using Byte Code to Find Idiosyncratic Android Camera Apps" (2018). Senior
Projects Spring 2018. 290.
https://digitalcommons.bard.edu/senproj_s2018/290

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2018
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2018?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2018/290?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Using Byte Code to Find Idiosyncratic

Android Camera Apps

A Senior Project submitted to The Division of Science,

Mathematics, and Computing of Bard College

By

Blake Burnley

Annandale-on-Hudson, New York

May 2018

i

Abstract

The growing popularity of Android devices has made them an increasing

target for malicious apps. Of course, a malicious app is most effective when

a user is not aware of its intent. Therefore, they often take the form of

ostensibly benign, helpful, and, for that matter, free applications. Our goal

is to discover how common this is among free camera applications. Camera

applications are a good test case because they ought to be very simple. This

paper uses static analysis on the Dalvik byte code of camera applications to

search for certain characteristics or identify applications that demonstrate

behavior that is not expected by the user.

ii

iii

Acknowledgements

I would like to thank...

• My parents for helping and supporting me through everything

• Professor Robert McGrail for keeping me on track and pushing me

every week

• My coaches and teammates for giving me an opportunity each day to

take a break from Senior Project and my classes

iv

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Related Works . 3

2 Background 4

2.1 Background . 4

2.2 Static Analysis . 5

2.3 Byte Code . 7

2.4 APK Files . 10

2.5 Androguard . 12

2.6 Mathematica . 13

3 Methods 14

3.1 Overview . 14

v

CONTENTS vi

3.2 Collecting APKs . 15

3.3 Selecting Methods . 16

3.4 Byte Code Extraction . 17

3.5 Byte Code Refinement . 18

3.6 Method Counting . 20

3.7 Generating Data . 20

4 Data 21

5 Analysis 24

5.1 Intro . 24

5.2 Mean Shift Clustering . 25

5.3 Agglomerate Clustering . 26

5.4 Gaussian Clustering . 27

5.5 K-Means Clustering . 29

5.6 Analysis of Clusters . 31

6 Conclusions 34

6.1 Summary . 34

6.2 Future Work . 36

CONTENTS vii

Bibliography 37

A Gathering Methods 41

A.1 dump methods.py . 41

A.2 methodFinder.py . 42

A.3 main.py . 44

B Results 46

B.1 Data Table . 46

B.2 Similar Applications . 49

CONTENTS viii

List of Figures

2.1 Java vs Dalvik Byte Code . 8

2.2 Dalvik Byte Code Example 9

2.3 APK File Structure . 11

3.1 Process Flow Chart . 15

3.2 Top 20 Methods with the Highest Difference Between Malware

and Benign Apps . 17

3.3 Byte Code Before and After Refinement 19

4.1 Total Number of Methods vs “Suspicious” Methods 22

5.1 Mean Shift Clustering . 25

5.2 Agglomerate Clustering . 27

5.3 Gaussian Mixture Clustering 28

ix

LIST OF FIGURES x

5.4 K-Means Clustering with k = 3 29

5.5 K-Means Clustering with k = 4 30

5.6 K-Means Clustering with k = 10 30

Chapter 1

Introduction

1.1 Introduction

Android devices have consistently been targets of applications that seek to

behave either maliciously or in a way that does not match its stated purpose.

This is due in part to the popularity of Android devices and the ease of

publishing an app. In this paper we seek to use byte code analysis to identify

those applications that employ features or demonstrate behavior that one

would not expect from the purpose of the application.

On the Google Play store alone there are millions of free apps, thousands

of which are camera apps.[1] A trend that is noticeable in the Play Store

1

CHAPTER 1. INTRODUCTION 2

with camera apps, as well as other types, is an over-saturation of free apps.

There are countless applications that do the same thing as another app, with

no obvious distinction. Potential motivations for the large number of free

Android applications are wanting to create apps for resumes, code piracy,

and attempting to disguise malicious apps as useful ones.

In the past the Google Play Store has had a problem with the number of

malware apps that make their way into the marketplace. These apps appear

to be legitimate, sometimes even mirroring popular apps. The creators of

these apps want to attract the largest possible number of users so they create

free apps in hopes that more people will download them.

This paper will highlight the key aspects to understanding and evaluating

Dalvik byte code. It will also explain the process that is needed to get the

data from an APK (Android Package Kit) file so that we can understand

its nature. The paper will then look at the data it created and explain the

conclusions that can be drawn from the data.

CHAPTER 1. INTRODUCTION 3

1.2 Related Works

The DroidAPIMiner project by Yousra Aafer, Wenliang Du, and Heng Yin

from the Department of Electrical Engineering & Computer Science at Syra-

cuse University uses static analysis on the byte code of Android applications

to classify those applications. The project sought to build a classifier for

Android apps that would overcome the shortcomings of permission-based

warning mechanisms. The paper focused on API level information in the

byte code, the package levels, and their parameters, in an attempt to classify

malware. From this paper we used the Android methods that they identified

as having a higher correlation towards malware apps than benign apps.

Chapter 2

Background

2.1 Background

Using the APK files for various camera applications we sought to collect their

byte code and compare the invocation of specific Android API level methods.

We wanted to look for apps that might be demonstrating suspicious behavior

and did so through static analysis of the byte code. Suspicious behavior might

include making method calls that are irrelevant or not needed for the purpose

of an application.

Malicious behavior in Android applications has been an ongoing issue.

An app might seem, on the surface, to be a genuine app, but underneath it

4

CHAPTER 2. BACKGROUND 5

might be performing some suspicious activities. An application might go “off

the rails” when it starts to demonstrate behavior that we would not expect

for a benign app or one of that type. This type of behavior might include

bitcoin mining, for example. Clearly the programmer would want to mask

their activity, as most users would not consent to this type of behavior on

their device. This is why many malware applications appear as legitimate,

free applications, because they hope to attract the largest possible number

of users in order to take over as many devices as possible.

2.2 Static Analysis

Static analysis is the analysis of computer code. Unlike dynamic analysis,

which executes a program and analyzes its behavior, static analysis functions

by considering the program before execution. The level of analysis that is

used can vary from looking at individual functions to looking at the complete

source code. Static analysis can be used to find various errors in a program

such as potential coding errors, program-breaking bugs, and potentially ma-

licious behavior.

One of the most common forms of static analysis is type checking. Type

CHAPTER 2. BACKGROUND 6

checking is performed by the compiler whenever a program is compiled.[2]

Type checking is important because it guarantees a few things before execut-

ing a program. First it makes sure that the arithmetic operations are valid

and computable. For example, in a language like Java, it makes sure that you

can not add an integer to a Boolean. It also makes sure that functions are

called with the proper number and type of arguments. One of the last things

that type checking guarantees is undeclared variable analysis. For example,

in Java, this makes sure that an undeclared variable will never be read by

the program.

Another form of static analysis that is executed in the compiler is op-

timization. Optimization is useful in converting code into a format that is

better in terms of run-time and memory for the machine. It performs op-

erations like simplifying arithmetic equations into fewer steps and carrying

out partial evaluation in a loop during compilation so that it doesn’t have to

recompute.

Another implementation of static analysis is on a whole program level,

not just type checking. Several systems, where a failure during use could

have catastrophic effects, rely on static analysis instead of dynamic analy-

sis.[3] These systems include things like medical devices, nuclear power plant

CHAPTER 2. BACKGROUND 7

software, and aviation software.[4] In all of these systems, static analysis is

the preferred method, since dynamic analysis would open the systems up to

vulnerabilities or potential hazards at runtime.

2.3 Byte Code

Byte code is the machine language of the Java Virtual Machine (JVM) and

Dalvik Virtual Machine(DVM), which are what allow a computer to execute

either Java or Dalvik code. Android applications specifically rely on Dalvik

byte code and the Dalvik Virtual Machine since the APK file contains the

.dex code, which is in Dalvik form.[5]

Dalvik byte code was created specifically for the Dalvik Virtual Machine.

This has since been replaced with the Android Runtime Environment (ART).

The Android Runtime Environment still uses the Dalvik byte code and .dex

files in order to maintain backwards compatibility. In order to understand

the Dalvik byte code it is important to understand the DVM and how it

works.

The DVM is a virtual machine that is optimized for use on mobile devices.

This works by compiling the Java code into byte code for the JVM, which is

CHAPTER 2. BACKGROUND 8

then translated into Dalvik byte code and saved in a .dex file.[6] The contrast

is illustrated in Figure 2.1.

Figure 2.1: Java vs Dalvik Byte Code [7]

The Dalvik virtual machine is register-based and has frames of a fixed

size that are set upon creation. Since the virtual machine is register-based

and not stack-based, it needs fewer, but more complex instructions.[8] Each

frame is made up of only a particular number of registers which is specified

by the method.[9] The Dalvik byte code works by feeding multiple opcodes to

the virtual machine which serve as a set of instructions. Whenever a virtual

machine executes a program it receives a stream of opcodes for each method

in the class, which tell the virtual machine how to execute the program.

Figure 2.2 is an example of the byte code for a method. The first line is

CHAPTER 2. BACKGROUND 9

the method being declared. The next line, 0, has an opcode iget-objectv0. In

this line the virtual machine reads an object reference instance field into x,

or Landroid/support/b/a/i, and then the instance is referenced by y, in this

case Landroid/graphics/drawable/Drawable. The next line, 4, looks to see if

v0 == 0 and if so it jumps to 9. Line c has an opcode invoke-virtual, which

is where it invokes a virtual method. The method it is invoking is outline

by the pattern, ‘class;->method’. In this case the class is Landroid/graphic-

s/drawable/Drawable and the method is getInstrinsicHeight. The next line

moves the result from the previous method to v0 and the following one re-

turns the value of v0. The next three lines are all similar to line 0. Line 22

converts a float into an integer, in this case it is converting v0. The last line

tells it to jump back up to line 8.

Figure 2.2: Dalvik Byte Code Example

CHAPTER 2. BACKGROUND 10

Since smart phones have less memory than modern laptop or desktop

computers the DVM is optimized for low memory requirements and has spe-

cific characteristics that differentiate it from other standard virtual machines.

For example, the constant pool has been modified to use only 32-bit indices

to simplify the interpreter. Standard Java bytecode executes 8-bit stack in-

structions and local variables must be copied to or from the operand stack by

separate instructions. Dalvik instead uses its own 16-bit instruction set that

works directly on local variables. The local variable is commonly picked by

a 4-bit “virtual register” field. This lowers the instruction count and raises

the interpreter speed.[10] These features make it more efficient for use on

portable devices, where memory is limited.

2.4 APK Files

APK files, which stands for Android Package Kit, are used by the Android op-

erating system to distribute and install applications onto the devices. APKs

are a type of archive file, like ZIP and JAR files. The APK contains all

of the program’s code including the .dex files, which we use to analyze the

byte code. The files are created by compiling a program for Android and

CHAPTER 2. BACKGROUND 11

packaging all of its components into one file. A user can download APK

files from official sources, like the Google Play Store, or from other unofficial

marketplaces. A user can also install an APK directly from their computer

via third party applications.

Figure 2.3: APK File Structure [11]

Figure 2.3 shows the file structure of an APK file. At the top level is the

APK. Inside the APK file are two sub-directories, META-INF and res. In

the META-INF folder is the application’s meta data on the contents of the

APK, as well as the signature for it. In the res folder are three sub-folders.

The first is drawables which is where the .png files are located, which are

CHAPTER 2. BACKGROUND 12

used to generate the images for the application. The next subfolder, layout,

consists of binary xml files. The third subfolder is xml, which has more

binary xml files for the application. There are then three files, resources.arsc,

AndroidManifest.xml, and classes.dex. The first file, resources.arsc, contains

the compressed resources file, which helps direct the application to its various

resources. The AndroidManifest.xml file presents essential information about

the application to the Android system. This is information the system must

have before it can run any of the application’s code. Finally the classes.dex

file, the one we are interested in, contains the Java code and all the classes

converted into Dalvik byte code.

2.5 Androguard

Androguard is an open source APK decompilation program written in Python

that allows one to reverse engineer an application.[12] The application allows

one to access the .dex file in the APK and the various components that it

comprises. A user is able to create a DalvikVMFormat object which then

allows them to access the Java class files that make up the .dex file. From

here one can retrieve various pieces of information, such as all the classes and

CHAPTER 2. BACKGROUND 13

methods, the source code, and the Dalvik byte code. For our purposes, we

only focused on the byte code and the methods invoked within it.

2.6 Mathematica

Wolfram Mathematica is a technical computing system developed by Wol-

fram Research. Its functionality covers a wide range of technical computing,

including neural networks, machine learning, image processing, geometry,

data science, and visualizations.[13] The program is useful for generating

various graphs and models, based off of different statistical methods.

We chose Mathematica because we needed statistical inference to examine

and compare the APK files. While it is easy to get the raw data, Mathematica

does a good job converting the raw data into something useful that we can

analyze. We specifically used Mathematica to generate clusters and graphs

for our data.

The main functions that we used in Mathematica were FindClusters and

ListPlot. The FindClusters function allowed us to generate clusters for our

scatter plot data using different clustering algorithms such as k-means, mean

shift, and Gaussian mixture.

Chapter 3

Methods

3.1 Overview

Given a camera application we want to examine its byte code in order to

determine whether the application is behaving in a way that one would ex-

pect. In order to do so we considered the methods that were invoked in the

byte code. For each application we extracted the byte code and counted

the number of times that it invoked a particular “suspicious” method. The

following sections are sequentially ordered and contain brief explanations of

the process at each step. Figure 3.1 is a visual representation of the process

we used.

14

CHAPTER 3. METHODS 15

Figure 3.1: Process Flow Chart

3.2 Collecting APKs

The first step was gathering applications to make up the dataset. All of

the applications that we used came from the Google Play Store. Since we

wanted to focus on camera apps we gathered a sample of 100 unique, free

camera apps. We chose free apps in order to control cost and because many

malicious apps are made free in order to attract the largest number of users.

To download an application’s APK file we used the desktop version of the

Google Play Store and the website APK Downloader.[14][15] The website

allowed us to download an APK file without using a physical Android device.

We downloaded each application by hand.

CHAPTER 3. METHODS 16

3.3 Selecting Methods

In order to determine whether an app was behaving in a way that we expected

we needed a set of specific method calls to look for. We wanted to look for

method calls that would be consistent across all Android applications, so we

looked at Android API level methods. We also wanted method calls that

would be indicative of behavior that we would not expect for an Android

camera application. Again we could use the Android API methods for this.

The methods that we searched for came from the DroidAPIMiner paper,

which found the method calls that were most frequent in a set of malware

apps compared to a set of benign apps. From the paper we selected the

twenty method calls that were most frequent in the set of malware applica-

tions. Figure 3.2 displays the twenty methods we used and the difference in

frequency that were found in malware apps compared to benign apps.

CHAPTER 3. METHODS 17

Figure 3.2: Top 20 Methods with the Highest Difference Between Malware

and Benign Apps [16]

3.4 Byte Code Extraction

The next step in analyzing an application after downloading the APK file

is to extract the byte code. We extracted the byte code from the APK file

by writing a script based off of the Androguard platform and the tutorial

written by Keith Makan. [12][17]

CHAPTER 3. METHODS 18

def dump methods (f i l e , o u t f i l e) :

a = apk .APK(f i l e)

d = dvm. DalvikVMFormat (a . get dex ())

bc f = open(o u t f i l e , ”w+”)

for c u r r e n t c l a s s in d . g e t c l a s s e s () :

for method in c u r r e n t c l a s s . get methods () :

bc f . wr i t e (” [∗] ”+method . get name ()+ method . g e t d e s c r i p t o r ()+”\n”)

byte code = method . ge t code ()

i f byte code != None :

byte code = byte code . ge t bc ()

idx = 0

for i in byte code . g e t i n s t r u c t i o n s () :

bc f . wr i t e (”\t , %x ” % (idx)+i . get name ()+i . get output ()+”\n”)

idx += i . g e t l eng th ()

The script takes in an APK file for an application and writes the byte

code to a specified file. The script uses the Androguard program to create

both an apk and dvm object. With the dvm object we were able to loop over

all of the classes of the application and the methods for each class. Each

time we looped over a method we generated the byte code for it and wrote

the byte code out to a file.

3.5 Byte Code Refinement

Once we generated the byte code for an application, we needed to refine it

in order to efficiently and correctly search for specific methods. Removing

CHAPTER 3. METHODS 19

unnecessary lines of byte code so that it is just a list of the methods that were

invoked allows for more efficient searching. Our program loops over a file and,

the regular expression (invoke.+,)(.+)(\(), finds all of the instances in the

byte code where a method was invoked. It then writes the specific methods’

name to a file, removing both the Dalvik opcodes and the parameters used in

the method. Figure 3.3 demonstrates the difference in the byte code before

and after it is refined.

Figure 3.3: Byte Code Before and After Refinement

CHAPTER 3. METHODS 20

3.6 Method Counting

With the list of methods invoked we sought to count the number of times

that each distinct method appeared in the application. Looping across a file

that contained all the methods we were able to create a dictionary for all

the methods. Each time the script came across a method that was not in

the dictionary it added the method to the dictionary. When it came across a

method that was in the dictionary it increased the count for that method by

one. When the method finished running it would write out the information

to a csv file for analysis.

3.7 Generating Data

After counting the number of times each method appeared we looked for the

number of “suspicious” methods in each application. To count the number

of “suspicious” methods in each application we wrote a Python script that

looped over all the counted methods. When it came across a method that

was in the set of “suspicious” methods it retrieved the count for that spe-

cific method and added it to the total count of suspicious methods for that

application. We ran this script on our 100 apps to generate the dataset.

Chapter 4

Data

For our data we determined which methods each application invoked via the

byte code. This required us to extract the byte code from each application

and analyze it. We counted the number of times that each unique method

was invoked in an app. We used this to make it easier to count the number

of times “suspicious” methods were invoked. After we had the total count

of method invocations we looked at the number of times an app invoked a

“suspicious” method. The methods we considered for were the ones generated

from the DroidAPIMiner paper, as described in the Section 3.2. From those

two values we calculated the proportion of method calls in each app that we

classified as “suspicious” methods.

21

CHAPTER 4. DATA 22

Figure 4.1 is a visual representation of the data. Each dot represents an

application. The x-axis is the total number of method invocations for each

app and the y-axis is the number of “suspicious” invocations.

50000 100000 150000 200000 250000

50

100

150

Figure 4.1: Total Number of Methods vs “Suspicious” Methods

We used a scatter plot to represent the data in order to show the relation-

ship between the total number of methods and the number of “suspicious”

methods. Plotting this relationship allowed us to understand a few things.

The first is that we get a sense of the number of “suspicious” methods that an

app invokes compared to the other applications by looking at its y-value. If

an app invokes a lot of “suspicious” methods then we might want to examine

CHAPTER 4. DATA 23

it further.

We also get a sense of what percentage of the method calls are “sus-

picious” by comparing it to the total number. Knowing the proportion of

method calls that are “suspicious” is helpful because it allows us to see if a

particular app makes “suspicious” calls more frequently than we would ex-

pect. This can be helpful if there is a small app that might only have few

method invocations, but a large proportion of which are considered “suspi-

cious” or a large one that, by its nature invokes a lot of methods, but invokes

“suspicious” ones at a rate that we would expect.

Some noteworthy apps from the results are apps 3 and 63, which did

not have any “suspicious” method calls. App 66 had the most “suspicious”

method calls with 177, but app 62 had the highest proportion of “suspicious”

method calls at 0.001833367285. There was also a group of applications that

appeared to be identical to each other. Apps 13, 14, 36, 77, and 88 all had

the same number of total methods as well as the same number of “suspicious”

methods. Table B.1 in Appendix B shows full list of all the applications and

the results from the tests.

Chapter 5

Analysis

5.1 Intro

We used multiple clustering algorithms via Mathematica to analyze our data.

The various algorithms yielded results that were slightly different from each

other which provided distinct interpretations of the data. Clustering the

data is a useful step since the clusters as a whole can tell us more than each

individual data point can. By looking at clusters of data we get a sense of

different types or characteristics that might be in the applications.

24

CHAPTER 5. ANALYSIS 25

5.2 Mean Shift Clustering

In order to cluster the data we used the mean shift clustering algorithm. The

mean shift algorithm produced three clusters from our data. The first clus-

ter included the applications that had less than 110,000 method invocations,

the second containing those in between 110,000 and 150,000 method invoca-

tions, and the third containing the applications with over 150,000 method

invocations. The results of this method can be seen in Figure 5.1.

50000 100000 150000 200000 250000

50

100

150

Figure 5.1: Mean Shift Clustering

CHAPTER 5. ANALYSIS 26

Mean shift clustering is an analysis technique for locating the maxima

of a density function. It is known as a mode-seeking algorithm. The mean

shift algorithm works by finding a random point and window W. It then

calculates the center or mean of W and shifts the search window to the mean.

It continues this process until convergence. To create multiple clusters one

creates points at all the data points and performs the mean shift algorithm

until convergence. One then merges the windows that end up around the

same mode.

5.3 Agglomerate Clustering

The agglomerate clustering method is similar to some of the others since it

uses the Euclidean distance to group data points. The algorithm starts by

considering each point as an individual cluster. At each step it merges the

closest pair of clusters, based on Euclidean Distance, into one larger cluster.

The process repeats until the desired number of clusters remain. The results

of this method are represented in Figure 5.2

Unlike the mean shift algorithm the agglomerate clustering method re-

sulted in five clusters. A few of these clusters contained only a handful of

CHAPTER 5. ANALYSIS 27

50000 100000 150000 200000 250000

50

100

150

Figure 5.2: Agglomerate Clustering

applications, but the last cluster was by far the largest containing 51 of the

100 applications. The last cluster contained all the applications that invoked

more than 120,000 methods. The rest of the applications were divided into

four clusters.

5.4 Gaussian Clustering

We used a Gaussian mixture algorithm to see if there were any subpopu-

lations within the data. The model is useful for identifying subpopulations

CHAPTER 5. ANALYSIS 28

when one is unsure of their existence. This method of clustering differs from

the others in that the model is based on probability. Instead of looking to

see how close two points are, it looks to see whether a dataset displays a

normal, or Gaussian distribution. The resulting cluster is demonstrated in

Figure 5.3.

50000 100000 150000 200000 250000

50

100

150

Figure 5.3: Gaussian Mixture Clustering

While the other methods gave us multiple clusters, the Gaussian cluster-

ing method only resulted in one cluster. Based off of this model it would

appear that there are not any subpopulations in the data.

CHAPTER 5. ANALYSIS 29

5.5 K-Means Clustering

K-means clustering is similar to the mean shift and agglomerate clustering

methods. The algorithm gets its name since it partitions the data into k dif-

ferent clusters that are based on mean distances. K-means works by creating

k initial points and creating clusters around those points based on Euclidean

distance. It then moves the points to the center of their respective cluster

and recalculates the clusters. It continues this until there is no change in the

clusters. The resulting clusters for this method with k values of 3, 4, and 10

are shown in Figures 5.4, 5.5, and 5.6, respectively.

50000 100000 150000 200000 250000

50

100

150

Figure 5.4: K-Means Clustering with k = 3

CHAPTER 5. ANALYSIS 30

50000 100000 150000 200000 250000

50

100

150

Figure 5.5: K-Means Clustering with k = 4

50000 100000 150000 200000 250000

50

100

150

Figure 5.6: K-Means Clustering with k = 10

CHAPTER 5. ANALYSIS 31

Due to the number of distinct clusters the k-means method yielded, it

supplied us with some of the most useful data for our analysis. The different

clusters provided us with various interpretations of the data.

5.6 Analysis of Clusters

The Gaussian mixture algorithm only yielded one cluster. In terms of our

analysis of the applications this means one of two things; either all the apps

are benign or all of the apps are malicious. Considering that some of the apps

had 0 “suspicious” method calls it does not make sense for those applications

to be classified as malicious. Since the algorithm grouped all the apps to-

gether it is safe to assume that, according to the model, all the applications

are benign. If we were to compare another application to this data set either

it is in the cluster or not. This means that an app would be considered either

benign or “suspicious” with no grey area.

The other algorithms, k-means, mean shift, and agglomerate, yielded

more interesting results. Through each of these clustering methods we were

able to get multiple clusters for the data. Figures 5.1, 5.2, and 5.4 appear

to be the ones that best represent a cluster of applications that, in the best

CHAPTER 5. ANALYSIS 32

case, are “suspicious” and, at worst, potentially malicious.

Looking at Figure 5.6 we can see the results of k-means clustering when

k = 10. The larger clusters we saw in both Figure 5.4 and Figure 5.5, where

we used k-means clustering with k values of 3 and 4, respectively, begin to

break up into smaller clusters. These clusters are only comprised of a handful

of applications. It is interesting to see how in Figure 5.5 a k value of 4 yielded

two clusters, but a k value of 10 yielded ten clusters.

Resulting from all three of these algorithms was a cluster that included

all the applications that invoked 150,000 or more methods. These applica-

tions consistently had the most “suspicious” method calls. Therefore, there

is evidence to suggest that these applications are doing something other than

what we expect them to do. There are also several applications in this clus-

ter that have some of the highest proportion of “suspicious” method calls.

We consider the applications in these clusters to be the “suspicious” applica-

tions, since they make a significant number of method calls that correlate to

malware and are not related to camera functions. We would want to further

examine these applications and potentially reject them.

Looking at all of the clusters we noticed that there are several of them

that start with apps that invoke 120,000 methods. These clusters can be seen

CHAPTER 5. ANALYSIS 33

in Figures 5.1, 5.2, 5.5, and 5.6. Upon further examination of these clusters

we discovered a group of applications that had the same total number of

method invocations as well as the same number of “suspicious” methods.

Upon further examination of these applications it was revealed that they

were created by only two different developers. Each developer had multiple

applications under their name, all of which were camera apps.

We ran our byte code analysis program on sixteen of the applications cre-

ated by the two developers. This revealed that all sixteen of the applications

were nearly identical. All of the applications had 123,917 total method invo-

cations, expect one which had 123,914, and each of them had 80 “suspicious”

method invocations. These results can be seen in table B.2 in Appendix B.

One possible explanation for this is code piracy, where one developer

steals another’s application and only makes a few cosmetic changes so that

they appear different. Another possible explanation is that one developer

might have several apps that appear different, but are identical. Both of these

scenarios could be attempts to make it appear that they have created several

applications. This might be an attempt to increase potential monetization

opportunities. Whatever the reason, these both contribute to the surplus of

free camera applications on the Play Store.

Chapter 6

Conclusions

6.1 Summary

Through static analysis of the byte code of multiple Android camera appli-

cations and the use of several clustering algorithms we are able to develop

clusters of applications that might engage in “suspicious” or irrelevant be-

havior. The applications that comprise these clusters are ones that have a

high number of “suspicious” method calls indicating that they are potentially

doing something unknown to the user or are malware. We would want to

“throw out” the applications that make up these clusters and examine them

further. Before they would be reinstated we would make sure that they are

34

CHAPTER 6. CONCLUSIONS 35

no longer demonstrating behavior that we would consider suspicious.

Along with applications that display “suspicious” behavior, we want to

include applications that seem to be identical to another application. There

is no good reason for one application to be exactly the same as another. After

investigating into several applications that seemed identical, we discovered

over a dozen applications that appeared to be the same. Whenever we dis-

cover a cluster of applications that are identical we could flag them and look

further into whether there is a legitimate reason for it or if there is something

else going on.

This can be useful in the Google Play Store where detecting potentially

malicious applications before they are released to the public is an important

task. The Play Store could use this approach to filter applications before

they allow them to be public. By looking at an application and noticing that

it might be doing something that it does not claim to do, they can reject

it for revision. This could also be useful for individuals who are curious or

concerned about a certain application that they downloaded. When looking

at a large number of applications we are able to see that there are some that

demonstrate behavior that can be “suspicious”.

CHAPTER 6. CONCLUSIONS 36

6.2 Future Work

With thousands of camera apps on the Play Store, the data set could be

expanded several fold. We could run the clusters on all the applications in the

Play Store and open it up for others to submit apps to as well. This would

give us a sharper understanding of the “typical” number of “suspicious”

method calls. We could then reject all the apps that are in the suspicious

clusters and periodically check them again to find new applications that

emerge.

Another way we could expand the project is to include known Android

malware apps, especially those that attempted to mimic camera apps. This

would allow us to develop a baseline to which we could compare the “benign”

camera apps. We would be able to, with more certainty, correlate certain data

points or clusters with malware.

Bibliography

[1] Statista. Number of available applications in the Google Play Store from

December 2009 to December 2017. url: https://www.statista.com/

statistics/266210/number- of- available- applications- in-

the-google-play-store/.

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. “A Sur-

vey of Automated Techniques for Formal Software Verification”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems Volume 27 Issue 7 (July 2008).

[3] Benjamin Livshits. “Improving Software Security With Precise Static

and Runtime Analysis”. PhD thesis. The Department of Computer Sci-

ence and the Committee on Graduate Studies of Stanford University,

Dec. 2006.

37

BIBLIOGRAPHY 38

[4] BA Wichmann et al. Industrial Perspective on Static Analysis. Tech.

rep. Department of Computer and Information Science at Linköping

University.

[5] Google. Application Fundamentals. url: https://developer.android.

com/guide/components/fundamentals.htmll.

[6] Sohail Khan et al. Analysis of Dalvik Virtual Machine and Class Path

Library. Tech. rep. Security Engineering Research Group, Institute of

Management Sciences, Nov. 2009.

[7] What is Dalvik and dalvik-cache? url: https://stackoverflow.com/

questions/7541281/what-is-dalvik-and-dalvik-cache.

[8] Yunhe Shi, Kevin Casey, and M. Anton Ertl and David Gregg. “Virtual

machine showdown: Stack versus registers”. In: ACM Transactions on

Architecture and Code Optimization Volume 4 Issue 4, Article No. 2

(Jan. 2008).

[9] Google. Dalvik bytecode. Feb. 6, 2018. url: https://source.android.

com/devices/tech/dalvik/dalvik-bytecode.

BIBLIOGRAPHY 39

[10] John Rose. “with Android and Dalvik at Google I/O”. In: (May 31,

2008). url: https://blogs.oracle.com/jrose/with-android-and-

dalvik-at-google-io.

[11] Infosec Institute. Android Application Assessment. url: http://resources.

infosecinstitute.com/android-application-assessment/#gref.

[12] Androguard. url: https://androguard.readthedocs.io/en/latest/

index.html.

[13] Wolfram Mathematica. url: https://www.wolfram.com/mathematica/.

[14] Google Play Store. url: https://play.google.com/store.

[15] APK Dowloader. url: https://apps.evozi.com/apk-downloader/.

[16] Yousra Aafer, Wenliang Du, and Heng Yin. “DroidAPIMiner: Mining

API-Level Features for Robust Malware Detection in Android”. In: Zia

T., Zomaya A., Varadharajan V., Mao M. (eds) Security and Privacy

in Communication Networks. SecureComm 2013. Lecture Notes of the

Institute for Computer Sciences, Social Informatics and Telecommuni-

cations Engineering, vol 127. Springer, Cham (Sept. 2013).

BIBLIOGRAPHY 40

[17] Keith Makan. Automated DEX Decompilation using Androguard. Nov. 5,

2014. url: http://blog.k3170makan.com/2014/11/automated-dex-

decompilation-using.html.

Appendix A

Gathering Methods

A.1 dump methods.py

This code is based off of the tutorial written by [17] and modified to fit our

needs.

from sys import argv

from androguard . core . bytecodes import apk

from androguard . core . bytecodes import dvm

def dump methods (f i l e , o u t f i l e) :

a = apk .APK(f i l e)

d = dvm. DalvikVMFormat (a . get dex ())

bc f = open(o u t f i l e , ”w+”)

for c u r r e n t c l a s s in d . g e t c l a s s e s () :

for method in c u r r e n t c l a s s . get methods () :

bc f . wr i t e (” [∗] ”+method . get name ()+ method . g e t d e s c r i p t o r ()+”\n”)

byte code = method . ge t code ()

41

APPENDIX A. GATHERING METHODS 42

i f byte code != None :

byte code = byte code . ge t bc ()

idx = 0

for i in byte code . g e t i n s t r u c t i o n s () :

bc f . wr i t e (”\t , %x ” % (idx)+i . get name ()+i . get output ()+”\n”)

idx += i . g e t l eng th ()

A.2 methodFinder.py

from regex import ∗

import re

import csv

#Funct ion t h a t makes new f i l e w i t hou t l i n e s t h a t dont have p a t t e r n

def se lectMethods (fi leName , pattern , o u t f i l e) :

fh = open(f i leName , ” r ”)

o f = open(o u t f i l e , ”w+”)

#loop

for l in fh :

i f (re . search (pattern , l)) :

m = re . search (pattern , l)

o f . wr i t e (m. group (2)+”\n”)

#c l o s e f i l e

fh . c l o s e ()

o f . c l o s e ()

#count s t h e number o f unique methods in each apk

def methodCounter (f i l ename , o u t f i l e) :

fh = open(f i l ename , ” r ”)

o f = open(o u t f i l e , ”w+”)

#a t t r i b u t e s

l c = 0 #number o f t o t a l methods

dictM = {} #dic tMionary w i th methods and number o f apperances

APPENDIX A. GATHERING METHODS 43

#loop

for l in fh :

l c +=1

i f l in dictM :

dictM [l] += 1

else :

dictM [l] = 1

w=csv . wr i t e r (o f)

for key in dictM :

w. writerow ([key , dictM [key]])

fh . c l o s e ()

o f . c l o s e ()

#count s t h e number o f s u s p e c t methods in each apk

def createData (f i l ename , o u t f i l e , dangMFile) :

#f i l e s used

fh = open(f i l ename , ” r ”)

o f = open(o u t f i l e , ”a+”)

df = open(dangMFile , ” r ”)

#coun t e r s

totalCount = 0

dangCount = 0

#l i s t o f a l l t h e method c a l l s

dl = []

#wr i t e a l l t h e s u s p e c t methods to a l i s t

for l i n e in df :

l i n e = l i n e . s t r i p (’\n ’)

d l . append (l i n e)

reader = csv . reader (fh , d e l im i t e r=’ , ’)

APPENDIX A. GATHERING METHODS 44

#loop ac ro s s t h e f i l e and see i f an methods are in d l

for row in reader :

totalCount = totalCount + int (row [1])

r = row [0] . s t r i p (’\n ’)

i f r in dl :

dangCount = dangCount + int (row [1])

prop = dangCount/ totalCount

w=csv . wr i t e r (o f)

w. writerow ([totalCount , dangCount , f ’{prop : . 1 0 f } ’])

fh . c l o s e ()

o f . c l o s e ()

df . c l o s e ()

A.3 main.py

import os

from methodFinder import ∗

from dump methods2 import ∗

#d i r e c t o r y w i th a l l t h e apks

d i r e c t o ry1 = (”/media/ blake /My Passport / Sproj /apks/”)

d i r e c t o r y = os . f s encode (d i r e c t o ry1)

for f i l e in os . l i s t d i r (d i r e c t o r y) :

f i l ename = os . f sdecode (f i l e)

print (f i l ename)

#check to see i f i t i s an APK f i l e

i f f i l ename . endswith (” . apk”) :

#f i l ename i s a c t u a l name o f apk , f i x c on f u s t i o n

apk = d i r e c t o ry1+f i l ename

APPENDIX A. GATHERING METHODS 45

byteCodeFi le = apk+” bytecode . txt ”

methodsFile = apk+” methods . txt ”

methodCountFile = apk+” methodCount . csv ”

#check to see i f t h e f i l e s a l r e a d y e x i s t s

i f not os . path . e x i s t s (byteCodeFi le) :

#c a l l dump methods on an apk to g e t t h e b y t e code

dump methods (apk , byteCodeFi le)

i f not os . path . e x i s t s (methodsFile) :

#Se l e c t on l y t h e l i n e s t h a t invoke a method

#Edi t t h e b y t e code so t h a t i t i s j u s t t h e method names

se lectMethods (byteCodeFile , ” (invoke .+ ,) (.+) (\ () ” , methodsFile)

i f not os . path . e x i s t s (methodCountFile) :

#count a l l t h e methods in t h e f i l e name

methodCounter (methodsFile , methodCountFile)

#ge t t h e count s o f a l l t h e methods in q u e s t i o n

e l i f f i l ename . endswith (” methodCount . csv ”) :

createData (d i r e c t o ry1+f i lename , d i r e c t o ry1+”dangMethods . csv ” , d i r e c t o ry1+”

dangMethods . txt ”)

Appendix B

Results

B.1 Data Table

Reference Total Count “Suspicious” Count Proportion

1 54588 29 0.0005312522899

2 73923 35 0.0004734656332

3 9622 0 0

4 119718 21 0.0001754122187

5 76824 44 0.0005727376861

6 120511 81 0.0006721378131

7 31731 2 6.30E-05

8 13058 3 0.0002297442181

9 154591 87 0.0005627753233

10 177610 80 0.0004504250887

11 124971 65 0.000520120668

12 102216 65 0.0006359082727

13 123917 80 0.0006455934214

14 123917 80 0.0006455934214

15 176309 54 0.0003062804508

16 178677 100 0.0005596691236

46

APPENDIX B. RESULTS 47

17 177026 129 0.0007287065177

18 128296 46 0.0003585458627

19 80223 31 0.0003864228463

20 183991 158 0.0008587376556

21 202851 167 0.0008232643665

22 247085 75 0.0003035392679

23 182960 126 0.0006886751202

24 181490 119 0.0006556835087

25 40748 25 0.0006135270443

26 140716 45 0.0003197930584

27 153089 37 0.0002416894747

28 65085 24 0.0003687485596

29 178535 92 0.0005153051222

30 172842 60 0.0003471378484

31 41611 20 0.0004806421379

32 186509 52 0.0002788069208

33 168228 122 0.0007252062677

34 73469 38 0.000517224952

35 95303 33 0.0003462640211

36 123917 80 0.0006455934214

37 170228 53 0.0003113471344

38 198379 151 0.000761169277

39 49800 6 0.0001204819277

40 54588 29 0.0005312522899

41 131032 50 0.0003815861774

42 117950 50 0.0004239084358

43 98192 45 0.0004582858074

44 55835 25 0.0004477478284

45 89113 11 0.00012343878

46 175521 43 0.0002449849306

47 137050 83 0.0006056183874

48 87663 40 0.0004562928488

49 134808 33 0.0002447925939

50 12957 8 0.0006174268735

51 187123 143 0.0007642032246

52 34621 4 0.0001155368129

53 189018 135 0.0007142176936

54 123914 80 0.0006456090514

55 227633 145 0.0006369902431

APPENDIX B. RESULTS 48

56 163657 91 0.0005560409882

57 71433 16 0.0002239861129

58 53747 34 0.0006325934471

59 44381 22 0.0004957076226

60 66178 42 0.0006346519992

61 150615 95 0.0006307472695

62 4909 9 0.001833367285

63 1953 0 0

64 58456 16 0.000273710141

65 168420 110 0.0006531290821

66 160539 177 0.001102535832

67 129601 65 0.00050153934

68 69165 26 0.0003759126726

69 62382 40 0.0006412106056

70 65703 30 0.0004566001552

71 42434 6 0.0001413960503

72 33801 8 0.0002366793882

73 28981 4 0.0001380214623

74 61062 36 0.0005895647047

75 175120 77 0.0004396984925

76 71484 26 0.000363717755

77 123917 80 0.0006455934214

78 95918 20 0.0002085114369

79 181097 54 0.0002981827418

80 196206 69 0.0003516712027

81 131979 85 0.0006440418551

82 132538 39 0.0002942552325

83 210351 88 0.0004183483796

84 170789 110 0.0006440695829

85 41186 20 0.0004856019036

86 61819 12 0.0001941150779

87 24262 18 0.000741900915

88 123917 80 0.0006455934214

89 56003 28 0.0004999732157

90 93200 32 0.0003433476395

91 145751 62 0.0004253830162

92 67083 28 0.0004173933784

93 97593 45 0.0004610986444

94 28138 16 0.0005686260573

APPENDIX B. RESULTS 49

95 28745 16 0.0005566185424

96 74869 22 0.0002938465854

97 164789 70 0.000424785635

98 168782 91 0.0005391570191

99 158936 89 0.0005599738259

100 47715 40 0.0008383108037

B.2 Similar Applications

Reference Total Count “Suspicious” Count Proportion

13 123917 80 0.0006455934214

14 123917 80 0.0006455934214

36 123914 80 0.0006456091

77 123917 80 0.0006455934214

88 123917 80 0.0006455934214

101 123917 80 0.0006455934

102 123917 80 0.0006455934

103 123917 80 0.0006455934

104 123917 80 0.0006455934

105 123917 80 0.0006455934

106 123917 80 0.0006455934

107 123917 80 0.0006455934

108 123917 80 0.0006455934

109 123917 80 0.0006455934

110 123917 80 0.0006455934

111 123917 80 0.0006455934

	Using Byte Code to Find Idiosyncratic Android Camera Apps
	Recommended Citation

	tmp.1525189333.pdf.kKlft

