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Abstract

The goal of this project is to find the expected value and standard deviation of the center of
mass in selected random configurations. The center of mass, which is a unique point in a system
where the mean distribution of the mass is located, is calculated by dividing the sum of all of the
the masses times the position they are at by the total mass of the system. The configurations
considered in the paper vary upon the way we choose the positions in the configuration. In
his senior project, Finn Hardy determined that the expected value of the center of mass of
random configurations on the one-dimensional integer lattice 0, 1, . . . , n is equal to n/2, where
a random configuration is obtained by randomly assigning to each i between 0 and n a mass
of value m or M , with probability p and 1 � p respectively. In this project, I will propose a
formula for the standard deviation of the center of mass of this lattice, as well as the expected
value and the standard deviation of the center of mass in two other random configurations: the
one-dimensional uniform case, where the positions are chosen uniformly from 0 to 1, and the
two-dimensional uniform case, where the angle ✓, based on whom the x and y coordinates are
calculated, is chosen uniformly from 0 to 2⇡ on a unit circle. RStudio will be extensively used to
create our database and statistically analyze obtained results. More complicated computations
will be performed in Mathematica.
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1
Introduction

1.1 Center of Mass in General

The center of mass is, in simplest words, the mean position of the mass in an object. Due to

its widely-used applications, it is not surprising that it piqued attention of many, who set their

minds to further analyze the behavior and distribution of the center of mass. There is no doubt

in the significance of this concept in sciences such as mathematics or physics. However, one

might not realize how omnipresent this idea is in our everyday lives. A few years ago I came

across a very interesting type of discipline, namely, rock balancing. It is an art in which rocks

or stones of various shapes and sizes are naturally balanced on top of each other without the

use of any other supporting materials. Little did I know back then that the stability of the rock

structure depends heavily on the location of each stone’s center of mass, relative to the support

points. Many wonder about how some dancers, for instance, in ballet, seem to defy gravity as

they move. The answer lies in the location of one’s center of mass, that is, the point where

the average distributions of mass of our body is situated in. If you stand straight, assuming a

neutral pose, your center of mass will likely be somewhere within your body, most probably

below your belly button. However, should you change position of any of your limbs, the center

of mass shifts.
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Also, locating the center of mass in any system proves to be very useful in many disciplines

such as astronomy, body motion, engineering designs, which is why it would be helpful to find

any information related to accomplishing this task. In this paper, we will consider simple con-

figurations, in which we will attempt to find the expected value (a predicted value, or a value

that the result tends to) and the standard deviation (a measure of how spread out the values

are) of the center of mass in hope that any findings will potentially facilitate the analysis of the

center of mass in higher-dimensional systems, or more complex configurations.

1.2 Overview

This senior project will analyze center of mass in three di↵erent configurations separately. First,

chapter 2 provides thorough description of the cases considered and the results obtained, defi-

nitions and theorems as well as formulas and algorithms used throughout the paper. It will also

discuss motivation for choosing this project topic.

Chapters 3, 4 and 5 are each devoted to introducing a new configuration. The chapters have

a similar structure: the first sections will briefly describe the cases considered, the next few

sections will provide both proofs and approximations for the standard deviation of the center of

mass, as well as the expected value of the center of mass (in second and third cases), followed

by sections on the simulations performed in the statistical software RStudio in comparison to

results obtained from exact value formulas and analysis of results, which includes comparisons

of approximations to exact values.

Chapter 6 discusses possible future research that would further explore the topics this senior

project addresses.

At the end of the project, appendices with RStudio and Mathematica codes are provided.
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Preliminaries

The first section of this chapter describes di↵erent configurations, whose centers of mass will be

analyzed in this project. Next sections provide relevant definitions and theorems used throughout

the paper, information about previous work and methods, as well as the summary of results.

2.1 Motivation

At the beginning of the project, I was interested in continuing Finn Hardy’s senior project [7],

which mainly concerned looking for the expectation for the center of mass of finite integer grids,

in which the positions are assigned discretely in an orderly manner, so that all points are equally

spaced from each other. I tried to find a formula for the standard deviation of the center of mass

in such a system. After that I looked at other interesting cases, and attempted to find the

expected value and standard deviation in those systems. Thus, in this project, primarily three

cases are considered:

• one-dimensional discrete case, in which a mass of m or M is randomly assigned to

points on a one-dimensional lattice that are equally spaced from each other,

• one-dimensional uniform case, in which we choose positions uniformly between 0 and

1 and then assign a mass of m or M randomly to each position,
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• two-dimensional uniform case, where we look at a unit circle, the angle ✓ is chosen

uniformly, and each point is randomly assigned a mass of m or M .

Below are pictures that illustrate the cases of concern. The uniformly chosen positions in the

one-dimensional uniform case are labeled as y1, y2, . . . , yn. The uniformly chosen angles ✓i in the

two-dimensional case are labeled as t0, t1, . . . , tn.

Figure 2.1.1. One-dimensional discrete case (top) and one-dimensional uniform case (bottom)

Figure 2.1.2. Two-dimensional uniform case
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Due to the widespread applications of the concept of the center of mass in various disci-

plines, any findings in these cases will hopefully facilitate the process of calculating it in more

complicated systems.

2.2 Relevant Definitions and Theorems

In this project, we will consider the center of mass of random configurations on coordinate

planes, in which we assign to each position a mass of value m and M , with probability p and

1� p, respectively. An example of such system that we will consider is a one-dimensional lattice

with indices from 0 to n so that all the points are equally spaced from each other. Before we

proceed, let us define terms that will be used extensively throughout this project. The theorems

and definitions stated can be found in the textbook Introduction to Probability with Statistical

Applications by Geza Schay [2].

The center of mass is, as mentioned before, is a unique point in a system, where the average

distribution of all the masses is located at.

Definition 2.2.1. (Center of Mass) The center of mass of a system is defined as

CM =

Pn
i=0XiMiPn
i=0Mi

,

where n is the number of nodes, Mi is the random variable for the value of mass, which is m

and M with probabilities p and 1� p respectively, Xi is the coordinate of mass Mi, and i is the

index numbered between 0 and n.

In other words,

Mi =

(
m with probability p

M with probability 1� p.

The total mass of the system is given by

Mtot =
nX

i=0

Mi.

4

First, let us define a random variable:
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Definition 2.2.2. (Random Variable) A random variable is a real-valued function defined

on a sample space. 4

For instance, let’s say we toss a coin twice, and we observe whether it lands head (H) or tail

(T ) up. The sample space in this case is {HH,HT, TH, TT}. The event, say, the “number of

heads obtained” is called a random variable, and it is given by a real-valued function

X(HH) = 2,

X(HT ) = X(TH) = 1,

X(TT ) = 0.

Before defining discrete and continuous random variables, as well as expected value and stan-

dard deviation, we need to know what probability and distribution functions are, since their

notation will be widely used.

Definition 2.2.3. (Probability Function) For any random variable X on any probability

space, the probability function of X is the function f(x) = P(X = x), which is defined for all

possible values x of the random variable X. 4

Definition 2.2.4. (Distribution Function) For any random variable X on any probability

space, the distribution function of X is the function F (x) = P(X  x), which is defined for all

x 2 R. 4

Definition 2.2.5. (Discrete and Continuous Random Variables) A random variable is

considered to be discrete if it has a finite, or a countably infinite number of possible values it

can take. A random variable is said to be continuous if its possible values constitute a finite or

infinite interval. Furthermore, its distribution function is not a step function, but a continuous

function. 4

Definition 2.2.6. (Probability Density) Let X be a continuous random variable. If there

exists a function f that is nonnegative and integrable over R, and for which
R x
�1 f(t)dt = F (x)

for all x, then it follows that f is called the probability function of X. 4
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Since we are dealing with expected value and standard deviation of many random variables

in this paper, we will define these terms as well as any other related concepts used in the next

chapters.

Definition 2.2.7. (Expected Value) For any discrete random variable X, we define the

expected value of X as

E[X] =
X

pixi,

where pi = P(X = xi), for any finite sums. For any continuous random variable X with density

function f(x), we define the expected value of X as

E[X] =

Z 1

�1
xf(x)dx,

as long as the improper integral is absolutely convergent. 4

Theorem 2.2.8. (Expected Value of the Sum of Two Random Variables) For any two

random variables X and Y whose expected values exist,

E[X + Y ] = E[X] + E[Y ].

Corollary 2.2.9. (Expected Value of a Linear Function of Several Random Variables)

For any random variables X1, X2, . . . , Xn with finite expected values, where n is a positive integer,

and constants a1, a2, . . . , an, it follows that

E
"

nX

i=1

aiXi

#
=

nX

i=1

aiE[Xi].

Theorem 2.2.10. (A Constant is Independent of Any Random Variable) Let X be

any random variable, and let Y = a, where a is a constant. Then it follows that X and Y are

independent of each other.

Definition 2.2.11. (Independence of Two Random Variables) Let X and Y be random

variables. X and Y are independent of each other if and only if for all interval A and B, the

following holds:

P(X 2 A, Y 2 B) = P(X 2 A)P(Y 2 B).

4
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Definition 2.2.12. (Expected Value of the Product of Two Independent Random

Variables) Let X and Y be any two independent random variables whose expected value

exists. Then

E[XY ] = E[X]E[Y ].

4

Definition 2.2.13. (Variance and Standard Deviation) Let X be any random variable.

Then the variance and standard deviation of X are defined as follows:

Var(X) = E[X2]� E[X]2

and

SD(X) =
p

Var(X),

provided that Var(X) exists. 4

Definition 2.2.14. (Covariance) Let X and Y be any random variables. If E[X], E[Y ], and

E[XY ] all exist, then the covariance of X and Y is

Cov(X,Y ) = E[XY ]� E[X]E[Y ].

4

We need to define conditional probability in order to state the theorem of total expectation,

which we will use to compute the expected value of the center of mass.

Definition 2.2.15. (Conditional Expectation for Discrete Random Variables) If X and

Y are discrete random variables such that fX|Y = P(X = x | Y = y) exists, then the conditional

expectation of X given Y = y is defined by

Ey[X] =
X

x:fX|Y (x)>0

xfX|Y (x, y).

4
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Theorem 2.2.16. (Theorem of Total Expectation) Provided that all expectations below

exist, then it follows that

E[EY [X]] = E[X].

Since Mi is a random variable that assigns a mass m with probability p and a mass M with

probability 1� p, it follows that

E[Mi] = mp+M(1� p).

As we have to often deal with the expected value of Mi or M2
i in this paper, let us define ↵a as

↵a = m
a +M

a(1� p),

where a is an exponent. We can use this definition as follows:

E[Mi] = mp+M(1� p) = ↵1,

Var(Mi) = E[M2
i ]� E[Mi]

2 = m
2
p+M

2(1� p)� [mp+M(1� p)]2 = ↵2 � ↵
2
1,

as well as

E[Ma
i ] = m

a
p+M

a(1� p) = ↵a.

2.3 Previous Work

In Finn Hardy’s senior project [7], he proved that the expected value for the center of mass on a

one-dimensional lattice in the discrete case is n
2 , where n is the number of nodes. More generally,

Hardy proved that for both symmetric and asymmetric configurations, the expected value of the

center of mass of any n-dimensional grid is equal to n
2 . He performed a lot of experiments which

theoretically verified his claim that regardless of the values of the masses m and M , as well as

the probability p, the center of mass is always in the middle of the grid - the expected value for

the center of mass for each component of the lattice turned out to be n
2 . Below are definitions

and theorems cited from Hardy’s project:
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Definition 2.3.1. A grid is a coordinate plane consisting of small squares with x-axis, y-

axis, and z-axis. Let d � 1 and let L
d be the grid [n] ⇥ [n] ⇥ [n] ⇥ · · · ⇥ [n] = [n]d where

[n] = {0, . . . , n}. 4

Theorem 2.3.2. The expected value for the center of mass of L
1
is

n
2 .

The following theorem is in Hardy’s project, but I will provide a di↵erent proof below:

Theorem 2.3.3. Let d be a positive integer. The expected value for the center of mass for each

component of L
d
is

n
2 .

Proof. We can prove this claim by using Theorem 2.2.16 about total expectation and conditional

probability for discrete random variables. Let CM be the discrete random variable representing

the center of mass, and let the total mass variable, say, Mass = Mtot. According to Theorem

2.2.16, E[CM ] is equal to the expected value of the conditional expected value of CM given

that Mass =Mtot. In other words, if we let Mtot be the total mass of the configuration, Mi be a

random variable that assigns a mass m with probability p and a mass M with probability 1� p,

and i be the position of the mass Mi on this one-dimensional lattice, then we would have that

E[CM ] = E
P

iMiP
Mi

�
=

n+1X

k=0

E
"P

iMiP
Mi

�����Mass = Mtot

#
P(Mass = Mtot).

We will now prove that in the one-dimensional discrete case,

E[CM ] =
n

2
.

Let k be the total number of masses m in the configuration, and n + 1 � k be the number of

masses M . Then it follows that

Mtot =
nX

i=0

Mi = km+ (n+ 1� k)M.

We also have that in this case

E[Mi|Mass = Mtot] =
km+ (n+ 1� k)M

n+ 1
,

P(Mass = Mtot) =

✓
n+ 1

k

◆
p
k(1� p)n+1�k

.
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Plugging these into our equation, we have

E[CM ] =
n+1X

k=0

E [
P

iMi|Mass = Mtot]

E [
P

Mi|Mass = Mtot]
P(Mass = Mtot) =

n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

km+ (n+ 1� k)M
·E
hX

iMi|Mtot

i
=

=
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

km+ (n+ 1� k)M
· n(n+ 1)

2
· km+ (n+ 1� k)M

n+ 1
=

n

2
.

2.4 Methods

2.4.1 Formulas

Since the formula for the center of mass is in a fraction form, in calculating its expectation and

standard deviation, we need to find ways to compute the expected value of the ratio of two

random variables (the numerator and the denominator):

E[CM ] = E
P

XiMiP
Mi

�
.

This term proves to be hard to compute unless, for instance, we assume that there are k of the

masses m and n+ 1� k of the masses M , in which case it would follow that

E[CM ] = E
P

XiMiP
Mi

�
=

E [
P

XiMi]

E [
P

Mi]
.

Throughout the paper, Taylor approximation formulas are extensively used to estimate expected

value and variance of a ratio of two random variables, which are found in the article by Professor

Howard Seltman from CMU [3] who summarizes the resulted approximations using two books:

Kendall?s Advanced Theory of Statistics by Alan Stuart and Keith Ord [4] and Survival Models

and Data Analysis by Regina C. Elandt-Johnson [5].

Let R and S be any random variables. Then the first-order approximation for the expected

value of the ratio of two random variables is

E[R/S] ⇡ E[R]

E[S] , (first order)

the second-order Taylor approximation for expected value is

E[R/S] ⇡ µR

µS
� Cov(R,S)

µ
2
S

+
Var(S)µR

µ
3
S

, (second order)
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and the first-order Taylor approximation for variance is

Var(R/S) ⇡ µ
2
R

µ
2
S


�
2
R

µ
2
R

� 2
Cov(R,S)

µRµS
+

�
2
S

µ
2
S

�
. (first order)

We can thus estimate the expected value of the center of mass using first two approximations.

Once we find the expected value E[CM ], we can approximate the standard deviation using the

third equation directly, or first using the formula for variance

Var(X) = E[X2]� E[X]2,

and then either the first-order or second-order Taylor approximation for the expected value of

the center of mass squared, after which we can compute standard deviation by taking the square

root of the result.

As mentioned above, if we assume the number of one of the masses from the beginning, we can

find the expected value and standard deviation without using approximations. Let Mi be the

random variable which is m with probability p and M with probability 1� p, n be the number

of nodes, k be the number of masses m and Mtot be the total mass of the system. Then using

the theorem for total expectation, we have that the expected value of the center of mass is

E[CM ] =
n+1X

k=0

E[CM | Total Mass = Mtot]P(Total Mass = Mtot)

and

E
⇥
CM

2
⇤
=

n+1X

k=0

E[CM
2 | Total Mass = Mtot]P(Total Mass = Mtot),

where

P(Total Mass = Mtot) =

✓
n+ 1

k

◆
p
k(1� p)n+1�k

and

Mtot =
nX

i=0

Mi = km+ (n+ 1� k)M.

2.4.2 Algorithms

In order to compute approximations and formulas which include complicated double, triple

or quadruple summations, we can use Mathematica. The code for the algorithms is included
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in Appendix B. We can also use the simplify command in this program to simplify complex

equations. Since it is impossible to compute the exact value formulas for big n’s in R (more

specifically, for n  103+28) because of the binomial term inside the summations, Mathematica

can be used to do so. Below are calculated summations that are most commonly used throughout

the project:
nX

i=0

1 = n+ 1,

nX

i=0

i =
n(n+ 1)

2
,

nX

i=0

i
2 =

n(n+ 1)(2n+ 1)

6
,

nX

i=0

nX

j=0
i 6=j

1 = n(n+ 1),

nX

i=0

nX

j=0
i 6=j

ij =
3n4 + 2n3 � 3n2 � 2n

12
=

n(n+ 1)(n� 1)(3n+ 2)

12
.

In this paper,
Pn

i=0

Pn
j=0i 6=j

ij is abbreviated to
P

i 6=j .The other summations are calculated in

Mathematica analogically to the provided code in Appendix B.

We can perform simulations in RStudio in order to obtain the expected value and standard de-

viation of the center of mass in di↵erent configurations. The codes for the three cases considered

in this paper are included in Appendix A. The codes also include algorithms for approximations,

which are run simultaneously with the simulations.

In the code for simulations, we set the values of m, M , and create a sample space with these

masses using the sample.space() command. We then set the value of the probability p of getting

a small mass m, the number of nodes n. For the one-dimensional discrete case, we create a sim-

ple vector with positions from 0 to n. For the one-dimensional uniform case, we create a vector

with positions chosen randomly and uniformly from 0 to n by using the runif() command. We

then assign a mass of m with probability p and M with probability 1 � p using the sample()

command. As for the two-dimensional uniform case, we create the angles ✓ uniformly from 0 to

2⇡, based on which we obtain x and y coordinates of the circle. Then we we used the sample()
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command like in the previous cases, to assign masses to each of the coordinates. We generate

data sets and set the number of times to repeat the process of creating a center of mass to be

103 � 1 times. We then use the mean() command to estimate the expected value of the center

of mass, and the sd() command to find its sample standard deviation. With these data sets, we

can also create histograms of results to look at the distribution of the values of the center of

mass, or histograms of the sampling distribution of the means.

2.5 Summary of Results

Below is the list of theorems and approximations found for expected value and standard devia-

tion of the center of mass in each of the three cases considered. All the formulas have references

to the sections which explain how they were derived. Throughout this project, the proven/the-

oretical formulas are referred to as exact value formulas.

One-dimensional Discrete Case: Standard Deviation

Exact Value Formula:

SD(CM) =

vuut�n+ 2

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

✓
n+ 1

k

◆
pk(1� p)n+1�k km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2

(section 3.2)

Approximation a1:

SD(CM) ⇡

s
n(n+ 2)(↵2 � ↵

2
1)

12(↵2 + n↵
2
1)

(section 3.3)

Approximation a2:

SD(CM) ⇡

s
n(n+ 2)(↵2 � ↵

2
1)

12(n+ 1)↵2
1

(section 3.3)
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One-Dimensional Uniform Case: Expected Value

Exact Value:

E[CM ] =
1

2
(section 4.2)

One-Dimensional Uniform Case: Standard Deviation

Exact Value Formula:

SD(CM) =

vuut 1

12

n+1X

k=0

✓
n+ 1

k

◆
pk(1� p)n+1�k km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
(section 4.3)

Approximation s1:

SD(CM) ⇡
r

↵2

12(↵2 + n↵
2
1)

(section 4.4)

Approximation s2:

SD(CM) ⇡
r

↵2

12(n+ 1)↵2
1

(section 4.4)

Two-Dimensional Uniform Case:

Expected Value Approximation:

E[CM ] ⇡ (0, 0) (section 5.2)

Standard Deviation Approximation:

SD(CM) ⇡ (0, 0) (section 5.3)
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3
Center of Mass in the One-dimensional Discrete Case

3.1 Introduction to the Case

We begin our project with the investigation into the one-dimensional discrete case. We perform

simulations on an integer lattice with positions indexed in order 0, 1, . . . , n. As already men-

tioned, Finn Hardy proved in his senior project that the expected value of the center of mass in

this case is E[CM ] = n
2 . What we are seeking to find is the standard deviation of the center of

mass in this system. To prove this, we would first have to compute the variance. The di�culty

here is that the first term of the typical formula for variance, Var(CM) = E[CM
2] � E[CM ]2,

i.e., Var
⇣Pn

i=0 iMiPn
i=0 Mi

⌘
= E

⇣Pn
i=0 iMiPn
i=0 Mi

⌘2�
� E

hPn
i=0 iMiPn
i=0 Mi

i2
, is very hard to compute directly. The

next section provides a proof for the exact value of the standard deviation of the center of mass,

followed by a section discussing possible approximations.

3.2 Formula for Variance and Standard Deviation

First, we will try to find the exact value of the variance of the center of mass by using total

expectation theorem and conditional expected value. The formula for variance is Var(CM) =

E[CM
2]� E[CM ]2.
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Theorem 3.2.1. The variance and the standard deviation of the center of mass in the one-

dimensional discrete case are

Var(CM) = �n+ 2

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

✓
n+ 1

k

◆
p
k(1� p)n+1�k km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
,

(3.2.1)

and

SD(CM) =

vuut�n+ 2

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

✓
n+ 1

k

◆
pk(1� p)n+1�k km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
.

(3.2.2)

Proof. For the proof, we let CM be discrete random variable, and let the total mass variable,

say, Mass = Mtot. According to Theorem 2.2.16, E[CM
2] is equal to the expected value of

the conditional expected value of CM
2 given that Mass =Mtot. In other words, if we let Mtot

be the total mass of the configuration, Mi be a random variable that assigns a mass m with

probability p and a mass M with probability 1� p, and i be the position of the mass Mi on this

one-dimensional lattice, then we would have that we would need to find the following:

E[CM
2] = E

"
(
P

iMi)
2

(
P

Mi)
2

#
=

n+1X

k=0

E
"
(
P

iMi)
2

(
P

Mi)
2

�����Mass = Mtot

#
P(Mass = Mtot).

Let k be the total number of masses m in the configuration, and n + 1 � k be the number of

masses M . Then it follows that

Mtot =
nX

i=0

Mi = km+ (n+ 1� k)M.

Given that the total mass of the system is Mtot, and since we have n+ 1 nodes, hence

E[M2
i | Mass = Mtot] =

km
2 + (n+ 1� k)M2

n+ 1
.

Thus, we have

E[CM ] =
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
· E
⇣X

iMi

⌘2 ����Mtot

�
=

=
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
· E

2

4
nX

i=0

i
2
M

2
i +

X

i 6=j

ijMiMj

����Mtot

3

5 .
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Since E
hP

i 6=j ijMiMj | Mtot

i
= E [MiMj ]

P
i 6=j ij, we need to find E [MiMj | Mass = Mtot],

where i 6= j. Because we are looking at the expected value of the product of two distinct random

variables, we can either have the product of two small masses, m2, two big masses, M2, or one

small mass and one big mass (mM or Mm). Given that we have k of small masses m, and

n + 1 � k of big masses M , the number (total count) of such products of two distinct random

variables would be k(k � 1) of m2’s, (n + 1 � k)(n � k) of M2’s, and 2k(n + 1 � k) of Mm’s

and mM ’s together. To find the expected value, we have to sum all these possibilities together

and then divide the result by n(n+1), which is the total number of combinations we can obtain

through taking a product of two distinct random variables out of n+1 random variables. Thus,

we have that

E[MiMj | Mass = Mtot] =
mM · 2k(n+ 1� k) +m

2 · k(k � 1) +M
2(n+ 1� k)(n� k)

n(n+ 1)
.

With help of Mathematica, I tried to simplify and order the above equation with respect to k,

m and M , and found that it simplifies to the following:

E[MiMj | Mass = Mtot] =
(km+ (n+ 1� k)M)2 � (km2 + (n+ 1� k)M2)

n(n+ 1)
.

As a result,

E

2

4
X

i 6=j

ijMiMj | Mass = Mtot

3

5 = E [MiMj ]
X

i 6=j

ij = E [MiMj ] ·
3n4 + 2n3 � 3n2 � 2n

12
=

=
(km+ (n+ 1� k))2 � (km2 + (n+ 1� k)M2)

n(n+ 1)
· n(n+ 1)(n� 1)(3n+ 2)

12
=

=
(n� 1)(3n+ 2)

12

⇥
(km+ (n+ 1� k))2 � (km2 + (n+ 1� k)M2)

⇤
.

Going back to finding the expected value of the center of mass squared and plugging in the

obtained results, we have

E[CM
2] =

n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
· E

2

4
nX

i=0

i
2
M

2
i +

X

i 6=j

ijMiMj

����Mass = Mtot

3

5 =

=
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
·

0

@E[M2
i | Mass = Mtot]

nX

i=0

i
2 + E

2

4
X

i 6=j

ijMiMj

����Mass = Mtot

3

5

1

A =
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=
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
·

n(n+ 1)(2n+ 1)

6
· km

2 + (n+ 1� k)M2

n+ 1
+

+
(n� 1)(3n+ 2)

12

⇥
(km+ (n+ 1� k)M)2 � (km2 + (n+ 1� k)M2)

⇤ �
=

=
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
·

(n+ 1)(n+ 2)

12
· (km2 + (n+ 1� k)M2)+

+
(n� 1)(3n+ 2)

12
· (km+ (n+ 1� k)M)2

�
=

=
(n� 1)(3n+ 2)

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
·
�
km

2 + (n+ 1� k)M2
�
.

Hence, the variance of the center of mass would be

Var(CM) = E[CM
2]� E[CM ]2 =

=

"
(n� 1)(3n+ 2)

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
·
�
km

2 + (n+ 1� k)M2
�
#
�n

2

4
=

= �n+ 2

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

�n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
·
�
km

2 + (n+ 1� k)M2
�
.

In order to get the standard deviation of the center of mass, we need to take the square root of

the equation above. Thus,

SD(CM) =

vuut�n+ 2

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

✓
n+ 1

k

◆
pk(1� p)n+1�k km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
.

Since this formula involves a summation with a binomial inside, it can be hard to compute

it for large n, so it would be better to find a formula that does not include one. Nonetheless,

we can use the formula obtained to compute the standard deviation in R for n  103 + 28

since R cannot compute the binomial
�n+1

k

�
for larger n’s. It is, however, possible to do so with

Mathematica. We tried to simplify the term and it turns out that the FullSimplify() function in

Mathematica leads to terms containing hypergeometric functions. The output of the command

applied to our formula for standard deviation would be

1

12

"
(n+ 2)(1� p)n�

⇣
m+Mn
m�M

⌘2 ⇣
(n+ 1)2p(m+M) 3F̃2

⇣
�n,

m+Mn
m�M ,

m+Mn
m�M ; 2m+M(n�1)

m�M ,
2m+M(n�1)

m�M ; p
p�1

⌘

m�M
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�
(p� 1)(m�M) 3F̃2

⇣
�n� 1, M(n+1)

m�M ,
M(n+1)
m�M ; m+Mn

m�M ,
m+Mn
m�M ; p

p�1

⌘⌘

m�M
� n� 2

#
,

where 3F̃2 is a type of the generalized, or Gauss’s hypergeometric function [8] defined by the

hypergeometric series as follows

pF̃q(a1, . . . , ap; b1, . . . , bq; z) =
1X

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

· z
n

n!
,

where (x)n = x(x�1) · · · (x�(n�1)) for n � 0 is a falling factorial. As we can see, hypergeometric

functions contain summations as well, which might not solve our original issue.

3.3 Approximations for Variance and Standard Deviation

One of the ways we can try to find the standard deviation of the center of mass is by using the

typical formula for variance, Var(X) = E[X2] � E[X]2. We know from Hardy’s senior project

that the latter term is equal to
�
n
2

�2
. Now let us look at the former term and apply it to our

case. We would have

Var(CM) = E
"✓Pn

i=0 iMiPn
i=0Mi

◆2
#
�
⇣
n

2

⌘2
.

The problematic term is the expected value of the center of mass squared. Unfortunately, the

numerator and denominator are not independent of each other. Thus, we need to look for ways

of finding or approximating the term. We could either use first-order approximation for the

expected value of the ratio of two random variables:

E[R/S] ⇡ E[R]

E[S] ,

or second-order Taylor expansion for the expected value of the ratio of two random variables from

a paper by Professor Howard Seltman from CMU [3]. The second-order Taylor approximation

the expected value of a ratio of two random variables is as follows:

E(R/S) ⇡ µR

µS
� Cov(R,S)

(µS)2
+

Var(S)µR

(µS)3
.

We can use any of these to estimate E[CM
2], since E[CM ] was already computed.
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First, we will use the first-order approximation. We will prove that the standard deviation of

the center of mass is:

SD(CM) ⇡

s
n(n+ 2)(↵2 � ↵

2
1)

12(↵2 + n↵
2
1)

. (3.3.1)

To show that this is true, we want to calculate the expected value of the center of mass squared

using the approximation:

E[CM
2] = E

Pn
i=0 iMiPn
i=0Mi

�
⇡ E [

Pn
i=0 iMi]

E [
Pn

i=0Mi]
.

We calculate the nominator and denominator separately:

E
"

nX

i=0

iMi

#
= E

2

4
nX

i=0

i
2
M

2
i +

X

i 6=j

ijMiMj

3

5 = E
⇥
M

2
i

⇤ nX

i=0

i
2 + E[MiMj ]

X

i 6=j

ij =

= E
⇥
M

2
i

⇤ nX

i=0

i
2 + E[Mi]E[Mj ]

X

i 6=j

ij =
n(n+ 1)(2n+ 1)

6
↵2 +

n(n+ 1)(n� 1)(3n+ 2)

12
↵
2
1.

E
"

nX

i=0

Mi

#
= E

2

4
nX

i=0

M
2
i +

X

i 6=j

MiMj

3

5 = E
⇥
M

2
i

⇤ nX

i=0

1 + E[MiMj ]
X

i 6=j

1 =

= E
⇥
M

2
i

⇤ nX

i=0

1 + E[Mi]E[Mj ]
X

i 6=j

1 = (n+ 1)↵2 + n(n+ 1)↵2
1.

Thus, we have

E[CM
2] ⇡ E [

Pn
i=0 iMi]

E [
Pn

i=0Mi]
=

n(n+1)(2n+1)
6 ↵2 +

n(n+1)(n�1)(3n+2)
12 ↵

2
1

(n+ 1)↵2 + n(n+ 1)↵2
1

=

=
1

12

2n(n+ 1)(2n+ 1)↵2 + n(n+ 1)(n� 1)(3n+ 2)↵2
1

(n+ 1)↵2 + n(n+ 1)↵2
1

=
2n(2n+ 1)↵2 + n(n� 1)(3n+ 2)↵2

1

12(↵2 + n↵
2
1)

.

Hence, we have the

E[CM ] ⇡ 1

12

2n(2n+ 1)↵2 + n(n� 1)(3n+ 2)↵2
1

↵2 + n↵
2
1

.

Then the variance of the center of mass would be

Var(CM) = E[CM
2]� E[CM ]2 ⇡ 1

12

2n(2n+ 1)↵2 + n(n� 1)(3n+ 2)↵2
1

↵2 + n↵
2
1

� n
2

4
=

=
1

12


2n(2n+ 1)↵2 + n(n� 1)(3n+ 2)↵2

1 � 3n2(↵2 + n↵
2
1)

↵2 + n↵
2
1

�
=
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=
1

12


(4n2 + 2n� 3n2)↵2 + (3n3 � n

2 � 2n� 3n3)↵2
1

↵2 + n↵
2
1

�
=

=
1

12


(n2 + 2n)↵2 � (n2 + 2n)↵2

1

↵2 + n↵
2
1

�
=

n(n+ 2)(↵2 � ↵
2
1)

12(↵2 + n↵
2
1)

.

The approximation of the standard deviation, which we will call a1, is therefore

SD(CM) ⇡

s
n(n+ 2)(↵2 � ↵

2
1)

12(↵2 + n↵
2
1)

. (a1)

We can now try to compute the variance using mentioned second-order Taylor approximation

for expected value of the ratio of two random variables. In our case, R = (
Pn

i=0 iMi)
2 =

Pn
i=0 i

2
M

2
i +

P
i 6=j ijMiMj and S = (

Pn
i=0Mi)

2 =
Pn

i=0M
2
i +

P
i 6=j MiMj , where

P
i 6=j are

double sums
nP

i=0

nP
j=0

such that i 6= j. We can calculate all the the summations in Mathematica.

The code is in Appendix B.1. Thus, we have

E[R] =
n(n+ 1)(2n+ 1)

6
E[M2

i ] +

"
n(n+ 1)

2

�2
� n(n+ 1)(2n+ 1)

6

#
E[Mi]E[Mj ] =

=
n(n+ 1)(2n+ 1)

6
↵2 +


3n4 + 2n3 � 3n2 � 2n

12

�
↵
2
1,

E[S] = (n+ 1)E[M2
i ] + n(n+ 1)E[Mi]E[Mj ] = (n+ 1)↵2 + n(n+ 1)↵2

1,

Cov(R,S) = E[RS]�E[R]E[S] = E

2

4

0

@
nX

i=0

i
2
M

2
i +

X

i 6=j

ijMiMj

1

A

0

@
nX

i=0

M
2
i +

X

i 6=j

MiMj

1

A

3

5�E[R]E[S].

The covariance term proves to be too complicated to calculate, because of the first term in the

equation above.

Another way we can estimate the variance of the center of mass is by using first-order Taylor

approximation from the same paper mentioned above, which is as follows

Var(R/S) ⇡ µ
2
R

µ
2
S


�
2
R

µ
2
R

� 2
Cov(R,S)

µRµS
+

�
2
S

µ
2
S

�
.

We will prove that

SD(CM) ⇡

s
1

12

n(n+ 2)(↵2 � ↵
2
1)

(n+ 1)↵2
1

. (3.3.2)

In this case, we have R =
Pn

i=0 iMi and S =
Pn

i=0Mi. Then:

E[R] = E
"

nX

i=0

iMi

#
=

n(n+ 1)

2
↵1,
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E[S] = E
"

nX

i=0

Mi

#
= (n+ 1)↵1,

�
2
S = Var

 
nX

i=0

Mi

!
=

nX

i=0

Var(Mi) = (n+ 1)(↵2 � ↵
2
1),

�
2
R =

nX

i=0

i
2Var(Mi) =

n(n+ 1)(2n+ 1)

6
(↵2 � ↵

2
1).

To find the covariance, we use the second-order Taylor approximation for expected value of the

ratio of two variables to solve for covariance, and more precisely, the term closest to the one we

need (2Cov(R,S)
µS

):

E(R/S) ⇡ µR

µS
� Cov(R,S)

(µS)2
+

Var(S)µR

(µS)3

n

2
=

n

2
� Cov(R,S)

(µS)2
+

(n+ 1)(↵2 � ↵
2
1)

n(n+1)
2 ↵1

µ
3
S

Cov(R,S)

µS
=

(n+ 1)(↵2 � ↵
2
1)

n(n+1)
2 ↵1

µ
2
S

.

Now we calculate each term of our formula for variance:

µ
2
R

µ
2
S

=
n
2

4
,

�
2
R

µ
2
R

=
n(n+1)(2n+1)

6 (↵2 � ↵
2
1)

n2(n+1)2

4 ↵
2
1

=
1
6(2n+ 1)(↵2 � ↵

2
1

1
4n(n+ 1)↵2

1

,

2
Cov(R,S)

µRµS
= 2

(n+ 1)(↵2 � ↵
2
1)

n(n+1)
2 ↵1

µRµ
2
S

= 2
(n+ 1)(↵2 � ↵

2
1)

n(n+1)
2 ↵1

n(n+1)
2 ↵1(n+ 1)2↵2

1

= 2
(↵2 � ↵

2
1)

(n+ 1)↵2
1

,

�
2
S

µ
2
S
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Hence, we have
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2
1)

(n+ 1)↵2
1

=
1

12

(n2 + 2n)(↵2 � ↵
2
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1
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1

12
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.

Thus, the second approximation of the standard deviation, which we will call a2, would be

SD(CM) ⇡

s
1

12

n(n+ 2)(↵2 � ↵
2
1)

(n+ 1)↵2
1

. (a2)
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3.4 Simulations and Exact Value

In this section we will look at the results obtained from the simulations and ones we get from

the exact value formula (Theorem 3.2.1.). I wrote a code in R to conduct simulations for the

standard deviation in this configuration, using the provided definition of the center of mass,

CM =
Pn

i=0 iMiPn
i=0 Mi

. The results we obtain by setting m = 1, m = 10 and varying probability p as

well as the number of nodes n are portrayed in the table below:

Figure 3.4.1. Standard deviation from simulations for the one-dimensional discrete case, where m = 1 is
one of the masses, M = 10, p is the probability, and n is the number of nodes.

It appears that the standard deviation increases as n increases. For these specific parameters,

the results also increase as the probability increases. The simulations also indicate that we obtain

di↵erent results if we vary any of the variables - including the values of the masses.

Figure 3.4.2. Standard deviation from exact value formula for the one-dimensional discrete case, where
m = 1 is one of the masses, M = 10, p is the probability, and n is the number of nodes.
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Since the results from simulations are prone to variation, we compute the formula for the exact

value (3.2.2), stated in the Theorem 3.2.1 in section 2 of this chapter, as shown in the table above.

The code for the simulations, as well as the exact value formula are included in Appendix A.1.

Since R cannot compute the formula for big values of n, I also included the Mathematica code

for the exact value formula which we used to calculate the standard deviation for big n’s in

Appendix B.2. The table above presents standard deviation for m = 1, M = 10, and varied p

and n so that we can compare it with results from the simulations. These results are undoubtedly

very close to those we obtained from the simulations, which indicates that the simulations are

fairly accurate.

We notice that as we increase the value of mass M , there is a limit to which the standard

deviation tends to. We will thus record the standard deviation obtained through maximizing

the M value so that we get the maximum standard deviation we can get from the software. The

table below summarizes results for standard deviation of the center of mass obtained through

this sampling in Mathematica:

Figure 3.4.3. Exact value standard deviation for the one-dimensional discrete case, where m = 1 is one
of the masses, M is the other mass as the mass tends to +1, p is the probability, and n is the number
of nodes.

What’s more, as opposed to the expected value of the center of mass which relies solely on n,

the standard deviation depends on all the factors — the probability, the number of nodes, and

the values of masses. Intuitively, the standard deviations in the n = 100 columns seem to di↵er
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by around a factor of a little over 3 compared to those in column n = 1000. It seems to be the

case in n = 1000 and n = 10000. It is possible that since n increases by a factor of 10 in those

cases, then the standard deviation increases by approximately
p
10 ⇡ 3.16227766017. This will

be further analyzed later in this section.

It is possible to create a table with results of standard deviation for a basic case, where m = 1

and M = 0. In this case, the exact value formula (Theorem 3.2.1),

SD(CM) =

vuut�n+ 2

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

✓
n+ 1

k

◆
pk(1� p)n+1�k km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
,

would give us 0 in the denominator of the fraction
(n+1

k )pk(1�p)n+1�k

km2+(n+1�k)M2 . More specifically, we en-

counter this issue when, in case of m = 1 and M = 0, we perform the summation for k = 0, so

that in the denominator, we have

�n+1
k

�
p
k(1� p)n+1�k

km2 + (n+ 1� k)M2
=

�n+1
k

�
p
k(1� p)n+1�k

0 ·m2 + (n+ 1� k)02
=

�n+1
k

�
p
k(1� p)n+1�k

0
.

That said, if, say, k = 0, that means there are 0 of the masses m, and so the whole system only

includes masses M = 0. This case can therefore be disregarded, because all the masses are 0, so

the center of mass is not defined in the first place. Hence, the table with standard deviations for

m = 1 and M = 0 is provided below:

Figure 3.4.4. Exact Value standard deviation for the one-dimensional discrete case, where m = 1 is one
of the masses, M = 0 is the other mass, p is the probability, and n is the number of nodes.
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Again, we can see that there is some relationship between standard deviations in columns

with varying n’s. More specifically, if for the same values of p, m and M we increase the number

of nodes n by x, the standard deviation seems to increase by a factor of
p
x. Say, if we consider

n = 100 and n = 500 columns, the n increases by a factor of 5, and at the same time, the standard

deviation seems to increase by a little over 2, possibly the square root of 5. For instance, if we

compare the standard deviations in this case in the row with probability p = 0.1, and n = 100,

n = 500, and look at the ratio of the latter to the former, we get

19.604

9.28272
⇡ 2.111881,

and the square root of 5 is
p
5 ⇡ 2.2360679775.

If we look at the same row, and n = 500, n = 1000, where n increases by a factor of 2, we would

get

27.5528

19.604
⇡ 1.405468272,

and the square root of 2 is
p
2 ⇡ 1.41421356237.

Although the exact value formula does not help in explaining this behavior of the standard

deviation, both of the approximations shed some light on to why the patterns above occur. The

approximations we have are:

SD(CM) ⇡

s
n(n+ 2)(↵2 � ↵

2
1)

12(↵2 + n↵
2
1)

(a1)

and

SD(CM) ⇡

s
n(n+ 2)(↵2 � ↵

2
1)

12(n+ 1)↵2
1

. (a2)

We notice that ↵1 = mp+M(1� p) and ↵2 = m
2
p+M

2(1� p) both depend on the probability

p, and the value of masses m and M , and not the number of nodes n. Thus, if we fix the values

of these variables, we can rewrite the 2nd approximation as follows:

SD(CM) ⇡

s
n(n+ 2)

n+ 1
· ↵2 � ↵

2
1

12↵2
1

=

r
n(n+ 2)

n+ 1
·A
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where

A =

s
↵2 � ↵

2
1

12↵2
1

is some constant given values of p, m and M . If we increase n by a factor of x, we would have

SD(CM) ⇡
r

xn(xn+ 2)

xn+ 1
·A,

meaning the standard deviation would increase by
q

xn(xn+2)
xn+1 ·A

q
n(n+2)
n+1 ·A

=

q
xn(xn+2)

xn+1q
n(n+2)
n+1

=

s
xn(xn+ 2)

xn+ 1
· n+ 1

n(n+ 2)
=

r
x(xn+ 2)

xn+ 1
· n+ 1

n+ 2
,

which is close to
p
x as n goes to infinity in which cause we could cancel xn + 2 with xn + 1,

and n + 1 with n + 2 to get an approximation. That is why as we have seen in this section, if

we increase n from 100 to 5000 (by a factor of 5), then the standard deviation increases by:
s

5 · 100(5 · 100 + 2)

5 · 100 + 1
· 100 + 1

100(100 + 2)
⇡ 2.22729939356,

whereas
p
5 ⇡ 2.2360679775.

We can come to the same conclusion by considering the first approximation, although it is

not as clear as in the second approximation. We can see that since the dominating term in

the numerator is n(n + 2) ⇡ n
2 and since the denominator has one n, the standard deviation

would change by roughly the square root of whatever n is increased by. Since we are using

approximations for analysis, the increase in the standard deviation is an approximations as well.

Another thing worth considering is that if we look at the tables with m = 1, M ! 1 and

m = 1, M = 0, we notice that the columns with results for n = 100, n = 500, n = 1000 in both

of the tables are flipped versions of each other. This suggests that, more precisely, the standard

deviation of the center of mass in this case depends on the ratio of the masses m/M (as opposed

to the value of each of the masses separately), in addition to probability p and number of nodes

n. This is because for m = 1,M ! 1, the ratio goes to 0, and for m = 1,M ! 0, the ratio

goes to infinity. Below are two more tables, which provide results for m = 1,M = 1000 (ratio

m/M = 0.001) and m = 1,M = 0.001 (ratio m/M = 1000):
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Figure 3.4.5. Exact value standard deviation for the one-dimensional discrete case, where m = 1 is one
of the masses, M = 1000 is the other mass, p is the probability, and n is the number of nodes.

Figure 3.4.6. Exact value standard deviation for the one-dimensional discrete case, where m = 1 is one
of the masses, M = 0.001 is the other mass, p is the probability, and n is the number of nodes.

Looking at the exact value formula,

SD(CM) =

vuut�n+ 2

12
+

(n+ 1)(n+ 2)

12
·
n+1X

k=0

✓
n+ 1

k

◆
pk(1� p)n+1�k km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
,

we can tell that these observations are accurate - considering the term km2+(n+1�k)M2

(km+(n+1�k)M)2 , if we

multiply both m and M by some constant c (so that their ratio stays the same), the value of

the term does not change:

k(cm)2 + (n+ 1� k)(cM)2

(k(cm) + (n+ 1� k)(cM))2
=

c
2(km2 + (n+ 1� k)M2)

c2(km+ (n+ 1� k)M)2
=

km
2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
.
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3.5 Analysis of Results

In this section, we will analyze all the results we obtained for the standard deviation of the

center of mass in the one-dimensional discrete case in depth. We compare the approximations

for the standard deviation by calculating relative errors with respect to the numbers we get

from the exact value formula stated in Theorem 3.2.1. (�). We create tables with 8 columns:

the 1st column from the left provides information on the parameters used, the 2nd column

provides results from simulations denoted as s (an average of 10 random samples to lessen the

variability), the 3rd column provides the results from the exact value formula and is denoted as

�. The 4th and 5th columns compute approximations from formulas 3.3.1 (denoted as a1) and

3.3.2 (denoted as a2) respectively. The 6th and 7th columns compare the approximations a1 and

a2 to � by computing the relative error. The last column (on the very right) depicts the ratio

|� � a1|/|� � a2|, i.e., it compares which approximation gives results closer to the actual value

(�). If the ratio is greater than 1, then the second approximation (a2) is closer to the standard

deviation obtained through the exact value formula (�), and if the ratio is less than 1, then

the first approximation (a1) yields values closer to the actual value. Below are two of the tables

summarizing the data with results for m = 1, varied M ’s, p = 0.5, and n = 100, n = 1000,

n = 10000.

Figure 3.5.1. Standard deviation of the center of mass in the one-dimensional discrete case, where m = 1
is one of the masses, M is the other mass, p = 0.5 is the probability, and n = 100 is the number of
nodes. The standard deviation from simulations is denoted by (s), the exact value is denoted by �, the
approximation 3.3.1 is denoted by a1, and the approximation 3.3.2, is denoted by a2.
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Figure 3.5.2. Standard deviation of the center of mass in the one-dimensional discrete case, where m = 1
is one of the masses, M is the other mass, p = 0.5 is the probability, and n = 1000 is the number of
nodes.

Figure 3.5.3. Standard deviation of the center of mass in the one-dimensional discrete case, where m = 1
is one of the masses, M is the other mass, p = 0.5 is the probability, and n = 10000 is the number of
nodes.

Again, for n = 10000, we have to use Mathematica to compute the standard deviation from

the exact value formula as it contains a summation for large n, which cannot be computed in

RStudio. The relative errors we see in the tables indicate that both of the approximations are

very close to the results from the exact value formula. The last column from the left, which

compares the approximations by computing the ratio of their di↵erences as compared to �, tells

us that the approximation a2 which uses first-order Taylor approximation for variance is a better

estimate for the standard deviation of the center of mass.
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Last but not least, as part of our analysis of results, let us go back to the results obtained

from the exact value formula in the previous section. It is worth mentioning that if we were to

standardize our results (as shown below, by dividing the position index i by n, thus dividing the

results in the table by n), it seems that the standard deviation approaches 0 as n gets larger and

larger. We will look into this option of standardization later in the paper, in chapter 4 section

6 when we compare it with the standard deviation of the one-dimensional uniform case. The

standardization is as follows

CM =

Pn
i=0 iMiPn
i=0Mi

standardize�������! CM =

Pn
i=0(i/n)MiPn

i=0Mi
=

1

n
·
Pn

i=0 iMiPn
i=0Mi

.

Standardizing would cause the positions of the masses to be within the (0, 1) interval.
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4
Center of Mass in the One-dimensional Uniform Case

4.1 Introduction to the Case and Simulations

Let us consider another variation of configurations on the one-dimensional lattice — instead of

indexing the positions in order from 0 to n, we chose the indices i uniformly, between 0 and 1.

Thus, our formula for the center of mass becomes

CM =

Pn
i=0 YiMiPn
i=0Mi

,

where Yi is a uniform random variable, which uniformly assigns a position between 0 and 1 to

the ith mass, Mi. The variables Mi and Yi are independent of each other, and calculating the

expected value and standard deviation of the former is not a problem. With Yi coming from a

uniform distribution between 0 and 1, it follows that

E[Yi] =
0 + 1

2
=

1

2
,

and

E[Y 2
i ] =

Z 1

0
u
2
fU (u)du =

Z 1

0
u
2 · 1du =

1

3
u
3

����
u=1

u=0

=
1

3
.

We modify the code of the discrete case so that the positions are assigned uniformly. The code is

provided in Appendix A.2. In this case, we will first try to find the expected value and standard

deviation of the center of mass “by hand” to see if they match our results from simulations,
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which will be provided later. In the next section we will find the expected value of the center of

mass in this uniform case, and after that we will look at variance and standard deviation.

4.2 Expected Value

We expect the expected value of the center of mass to be 1
2 , since the positions are assigned

randomly from the uniform function, between 0 and 1. We will provide a rigorous proof for the

finding, as well as approximations that indicate similar value.

Theorem 4.2.1. The expected value of the center of mass in the one-dimensional uniform case

is

E[CM ] =
1

2
. (4.2.1)

Proof. To prove this, we will use total expectation theorem and conditional expectation defini-

tion, where Mtot is the total mass of the configuration, k is the total number of masses m in the

configuration, which occur with probability p, and n+ 1� k is the number of masses M , which

occur with probability 1� p:

E[CM ] =
X

E[CM | Mass = Mtot]P(Mass = Mtot).

We also have that

P(Mass = Mtot) =

✓
n+ 1

k

◆
p
k(1� p)n+1�k

and

Mtot =
nX

i=0

Mi = km+ (n+ 1� k)M.

We can now calculate the expected value as follows:

E[CM ] = E
P

YiMiP
Mi

�
=
X

E
"P

YiMiP
Mi

�����Mass = Mtot

#
P(Mass = Mtot).

Since Yi and Mi, as well as
Pn

i=0 YiMi and
Pn

i=0Mi are independent variables (because of the

given total mass of the system), and since E[Yi] = 1
2 , we have

E
hX

YiMi | Mtot

i
=

nX

i=0

E[YiMi | Mtot] =
nX

i=0

E[Yi | Mtot]E[Mi | Mtot] =
1

2

nX

i=0

E[Mi | Mtot] =
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=
1

2
(n+ 1) · km+ (n+ 1� k)M

n+ 1
=

1

2
km+ (n+ 1� k)M.

Thus, we have

E[CM ] =
X

E
"P

YiMiP
Mi

�����Mass = Mtot

#
P(Mass = Mtot) =

=
X E [

P
YiMi | Mass = Mtot]

E[
P

Mi | Mass = Mtot]
P(Mass = Mtot) =

X�n+1
k

�
p
k(1� p)n+1�k

km+ (n+ 1� k)M
·1
2
[km+(n+1�k)M ] =

=
1

2

n+1X

k=0

✓
n+ 1

k

◆
p
k(1� p)n+1�k =

1

2
.

As for the approximations for this case, we can try to use first-order Taylor approximation.

We have that

E(R/S) ⇡ µR

µS
� Cov(R,S)

(µS)2
+

Var(S)µR

(µS)3
,

where R =
Pn

i=0 YiMi and S =
Pn

i=0Mi. Since Yi is a uniform random variable, we know

that E[Y1] = 1
2 and Var(Yi) =

1
12 . Since Mi and Yi are independent, it follows that E[MiYi] =

E[Mi]E[Yi]. Thus, we can calculate needed components:

µR = E
"

nX

i=0

YiMi

#
=

nX

i=0

E[YiMi] =
nX

i=0

E[Yi]E[Mi] =
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2
E[Mi] =
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2
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"

nX

i=0

Mi

#
= (n+ 1)↵1,

�
2
R = Var

 
nX

i=0

YiMi

!
=

nX

i=0

Var(YiMi) =
nX

i=0

⇥
E[Mi]

2Var(Yi) + E[Yi]2Var(Mi) + Var(Yi)Var(Mi)
⇤
=

=
nX

i=0


↵
2
1
1

12
+

1

4
(↵2 � ↵

2
1) +

1

12
(↵2 � ↵

2
1)

�
=

nX

i=0


1

12
↵
2
1 +

1

4
↵2 �

1

4
↵
2
1 +

1

12
↵2 �

1

12
↵
2
1

�
=

=
nX

i=0


1

3
↵
1
2 �

1

4
↵
2
1

�
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◆
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S = Var

 
nX

i=0

Mi

!
=

nX

i=0

Var(X1) = (n+ 1)(↵2 � ↵
2
1),

Cov(R,S) = E[RS]� E[R]E[S] = E

2

4
nX
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YiM
2
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nX

i 6=j

YiMiMj

3

5� µRµS =
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=
nX

i=0

E[Yi]E[M2
i ]+

nX

i 6=j

E[Yi]E[MiMj ]�µRµS =
1

2
(n+1)↵2+
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2
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2
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2
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1

2
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2
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2
1].

As a result, we obtain the following formula for approximated expected value of the center of

mass:

E(R/S) ⇡
1
2(n+ 1)↵1

(n+ 1)↵1
�

1
2(n+ 1)[↵2 � ↵

2
1]

(n+ 1)2↵2
1

+
(n+ 1)(↵2 � ↵

2
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(n+ 1)3↵2
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1
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2
�
✓
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2
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◆
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1

2
�
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2
1 � ↵2 + ↵

2
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◆
=

1

2
.

Therefore, by second-order Taylor approximation for expected value of the ratio of two random

variables, the estimated expected value of the center of mass in this uniform case is

E[CM ] ⇡ 1

2
,

which is what we expected it to be.

Concluding, both the rigorous proof with the given mass, as well as the approximations confirm

that the expected value of the center of mass, where positions are assigned uniformly between 0

and 1, is equal to 1
2 . We will also see later on that the simulations turn out to be accurate since

the expected value of the center of mass fluctuates around the value of 1
2 .

4.3 Formula for Variance and Standard Deviation

In this section, we will derive a formula for variance, and subsequently for standard deviation

of the center of mass. We can find the standard deviation of the center of mass in this one-

dimensional uniform case by first calculating the variance from formula

Var(CM) = E[CM
2]� E[CM ]2.

In the previous section, we found that E[CM ] = 1
2 (Theorem 4.2.1), thus we need to compute

the first term of the formula above. This section will prove the following theorem:
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Theorem 4.3.1. The variance and standard deviation of the center of mass in the one-

dimensional uniform case are

Var(CM) =
1

12

n+1X

k=0

✓
n+ 1

k

◆
p
k(1� p)n+1�k km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
(4.3.1)

and

SD(CM) =

vuut 1

12

n+1X

k=0

✓
n+ 1

k

◆
pk(1� p)n+1�k km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
. (4.3.2)

Proof. We can prove this theorem in the same way we proved the theorem for the standard

deviation of the center of mass in the one-dimensional discrete case. The only thing that di↵ers

is the formula for the center of mass, since in this case the positions are chosen uniformly. Let

CM be discrete random variable, and let the total mass variable, say, Mass = Mtot. According

to the theorem, E[CM
2] is equal to the expected value of the conditional expected value of CM

2

given that Mass =Mtot. In other words, if we let Mtot be the total mass of the configuration, Mi

be a random variable that assigns a mass m with probability p and a mass M with probability

1� p, and i be the position of the mass Mi on this one-dimensional lattice, then we would have

that we would need to find the following:

E[CM
2] =

X
E[CM

2 | Mass = Mtot]P(Mass = Mtot).

Let k be the total number of masses m in the configuration, and n + 1 � k be the number of

masses M . We have that:

E[CM
2] =

X
E
"
(
P

YiMi)2

(
P

Mi)2

�����Mass = Mtot

#
P(Mass = Mtot) =

=
X E[(

P
YiMi)2|Mtot]

E[(
P

Mi)2|Mtot]
P(Mass = Mtot) =

X �n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2
E
⇣X

YiMi

⌘2 ����Mtot

�
.

Now we need to calculate the tricky part of this equation, which is the latter term. Since Yi and

Mi are independent, we have:

E
⇣X

YiMi

⌘2 ����Mass = Mtot

�
= E

2

4
nX

i=0

Y
2
i M

2
i +

X

i 6=j

YiYjMiMj

����Mass = Mtot

3

5 =
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= E
⇥
Y

2
i

⇤
E
"

nX

i=0

M
2
i

#
+ E[Yi]E[Yj ]E

2

4
X

i 6=j

MiMj

����Mass = Mtot

3

5 =

=
1

3

nX

i=0

E
⇥
M

2
i

⇤
+

1

2
· 1
2
E

2

4
X

i 6=j

MiMj

����Mass = Mtot

3

5 =

=
1

3
(n+ 1)

km
2 + (n+ 1� k)M2

n+ 1
+

1

4
E

2

4
X

i 6=j

MiMj

����Mass = Mtot

3

5 =

=
1

3
km

2 + (n+ 1� k)M2 +
1

4
E

2

4
X

i 6=j

MiMj

����Mass = Mtot

3

5 .

It turns out that E
hP

i 6=j MiMj

��Mass = Mtot

i
= (km+(n+1�k)M)2�(km2+(n+1�k)M2).

This is because, if we write out the summation term in order, for i = 0 to i = n, we get

MtotM1 +MtotM1 +MtotM2 + · · ·+MtotMn

M1Mtot +M1M2 +M1M3 + · · ·+M1Mn

...

MnMtot +MnM1 +MnM2 + · · ·+MnMn�1.

We notice that we can add terms where i = j and subtract them in the following way:

MtotM1 +MtotM1 +MtotM2 + · · ·+MtotMn(+MtotMtot �MtotMtot)

M1Mtot +M1M2 +M1M3 + · · ·+M1Mn(+M1M1 �M1M1)

...

MnMtot +MnM1 +MnM2 + · · ·+MnMn�1(+MnMn �MnMn).

As a result, we can organize the terms as

MtotMtot +MtotM1 +M1M2 +MtotM3 + · · ·+MtotMn(�MtotMtot)

M1Mtot +M1M1 +M1M2 +M1M3 + · · ·+M1Mn(�M1M1)

...
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MnMtot +MnM1 +MnM2 + · · ·+MnMn�1 +MnMn(�MnMn).

We then factor out the common term in each row as follows:

Mtot (Mtot +M1 +M2 +M3 + · · ·+Mn)�MtotMtot

M1 (Mtot +M1 +M2 +M3 · · ·+Mn)�M1M1

...

Mn (Mtot +M1 +M2 + . . .Mn�1 +Mn)�MnMn.

We know that Mtot + M1 + M2 + M3 + · · · + Mn =
Pn

i=0Mi = km + (n + 1 � k)M , and

MtotMtot+M1M1+ · · ·+MnMn =
Pn

i=0M
2
i . We now sum up all of the terms above, and obtain

Mtot

nX

i=0

Mi +M1

nX

i=0

Mi + · · ·+Mn

nX

i=0

Mi � (MtotMtot +M1M1 + · · ·+MnMn) =

=
nX

i=0

Mi (Mtot +M1 + · · ·+Mn)�
nX

i=0

M
2
i =

 
nX

i=0

Mi

!2

�
nX

i=0

M
2
i .

Since
Pn

i=0Mi = km+ (n+ 1� k)M , which is a constant, we have that

E

2

4
X

i 6=j

MiMj

����Mass = Mtot

3

5 = E

2

4
 

nX

i=0

Mi

!2

�
nX

i=0

M
2
i

����Mass = Mtot

3

5 =

= E

2

4
 

nX

i=0

Mi

!2 ����Mass = Mtot

3

5� E
"

nX

i=0

M
2
i

����Mass = Mtot

#
=

= E

2

4
 

nX

i=0

Mi

!2 ����Mass = Mtot

3

5�
nX

i=0

E

M

2
i

����Mass = Mtot

�
=

= (km+(n+1�k)M)2�(n+1)·km
2 + (n+ 1� k)M2

n+ 1
= (km+(n+1�k)M)2�(km2+(n+1�k)M2).

Thus, E
hP

i 6=j MiMj

��Mass = Mtot

i
= (km+ (n+ 1� k)M)2 � (km2 + (n+ 1� k)M2). Hence,

plugging in to the equation for E

(
P

YiMi)
2

����Mass = Mtot

�
, we have that

E
⇣X

YiMi

⌘2 ����Mass = Mtot

�
=

1

3
km

2 + (n+ 1� k)M2 +
1

4
E

2

4
X

i 6=j

MiMj

����Mass = Mtot

3

5 =

=
1

3
km

2 + (n+ 1� k)M2 +
1

4

⇥
(km+ (n+ 1� k)M)2 � (km2 + (n+ 1� k)M2)

⇤
=
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=
1

4
(km+ (n+ 1� k)M)2 +

1

12

�
km

2 + (n+ 1� k)M2
�
.

Returning to our original equation, we have

E[CM
2] =

X �n+1
k

�
p
k(1� p)n+1�k

(km+ (n+ 1� k)M)2


1

4
(km+ (n+ 1� k)M)2 +

1

12

�
km

2 + (n+ 1� k)M2
��

=

=
1

4
+

1

12

n+1X

k=0

✓
n+ 1

k

◆
p
k(1� p)n+1�k km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
.

As a result, the formula for variance is as follows:

Var(CM) = E[CM
2]�E[CM ]2 =

1

4
+

1

12

n+1X

k=0

✓
n+ 1

k

◆
p
k(1�p)n+1�k km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
�
✓
1

2

◆2

=

=
1

12

n+1X

k=0

✓
n+ 1

k

◆
p
k(1� p)n+1�k km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
.

We can use both RStudio and Mathematica to compute this summation, because R cannot

compute it for n > 103+28. It appears to be the case that as n approaches infinity, the standard

deviation goes to 0. One way we can justify this is by considering
�n+1

k

�
p
k(1� p)n+1�k, in which

the binomial has the highest value at k = n+1
2 for odd n’s. We would want to find a way to show

that this binomial goes to 0 as n approaches infinity, so that the whole term goes to 0.

Theorem 4.3.2. If p = 1
2 , then the standard deviation of the center of mass in the one-

dimensional uniform case goes to 0 as n approaches infinity. In other words,

lim
n!1

SD(CM) = lim
n!1

vuut 1

12

n+1X

k=0

✓
n+ 1

k

◆✓
1

2

◆n+1
km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
= 0

Proof. If we assume p = 1
2 , then for the highest possible value of the binomial we would have

✓
n+ 1

k

◆
p
k(1� p)n+1�k =

✓
n+ 1
n+1
2

◆✓
1

2

◆n+1

.

The binomial coe�cient can be estimated by Stirling’s Approximation, which states that

n! ⇠
p
2⇡n

⇣
n

e

⌘n
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where the sign ⇠ indicates that the two quantities are asymptotic, that is, their ratio goes to 1

when n approaches infinity. Applying this formula to our case, we have that

✓
n+ 1
n+1
2

◆
=

(n+ 1)!�
n+1
2

�
!
�
n+1
2

�
!
⇠

p
2⇡(n+ 1)

�
n+1
e

�n+1

 q
2⇡ (n+1)

2

✓
n+1
2
e

◆n+1
2

!2 =

p
2⇡(n+ 1)

�
n+1
e

�n+1

1
2

⇣p
2⇡(n+ 1)

⌘2✓ n+1
2
e

◆n+1 =

=

�
n+1
e

�n+1

1
2

p
2⇡(n+ 1)

·
 

n+1
2

e

!�(n+1)

=
2n+1

�
n+1
e

�n+1

1
2

p
2⇡(n+ 1)

·
✓
n+ 1

e

◆�(n+1)

=
2n+1

p
⇡
2 (n+ 1)

.

Thus, it follows that for n approaching infinity,

✓
n+ 1
n+1
2

◆✓
1

2

◆n+1

⇠ 2n+1

p
⇡
2 (n+ 1)

·
✓
1

2

◆n+1

=
1p

⇡
2 (n+ 1)

! 0.

In other words, the biggest binomial coe�cient for p = 1
2 goes to 0 as n approaches infinity.

Since there are n + 1 terms in the summation in the standard deviation formula, that means

that for p = 1
2 and for all n,

1

12

n+1X

k=0

✓
n+ 1

k

◆✓
1

2

◆n+1
km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2


 1

12
(n+ 1)

2n+1

p
⇡
2 (n+ 1)

✓
1

2

◆n+1
km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
.

Because

lim
n!1

1

12
(n+ 1)

2n+1

p
⇡
2 (n+ 1)

✓
1

2

◆n+1
km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
= 0,

by the Squeeze Theorem:

lim
n!1

1

12

n+1X

k=0

✓
n+ 1

k

◆✓
1

2

◆n+1
km

2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
= 0.

Hence, for p = 1
2 ,

lim
n!1

SD(CM) = lim
n!1

vuut 1

12

n+1X

k=0

✓
n+ 1

k

◆✓
1

2

◆n+1
km2 + (n+ 1� k)M2

(km+ (n+ 1� k)M)2
= 0.

We can also try to simplify the summation in Mathematica hoping that we could prove the

term goes to 0 as n goes to infinity, but just like in the one-dimensional discrete case, the result
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contains hypergeometric functions. The input

FullSimplify

"
n+1X

k=0

((n+ 1)(n+ 2))
�
p
k
�n+1

k

�
(1� p)�k+n+1

� �
km

2 +M
2(�k + n+ 1)

�

12(km+M(�k + n+ 1))2

#

returns the following output:

1

12
(n+ 2)(1� p)n�

✓
m+Mn

m�M

◆2

"
(n+ 1)2p(m+M) 3F̃2

⇣
�n,

m+Mn
m�M ,

m+Mn
m�M ; 2m+M(n�1)

m�M ,
2m+M(n�1)

m�M ; p
p�1

⌘

m�M

�(p� 1) 3F̃2

✓
�n� 1,

M(n+ 1)

m�M
,
M(n+ 1)

m�M
;
m+Mn

m�M
,
m+Mn

m�M
;

p

p� 1

◆#
,

where 3F̃2(a1, a2, a3; b1, b2; z) is a generalized hypergeometric function. The details on the func-

tion were provided at the end of section 3.2.

With that said, the next section will derive two approximations for the standard deviation,

both of which can be proven to go to 0 as n goes to infinity.

4.4 Approximations for Variance and Standard Deviation

As for the approximations in this case, we can estimate the standard deviation through calculat-

ing variance in two ways; one of them is direct, Var(X) = E[X2]�E[X]2, and the other one is the

first-order Taylor expansion, Var(R/S) ⇡ µ2
R

µ2
S

h
�2
R

µ2
R
� 2Cov(R,S)

µRµS
+

�2
S

µ2
S

i
, which is an approximation

as opposed to the former.

First, we will try using the first formula, which would be in our case:

Var(CM) = E
"✓Pn

i=0 YiMiPn
i=0Mi

◆2
#
� E[CM ]2 ⇡ E

"
(
Pn

i=0 YiMi)
2

(
Pn

i=0Mi)
2

#
� 1

4
.

Again, there are two ways of approximating the first term of the above equation. We can

either use first-order approximation, which would be E[R/S] ⇡ E[R]
E[S] , or use second-order Taylor

approximation for the ratio of two random variables. So far, we tried to use the former one. This

approximation for the standard deviation of the center of mass in this case turned out to be

SD(CM) ⇡
r

↵2

12(↵2 + n↵
2
1)
. (4.4.1)
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In other words, this estimation comes from a first-order approximation of the expected value of

the center of mass squared in the formula for variance, Var(X) = E[X2] � E[X]2. We will now

prove the above equation. For our case, we have

E[CM ] ⇡ E[R]

E[S] ,

where R =
Pn

i=0 YiMi and S =
Pn

i=0Mi. Thus,

E[CM ] ⇡ E[(
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i=0 YiMi)
2]

E[(
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,
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i ] +
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0
x
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1� 0
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x
3
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����
1

0

=
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3

and

E[M2
i ] = (n+ 1)↵2 + n(n+ 1)↵2

1,

as calculated in the previous chapter. Thus, we have

E
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i

E
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1
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◆
.

Clearly, E
h
(
Pn

i=0 YiMi)
2
i
� 1

4 . If we were to plug this in our approximation for variance, we

would get:

Var(CM) ⇡ 1
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12(↵2 + n↵
2
1)
.

which approaches 0 as n gets larger. Also,

SD(CM) =
p

Var(CM) ⇡
r

↵2

12(↵2 + n↵
2
1)
.
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This result will approach 0 as n goes to infinity. We will call this approximation s1 to make it

easier to refer to it when we analyze our results.

SD(CM) ⇡
r

↵2

12(↵2 + n↵
2
1)
. (s1)

This approximation goes to 0 when n approaches infinity:

lim
n!1

s1 = lim
n!1

r
↵2

12(↵2 + n↵
2
1)

= 0.

Perhaps a thing to consider in the future is to estimate the expected value by using second-

order Taylor expansion to see whether that approximation would prove to be more accurate

than the others. However, as we saw in the case of finding the standard deviation of the center

of mass in the one-dimensional discrete configuration, calculating the covariance term in the

Taylor approximation formula was very complicated.

As for the second way to estimate variance, let us look at the first-order Taylor approximation

for the ratio of two random variables,

Var(R/S) ⇡ µ
2
R

µ
2
S


�
2
R

µ
2
R

� 2
Cov(R,S)

µRµS
+

�
2
S

µ
2
S

�
,

where R =
Pn

i=0 YiMi and S =
Pn

i=0Mi. It turns out that the resulting approximation is the

following:

SD(CM) ⇡
r

↵2

12(n+ 1)↵2
1

. (4.4.2)

We will call this approximation s2. Let us go through the steps that led us to this result. Since we

calculated needed components of the first-order Taylor approximation formula in the expected

value approximation section, we have

µR =
1

2
(n+ 1)↵1,

µS = (n+ 1)↵1,

�
2
R = (n+ 1)

✓
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3
↵2 �
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↵
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◆
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�
2
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2
1),
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Cov(R,S) =
1
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Therefore,
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The standard deviation would thus be

SD(CM) ⇡
r

↵2

12(n+ 1)↵2
1

. (s2)

Similarly to the first approximation, the estimated standard deviation from this formula goes

to 0 as n approaches infinity, i.e.,

lim
n!1

s2 = lim
n!1

r
↵2

12(n+ 1)↵2
1

= 0.

4.5 Simulations and Exact Value

In this section we will take a look at the results obtained from simulations in R, as well as those

we get from using the exact value formulas.

We have derived a theoretical proof that the expected value of the center of mass in the one-

dimensional uniform case is E[CM ] = 1
2 (Theorem 4.2.1). Using R, we can create a histogram

of the sampling distribution of the sample means. The code is provided in Appendix A.5. We

set the number to repeat the sampling to be C = 103 � 1 (which would be the number of our

data sets). We let m = 1, M = 10, p = 0.5 and n = 104. Below are two histograms that show

the distribution of the sample means from each data set, with sample means divided into an

appropriate number of bins on the x-axis and their frequency on the y-axis. The histograms

clearly indicate that the center of the distribution is approximately 1
2 , which is more visible in

the second graph.
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Figure 4.5.1. Sampling distribution of means of the expected value of the center of mass in the one-
dimensional uniform case. Parameters: m = 1, M = 10, p = 0.5, n = 104. Number of samplings: 103 � 1.

Figure 4.5.2. Sampling distribution of means of the expected value of the center of mass in the one-
dimensional uniform case. Parameters: m = 1, M = 10, p = 0.5, n = 104. Number of samplings: 103 � 1.



4.5. SIMULATIONS AND EXACT VALUE 49

As for the standard deviation of the center of mass in this case, we have results from repeated

simulations (s), one exact value formula that uses conditional expectation (�), and two approx-

imations (s1 and s2). In this section, we will compare the results we can from simulations to

those we get from the exact value formula to see how close they are. Below are the tables of

both expected value and standard deviation obtained from simulations alone. These results are

prone to variation.

Figure 4.5.3. Expected value of the center of mass in the one-dimensional uniform case from simulations.
Parameters used: m = 1, M = 10, p = 0.5, n varied.

Expected value of the center of mass in the one-dimensional uniform case turns out to be very

close to 1
2 , and as we saw, we have a theoretical proof that it is actually true that E[CM ] = 1

2 .

Figure 4.5.4. Standard deviation of the center of mass in the one-dimensional uniform case from simula-
tions. Parameters used: m = 1, M = 10, p = 0.5, n varied.
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For the same parameters, we will compute the standard deviation using the exact value for-

mula. The results are as follows:

Figure 4.5.5. Exact formula standard deviation of the center of mass in the one-dimensional uniform case.
Parameters used: m = 1, M = 10, p = 0.5, n varied.

The standard deviation obtained from exact value formula fits the data from the simulations

very well. Similarly to the one-dimensional discrete case, we notice that if for the same values

of p, m, and M we increase the number of nodes n by x, then the standard deviation seems to

decrease by
p
x. For instance, let us consider the data for m = 1,M = 10, p = 0.5. If we look at

the ratio of the standard deviation for n = 1000 to the one for n = 10000, which is an increase

of the number of nodes n by a factor of 10, we have a decrease of

0.011791

0.003730
⇡ 3.16142037,

and

p
10 ⇡ 3.16227766.

The two numbers above are very close to each other, and it turns out to be the case if we were

compare results for other parameters. We can find an explanation from this behavior from the

approximations for the standard deviation:

SD(CM) ⇡
r

↵2

12(↵2 + n↵
2
1)

(s1)



4.5. SIMULATIONS AND EXACT VALUE 51

and

SD(CM) ⇡
r

↵2

12(n+ 1)↵2
1

. (s2)

As opposed to the one-dimensional discrete case, the standard deviation decreases if we increase

the number of nodes n. Again, we notice that ↵1 = mp+M(1� p) and ↵2 = m
2
p+M

2(1� p)

depend on the values of p, m and M only, hence if we were to keep these constant (unchanged)

and vary n, we can rewrite the second approximation as follows

SD(CM) ⇡
r

↵2

12(n+ 1)↵2
1

=

s
1

n+ 1
· ↵2

12↵2
1

=

r
1

n+ 1
·B,

where

B =
r

↵2

12↵2
1

is some constant. Therefore, if we increase n by x, then the new standard deviation would be

SD(CM) ⇡
r

1

xn+ 1
·B,

meaning it decreases by
q

1
n+1 ·B

q
1

xn+1 ·B
=

q
1

n+1q
1

xn+1

=

r
xn+ 1

n+ 1
,

which is close to
p
x when n goes to infinity. For example, if we consider the standard deviation

for n = 100 and n = 1000 (where n increases by 10), then the standard deviation decreases by

r
10 · 100 + 1

100 + 1
⇡ 3.14815677645,

which is very close to
p
10 ⇡ 3.16227766. We can also conclude this from the first approximation,

since the dominating term in the formula is the n in the numerator, thus indicating that if we

increase n by some number, then the standard deviation decreases by the square root of the factor

it increased by. As mentioned in the one-dimensional discrete case, these are only approximated

changes because they are explained by approximations and not the exact value formula.
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4.6 Analysis of Results

In this section, we will compare the standard deviation obtained from the exact value formula

to the ones calculated from the approximations. We define the two approximations (4.4.1 and

4.4.2) in R and conduct simulations by varying M (one of the masses) to test which estimation

suits the data from simulations (2nd column from the left in the tables below) and the exact

value formula more (3rd column from the left). In order to avoid variation of data, we took a

mean of five to ten simulation results. The R code is provided in Appendix A.2.

We compare the estimations for the standard deviation by calculating relative errors with

respect to the numbers we get from the exact value formula (�). The 6th column from the left

compares the approximation s1 to �, and the 7th column compares the approximation s2 to �.

The last column (on the very right) depicts the ratio |� � s1|/|� � s2|, i.e., it compares which

approximation gives results closer to the actual value (�). If the ratio is greater than 1, then the

second approximation (s2) is closer to the standard deviation obtained through the exact value

formula (�), and if the ratio is less than 1, then the first approximation (s1) yields values closer

to the actual value. Below are two of the tables summarizing the data with results for m = 1,

varied M ’s, p = 0.5, and n = 100, n = 1000, n = 10000.

Figure 4.6.1. Standard deviation of the center of mass in the one-dimensional uniform case, where m = 1
is one of the masses, M is the other mass, p = 0.5 is the probability, and n = 100 is the number of
nodes. The standard deviation from the simulations is denoted by (s), the exact value is denoted by �,
the approximation 4.4.1 is denoted by s1, and the approximation 4.4.2, is denoted by s2.
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Below are the same tables as the one above, but for n = 1000 and n = 10000. For the latter, we

have to use Mathematica to compute the standard deviation from the exact value formula as it

contains a summation for large n, which cannot be computed in RStudio.

Figure 4.6.2. Standard deviation of the center of mass in the one-dimensional uniform case, where m = 1
is one of the masses, M is the other mass, p = 0.5 is the probability, and n = 1000 is the number of
nodes.

Figure 4.6.3. Standard deviation of the center of mass in the one-dimensional uniform case, where m = 1
is one of the masses, M is the other mass, p = 0.5 is the probability, and n = 10000 is the number of
nodes.

It seems that the approximations yield very similar results to the one we obtain by using the

formula we proved. The estimate that uses first-order Taylor expansion for variance (s2) proved

to be more accurate than the estimate we get from using second-order Taylor expansion on the

expected value in the Var(CM) = E[CM
2] � E[CM ]2 formula (s1). What we notice, again, is

that as n goes to infinity, the standard deviation goes to 0.
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Although our theoretical prove of the standard deviation formula proved to be accurate with

outcomes we got from simulations, it seems that it is rather cumbersome and time-consuming

to calculate it because of the summation term, especially with a large number of nodes. As for

the approximations, they suggest that in this uniform case, E[CM ] ⇡ 1
2 and SD(CM) ! 0 as n

gets larger and larger, but a solid proof would be needed to confirm this. Thus, it would have

been helpful if the approximations had an error term.

Another idea we can consider is comparing the standard deviation of the center of mass of

the discrete, but standardized case, and the uniform case from this chapter. To standardize the

discrete case, we use the formula

CM =

Pn
i=0(i/n)MiPn

i=0Mi
.

Thus, we can calculate the standard deviations of the two cases using the exact value formula,

and are able to collect and compare data. We fixed m = 1, M = 10, p = 0.5 and varied number

of nodes n. Below is the table with results:

Figure 4.6.4. Exact value standard deviation of the center of mass in the standardized discrete case (d)
and the uniform case (u), where probability p = 0.5, masses are m = 1 and M = 10, and number of nodes
n is varied. The fourth column represents the di↵erence between the standard deviation of the discrete
and uniform cases.

As we can see, the standard deviation of the two cases is very similar. All of the times, the

standard deviation of the uniform case is greater than that of the discrete case. However, the

di↵erence seems to decrease as n increases.
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Center of Mass in the Two-dimensional Uniform Case

5.1 Introduction to the Case

The last but not least interesting case in this paper is the two-dimensional uniform case. We

consider at a unit circle on an xy-plane with polar coordinates, where the angle ✓ is determined

uniformly. The coordinates (x, y) are calculated by setting x = cos ✓ and y = sin ✓. We define

the center of mass as follows

CMX =

Pn
i=0 cos(✓)M✓Pn

i=0M✓
,

CMY =

Pn
i=0 sin(✓)M✓Pn

i=0M✓
,

We look at the coordinates separately and define E[CM ] = (x, y), SD(CM) = (x, y). The code

used for simulations is included in Appendix A.4. Regardless of the values of m, M , n and p,

the simulations return the following results:

E[CM ] ⇡ (0, 0),

SD(CM) ⇡ (0, 0).

We will try to prove these in the next sections.

In this case, analogically to the previous cases, we have that

E[M✓] = ↵1,
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E[M2
✓ ] = ↵2.

5.2 Approximation for Expected Value

We can approximate the expected value by first-order Taylor approximation, E[R/S] ⇡ E[R]
E[S] . It

turns out that

E[CM ] ⇡ (0, 0). (5.2.1)

To prove this, we first calculate needed components:

E[cos(✓)] =
Z 2⇡

0
cos(t)

1

2⇡
dt =

sin(t)

2⇡

����
2⇡

0

= 0,

E[sin(✓)] =
Z 2⇡

0
sin(t)

1

2⇡
dt =

� cos(t)

2⇡

����
2⇡

0

= 0,

Thus, for the x-coordinate, we have:

E[CMX ] ⇡ E[
P2⇡

i=0 cos(✓)M✓]

E[
P2⇡

i=0M✓]
=

P2⇡
i=0 E[cos(✓)]E[M✓]P2⇡

i=0 E[M✓]
=

P2⇡
i=0 E[cos(✓)]↵1

n↵1
= 0,

E[CMY ]
E[
P2⇡

i=0 sin(✓)M✓]

E[
P2⇡

i=0M✓]
=

P2⇡
i=0 E[sin(✓)]E[M✓]P2⇡

i=0 E[M✓]
=

P2⇡
i=0 E[sin(✓)]↵1

n↵1
= 0.

Thus, it follows that E[CM ] ⇡ (0, 0).

5.3 Approximation for Variance and Standard Deviation

In order to find variance of the center of mass of this configuration, we will use the formula

Var(CM) = E[CM
2]� E[CM ]2. We can approximate the former term for the x-coordinate as

E[CM
2
X ] = E

"
(
P

cos(✓)M✓)
2

(
P

M✓)
2

#
⇡

E
h
(
P

cos(✓)M✓)
2
i

E
h
(
P

M✓)
2
i .

The y-coordinate would have sin(✓) instead of cos(✓). The approximated standard deviation of

the center of mass in this two-dimensional uniform case turns out to be

SD(CM) ⇡ (0, 0), (5.3.1)
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regardless of all variables: n, m, M , p. Let us prove this claim. We know that

E[cos2(✓)] = 1

2⇡

Z 2⇡

0
cos2(✓)d✓ =

1

2⇡

Z 2⇡

0

1

2
+
cos(2✓)

2
d✓ =

1

2⇡


1

2
✓ |2⇡0 +

sin(2✓)

4
|2⇡0
�
=

1

2⇡
[⇡+0+0] =

1

2
.

Similarly,

E[sin2(✓)] = 1

2
.

Thus, for each of the coordinates, we have

E[CM
2
X ] ⇡

E
h
(
P

cos(✓)M✓)
2
i

E
h
(
P

M✓)
2
i =

E
hP

cos2(✓)M2
✓ +

P
✓ 6=� cos(✓) cos(�)M✓M�

i

E
hP

M
2
✓ +

P
✓ 6=� M✓M�

i =

=
E
⇥
1
2↵2
⇤

E
⇥
(n+ 1)↵2 + n(n+ 1)↵2

1

⇤ = ↵2

2(n+ 1)(↵2 + n↵
2
1)
.

Clearly, the expected value of the center of mass of the x-coordinate goes to 0 as n goes to

infinity. As for the y-coordinate, we have

E[CM
2
X ] ⇡

E
h
(
P

sin(✓)M✓)
2
i

E
h
(
P

M✓)
2
i =

E
hP

sin2(✓)M2
✓ +

P
✓ 6=� sin(✓) sin(�)M✓M�

i

E
hP

M
2
✓ +

P
✓ 6=� M✓M�

i =

=
E
⇥
1
2↵2
⇤

E
⇥
(n+ 1)↵2 + n(n+ 1)↵2

1

⇤ = ↵2

2(n+ 1)(↵2 + n↵
2
1)
.

Thus, as n goes to infinity, E[CM
2
X ], E[CM

2
Y ] both go to 0. As a result, variance, as well as

standard deviation of the center of mass, will approach 0 since E[CMX ] = E[CMY ] ⇡ 0, that is,

Var(CM) ⇡ (0, 0).

As a result,

SD(CM) ⇡ (0, 0).

5.4 Simulations

Below are tables with expected value and standard deviation of the center of mass in the two-

dimensional uniform case. We set the values of small mass m = 1, big mass M = 10, and then

we vary the number of nodes n as well as the probability p.
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Figure 5.4.1. Expected value for the two-dimensional uniform case from simulations, where m = 1 is one
of the masses, M = 10 is the other mass, p is the probability, and n is the number of nodes.

Figure 5.4.2. Standard deviation for the two-dimensional uniform case from simulations, where m = 1 is
one of the masses, M = 10 is the other mass, p is the probability, and n is the number of nodes.

Although the recorded results are prone to variation, we can still conclude that the expected

value of the center of mass is approximately (0, 0), and so is the standard deviation. It also

seems to be the case that as n increases, the results get closer to the origin of the xy-plane -

the point (0, 0). Hence, the simulations confirm our approximations that E[CM ] ⇡ (0, 0) and

SD(CM) ⇡ (0, 0).

It would be helpful to find an exact value formula for this two-dimensional uniform case so

that the results could be theoretically proven.



6
Future Research

Based on the content of this project, we can state a couple of conjectures for future research.

One thing to consider is simplifying the exact value formulas in the one-dimensional discrete

and uniform cases so that they are easier to compute. Perhaps this could help us with under-

standing the behavior of the center of mass, its expected value as well as standard deviation.

From what we have seen, we can state the following conjecture:

Conjecture 1. The standard deviation of the center of mass in the one-dimensional uniform

case approaches 0 as n goes to infinity, regardless of other variables m, M and p.

It would be nice to have a formula that does not involve summations, or binomials. Since Math-

ematica simplifies the exact value formulas into those that contain generalized hypergeometric

functions, a further study into what kind of functions these are and what characteristics they

have might give some insight into whether the limit of the standard deviation of the center of

mass goes to 0 in the one-dimensional uniform case.

Another aspect of this project, related to the previous conjecture, that could be part of future

research is distribution of the center of mass in the one-dimensional uniform case as n goes to

infinity. The expected value of the center of mass is 1
2 , and it seems like the standard deviation

goes to 0 as n approaches infinity, which implies that the distribution converges to a point mass

distribution. In the case considered, for each n we have di↵erent probability distributions of the
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center of mass that can be expressed as functions. If we fix the values of m, M and p, we expect

the probability and the distribution functions of the center of mass as n goes to infinity to be

as follows:

f(x) = lim
n!1

P(CM = x) =

(
1 if x = 1

2 ,

0 otherwise

and

F (x) = lim
n!1

P(CM  x) =

(
0 if x <

1
2 ,

1 if x � 1
2 .

We can claim the following conjecture:

Conjecture 2. The center of mass in the one-dimensional uniform case converges to a point-

mass distribution with mean
1
2 and standard deviation of 0 as n goes to infinity.

Perhaps it is possible to prove in a similar way that the Central Limit Theorem is proved (for

instance by using moment generating functions) that all these probability functions of the center

of mass converge into a point-mass distribution with mean 1
2 and standard deviation 0.

Last but not least, there is a plethora of other configurations that are interesting, and whose

expected value and standard deviation of the center of mass could prove to be significant in the

analysis of the center of mass of complex, or high-dimensional systems. An example could be a

two-dimensional configuration with a unit square with vertices (0, 0), (1, 0), (1, 1) and (0, 1) on the

xy-coordinate plane. The masses could be assigned uniformly inside the square, or on the edges

of the square. It is also possible to assign the masses in a di↵erent way — for instance, instead of

assigning the positions from a uniform distribution, perhaps a normal distribution could be used.

There are also other known distributions with interesting properties, such as the exponential

distribution, gamma distribution or chi-squared distribution. Furthermore, more masses could

be added to the system, say, m1,m2,m3. There are plenty variations of the configurations, as

well as ways of adding other variables which would make the cases even more intriguing in future

research.



Appendix A
R Codes

A.1 One-dimensional Discrete Case

# Center of Mass: One -dimensional Discrete Case

# Setup

# Mass values of m and M

m <- 1

M <- 10

# Creating a sample space

samplespace <- c(m,M)

# Probability of getting m

p <- 0.5

# Number of nodes

N <- 10^3

# Create a vector with positions

positions <- 0:N

# Simulation

# Use the sample () function to sample from a vector of masses m and M.

B <- 10^3 -1 # Set number of times to repeat this process

result <- numeric(B)

# Creating data sets

for(i in 1:B)

{
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myindex <- sample(samplespace , size = N+1, replace = TRUE , prob = c(p

,1-p))

result[i] <- sum ((( positions)*index))/sum(index)

}

# Calculating the exact value formula

k <- c(0:N+1)

va.totM <- ((N-1)*(3*N+2)/12) - ((N^2)/4) + sum ((( choose(N+1,k)*(p^k)*

(1-p)^(N+1-k))/(((k*m+(N+1-k)*M))^2))*((N+1)*(N+2)/12)*(k*(m^2)+(N+1-

k)*(M^2)))

std.totM <- sqrt(va.totM)

# Standard deviation of the center of mass from simulations

s <- sd(result)

# Calculating approximations for standard deviation

sdd <- function(M,m,p,N){

L <- function(pow ,i,M,m,p){

alpha <- (((m^i)*p)+(M^i)*(1-p))^pow

return(alpha)

}

# Approximation a1

std.tay <- sqrt ((1/12)*(N*(N+2)*(L(1,2,M,m,p)-L(2,1,M,m,p)))/(L(1,2,M,

m,p)+N*L(2,1,M,m,p)))

# Approximation a2

std.form <- sqrt ((1/12)*((N*(N+2)*(L(1,2,M,m,p)-L(2,1,M,m,p)))/((N+1)*

L(2,1,M,m,p))))

paste("Taylor/Approx: SD(CM)=", signif(std.tay), "Formula/Approx .: SD(

CM)=", signif(std.form))

}
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A.2 One-dimensional Uniform Case

# Center of Mass - One -dimensional Uniform Case

# Setup

# Mass values of m and M

m <- 1

M <- 10

# Creating a sample space

samplespace <- c(m,M)

# Probability of getting m

p <- 0.5

# Number of nodes

N <- 10^3

# Simulation

# Use the sample () function to sample from a vector of masses m and M.

B <- 10^3 -1 # Set number of times to repeat this process

result <- numeric(B)

# Creating data sets

for(i in 1:B)

{

random.numbers <- runif(N+1, 0, 1) # Vector with positions , uniform

from 0 to 1

myindex <- sample(samplespace , size = N+1, replace = TRUE , prob = c(p

,1-p))

result[i] <- sum ((( random.numbers)*myindex))/sum(myindex)

}

# Calculating the exact value formula

k <- c(0:N+1)

va.totM <- sum ((( choose(N+1,k)*(p^k)*(1-p)^(N+1-k))/(((k*m+(N+1-k)*M))

^2))*(1/12)*(k*(m^2)+(N+1-k)*(M^2)))

std.totM <- sqrt(var.totM)

# Calculating approximations for expected value and standard deviation

exsd <- function(M,m,p,n){

L <- function(pow ,i,M,m,p){

alpha <- (((m^i)*p)+(M^i)*(1-p))^pow

return(alpha)

}

mur <- (1/2)*(n+1)*L(1,1,M,m,p)

mus <- (n+1)*L(1,1,M,m,p)

varr <- (n+1)*((1/3)*L(1,2,M,m,p) - (1/4)*L(2,1,M,m,p))

vars <- (n+1)*(L(1,2,M,m,p)-L(2,1,M,m,p))

covrs <- (1/2)*(n+1)*(L(1,2,M,m,p)-L(2,1,M,m,p))
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# Calculating approximated expected value using second -order Taylor

expansion:

ex.taylor <- (mur/mus) - (covrs/mus ^2) + (mur*vars/mus ^3)

# Standard deviation approximation s2:

va.taylor <- (mur^2/mus ^2)*((varr/mur ^2) - 2*(covrs/(mur*mus)) + (vars

/mus^2))

std.taylor <- sqrt(va.taylor)

# Standard deviation approximation s1:

va.form <- (4*L(1,2,M,m,p) + 3*n*L(2,1,M,m,p))/(12*L(1,2,M,m,p) + 12*n

*L(2,1,M,m,p)) - (1/4)

std.form <- sqrt(va.form)

paste("Taylor: E[CM]=", signif(ex.taylor), "SD(CM)=", signif(std.

taylor), "Formula/Approx .: SD(CM)=", signif(std.form))

}
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A.3 Standard Deviation: Discrete vs Uniform Case

# Center of Mass: One -dimensional Standardized Discrete vs Uniform Case

# Setup

# Mass values of m and M

m <- 1

M <- 10

# Creating a sample space

samplespace <- c(m,M)

# Probability of getting m

p <- 0.5

# Number of nodes

N <- 10^3

# Vector with positions for the discrete case

positions <- 0:(N-1)

# Simulation

# Use the sample () function to sample from a vector of masses m and M.

B <- 10^3 -1 # Set number of times to repeat this process

resultd <- numeric(B)

resultc <- numeric(B)

# Creating data sets

for(i in 1:B)

{

random.numbers <- runif(N, 0, 1) # Vector with positions for the

continuous case , uniform from 0 to 1.

index <- sample(samplespace , size = N, replace = TRUE , prob = c(p,1-p)

)

resultd[i] <- sum ((( positions/N)*index))/sum(index) # Results for the

standardized discrete case

resultc[i] <- sum ((( random.numbers)*index))/sum(index) # Results for

the uniform case

}

paste("Discrete: E[CM]=", signif(mean(resultd)), "Continuous: E[CM]=",

signif(mean(resultc)))

paste("Discrete: SD(CM)=", signif(sd(resultd)), "Continuous: SD(CM)=",

signif(sd(resultc)))
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A.4 Two-dimensional Uniform Case

# Center of Mass: Two -dimensional Uniform case (unit circle)

# Setup

# Mass values of m and M

m <- 1

M <- 10

# Creating a sample space

samplespace <- c(m,M)

# Probability of getting m

p <- 0.5

# Number of nodes

N <- 10^3

# Calculating the coordinates

x <- cos(theta)

y <- sin(theta)

# Simulation

# Use the sample () function to sample from a vector of masses m and M.

B <- 10^3-1 # Set number of times to repeat this process

result1 <- numeric(B)

result2 <- numeric(B)

# Creating data sets

for(i in 1:B)

{

theta <- runif(N, 0, 2*pi) # Create a vector with positions

index <- sample(samplespace , size = N, replace = TRUE , prob = c(p,1-p)

)

result1[i] <- sum((x*index))/sum(index)

result2[i] <- sum((y*index))/sum(index)

}

# Expected value:

m1 <- mean(result1) # x-coordinate

m2 <- mean(result2) # y-coordinate

# Standard Deviation:

s1 <- sd(result1) # x-coordinate

s2 <- sd(result2) # y-coordinate
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A.5 Sampling Distribution of Sample Means

# Center of Mass - One -dimensoinal Uniform Case

# Sampling distribution of the sample means

# Setup

# Mass values of m and M

m <- 1

M <- 10

# Creating a sample space

samplespace <- c(m,M)

# Probability of getting m

p <- 0.5

# Number of nodes

N <- 10^4

# Simulation

# Use the sample () function to sample from a vector of masses m and M.

B <- 10^3 -1 # Set number of times to repeat this process

result <- numeric(B)

samplingmean <- numeric(B)

# Creating data sets

for(i in 1:B) {

for(j in 1:B)

{

random.numbers <- runif(N+1, 0, 1) # Vector with positions , uniform

from 0 to 1

myindex <- sample(samplespace , size = N+1, replace = TRUE , prob = c(

p,1-p))

result[j] <- sum ((( random.numbers)*myindex))/sum(myindex)

}

samplingmean[i] <- mean(result)

}

hist(samplingmean , xlab = "Sample means", main = "Sampling Distribution 

of Means")
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Appendix B
Mathematica Codes

B.1 Algorithm for Calculating Double, Triple and Quadruple
Summations

In order to calculate the double, triple and quadruple summations, we will use the Sum[f,i,

imin, imax,j, jmin, jmax,. . . ] command that evaluates the multiple sum. Since we are mostly

struggling to find the summation in cases where the variables do not equal each other (for

instance, i 6= j 6= k 6= l), we also have to use the Boole[expr ] command, which yields 1 if

expr is True and 0 if it is False., inside the Sum function to make sure all the conditions are met.

First, we have to write the term we want to sum up in terms of a function whose input is the

variables of interest, and then we include it into the Sum command.

Below is a part of the Mathematica code used with chosen functions.

(*** Double, Triple and Quadruple Summations ***)(*** Double, Triple and Quadruple Summations ***)(*** Double, Triple and Quadruple Summations ***)

f [i , j ]:=i ⇤ jf [i , j ]:=i ⇤ jf [i , j ]:=i ⇤ j

Sum[f [i, j]Boole[i 6= j], {j, 0, n}, {i, 0, n}]Sum[f [i, j]Boole[i 6= j], {j, 0, n}, {i, 0, n}]Sum[f [i, j]Boole[i 6= j], {j, 0, n}, {i, 0, n}]

1
12

�
�2n� 3n2 + 2n3 + 3n4

�

f [i , j ]:=1f [i , j ]:=1f [i , j ]:=1
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Sum[f [i, j]Boole[i 6= j], {j, 0, n}, {i, 0, n}]Sum[f [i, j]Boole[i 6= j], {j, 0, n}, {i, 0, n}]Sum[f [i, j]Boole[i 6= j], {j, 0, n}, {i, 0, n}]

n+ n
2

f [i , j , k ]:=1f [i , j , k ]:=1f [i , j , k ]:=1

Sum[f [i, j, k]Boole[i 6= j 6= k], {j, 0, n}, {i, 0, n}, {k, 0, n}]Sum[f [i, j, k]Boole[i 6= j 6= k], {j, 0, n}, {i, 0, n}, {k, 0, n}]Sum[f [i, j, k]Boole[i 6= j 6= k], {j, 0, n}, {i, 0, n}, {k, 0, n}]

{ �Ceiling[n] + 3Ceiling[n]2 � 2Ceiling[n]3 � 3Ceiling[n]Floor[n] + 3Ceiling[n]2Floor[n] n > 0
0 True

f [i , j , k , l ]:=1f [i , j , k , l ]:=1f [i , j , k , l ]:=1

Sum[f [i, j, k, l]Boole[i 6= j 6= k 6= l], {j, 0, n}, {i, 0, n}, {k, 0, n}, {l, 0, n}]Sum[f [i, j, k, l]Boole[i 6= j 6= k 6= l], {j, 0, n}, {i, 0, n}, {k, 0, n}, {l, 0, n}]Sum[f [i, j, k, l]Boole[i 6= j 6= k 6= l], {j, 0, n}, {i, 0, n}, {k, 0, n}, {l, 0, n}]

{
2Ceiling[n]� 9Ceiling[n]2 + 10Ceiling[n]3 � 3Ceiling[n]4 + 8Ceiling[n]Floor[n]
�12Ceiling[n]2Floor[n] + 4Ceiling[n]3Floor[n] n > 0
0 True

B.2 Computing the Exact Value Formula for Large n

(*** SP - Exact Value Formula for sd uniform ***)(*** SP - Exact Value Formula for sd uniform ***)(*** SP - Exact Value Formula for sd uniform ***)

f [n , p ,m ,M ]:=f [n , p ,m ,M ]:=f [n , p ,m ,M ]:=

Sqrt[Sqrt[Sqrt[

Pn+1
k=0((Binomial[n+ 1, k] ⇤ (p^k) ⇤ (1� p)^(n+ 1� k))/((k ⇤m+ (n+ 1� k) ⇤M)^2)⇤

Pn+1
k=0((Binomial[n+ 1, k] ⇤ (p^k) ⇤ (1� p)^(n+ 1� k))/((k ⇤m+ (n+ 1� k) ⇤M)^2)⇤

Pn+1
k=0((Binomial[n+ 1, k] ⇤ (p^k) ⇤ (1� p)^(n+ 1� k))/((k ⇤m+ (n+ 1� k) ⇤M)^2)⇤

(1/12) ⇤ (k ⇤ (m^2) + (n+ 1� k) ⇤ (M^2)))](1/12) ⇤ (k ⇤ (m^2) + (n+ 1� k) ⇤ (M^2)))](1/12) ⇤ (k ⇤ (m^2) + (n+ 1� k) ⇤ (M^2)))]

(*** Computes the function for chosen values of n, p,m,M ***)(*** Computes the function for chosen values of n, p,m,M ***)(*** Computes the function for chosen values of n, p,m,M ***)

f [10^4, 0.5, 1, 10]f [10^4, 0.5, 1, 10]f [10^4, 0.5, 1, 10]

(*** SP - Exact Value Formula for sd discrete ***)(*** SP - Exact Value Formula for sd discrete ***)(*** SP - Exact Value Formula for sd discrete ***)

g[n , p ,m ,M ]:=g[n , p ,m ,M ]:=g[n , p ,m ,M ]:=

Sqrt[((n� 1) ⇤ (3n+ 2)/12)� (n^2/4)+Sqrt[((n� 1) ⇤ (3n+ 2)/12)� (n^2/4)+Sqrt[((n� 1) ⇤ (3n+ 2)/12)� (n^2/4)+

Pn+1
k=0((Binomial[n+ 1, k] ⇤ (p^k) ⇤ (1� p)^(n+ 1� k))/((k ⇤m+ (n+ 1� k) ⇤M)^2)⇤

Pn+1
k=0((Binomial[n+ 1, k] ⇤ (p^k) ⇤ (1� p)^(n+ 1� k))/((k ⇤m+ (n+ 1� k) ⇤M)^2)⇤

Pn+1
k=0((Binomial[n+ 1, k] ⇤ (p^k) ⇤ (1� p)^(n+ 1� k))/((k ⇤m+ (n+ 1� k) ⇤M)^2)⇤

((n+ 1)(n+ 2)/12) ⇤ (k ⇤ (m^2) + (n+ 1� k) ⇤ (M^2)))]((n+ 1)(n+ 2)/12) ⇤ (k ⇤ (m^2) + (n+ 1� k) ⇤ (M^2)))]((n+ 1)(n+ 2)/12) ⇤ (k ⇤ (m^2) + (n+ 1� k) ⇤ (M^2)))]

(*** Computes the function for chosen values of n, p,m,M ***)(*** Computes the function for chosen values of n, p,m,M ***)(*** Computes the function for chosen values of n, p,m,M ***)

g[10^4, 0.5, 1, 10]g[10^4, 0.5, 1, 10]g[10^4, 0.5, 1, 10]
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