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Abstract

In this project we extend previous research on integer splines on graphs, and we use
the methods developed on n-cycles to characterize integer splines on the diamond graph.
First, we find an explicit module basis consisting of flow-up classes. Then we develop a
determinantal criterion for when a given set of splines forms a basis.
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1
Introduction

Splines are a topic with many applications, from their origin in the construction of model

ships to smooth piecewise polynomial functions to graphs with integer labels. The ma-

jority of the research on splines has been on piecewise functions, because of their use in

computer graphics and data interpolation. However, the principles of polynomial splines

have been translated to integer splines, which in recent years have begun to be studied

more extensively.

In this project, we study the module of splines of the ring of integers. Since not all mod-

ules have a basis, we aim to prove that the set of all splines on a given edge labeled has

a basis. With our focus on the diamond graph, shown in Figure 1.0.1, we determine a

generalized method of finding a basis for the set of splines, no matter what the edge labels

are. Finding one basis enables us to make conjectures on the nature of bases of modules

of splines on the diamond graph. We develop a theorem that easily verifies whether or not

a set of splines is a basis, without needing to follow the typical procedure of showing that

the span the module and that they are linearly independent.

The previous research we refer to on integer splines has all been on n−cycles. We chose
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to study the diamond graph because it has characteristics that are not present in cycles,

thus complicating the topic. Our hope in extending the previous research is to open up

the possibility of these principles being able to be applied to more complicated graphs.

g1

g4

g2

g3

`3

`1

`5

`4 `2

Figure 1.0.1. G = (g1, g2, g3, g4) is an integer spline on the diamond graph, D.

In Chapter 2, we introduce some basic number theory to prepare the reader for the tech-

niques used in later chapters. A large component of splines is the satisfaction of a set of

congruences, thus our preliminary chapter involves a reworking of the Chinese Remainder

Theorem that better fits our uses as well as defining the different operations used later

on.

In Chapter 3, we summarize the previous work done by Handschy, Melnick, and Reinders

[3, Handschy et al.] on the development of flow-up classes on cycles, and Ester Gjoni’s

[2, Gjoni] work on the determinantal criterion for cycles. We introduce their theorems and

rework their notation to better fit the topic. A theorem by Handschy et al. states that for

any integer spline on an n−cycle, flow-up classes form a basis for the module of splines

over the integers. In her senior project, Gjoni provides a determinantal criterion for when

a set of splines forms a basis.

In Chapter 4, we present our findings on splines on the diamond graph. In Section 4.1,
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we reconstruct the arguments used to build the flow-up classes on the 3−cycle for our

purposes on the diamond graph, considering the added restraints of the changed form of

the graph. In Section 4.2, we use the same practice of reconstructing an argument on the

diamond graph with Gjoni’s work, which unlike the flow-up classes, proves to be more

difficult to recreate.

In Chapter 5, we present conjectures developed from research done on the topic.



2
Preliminaries

2.1 Background Number Theory

Before introducing the main concepts of the paper, we must first establish the required

background knowledge. This section primarily consists of basic number theory, with defi-

nitions and theorems. The more complicated theorems are accompanied by proofs to aid

the reader.

Definition 2.1.1. [4, Section 1.4, p. 31] If a and b are integers with a 6= 0, we say that

a divides b if there is an integer c such that b = ac. If a divides b, we also say that a is a

divisor or factor of b and that b is a multiple of a.

Note: If a divides b we write a|b, if a does not divide b we write a 6 |b.

Definition 2.1.2. [4, Section 3.2, p. 80] The greatest common divisor of integers a and

b, that are not both zero, is the largest integer which divides both a and b.
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Note: The greatest common divisor of a and b is written as (a,b).

Definition 2.1.3. [4, Section 3.4, p. 100] The least common multiple of two positive

integers a and b is the smallest positive integer that is divisible by a and b.

Note: The least common multiple of a and b is written as [a,b].

Lemma 2.1.4. [4, Section 3.4, p. 100] Let a and b be integers. Then [a, b] = ab
(a,b) .

The following corollary is a direct result from Lemma 2.1.4.

Corollary 2.1.5. Let a and b be integers. Then (a, b)[a, b] = ab.

We can generalize this corollary to n integers. However, first we must show that the

greatest common divisor and least common multiple can be calculated for more than two

integers at once, and introduce some notation.

Definition 2.1.6. [4, Section 3.2, p. 83] Let a1, a2, . . . , an be integers, not all 0. The

greatest common divisor of these integers is the largest integer that is a divisor of all of

the integers in the set.

Definition 2.1.7. [4, Section 3.4, p. 107] The least common multiple of the integers

a1, a2, . . . , an, which are not all zero, is the smallest positive integer that is divisible by

all the integers in the set.

Definition 2.1.8. Given a1, a2, . . . , an,

â1 = a2a3 · · · an

âj = a1 · · · aj−1aj+1 · · · an

ân = a1a2 · · · an−1

for all j where 1 < j < n.
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Theorem 2.1.9. Let a1, a2, . . . an be integers. Then [a1, a2, . . . , an] = a1a2...an
(â1,â2,...,ân)

.

Proof. Let x = [a1, a2, . . . , an]. Therefore, we know that a1 | x, a2 | x,. . . , an | x. This

collection of statements is equivalent to

a1(a2a3 . . . an) | x · a2a3 . . . an (1)

a2(a1a3a4 . . . an) | x · a1a3a4 . . . an (2)

...

an(a1a2 . . . an−1) | x · a1a2 . . . an−1. (3)

Note that the right side of (1) can be rewritten as x · â1, (2) as x · â2, and (3) as x · ân.

This implies that

a1a2a3 . . . an | (x · â1, x · â2, . . . , x · ân)

a1a2a3 . . . an | x · (â1, â2, . . . , ân)

a1a2a3 . . . an
(â1, â2, . . . , ân)

| x

Since we see that a1a2a3...an
(â1,â2,...,ân)

∈ Z, and it divides x = [a1, a2, . . . , an], then a1a2a3...an
(â1,â2,...,ân)

=

[a1, a2, . . . , an].

We must introduce several traits of greates common divisors for the sake of later proofs.

Lemma 2.1.10. If a1, a2, . . . , an are integers, not all 0, the (a1, a2, . . . , an−1, an) =

(a1, a2, . . . , (an−1, an)).

Lemma 2.1.11. If a1, a2, . . . , an, c are integers, where none are 0, then (ca1, ca2, . . . , can) =

c(a1, a2, . . . , an).
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Definition 2.1.12. [4, Section 4.1, p. 128] Let m be a positive integer. If a and b are

integers, we say that a is congruent to b modulo m if m|(a− b).

Note: If a is congruent to b modulo m, we write a ≡ b mod m.

The integer m is called the modulus of the congruence.

Here we introduce the Chinese Remainder Theorem, which we will ultimately use in an-

other form.

Theorem 2.1.13. [4, Theorem 4.12] Let m1,m2, . . . ,mi be pairwise relatively prime pos-

itive integers. Then the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ai mod mi

has a unique solution modulo M = m1m2 · · ·mi.

Theorem 2.1.14. [4, Theorem 4.8] If a ≡ b mod m1, a ≡ b mod m2,. . . ,a ≡ b mod mk,

where a, b,m1,m2, . . . ,mk are integers with m1,m2, . . . ,mk positive, then

a ≡ b mod [m1,m2, . . . ,mk].

The following theorem is a generalization of the Chinese Remainder Theorem, where the

moduli aren’t coprime. The theorem afterwards is an extension of this new form.

Theorem 2.1.15. [2, Theorem 2.1.22] The system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2
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has a solution if and only if (m1,m2)|(a1 − a2). When there is a solution, it is unique

modulo [m1,m2].

Theorem 2.1.16. [2, Theorem 2.1.23] The system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ar mod mr

has a solution if and only if (mi,mj)|(ai− aj) for all pairs of integers (i, j) where 1 ≤ i <

j ≤ r. If a solution exists, it is unique modulo [m1,m2, . . . ,mr].



3
Generalized Integer Splines

In this chapter, we introduce the reader to integer splines on graphs, and show that the

set of all integer splines on an edge labeled graph form a Z−module. We define the flow-up

classes on a 3-cycle, and that the flow-up classes on a 3-cycle form a basis for the spline

module. Finally, we provide a proof of the basis criterion developed by Ester Gjoni for

3-cycles.

3.1 An Introduction to Splines

Before introducing generalized integer splines, we must first look at an edge labeled graph.

Definition 3.1.1. [3, Definition 2.1] Let G be a graph with k edges ordered e1, e2, . . . , ek

and n vertices ordered v1, v2, . . . , vn. Let `i be a positive integer label on edge ei and let

L = {`1, `2, . . . , `k} be the set of all edge labels. Then (G,L) is an edge labeled graph.

A generalized integer spline, then, is an assignment of integers to vertices of an edge la-

beled graph satisfying a system of congruences, as seen in the following definition.
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Definition 3.1.2. [3, Definition 2.2] A generalized spine on the edge labeled graph (G,L)

is a vertex labeling satisfying the following: if e = (vi, vj) is an edge with label `, then

xi ≡ xj mod `. We denote a generalized spline X = (x1, x2, . . . , xn) where xi is the label

on vertex vi for 1 ≤ i ≤ n. The set of generalized integer splines is denoted S(G,L).

Note: For simplicity’s sake, generalized integer splines will be referred to as splines for

the duration of this paper.

v1

v2 v3

e3e1

e2

g1

g2 g3

`3`1

`2

Figure 3.1.1. An edge labeled graph on the left, and on the right is a generalized spline on
an edge labeled graph.

Observe that the image on the right in Figure 3.1.1 is a graphical representation of a

spline, thus we can write the spline shown as X = (x1, x2, x3). At times in this paper

we will use a third form of representation by presenting splines in the transposed form,

particularly when referring to flow-up classes, with

X =

x1
x2
x3

 .

As it is a spline, that means it has the property

x1 ≡ x2 mod `1

x2 ≡ x3 mod `2

x3 ≡ x1 mod `3.
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Splines can exist on any edge labeled graph. For example, consider the following graphs.

1

10 1

1422

29

13

8

4

5

7 11

5

6

2

Figure 3.1.2.

The left graph is a spline because the congruences below are satisfied, but the right graph

is not because 7 6≡ 5 mod 5.

Left Graph Congruences Right Graph Congruences

1 ≡ 1 mod 2 5 ≡ 11 mod 6

1 ≡ 14 mod 13 11 ≡ 7 mod 2

14 ≡ 22 mod 8 7 6≡ 5 mod 5

22 ≡ 10 mod 4

10 ≡ 1 mod 9

Nearly all of the previous research done on Generalized Integer Splines has been limited

to splines on n-cycles. Figure 3.1.2 shows a 5−cycle on the left and a 3−cycle on the right.

An n-cycle graph is a cycle with n edges, denoted Cn.

Let Cn be an n−cycle, and L = (`1, `2, . . . , `n) ∈ Zn be an ordered set of n edge labels.

Then the spline X = (x1, x2, . . . , xn) is an element of S(Cn, L) if and only if the following
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conditions are satisfied

x1 ≡ x2 mod `1

x2 ≡ x3 mod `2

...

xn−1 ≡ xn mod `n−1

xn ≡ x1 mod `n.

v1

v2

v3

v4

v5

v6

v7

v8

v9

vn

Figure 3.1.3. A representation of Cn, a cycle with n edges and without edge labels.

Every graph contains at least one type of spline, the trivial spline and its multiples.

Definition 3.1.3. Given an edge-labeled graph (G,L), with k vertices, X = (1, 1, . . . , 1)

with length k is called the Trivial Spline. Note that X satisfies the congruences, because

1 ≡ 1 mod `, for all ` ∈ Z.
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1

1 1

`3`1

`2

Figure 3.1.4. An edge labeled 3−cycle, or (C3, L), where the node labels are trivial.

The graph in Figure 3.1.4 easily satisfies the requirements of a spline, since

1 ≡ 1 mod `1

1 ≡ 1 mod `2

1 ≡ 1 mod `3.

The trivial splines turn out to be a key element of the flow-up classes introduced in

Section 3.3. However, before expanding on that, we must define more characteristics of

the set of all integer splines on an edge labeled graph, S(G,L). More specifically, we show

that the set of all integer splines on a given edge labeled graph forms a Z−module.

3.2 Z−Modules

We now define a Z−module and show that S(G,L) is a Z−module.

Definition 3.2.1. [1, Section 0.3] If R is a ring, then an R−module M is an abelian group

with an action of R, that is, a map R ×M → M , written (r,m) 7→ rm, satisfying for all
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r, s ∈ R and m,n ∈M :

r(sm) = (rs)m (associativity)

r(m + n) = rm + rn

(r + s)m = rm + sm (distributivity, or bilnearity)

1m = m (identity).

Note: Z is an abelian group, and any abelian group is an R−module.

A module, therefore, shares many traits with a vector space. What is important to differ-

entiate between the two, is that scalars for a module come from a ring R, while scalars in

a vector space are from a field F . One difference between the two is tthat vector spaces

always have a basis, while modules may or may not have a basis. Fortunately, it will turn

out that modules of integer splines always have bases.

Theorem 3.2.2. Fix the edge labels on (G,L) where G is any graph with m nodes and

L = (`1, `2, . . . , `n). Then S(G,L) is a subgroup of Zm, hence a Z−module.

Proof. To show that S(G,L) is a subgroup of Zm, we must show

1. I ∈ S(G,L), where I = (0, 0, . . . , 0) is the identity of Zm

2. S(G,L) closed under addition

3. ∀X ∈ S(G,L), ∃ −X ∈ S(G,L).

First, we see that I = (0, . . . , 0) satisfies the congruences since 0 ≡ 0 mod ` for all ` ∈ Z,

and thus I ∈ S(G,L).

Now, let X,Y ∈ S(G,L), with X = (x1, x2 . . . , xm) and Y = (y1, y2, . . . , ym). Note that

there are m node labels in each spline, since the number of edges on the graph can be less

than, equal to, or greater than the number of nodes.
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Since X ∈ S(G,L), we know that for every edge e = (vi, vj) with edge label `, that

xi ≡ xj mod `

yi ≡ yj mod `.

Then by the rules of modular arithmetic,

xi + yi ≡ xj + yj mod `.

Thus X + Y ∈ S(G,L), so S(G,L) is closed under addition.

Now let Z ∈ S(G,L) where Z = (z1, z2, . . . , zm). Then for all e = (vi, vj) with edge

label `ij ,

zi ≡ zj mod `ij ⇒ −zi ≡ −zj mod `ij

Therefore, −Z = (−z1,−z2, . . . ,−zm) ∈ S(G,L).

Satisfying the three requirements, S(G,L) is a subgroup of Zm, and a Z−module.

The following theorem shows that any S(G,L) has a basis.

Definition 3.2.3. An R−module M is called free if it has a basis. The rank of M is the

number of elements in any basis.

Theorem 3.2.4. [7, Theorem 6.1] Let F be a free module over a principal ideal domain

R and G a submodule of F . Then, G is a free R−module and rank G ≤ rank F .

Lemma 3.2.5. [6, Chapter 4, p. 243] The ring of integers Z is a principal ideal domain.

Corollary 3.2.6. Given any graph G with integer edge labels L, the set of all splines

S(G,L) is a free Z−module.
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Proof. Z is a principal ideal domain, and Zm is a free Z−module using Theorem 3.2.4.

Since S(G,L) is a submodule of Zm, we see that it is a free Z−module of rank ≤ m, hence

it has a basis.

3.3 Introduction to Flow-up Classes

Now we will look at flow-up classes. Flow-up classes were developed by Madeline Handschy,

Julie Melnick, and Stephanie Reinders in their paper titled Integer Generalized Splines on

Cycles [3]. While their findings can be generalized for any n−cycle, their base case is

a 3−cycle, which we reprove in order to develop and apply their techniques to a other

graphs. They prove that there exists a bisis consisting of flow-up classes.

Definition 3.3.1. [3, Section 2.3, p. 5] Fix the edge labels on (G,L) and fix k with

1 ≤ k ≤ n, where n is the one less than the total number of vertices of the graph. A

flow-up class Fk is the set of splines in S(G,L) with k-leading zeroes. More precisely,

Fk = {F ∈ S(G,L) | F has k leading zeroes}.

Part of what makes flow-up classes so useful is that a set of splines where each spline has

a different number of leading zeroes is linearly independent. This is because the splines

in the set can be viewed as columns of a matrix, ordered by number of leading zeroes,

resulting in a lower triangle matrix. Lower triangle matrices have non-zero determinants,

therefore making the splines linearly independent.

Another feature of flow-up classes is that they can be categorized by size. This measure-

ment is based on the on the size of the leading term, or first non-zero value of the flow-up

spline.
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Definition 3.3.2. [3, Definition 2.3] Fix a graph with edge labels (G,L). The small-

est element Fk of flow-up class Fk, has form Fk = (0, . . . , fk+1, . . . , fn), and if Hk =

(0, . . . , hk+1, . . . , hn) is another flow-up class element, then hi ≥ fi for all entries. By con-

vention, we consider the trivial spline, b0 = (1, 1, . . . , 1), to be the smallest flow-up element

in F0.

To introduce techniques used in this paper, we will first look at the work done by Hand-

schy, Melnick, and Reinders on flow-up classes on triangle graphs. They introduced flow-up

classes as a method of finding bases for generalized integer splines on n-cycles.

g1

g2 g3

`3`1

`2

Figure 3.3.1. Generalized Integer Spline on C3.

Lemma 3.3.3. Fix a cycle with edge labels (C3, L). The trivial spline b0 = (1, 1, 1) is the

smallest element in F0.

Proof. Let b0 = (1, 1, 1). Assume there exists X ∈ F0, where X = (x1, x2, x3), x1, x2, x3 ∈

Z+, and X ≤ b0. Then

x1 ≤ 1

x2 ≤ 1

x3 ≤ 1.

However, given that x1, x2, x3 ∈ Z+, this implies x1 = 1, x2 = 1, and x3 = 1. Therefore,

X = (1, 1, 1) = b0, so b0 is the smallest element of flow-up class F0.
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Lemma 3.3.4. [3, Theorem 3.1] Fix a cycle with edge labels (C3, L). All elements of flow-

up class F1 have the form m1 = (0, g2, g3), and any m1 = (0, g2, g3) ∈ (Z3)+ lies in F1 if

and only if [`1, (`2, `3)]|g2.

Similar to F0, there exists a smallest possible leading term for the elements of F1.

Lemma 3.3.5. [3, Theorem 3.2] Fix a cycle with edge labels (C3, L). Let m1 = (0, g2, g3),

be a spline on (C3, L). If g2 = [`1, (`2, `3)], then it is the smallest positive leading term.

Proof. Let m1 = (0, g2, g3), be a spline on (C3, L), and g2 = [`1, (`2, `3)]. First, notice that

m1 has one leading zero, and is a spline on (C3, L), then by Lemma 3.3.4, its leading term

must be a multiple of [`1, (`2, `3)]. However, we already know g2 = [`1, (`2, `3)], so it is the

smallest positive leading term.

The idea of categorizing by size can be extended further into elements of flow-up classes

as a whole. This means each term of the spline is as small as it can possibly be while still

being positive and a spline.

Lemma 3.3.6. [3, Theorem 3.3] Fix a cycle with edge labels (C3, L). The smallest element

b1, of flow-up class F1, exists on (C3, L).

Proof. We want to construct b1 ∈ F1 on (C3, L), such that b1 is the smallest element. So

it has the form b1 = (0, g2, g3), and by Lemma 3.3.5, g2 = [`1, (`2, `3)]. Then all possible

positive integers that satisfy the congruence restrictions set by the spline for g3 can be

well ordered, and we choose the smallest one to be equal to g3. Therefore b1 is the smallest

element of F1.

Now smallest elements of flow-up classes F0 and F1 have been defined, leaving the defini-

tion of the smallest element of F2. Handschy et al. include this in a larger lemma.
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Lemma 3.3.7. [3, Proposition 2.6] Fix a cycle with edge labels (Cn, L). The flow-up class

Fn−1 consists of splines on (Cn, L) of the form mn−1 = (0, . . . , 0, gn), and mn−1 is a spline

if and only if gn is a multiple of [`n−1, `n]. If gn = [`n−1, `n], then mn−1 is the smallest

element of the flow-up class.

Proof. ⇒ Let mn−1 ∈ S(Cn, L), where mn−1 = (0, . . . , 0, gn). Then we see that the first

n− 1 elements satisfy the congruences trivially, thus we are concerned with the two con-

gruences

gn−1 ≡ 0 mod `n−1

gn−1 ≡ 0 mod `n.

Using Theorem 2.1.15, we see that the solution gn−1 is unique modulo [`n−1, `n]. Thus

[`n−1, `n] | gn−1, which implies gn−1 = a[`n−1, `n], for some a ∈ Z+.

⇐ Let a ∈ Z+. Suppose mn−1 = (0, . . . , 0, a[`n−1, `n]), then looking at the system of

congruences

0 ≡ 0 mod `1

...

x ≡ 0 mod `n−1

x ≡ 0 mod `n,

we see that mn−1 is a spline on (Cn, L).

Now we would like to see that the smallest positive value for x that satisfies the system is

[`n−1, `n]. By definition, x must be a multiple of `n−1 and `n. It follows that x = [`n−1, `n]

is the smallest positive solution.

Using Lemma 3.3.7, we can define b2 as the smallest element of F2 on the graph with edge

labels (C3, L) with the form b2 = (0, 0, [`2, `3]).
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Figure 3.3.2.

Example 3.3.8. Fix the edges on (C3, L) where L = (8, 3, 5), as shown in Figure 3.3.2. We

find the smallest elements of each flow-up class F0,F1,F2 ⊆ S(C3, L). By Theorem 3.3.3,

we define b0 = (1, 1, 1). By Theorem 3.3.5, we know it has leading term [8, (3, 5)] = 8. Now

we must calculate for the third term of b1. We know it must satisfy

x ≡ 8 mod 3

x ≡ 0 mod 5

By Theorem 2.1.15, we know the solution exists and is unqiue modulo [3, 5] = 15. Thus

we find the smallest possible solution is x = 5. So b1 = (0, 8, 5), and by Lemma 3.3.7,

b2 = (0, 0, 15).

Having shown the existence of flow-up classes and described the form of the leading term

of each one, we are now able to define the smallest elements of the flow-up classes of splines

on triangles as

b0 = (1, 1, 1)

b1 = (0, [`1, (`2, `3)], g3)

b2 = (0, 0, [`2, `3])
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we now are equipped to show that these form a basis for the module of splines on a trian-

gle graph over the integers. We include the proof to help the reader understand the final

outcome of their paper, as well as a reference for a similar theorem on the diamond graph.

Theorem 3.3.9. [3, Theorem 3.4] Fix a cycle with edge labels (C3, L). Let b0, b1, and b2

be the smallest elements of the corresponding flow-up classes on (C3, L). Then {b0, b1, b2}

is a basis for the module of splines over the integers.

Proof. Let b0, b1, and b2 be the smalles elements of F0, F1, and F2, respectively, on edge

labeled graph (C3, L). Since each of the three have different numbers of leading zeroes,

they are linearly independent.

Now we check that every spline on (C3, L) is in the span of {b0, b1, b2}. Let Y = (y1, y2, y3)

be a spline on (C3, L), and then define Y ′ as

Y ′ = Y − y1b0 =

 0
y2 − y1
y3 − y1


Since Y is a linear combination of splines, Y and b0, and the set of splines is a module,

the vector Y ′ is a spline as well. We also note that it has one leading zero, and so we have

Y ′ ∈ F1. Then by Lemma 3.3.4, the leading term y2 − y1 = s[`1, (`2, `3)], for some s ∈ Z.

By Lemma 3.3.5 we know the leading term of b1 is [`1, (`2, `3)], which leads us to defining

Y ′′ as

Y ′′ = Y ′ − sb1 =

 0
0

y3 − y1 − sg3


Again, this is a spline, as it is the result of a linear combination of splines. So Y ′′ is a

spline and Y ′′ ∈ F2. Then by Lemma 3.3.7, y3 − y1 − sg3 must be a multiple of [`2, `3],
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implying y3 − y1 − sg3 = t[`2, `3] for some t ∈ Z. By Lemma 3.3.7 the leading term of b2

is [`2, `3], so it follows that

Y ′′ − tb2 =

 0
0

y3 − y1 − sg3

− t

 0
0

[`2, `3]

 =

0
0
0


Therefore we can rewrite Y as

Y = y1b0 + sb1 + tb2

for y1, s, t ∈ Z. So we have shown that Y is an integer linear combination of b0, b1, and

b2. Thus {b0, b1, b2} forms a basis over the integers for the splines on (C3, L).

Example 3.3.10. We use the edge labeled graph (C3, L) from Example 3.3.8 to show

that the smallest flow-up class elements form a basis for the module. Thus b0 = (1, 1, 1),

b1 = (0, 8, 5), and b2 = (0, 0, 15), and we want to see that a spline on (C3, L) can be

represented as a linear combination as the three. Let X = (19, 83, 44). Then we see

X = 19b0 + 8b1 − b2 =

 19(1) + 8(0)− (0)
19(1) + 8(8)− (0)
19(1) + 8(5)− (15)

 =

19
83
44

 .

Example 3.3.11. Here we will show that a linear combination of basis elements results

in a spline. Let us again refer to Example 3.3.8. As shown in Example 3.3.10, a basis for

the module of splines is {b0, b1, b2}, where b0 = (1, 1, 1), b1 = (0, 8, 5), and b2 = (0, 0, 15).

Then an example of a linear combination of the three is

X = 23b0 − 14b1 + 39b2 = 23

1
1
1

− 14

0
8
5

+ 39

 0
0
15

 =

 23
−89
538


.
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Checking if it is a spline on (C3, L), we see that 23 ≡ −89 mod 8, −89 ≡ 538 mod 3,

and 538 ≡ 23 mod 5. Thus this linear combination of the three elements gives a spline in

S(C3, L). We offer a depiction of X on (C3, L) in Figure 3.3.3.

23

−89 538

58

3

Figure 3.3.3.

3.4 Basis Criterion for Splines on 3-Cycles

In this section we introduce research done by Ester Gjoni in her senior project Basis Cri-

teria for n-Cycle Splines[2]. She develops a quick method to verify whether or not a set

of splines is a basis for a module of splines. We state most of her results without proofs,

as very similar proofs will be given later for splines on the diamond graph.

Theorem 3.4.1. [2, Theorem 4.2.3] Fix the edge labels on (Cn, L), where L =

(`1, `2, . . . , `n). Let m0,m1, . . . ,mn−1 be elements of their respective flow-up classes in

S(Cn, L). Then, |m0,m1, . . . ,mn−1| = c · `1`2...`n
(`1,`2,...,`n)

, where c ∈ N.

Example 3.4.2. Fix the edge labels on (C3, L) where L = (4, 5, 7). Let m0 = (23, 7, 2),

m1 = (0, 32, 7), and m2 = (0, 0, 70). These three are easily verified to be splines in S(C3, L),

and furthermore, we see m0 ∈ F0, m1 ∈ F1, and m2 ∈ F2. Now we compute the determi-
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Figure 3.4.1.

nant of their matrix in transposed form

|m0,m1,m2| =

∣∣∣∣∣∣
23 0 0
7 32 0
2 7 70

∣∣∣∣∣∣ (1)

= 23 · 32 · 70 (2)

= 368 · 4 · 5 · 7 (3)

= 368 · 4 · 5 · 7
(4, 5, 7)

(4)

We are able to compute the determinant so easily due to the fact that it is a lower triangle

matrix, thus as shown in step (2), it is a matter of multiplying the elements in the diagonal.

In step (3) we factor out values equal to the edge labels, leaving c = 368. Since the edge

labels are coprime, (4, 5, 7) = 1, and so in step (4) we are able to rewrite the expression

in the form described by Theorem 3.4.1, c · `1`2...`n
(`1,`2,...,`n)

.

This leads to a much simpler corollary, which serves as a hint to the basis criterion.

Corollary 3.4.3. [2, Corollary 4.2.4] Fix the edge labels on (Cn, L), where L =

(`1, `2, . . . , `n). Let b0, b1, . . . , bn−1 be the smallest elements of the corresponding flow-up

classes in S(Cn, L). Then, |b0, b1, . . . , bn−1| = `1`2...`n
(`1,`2,...,`n)

.

Lemma 3.4.4. [2, Lemma 4.3.1] Fix the edge labels on (C3, L), where L = (`1, `2, `3).

Let Q = `1`2`3
(`1,`2,`3)

and X,Y, Z,D ∈ S(C3, L). Suppose |X,Y, Z| = ±Q. Then QD is in the

linear span of {X,Y, Z}.
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Example 3.4.5. Fix the edge labels on (C3, L) where L = (4, 5, 7) and let Q = 4·5·7
(4,5,7) =

140. Let X = (4, 0, 25), Y = (5, 1, 26), Z = (0, 0, 35), and D = (41, 17, 62), so we have

X,Y, Z,D ∈ S(C3, L). Taking the determinant of [X,Y, Z], we have

|X,Y, Z| =

∣∣∣∣∣∣
4 5 0
0 1 0
25 26 35

∣∣∣∣∣∣
= 4 · (1 · 35− 0 · 26)− 5 · (0 · 35− 0 · 25) + 0 · (0 · 26− 1 · 25)

= 4 · (35− 0)− 0 + 0

= 4 · 5 · 7

=
4 · 5 · 7
(4, 5, 7)

= Q.

Since |X,Y, Z| = Q, then by Lemma 3.4.4, we should be able to show that QD is in

the linear span of {X,Y, Z}. To do so, we must solve the following equality to prove the

existence of a1, a2, and a3

 4 5 0
0 1 0
25 26 35

 ·
 a1

a2
a3

 = 140 ·

 41
17
62


Solving the system of equations we find a1 = −1, 540, a2 = 2, 380 and a3 = −420.

Therefore, QD ∈ span{X,Y, Z}.

Lemma 3.4.6. [2, Lemma 4.3.3] Fix the edge labels on (C3, L), where L = (`1, `2, `3). Let

X,Y, Z ∈ S(C3, L). Then `1 | |X,Y, Z|, `2 | |X,Y, Z|, and `3 | |X,Y, Z|.

Lemma 3.4.7. [2, Lemma 4.3.4] Fix the edge labels on (C3, L), where L = (`1, `2, `3). Let

X,Y, Z ∈ S(C3, L). Then `1`2 | |X,Y, Z|, `2`3 | |X,Y, Z|, and `3`1 | |X,Y, Z|.

Example 3.4.8. Fix the edge labels on (C3, L) where L = (4, 5, 7). Let X = (12, 8, 22),

Y = (19, 27, 47), and Z = (6, 18, 13), which are all splines in S(C3, L). We want to check
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that the product of any two edge labels divides the determinant of the three elements, X,

Y , and Z. First, let us compute the determinant

|X,Y, Z| =

∣∣∣∣∣∣
8 19 6
12 27 18
22 47 13

∣∣∣∣∣∣
= 8 · (27 · 13− 18 · 47)− 19 · (12 · 13− 18 · 22) + 6 · (12 · 47− 27 · 22)

= 420.

Now that we have found |X,Y, Z| = 420, we check that the product of any two edge labels

divides this value. We see that the three statements 4 · 5 | 420, 4 · 7 | 420, and 5 · 7 | 420

all hold true.

Lemma 3.4.9. [2, Theorem 4.3.5] Fix the edge labels on (C3, L) where L = (`11, `2, `3).

Let Q = `1`2`3
(`1,`2,`3)

. If X,Y, Z ∈ S(C3, L), then Q | |X,Y, Z|.

Lemma 3.4.10. [2, Lemma 4.3.7] Fix the edge labels on (C3, L) where L = (`11, `2, `3).

If X, Y , and Z form a basis for S(C3, L), and J , K, and M are linear combinations of

X, Y , and Z, then |X,Y, Z| | |J,K,M |.

Corollary 3.4.11. [2, Lemma 4.3.8] Fix the edge labels on (C3, L) where L = (`11, `2, `3).

If {X,Y, Z} is a basis for S(C3, L) and {J,K,M} is another basis, then |X,Y, Z| =

±|J,K,M |.

Here we have one of the major results from Gjoni’s work. We include a proof to highlight

the importance of the preceding lemmas, corollaries, and theorems.

Theorem 3.4.12. [2, Theorem 4.3.9] Fix the edge labels on (C3, L), where L = (`1, `2, `3).

Let Q = `1`2`3
(`1,`2,`3)

and let X,Y, Z ∈ S(C3, L). Then, {X,Y, Z} form a module basis for

S(C3, L) if and only if |X,Y, Z| = ±Q.

Proof.⇒ As shown in Theorem 3.3.9, we know that the smallest elements, {b0, b1, b2} of

each flow-up class for S(C3, L). By Corollary 3.4.3 we know that |b0, b1, b2| = `1`2`3
(`1,`2,`3)

.
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Using Lemma 3.4.11, we know that |b0, b1, b2| = `1`2`3
(`1,`2,`3)

= ±|X,Y, Z|, where {X,Y, Z} is

another module basis for S(C3, L). Therefore, |X,Y, Z| = ±Q.

⇐ Suppose |X,Y, Z| = ±Q. We want to see that this implies that {X,Y, Z} is linearly

independent and spans S(C3, L). Since the determinant of the three is Q 6= 0, we know

they are linearly independent. Let D ∈ S(C3, L). From Lemma 3.4.4 we know

QD = a1X + a2Y + a3Z

for some a1, a2, a3 ∈ Z. Then by the properties of determinants,

±a1Q = a1|X,Y, Z|

= |a1X,Y, Z|

= |(a1X + a2Y + a3Z), Y, Z|

= |QD,Y, Z|

= Q|D,Y, Z|

This implies a1 = ±|D,Y, Z|, and by Lemma 3.4.9 we know that Q | |D,Y, Z|, so for some

s1 ∈ Z, s1Q = |D,Y, Z| =⇒ a1 = ±s1Q. Using a similar argument we find a2 = ±s2Q

and a3 = ±s3Q, for some s2, s3 ∈ Z. Finally we have

QD = a1X + a2Y + a3Z

= ±(s1Q)X ± (s2Q)Y ± (s3Q)Z

= Q(±s1X ± s2Y ± s3Z)

D = ±s1X ± s2Y ± s3Z.

Therefore, D is a linear combination of X, Y , and Z, meaning that {X,Y, Z} spans

S(C3, L).
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The most significant result of Theorem 3.4.12 is that should you have any three splines

X, Y , and Z in S(C3, L) with edge labels L = (`1, `2, `3), if their determinant is equal to

±Q = ± ell1`2`3
(`1,`2,`3)

, then they form a module basis for S(C3, L).

Example 3.4.13. Fix the edge labels on (C3, L) where L = (4, 5, 7). Let X = (4, 0, 25),

Y = (5, 1, 26), and Z = (0, 0, 35). As shown in Example 3.4.5, |X,Y, Z| = Q. Then by

Theorem 3.4.12, {X,Y, Z} is a module basis, so any spline D ∈ S(C3, L) can be written

as a linear combination of X, Y , and Z. Let D = (41, 17, 62). Then we want to find

a1, a2, a3 ∈ Z such that satisfy the following equation

 4 5 0
0 1 0
25 26 35

 ·
 a1

a2
a3

 =

 41
17
62

 .

We solve this system and get a1 = −11, a2 = 17, and a3 = −3. Therefore we have

D = −11X + 17Y − 3Z.

Thus D ∈ span{X,Y, Z}.



4
Splines on the Diamond Graph

In this chapter we prove two important theorems on the diamond graph. The first proves

that the flow-up classes form a basis for the module of splines, and the second theorem is

a basis criterion.

4.1 The Flow-up Classes on the Diamond Graph

Let the spline on the diamond graph be defined as shown below. Observe that it consists

of two 3-cycles, sharing two nodes and one edge.

We must now see that flow-up classes exist on the diamond graph. We cannot assume it

to be true, because unlike the cycle graphs, g1 and g2 are connected to three other nodes.

We exclue a proof for the flow-up class F0, as the trivial spline serves as a satisfactory

example.

Lemma 4.1.1. Fix the edges on (D,L) where L = (`1, `2, `3, `4, `5). There exists a flow-up

class F1 in S(D,L).
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Figure 4.1.1. A generalized diamond spline on (D,L).

Proof. For the flow-up class F1 to exist, we want to see that there exists a F1 in the

set F1. Let F1 = (0, g2, g3, g4). Then we want the congruences determined by the graph to

hold true for g2, g3, g4, that is

0 ≡ g2 mod `1 (1)

g2 ≡ g3 mod `2 (2)

g2 ≡ g4 mod `4 (3)

g3 ≡ 0 mod `3 (4)

g4 ≡ 0 mod `5 (5)

For the first congruence, we have to use two applications of Theorem 2.1.15. Using equa-

tions (2) and (4), we see that there exists g3 satisfying the conditions if and only if g2 ≡ 0

mod (`2, `3). However, before finding a value for g2, we must also take into account its

relation with g4. Using equations (3) and (5), we see that g4 exists if and only if g2 ≡ 0

mod (`4, `5). This means g2 must satisfy `1 | g2, (`2, `3) | g2, and (`4, `5) | g2. Then by

the definition of least common multiples, we see that if g2 = a[`1, (`2, `3), (`4, `5)] for any

a ∈ N, g2 satisfies the congruences, and by Theorem 2.1.15, there exist values for g3 and

g4 satisfying the system.
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Now we would like to see that the other two flow-up classes, F2 and F3, exist on the

diamond graph as well.

Lemma 4.1.2. Fix the edges on (D,L) where L = (`1, `2, `3, `4, `5). The flow-up classes

F2 and F3 both exist in S(D,L).

Proof. First, let us look at F2. We want to find F2 ∈ F2, where F2 = (0, 0, g3, g4). For

F2 to exist in F∈, we are essentially faced with two pairs of congruences. Those being

g3 ≡ 0 mod `2 (1.1)

g3 ≡ 0 mod `3 (1.2)

g4 ≡ 0 mod `4 (2.1)

g4 ≡ 0 mod `5 (2.2)

Using Theorem 2.1.15, we see that g3 = a1[`2, `3], for any a1 ∈ N. Similarly, for g4 to exist,

we must have g4 = a2[`4, `5], for some a2 ∈ N. Therefore, g3 and g4 exist, and so F2 ∈ F2.

Now let us look at F3. We want to find F3 ∈ F3, where F3 = (0, 0, 0, g4). We only need

to find a value for g4. As just shown above, solving the equations for g4, we find that

g4 = a3[`4, `5] for any a3 ∈ N. Therefore F3 exists on the diamond graph as well.

Example 4.1.3. Let D be a diamond graph, with L = (4, 3, 7, 4, 5). (D,L) is shown in

Figure 4.1.2. We find an element of each flow-up class in S(D,L). Let m0 = (6, 2, 20, 6).
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Figure 4.1.2.

Since it has no leading zeroes, and it satisfies the congruences

6 ≡ 2 mod 4

2 ≡ 20 mod 3

20 ≡ 6 mod 7

2 ≡ 6 mod 4

6 ≡ 6 mod 5,

therefore m0 ∈ F0. By Lemma 4.1.1, the leading term of m1 is a multiple of

[4, (3, 7), (4, 5)] = 4. With values found for the first two vertices, we calculate for values that

fit for the other two, and see that letting m1 = (0, 12, 21, 20), then m1 ∈ F1 ⊂ S(D,L).

In a similar manner, using Lemma 4.1.2, the leading term of m2 must be a multi-

ple of [3, 7] = 21, and we find the fourth element as satisfies the congruences. Lettin

m2 = (0, 0, 42, 60), results in m2 ∈ F2. Lastly, define the leading term of m3 as a multiple

of [4, 5] = 20. Setting m3 = (0, 0, 0, 40), it is clearly in F3. So we have examples of elements

of the four flow-up classes on an edge-labeled diamond graph.
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Lemma 4.1.4. Fix the edges on (D,L) where L = (`1, `2, `3, `4, `5). Let m1 = (0, g2, g3, g4)

be in the flow-up class F1. The leading element g2 is a multiple of [`1, (`2, `3), (`4, `5)], and

g2 = [`1, (`2, `3), (`4, `5)] is the smallest possible positive value such that m1 is a spline.

Proof. Let m1 = (0, g2, g3, g4) be an element of the flow-up class F1 on (D,L). By

Lemma 4.1.1, we know that if m1 ∈ F1, then its leading term g2 must be a multiple

of [`1, (`2, `3), (`4, `5)]. So setting g2 = [`1, (`2, `3), (`4, `5)], we see that g2 is the smallest

possible value that still satisfies the Chinese Remainder Theorem as used in Lemma 4.1.1.

Thus there exist g3 and g4 that conform to the conditions.

Similarly we can show that there exist smallest leading terms in flow-up classes F2 and

F3 on the diamond graph.

Lemma 4.1.5. Fix the edges on (D,L) where L = (`1, `2, `3, `4, `5). Let m2 = (0, 0, g3, g4)

be in the flow-up class F2 on (D,L). The leading element g3 is a multiple of [`2, `3], and

g3 = [`2, `3] is the smallest possible positive value such that m2 is a spline.

Proof. Let m2 = (0, 0, g3, g4) be an element of the flow-up class F2 on (D,L). Then by

Lemma 4.1.2, we know that if m2 ∈ F2, then the leading term g3 must be a multiple of

[`2, `3], and so the smallest possible leading term for m2 is g3 = [`2, `3].

Lemma 4.1.6. Fix the edges on (D,L) where L = (`1, `2, `3, `4, `5). Let m3 = (0, 0, 0, g4)

be in the flow-up class F3 on (D,L). The leading element g4 is a multiple of [`4, `5], and

g2 = [`4, `5] is the smallest possible positive value such that m3 is a spline.

Proof. Let m3 = (0, 0, 0, g4) be an element of the flow-up class F3 on (D,L). Then by

Lemma 4.1.2, we know that if m3 ∈ F3, then the leading term g4 must be a multiple of
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[`4, `5], and so the smallest possible leading term for m3 is g4 = [`4, `5].

Now we have m0 ∈ F0, . . . , m3 ∈ F3, with the smallest possible leading terms. We are

only looking at splines with positive integer labels, so through well-ordering there exists

a smallest value for each non-leading term of the m0, . . . ,m3.

Establishing an order to the vertices of the diamond graph allows the creation of the

flow-up classes. Now that the flow-up classes are defined with smallest elements, we are

equipped to show that the set of smallest flow up classes form a basis for the module of

splines on the edge labeled diamond graph (D,L).

Here we present our main theorem on the flow-up classes. We prove that the smallest

elements of the flow-up classes form a basis for S(D,L).

Theorem 4.1.7. Fix the edges on (D,L) where L = (`1, `2, `3, `4, `5). Let b0, b1, b2, and

b3 be the smallest elements of the corresponding flow-up classes in S(D,L). These four

splines {b0, b1, b2, b3} are a basis for the module of splines over the integers on the graph.

Proof. Let b0, . . . , b3 be the smallest elements of their flow-up classes. Since each has a

different number of leading zeroes, they are linearly independent.

Now we want to see that these splines span S(D,L). Let Y ∈ S(D,L) with Y =

(y1, y2, y3, y4). Then we define Y ′ as

Y ′ = Y − y1b0 =


0

y2 − y1
y3 − y1
y4 − y1


Notice that y1 is an integer, this is a linear combination of splines, Y and b0. Since S(D,L)

is a module, we therefore know that Y ′ ∈ S(D,L). With a leading zero, Y ′ is an element of
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the flow-up class F1, and by Lemma 4.1.4, its leading term, y2−y1 = a1[`1, (`2, `3), (`4, `5)],

for some a1 ∈ Z. Recall that b1 = (0, g2, g3, g4) with g2 = [`1, (`2, `3), (`4, `5)], so y2− y1 =

a1g2. Then define Y ′′ as

Y ′′ = Y ′ − a1b1 =


0

y2 − y1
y3 − y1
y4 − y1

− a1


0
g2
g3
g4

 =


0
0

y3 − y1 − a1g3
y4 − y1 − a1g4


Therefore Y ′′ ∈ S(D,L), and Y ′′ ∈ F2. By Lemma 4.1.5, the leading term of Y ′′, y3−y1−

a1g3 = a2h3, for some a2 ∈ Z, where h3 = [`2, `3] is the leading term of b2 = (0, 0, h3, h4).

Now we define Y ′′′ to be

Y ′′′ = Y ′′ − a2b2 =


0
0

y3 − y1 − a1g3
y4 − y1 − a1g4

− a2


0
0
h3
h4

 =


0
0
0

y4 − y1 − a1g4 − a2h4


This linear combination of splines results in Y ′′′ ∈ S(D,L), and Y ′′′ ∈ F3. Thus its leading

term must be a multiple of the leading term of b3 = (0, 0, 0, j4), where j4 = [`4, `5] is the

smallest possible leading term. By Lemma 4.1.6, choose a3 ∈ Z such that

Y ′′′ − a3b3 =


0
0
0

y4 − y1 − a1g4 − a2h4

− a2


0
0
0
j4

 =


0
0
0
0


Thus we see that

Y = y1b0 + a1b1 + a2b2 + a3b3

for y1, a1, a2, a3 ∈ Z. This means that Y is a linear combination of the four splines

b0, b1, b2, b3, and so {b0, b1, b2, b3} forms a basis over the integers for the set of splines

on (D,L).
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Now let us look at an example of how the smallest flow-up class elements form a basis by

choosing a spline on an edge labeled graph and rewriting it as the linear combination of

basis elements.

Example 4.1.8. Let us refer back to Example 4.1.3, where L = (4, 3, 7, 4, 5). Calculating

the smallest element of each flow-up class, we have

b0 = (1, 1, 1, 1)

b1 = (0, 4, 7, 20)

b2 = (0, 0, 21, 20)

b3 = (0, 0, 0, 20).

Let m = (6, 2, 20, 26), which can easily be shown to be in S(D,L). Then we see

m− 6b0 = (0,−4, 14, 20)

m− 6b0 + b1 = (0, 0, 21, 40)

m− 6b0 + b1 − b2 = (0, 0, 0, 20)

m− 6b0 + b1 − b2 − b3 = (0, 0, 0, 0).

Thus we can rewrite m as

m = 6b0 − b1 + b2 + b3.

And so m ∈ span{b0, b1, b2, b3}.

4.2 Basis Criterion for Splines on a Diamond Graph

In this section we use the techniques developed by Gjoni for 3−cycles and apply them to

the diamond graph.
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Theorem 4.2.1. Fix the edge labels on (D,L), where L = (`1, `2, `3, `4, `5). Let m0,

m1, m2, and m3 be elements from each corresponding flow-up class in S(D,L). Then

det(m0,m1,m2,m3) = |m0,m1,m2,m3,m4| = c · `1`2`3`4`5
((`2,`3)(`4,`5),`1(`4,`5),`1(`2,`3))

, where c ∈ N.

Proof. Let m0 ∈ F0, . . . ,m3 ∈ F3, and all be splines in S(D,L). Looking at the structures

of these four splines, we have

m0 = (g1, g2, g3, g4)

m1 = (0, h2, h3, h4)

m2 = (0, 0, j3, j4)

m3 = (0, 0, 0, k4)

Observing their leading elements, we see g1 = c1 · 1, for some c1 ∈ N. By Theorem 4.1.4,

h2 = c2 · [`1, (`2, `3), (`4, `5)], for some c2 ∈ N. By Theorem 4.1.5, j3 = c3 · [`2, `3], and by

Theorem 4.1.6, k4 = c4 · [`4, `5], for c3, c4 ∈ N.

Transposing the four splines and viewing them as columns of a matrix, we have

M = [m0,m1,m2,m3] =


c1 · 1 0 0 0
g2 c2 · [`1, (`2, `3), (`4, `5)] 0 0
g3 h3 c3 · [`2, `3] 0
g4 h4 j4 c4 · [`4, `5]


Note that M is a lower triangle matrix, so taking the determinant we have

|M | = c1 · 1 · c2 · [`1, (`2, `3), (`4, `5)] · c3 · [`2, `3] · c4 · [`4, `5]

Let c = c1 · c2 · c3 · c4. Then,

|M | = c · 1 · [`1, (`2, `3), (`4, `5)] · [`2, `3] · [`4, `5] (1)

= c · `1(`2, `3)(`4, `5)

((`2, `3)(`4, `5), `1(`4, `5), `1(`2, `3))
· `2`3

(`2, `3)
· `4`5

(`4, `5)
(2)

= c · `1`2`3`4`5
((`2, `3)(`4, `5), `1(`4, `5), `1(`2, `3))

. (3)

To get from (1) to (2), we use Theorem 2.1.9, and from (2) to (3) is simple distribution.

Thus |M | is a multiple of `1`2`3`4`5
((`2,`3)(`4,`5),`1(`4,`5),`1(`2,`3))

.
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Corollary 4.2.2. Fix the edge labels on (D,L), where L = (`1, `2, `3, `4, `5). Let m0,

m1, m2, and m3 be elements from each corresponding flow-up class in S(D,L). Then

|m0,m1,m2,m3,m4| = c · `1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

, where c ∈ N.

Proof. Let M be the lower triangle matrix formed by combining m0,m1,m2, and m3 in

transposed form into one matrix. As shown in Theorem 4.2.1, |M | | `1`2`3`4`5
((`2,`3)(`4,`5),`1(`4,`5),`1(`2,`3))

.

Through properties of greatest common divisors we see the following are equivalent

((`2, `3)(`4, `5), `1(`4, `5), `1(`2, `3)) = ((`2, `3)(`4, `5), (`1(`4, `5), `1(`2, `3))) (1)

= ((`2, `3)(`4, `5), `1((`4, `5), (`2, `3))) (2)

= ((`2, `3)(`4, `5), `1(`4, `5, (`2, `3))) (3)

= ((`2, `3)(`4, `5), `1(`4, `5, `2, `3)) (4)

= ((`2, `3)(`4, `5), `1((`2, `3, `4, `5)). (5)

In step (1), we use Lemma 2.1.10, in step (2) we use Lemma 2.1.11, in steps (3) and (4)

we use Lemma 2.1.10 again, and in step (5) we simply reorder the elements. Therefore,

|M | | `1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

.

The inclusion of Corollary 4.2.2 may appear to be arbitrary, but it is valuable as a rep-

resentation for the diamond graph. The denominator ((`2, `3)(`4, `5), `1((`2, `3, `4, `5) has

the structure of

((edges of cycle 1)(edges of cycle 2),center edge(outer edges))

Much like with Gjoni’s work on the three cycle, we would like to prove that any set

of splines form a module basis for the set of splines on an edge labeled graph if and

only if their determinant is equal to some value. For the diamond graph, the value is

Q = ± `1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

. We manage to prove this given certain restrictions placed

on the values for `1, `2, `3, `4, and `5.
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Corollary 4.2.3. Fix the edge labels on (D,L) where L = (`1, `2, `3, `4, `5). Let Q =

`1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

and b0, b1, b2, and b3 be the smallest elements of the respective

flow-up classes F0,F1,F2,F3 ⊂ S(D,L). Then |b0, b1, b2, b3| = Q.

Proof. Since b0, b1, b2, and b3 are the smallest elements of the flow-up classes, we already

know their forms to be

b0 = (1, 1, 1, 1)

b1 = (0, [`1, (`2, `3), (`4, `5)], g3, g4)

b2 = (0, 0, [`2, `3], h4)

b3 = (0, 0, 0, [`4, `5]).

Then taking the determinant of their matrix in transposed form,

|b0, b1, b2, b3| =

∣∣∣∣∣∣∣∣
1 0 0 0
1 [`1, (`2, `3), (`4, `5)] 0 0
1 g3 [`2, `3] 0
1 g4 h4 [`4, `5]

∣∣∣∣∣∣∣∣
= 1 · [`1, (`2, `3), (`4, `5)] · [`2, `3] · [`4, `5]

=
`1(`2, `3)(`4, `5)

((`2, `3)(`4, `5), `1(`4, `5), `1(`2, `3))
· `2`3

(`2, `3)
· `4`5

(`4, `5)

=
`1`2`3`4`5

((`2, `3)(`4, `5), `1(`4, `5), `1(`2, `3))

=
`1`2`3`4`5

((`2, `3)(`4, `5), `1(`2, `3, `4, `5))

Therefore, |b0, b1, b2, b3| = Q.

The following lemma is crucial in proving our final proof, but it is only possible with

the restrictions stated. While reading the proof, it may help the reader to refer back to

Figure 4.1.1.
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Lemma 4.2.4. Fix the edges on (D,L), where L = (`1, `2, `3, `4, `5). Let (`2, `3, `4, `5) =

(`1, `2) = (`1, `3) = (`1, `4) = (`1, `5) = 1, and Q = `1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

. If

W,X, Y, Z ∈ S(D,L), then Q | |W,X, Y, Z|.

Proof. Based on the restrictions set on `1, `2, `3, `4, and `5, we see that

((`2, `3)(`4, `5), `1(`2, `3, `4, `5)) = ((`2, `3)(`4, `5), `1) (1)

= 1. (2)

We get to step (1) by the given restraints, and we get to (2), because `1 is coprime with

all other edges, and therefore coprime with the product of their greatest common divisors.

Therefore,

Q = `1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

= `1`2`3`4`5
1 = `1`2`3`4`5.

Since W,X, Y, Z ∈ S(D,L), we know `2 | (w2 − w3), `2 | (x2 − x3), `2 | (y2 − y3),

and `2 | (z2 − z3). Let M = |W,X, Y, Z|. Thus

M =

∣∣∣∣∣∣∣∣
w1 x1 y1 z1
w2 x2 y2 z2
w3 x3 y3 z3
w4 x4 y4 z4

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
w1 x1 y1 z1

w2 − w3 x2 − x3 y2 − y3 z2 − z3
w3 x3 y3 z3
w4 x4 y4 z4

∣∣∣∣∣∣∣∣ = `2

∣∣∣∣∣∣∣∣
w1 x1 y1 z1
a1 a2 a3 a4
w3 x3 y3 z3
w4 x4 y4 z4

∣∣∣∣∣∣∣∣
for some a1, a2, a3, a4 ∈ Z. Similarly, `3 | (w3 − w1), `3 | (x3 − x1), `3 | (y3 − y1),

and `3 | (z3 − z1), so

M = `2

∣∣∣∣∣∣∣∣
w1 x1 y1 z1
a1 a2 a3 a4

w3 − w1 x3 − x1 y3 − y1 z3 − z1
w4 x4 y4 z4

∣∣∣∣∣∣∣∣ = `2`3

∣∣∣∣∣∣∣∣
w1 x1 y1 z1
a1 a2 a3 a4
b1 b2 b3 b4
w4 x4 y4 z4

∣∣∣∣∣∣∣∣ ,
for some b1, b2, b3, b4 ∈ Z. Finally, `5 | (w4 − w1), `5 | (x4 − x1), `5 | (y4 − y1), and `5 |

(z4 − z1)
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M = `2`3

∣∣∣∣∣∣∣∣
w1 x1 y1 z1
a1 a2 a3 a4
b1 b2 b3 b4

w4 − w1 x4 − x1 y4 − y1 z4 − z1

∣∣∣∣∣∣∣∣ = `2`3`5

∣∣∣∣∣∣∣∣
w1 x1 y1 z1
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣
for some c1, c2, c3, c4 ∈ Z. Since the above matrices all have integer entries, we know `2`3`5 |

M . Using the same technique we can show `2`3`4 | M , `2`4`5 | M , and `3`4`5 | M . Then

by the definition of least common multiples, if these four products divide M , then their

least common multiple does too, or [`2`3`4, `2`3`5, `2`4`5, `3`4`5] | M . By Theorem 2.1.9

this implies `2`3`4`5
(`2,`3,`4,`5)

|M , and since we know (`2, `3, `4, `5) = 1, we get `2`3`4`5 |M .

Using the same method, we can see that `1 | M . Moreover, we know that `1 is pairwise

coprime with `2, `3, `4, and `5, thus [`1, `2`3`4`5] = `1`2`3`4`5. So we have `1`2`3`4`5 |M .

Since Q = `1`2`3`4`5, we conclude that Q | |W,X, Y, Z|.

Lemma 4.2.5. Fix the edge labels on (D,L) where L = (`1, `2, `3, `4, `5). Let Q =

`1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

and W,X, Y, Z,H ∈ S(D,L). Suppose |W,X, Y, Z| = ±Q, then

QH is in the span of {W,X, Y, Z}.

Proof. Let W = (w1, w2, w3, w4), X = (x1, x2, x3, x4), Y = (y1, y2, y3, y4), Z =

(z1, z2, z3, z4), and H = (h1, h2, h3, h4). Let

M =


w1 x1 y1 z1
w2 x2 y2 z2
w3 x3 y3 z3
w4 x4 y4 z4


and suppose |M | = ±Q. To show that QH ∈ span{W,X, Y, Z}, we must show that QH

is a linear combination of W , X, Y , and Z. We will do this by showing that there exists

a1, a2, a3, a4 ∈ Z such the following equation has a solution


w1 x1 y1 z1
w2 x2 y2 z2
w3 x3 y3 z3
w4 x4 y4 z4




a1
a2
a3
a4

 =


Qh1
Qh2
Qh3
Qh4

 .



4. SPLINES ON THE DIAMOND GRAPH 46

Since |M | 6= 0, we know the system has a solution in Q, and since Q is a field, we use

Cramer’s Rule over Q, to compute

a1 =

∣∣∣∣∣∣∣∣
Qh1 x1 y1 z1
Qh2 x2 y2 z2
Qh3 x3 y3 z3
Qh4 x4 y4 z4

∣∣∣∣∣∣∣∣
|M |

=

Q

∣∣∣∣∣∣∣∣
h1 x1 y1 z1
h2 x2 y2 z2
h3 x3 y3 z3
h4 x4 y4 z4

∣∣∣∣∣∣∣∣
±Q

= ±

∣∣∣∣∣∣∣∣
h1 x1 y1 z1
h2 x2 y2 z2
h3 x3 y3 z3
h4 x4 y4 z4

∣∣∣∣∣∣∣∣ .
Using the same technique, we compute a2, a3, and a4

a2 =

∣∣∣∣∣∣∣∣
w1 Qh1 y1 z1
w2 Qh2 y2 z2
w3 Qh3 y3 z3
w4 Qh4 y4 z4

∣∣∣∣∣∣∣∣
|M |

=

Q

∣∣∣∣∣∣∣∣
w1 h1 y1 z1
w2 h2 y2 z2
w3 h3 y3 z3
w4 h4 y4 z4

∣∣∣∣∣∣∣∣
±Q

= ±

∣∣∣∣∣∣∣∣
w1 h1 y1 z1
w2 h2 y2 z2
w3 h3 y3 z3
w4 h4 y4 z4

∣∣∣∣∣∣∣∣ ,

a3 =

∣∣∣∣∣∣∣∣
w1 x1 Qh1 z1
w2 x2 Qh2 z2
w3 x3 Qh3 z3
w4 x4 Qh4 z4

∣∣∣∣∣∣∣∣
|M |

=

Q

∣∣∣∣∣∣∣∣
w1 x1 h1 z1
w2 x2 h2 z2
w3 x3 h3 z3
w4 x4 h4 z4

∣∣∣∣∣∣∣∣
±Q

= ±

∣∣∣∣∣∣∣∣
w1 x1 h1 z1
w2 x2 h2 z2
w3 x3 h3 z3
w4 x4 h4 z4

∣∣∣∣∣∣∣∣ ,
and lastly

a4 =

∣∣∣∣∣∣∣∣
w1 x1 y1 Qh1
w2 x2 y2 Qh2
w3 x3 y3 Qh3
w4 x4 y4 Qh4

∣∣∣∣∣∣∣∣
|M |

=

Q

∣∣∣∣∣∣∣∣
w1 x1 y1 h1
w2 x2 y2 h2
w3 x3 y3 h3
w4 x4 y4 h4

∣∣∣∣∣∣∣∣
±Q

= ±

∣∣∣∣∣∣∣∣
w1 x1 y1 h1
w2 x2 y2 h2
w3 x3 y3 h3
w4 x4 y4 h4

∣∣∣∣∣∣∣∣ .
Since the entries of the matrices are all in Z, which means then by the properties of

determinants that a1, a2, a3, a4 are in Z. Therefore QH ∈ spanZ{W,X, Y, Z}.
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Example 4.2.6. Fix the edges on (D,L) where L = (2, 4, 3, 6, 5). Doing the computation

we find Q = 2·4·3·6·5
((4,3)(6,5),2(4,3,6,5)) = 720. Let

W = (0, 0, 12, 30)

X = (2, 0, 8, 12)

Y = (3, 1, 9, 13)

Z = (0, 0, 12, 0)

which are easily verified to be elements of S(D,L). Taking their determinant, we get

|W,X, Y, Z| = −720 = −Q. Then by Lemma 4.2.5 we should be able to let H be any

spline on (D,L), and see that QH ∈ span{W,X, Y, Z}. Let H = (19, 33, 25, 39). Then

QH = (13680, 23760, 18000, 28080). We can rewrite this as

QH = 2160W − 28800X + 23760Y + 720Z.

Therefore, QH ∈ span{W,X, Y, Z}.

Lemma 4.2.7. Fix the edge labels on (D,L) where L = (`1, `2, `3, `4). If W,X, Y, Z form

a basis for S(D,L), and J,K,M,N ∈ S(D,L), then |W,X, Y, Z| divides |J,K,M,N |.

Proof. Since W,X, Y, Z are basis elements for S(D,L) and J,K,M,N are splines on (D,L),

then they can be represented as linear combinations of the four basis elements

J = a1W + a2X + a3Y + a4Z for some a1, a2, a3, a4 ∈ Z,

K = b1W + b2X + b3Y + b4Z for some b1, b2, b3, b4 ∈ Z,

M = c1W + c2X + c3Y + c4Z for some c1, c2, c3, c4 ∈ Z,

N = d1W + d2X + d3Y + d4Z for some d1, d2, d3, d4 ∈ Z.
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Putting those four into matrix form, we get

[J,K,M,N ] =

[a1w1 + a2x1 + a3y1 + a4z1 b1w1 + b2x1 + b3y1 + b4z1
a1w2 + a2x2 + a3y2 + a4z2 b1w2 + b2x2 + b3y2 + b4z2
a1w3 + a2x3 + a3y3 + a4z3 b1w3 + b2x3 + b3y3 + b4z3
a1w4 + a3x4 + a3y4 + a4z4 b1w4 + b3x4 + b3y4 + b4z4

c1w1 + c2x1 + c3y1 + c4z1 d1w1 + d2x1 + d3y1 + d4z1
c1w2 + c2x2 + c3y2 + c4z2 d1w2 + d2x2 + d3y2 + d4z2
c1w3 + c2x3 + c3y3 + c4z3 d1w3 + d2x3 + d3y3 + d4z3
c1w4 + c3x4 + c3y4 + c4z4 d1w4 + d3x4 + d3y4 + d4z4

]

=


w1 x1 y1 z1
w2 x2 y2 z2
w3 x3 y3 z3
w4 x4 y4 z4

 ·


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 .

By the properties of determinants, we know |AB| = |A| · |B|. Therefore,

|J,K,M,N | =

∣∣∣∣∣∣∣∣
w1 x1 y1 z1
w2 x2 y2 z2
w3 x3 y3 z3
w4 x4 y4 z4

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

∣∣∣∣∣∣∣∣
= |W,X, Y, Z| ·

∣∣∣∣∣∣∣∣
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

∣∣∣∣∣∣∣∣ .

We already know that a1, b1, c1, d1, a2, . . . , c4, d4 ∈ Z, so

∣∣∣∣∣∣∣∣
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

∣∣∣∣∣∣∣∣ ∈ Z. Therefore

we see that |W,X, Y, Z| divides |J,K,M,N |.

Lemma 4.2.8. Fix the edge labels on (D,L) where L = (`1, `2, `3, `4, `5). If {W,X, Y, Z}

is a basis for S(D,L) and {J,K,M,N} is another basis for S(D,L), then |W,X, Y, Z| =

±|J,K,M,N |.

Proof. Let |W,X, Y, Z| = h 6= 0. From Lemma 4.2.7, we know that h | |J,K,M,N |. Hence,

for some a ∈ Z, we have ah = |J,K,M,N |. Since {J,K,M,N} is a basis as well, then by

Lemma 4.2.7, |J,K,M,N | | |W,X, Y, Z|. Then there exists some b ∈ Z such that
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|J,K,M,N | · b = |W,X, Y, Z| =⇒ a · b ·H = H =⇒ a · b = 1 =⇒ b = ±1.

Since a · b = ±1, and a, b ∈ Z, we get |W,X, Y, Z| = ±|J,K,M,N |.

Theorem 4.2.9. Fix the edge labels on (D,L) where L = (`1, `2, `3, `4, `5). Let Q =

`1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

and let W,X, Y, Z ∈ S(D,L). If {W,X, Y, Z} form a module basis

for S(D,L), then |W,X, Y, Z| = ±Q.

Proof. By Theorem 4.1.7 we know that the smallest element of the four flow-up classes of

the diamond spline, {b0, b1, b2, b3} form a module basis for S(D,L). Then by Corollary 4.2.3

we know that |b0, b1, b2, b3| = ±Q. Since both {b0, b1, b2, b3} and {W,X, Y, Z} are module

bases for S(D,L), we use Lemma 4.2.8 to see that |W,X, Y, Z| = |b0, b1, b2, b3| = ±Q, and

therefore |W,X, Y, Z| = ±Q.

In Section 3.4 we showed that Gjoni was able to prove the converse this result for 3−cycle

splines. However, the conditions imposed by the diamond spline complicate the proof

immensely, thus we are only able to prove in a specialized case of the converse of Theo-

rem 4.2.9.

Theorem 4.2.10. Fix the edges on (D,L) where L = (`1, `2, `3, `4, `5). Let Q =

`1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

, and set (`2, `3, `4, `5) = (`1, `2) = (`1, `3) = (`1, `4) = (`1, `5) = 1.

Suppose W,X, Y, Z ∈ S(D,L), with |W,X, Y, Z| = ±Q, then {W,X, Y, Z} is a module

basis of S(D,L).

Proof. First, we see that |W,X, Y, Z| = ±Q 6= 0, and thus {W,X, Y, Z} is linearly inde-

pendent.

Let H ∈ S(D,L). To show that {W,X, Y, Z} spans S(D,L), we must show that H

is a linear combination of the proposed basis elements. By Lemma 4.2.5 we know

QH ∈ span{W,X, Y, Z}, i.e.
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QH = a1W + a2X + a3Y + a4Z

for some a1, a2, a3, a4 ∈ Z. Now by the properties of determinants,

±a1Q = a1|W,X, Y, Z|

= |a1W,X, Y, Z|

= |(a1W + a2X + a3Y + a4Z), X, Y, Z|

= |QH,X, Y, Z|

= Q|H,X, Y, Z|,

so we have

a1 = ±|H,X, Y, Z|.

The same method can be used to show

a2 = ±|W,H, Y, Z|

a3 = ±|W,X,H,Z|

a4 = ±|W,X, Y,H|.

By Theorem 4.2.4, we know that Q | ±|H,X, Y, Z|, so for some k1 ∈ Z, k1Q = |H,X, Y, Z|,

implying that a1 = k1Q. Similarly, a2 = k2Q, a3 = k3Q, and a4 = k4Q, for some k2, k3, k4 ∈

Z. Thus, returning to our initial equation,

QH = a1W + a2X + a3Y + a4Z

= k1QW + k2QX + k3QY + k4QZ

= Q(k1W + k2X + k3Y + k4Z)

H = k1W + k2X + k3Y + k4Z.

Therefore, H is a linear combination of W, X, Y, and Z, so W, X, Y, and Z span S(D,L)

since they are also linearly independent, {W,X, Y, Z} is a module basis for S(D,L).
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Example 4.2.11. Fix the edge labels on (D,L) where L = (5, 2, 4, 7, 3). Note that

(2, 4, 7, 3) = (5, 2) = (5, 4) = (5, 7) = (5, 3) = 1, and so Q = 5·2·4·7·3
((2,4)(7,3),5(2,4,7,3)) =

5 · 2 · 4 · 7 · 3 = 840. Now, consider the four splines on (D,L)

W = (12, 2, 0, 9)

X = (13, 3, 1, 10)

Y = (60, 0, 0, 0)

Z = (40, 0, 0, 7).

Taking their determinant we see

|W,X, Y, Z| =

∣∣∣∣∣∣∣∣
12 13 60 40
2 3 0 0
0 1 0 0
9 10 0 7

∣∣∣∣∣∣∣∣ = 840 = Q.

Then by Theorem 4.2.10, since |W,X, Y, Z| = Q, we should be able to show that

{W,X, Y, Z} forms a module basis for S(D,L). To illustrate this, let us choose a spline

H ∈ S(D,L), and show that it can be rewritten as a linear combination of these four

splines. Let H = (26, 46, 54, 74), then we can compute

H = (26, 46, 54, 74) = −58W + 54X − 5Y + 8Z.

And so H is in span{W,X, Y, Z}.



5
Future Work

In this section we will look at some conjectures developed on the diamond graph as well as

(m,n)−Cycles that hopefully follow from the work shown in Chapter 4. These conjectures

were formed by increasing the number of outer edges of the diamond graph and observing

the impact it has on the flow-up classes and the determinantal criterion.

While we were unable to prove the following conjecture, we found it to be true in all of

the example we have computed.

Conjecture 5.0.12. Fix the edge labels on (D,L) where L = (`1, `2, `3, `4, `5). Let

Q = `1`2`3`4`5
((`2,`3)(`4,`5),`1(`2,`3,`4,`5))

and let W,X, Y, Z ∈ S(D,L). If |W,X, Y, Z| = ±Q, then

W,X, Y, Z are a basis for S(D,L).

Here we offer an example to strengthen the conjecture.
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Example 5.0.13. Fix the edges on (D,L) where L = (8, 5, 3, 4, 6). We compute Q =

8·5·3·4·6
((5,3)(4,6),8(5,3,4,6)) = 2880

2 = 1440. Let W,X, Y, Z ∈ S(D,L) where

W = (16, 0, 10, 4)

X = (0, 0, 15, 0)

Y = (17, 1, 11, 5)

Z = (24, 0, 15, 0).

Computing the determinant of W,X, Y, Z when put in matrix form we find

|W,X, Y, Z| =

∣∣∣∣∣∣∣∣
16 0 17 24
0 0 1 0
10 15 11 15
4 0 5 0

∣∣∣∣∣∣∣∣ = 1440 = Q.

Since |W,X, Y, Z| = Q, then by Conjecture 5.0.12 we should be able to choose any H ∈

S(D,L) and be able to show that H ∈ span{W,X, Y, Z}. Suppose H = (19, 43, 58, 31),

then we compute

H = (19, 43, 58, 31) = −46W + 2X + 43Y + Z,

and therefore H ∈ span{W,X, Y, Z}.

5.1 Conjectures of Traits of (m,n)−Cycles

Let us first define an (m,n)−cycle with a figure.
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Figure 5.1.1. An (m,n)−cycle with edge labels.

Conjecture 5.1.1. Fix the edges on (C(m,n), L) where L = (`1, `2, . . . , `n, `n+1, . . . , `n+m−1).

Then the flow-up classes exist, and the smallest elements of each are of the form

b0 = (1, 1, . . . , 1)

b1 = (0, [`1, (`2, `3, . . . , `n), (`n+1, `n+2, . . . , `n+m−1)], g3, g4, . . . , gn, gn+1, . . . , gn+m−1)

b2 = (0, 0, [`2, (`3, `4, . . . , `n)], h4, h5, . . . , hn, hn+1, . . . , hn+m−1)

b3 = (0, 0, 0, [`3, (`4, `5, . . . , `n)], h5, h6, . . . , hn, hn+1, . . . , hn+m−1)

...

bn−1 = (0, . . . , 0, [`n−1, `n], jn+1, jn+2, . . . , jn+m−1)

bn = (0, . . . , 0, [`n+1, (`n+2, `n+3, . . . , `n+m−1)

...

bn+m−2 = (0, . . . , 0, [`n+m−2, `n+m−1])

After showing that they exist, we believe the smallest elements form a basis.

Conjecture 5.1.2. Fix the edge on (C(m,n), L), where L = (`1, `2, . . . , `n, `n+1, . . . , `n+m−1).

The smallest elements of the flow-up classes b0, b1, . . . , bn+m−2 form a basis for S(C(m,n), L).
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Similar to the determinantal criterion for the 3−cycle and the diamond graph,

we would hope to show there is one for the (m,n)−cycle, where the Q value fol-

lows the structural pattern observed in the Q value of the diamond graph. That is

product of all edges
((edges cycle 1)(edges cycle 2),center edge(outer edges))

Conjecture 5.1.3. Fix the edges on (C(m,n), L) where L = (`1, `2, . . . , `n, `n+1, . . . , `n+m−1).

Let X1, X2, . . . , Xn+m−1 ∈ S(C(m,n), L), and Q = `1`2···`n`n+1···`n+m−1

((`2,`3,...,`n),(`n+1,...,`n+m−1),`1(`2,`3,...,`n,`n+1,...,`n+m−1))
.

Then {X1, X2, . . . , Xn+m−1} is a basis for S(C(m,n), L) if and only if |X1, X2, . . . , Xn+m−1| =

±Q.
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