
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2022 Bard Undergraduate Senior Projects

Spring 2022

An Accessible Approach to Exploring Space through Augmented An Accessible Approach to Exploring Space through Augmented

Reality Reality

Eden Rorabaugh

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2022

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2022
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2022?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.bard.edu/
http://www.bard.edu/

An Accessible Approach to Exploring Space through

Augmented Reality

Senior Project Submitted to

The Division of Science, Math, and Computing

of Bard College

by

Eden Rorabaugh

Annandale-on-Hudson, New York

May 2022

Dedication

I dedicate this project to my parents, Karen and Pete. Every opportunity I have had, I owe to

your sacrifices and hard work. I love you.

Acknowledgements

Keith O’Hara, my SPROJ and academic advisor - Thank you for your help on this project, it

would not have been possible without your guidance and support.

Tsitsi Mambo, Samuel Rallis, and Mason Porter-Brown, “The Best Pod” - Thanks for the late

night Discord calls and last minute bug fixes. Any team will be lucky to have you all on it.

My Posse - You all have taken care of me for the past four years. You’ll always be my family,

and I’m honored to have shared my college experience with you.

My friends - You all saw my project from its earliest stages, and I really appreciate your constant

support and encouragement. Thanks for everything.

Abstract

Physically engaging with space is often difficult for people who struggle with mobility.

Elderly people and people with disabilities in particular may find it challenging to walk for long

periods of time on various terrain in order to explore their environment. This project is designed

to provide an alternative way to physically engage with spaces without requiring the user to

walk, and I am focusing on the accessibility of Bard’s campus specifically. My project involves a

map of the college that users can tour in an augmented reality environment. Through the use of a

projector-camera system, this program projects a map and tracks objects placed on that map. It

tells the user information about the space based on the object’s location. Users are meant to

collaboratively trace the map and label buildings as they explore them. Finally, users highlight

their favorite locations with colored markers, and take a screenshot of the completed map. The

colors used are associated with different subjective experiences of the campus and are projected

back on the table in the final step of this project. This experience is meant to operate as an

alternative to traditional physical tours while also maintaining the communal experience that

Bard tours provide.

Table of Contents

Introduction 1
Motivation 1
Related Work 3

Background 13
OpenCV in Python 13
Homography Matrices 13
NumPy Arrays 16
ArUco Markers 17
Projector-Camera Environment 18

Methods 20
Projector-Camera Calibration 20
ArUco Projection 22
Map Sectioning 27
Color Detection 29
Selection 33
Trace Mode 34

Evaluations 37
Paper Detection 37
Color Selection 41
Map Sectioning 42
Map Creation and Utilization 43
Trace Mode 47

Demonstration 49

Conclusion 52
Limitations 52
Future Work 54

Bibliography 57

Appendix A: Setup 60

Appendix B: Code 68

1

Introduction

Motivation

Computer Vision is a way for computers to derive meaning from images and react based

on the information they view. It combines artistic and creative elements with standard

programming functionalities. The interdisciplinary nature of the field is what originally drew me

in. My project specifically utilizes computer vision to construct an augmented reality

environment, which, by definition, merges the digital and physical worlds right before a user’s

eyes. Using a camera projector system, I project an interactive map of Bard onto a large piece of

paper on a flat tabletop. The map can be explored using a bright colored post-it note and a

separate paper window. Users are meant to trace the projected map, label the buildings, and color

in portions of the map they find to be most important. Finally, users are able to take a screenshot

of the map and the colors they used are then analyzed and saved in the system.

Figure 1. Projected interactive map with multiple paper screens (Author’s Image, 2022)

2

The combination of artistic and technical elements is the perfect application for my

Senior Project, especially as a student of the Experimental Humanities. My project acts as a

synthesis of several different academic fields. As a computer science major, I rely on

programming to make the project possible; however, there are also elements of sociology, studio

art, and architecture that I considered in the creation and implementation of my project. For these

reasons, it makes users consider the question that many Experimental Humanities projects

address: How does technology mediate what it means to be human? In this particular case, the

technology I developed connects users with one another in a communal exploration of space.

Community is essential in human existence, and I wanted my project to create an experience that

brought people together.

I also wanted to pay special consideration to my specific audience since the technology

that I am using (i.e. projectors, cameras, Python, etc.) is often daunting and overwhelming for

people unfamiliar with its application. I want to combat negative reactions my peers have to

technology by providing the college with a computer science project that non-technical people

can interact with and contribute to. Making technology accessible is important to me, and

creating a project that is exciting and easy to use is my attempt at combating technological

inaccessibility.

Finally, I wanted to challenge the inaccessibility of space itself. The parents and

grandparents of current and prospective students may find it difficult to engage with the space

due to the inaccessibility of our spanning campus. The elderly are not the only group of people

who potentially struggle with traversing Bard's 1,000 acres. People facing difficulty with

mobility will unfortunately find Bard to be an inaccessible place. The campus is old and outdated

3

with many stairs and hills that make it difficult even for able-bodied people to move about. To

combat this, I wanted to create an experience for students, staff, faculty, and visitors to physically

explore the campus without over-exerting themselves in the effort. By creating a subjective,

augmented reality tour of Bard, users have the ability to see what makes the campus special

without walking the vast land that Bard spans across.

My motivation, therefore, is drawn from three different perspectives. First, I am

motivated by my concentration since it prompts me to consider how technology affects humanity

and how the two interact. Second, I am motivated by the desire to make technology less daunting

and more accessible to the Bard community. Finally, I am motivated by the impulse to provide a

physical experience of Bard to those that would otherwise be unable to tour the campus in its

entirety. Accessibility, both emotional and physical, is important in cultivating the inclusive

space that Bard strives to be. My project is meant to continue pushing the college towards

widespread accessibility, and that is why it is important.

Related Work

DynamicLand

Founded by Bret Victor and Alan Kay, DynamicLand has been a space for creativity and

collaboration since 2018. It is marketed as a “new computational medium where people work

together with real objects in the real world.” This description reveals the non-profit’s emphasis

on human interaction through the shared use of their “communal computer.” The warehouse

DynamicLand resides in is filled with cameras and projectors that read colored dots on pieces of

paper and project programs associated with the dots on those papers. Users are not confined to

4

screens and cubicles to engage with this form of computational media. They are encouraged, and

essentially required, to verbally and physically engage with others in the process of interacting

with DynamicLand. This project is an excellent example of technology encouraging users’

humanity. It prompts people to be physical in their thoughts through actions like moving papers

and touching cars. They can experiment and improvise which is difficult to fully accomplish

behind a screen programmed for millions of users. In DynamicLand, not only do users have

endless creative agency, but they also have the ability to interact with this technology without

sacrificing their humanity.

DynamicLand is a clear example of what I consider to be a healthy interaction between

humans and technology. For that reason, it intersects well with my Experimental Humanities

concentration. As an EH student, I have to constantly ask myself how technology mediates what

it means to be human and how the technology I develop affects people. This specific technology,

DynamicLand, creates an environment where humanity is encouraged above all else. Technology

is therefore used as a medium through which humanity can be presented. I want my Senior

Project to emulate this idea of technology uniting the people that use it, and I want to incorporate

the physical ability that DynamicLand presents to its users.

5

Figure 2. Users interacting with DynamicLand [9]

SyMAPse

In her SyMAPse project, Julia Chatain and her team constructed a digital mapping tool

using a projector and two cameras. The cameras were used to detect paper movement, hand

gestures, and object placement while the projector displayed the map based on these variables.

The team used integrated and non-integrated 3D and 2D objects for their augmented reality

interactions. Integrated objects represent augmented aspects of the map such as buildings and

landmarks. Non-integrated objects present users with data about the location, such as population

density. In their paper, Chatain and her team discuss their desire to incorporate both physical and

virtual elements into their project since they wanted to keep “most of the features of both the

mediums” [12]. Users are expected to express themselves using pens, removing the technological

constraint.

6

Like DynamicLand, SyMAPse provides users with an environment that supports the

physicality of humanity without applying limitations. This is the kind of freedom I want my own

project to emulate. Users of my Senior Project are able to add their own personal touches to the

Bard maps through drawing, and they can keep that map with them after they finish the AR tour.

SyMAPse also presents users with the ability to explore space specifically through movement,

object placement, and art. This representation of location is present in my own project, since

space is the main topic that my augmented reality environment explores.

Figure 3. Hand gestures and objects are used to interact with SyMAPse, and multiple sheets of paper can be used in these
interactions [12]

Subjective Maps

Typically, when one looks at a map, they are utilizing it to determine direction and

location; however, maps can also serve as a vehicle for storytelling. Subjective maps are used to

present a personal experience the creator has with the space depicted. For example, the map

presented below is a subjective map of Rennes, France, constructed by children living there. This

7

kind of map is not ideal for objectively providing information to readers, but is great at revealing

relationships between people and the spaces they inhabit. For example, the children marked

places on the map like “Traffic jams street” and “The frogs’ choir area” [12]. By providing a

subjective representation of their home, the children are able to take space to a more personal

level. It is no longer viewed just as a set of roads to travel from one location to the next, but is

rather depicted as a dynamic environment where memories reside and experiences take place. It

presents space as something that people can have a relationship with, rather than simply use.

In my Senior Project, I want the experience of Bard students to be represented. Since my

project acts as an augmented reality tour for prospective students and their families, I want the

individual experience of students to be present in the tour, just as the subjective experience is

provided by tour guides on physical tours. In order to incorporate this element into my project, I

include the ability for users to add their own personal contributions via colored sharpies. When

users trace the map projection, colored markers correspond to different building preferences that

are then archived to understand the relationship users have with buildings across campus. This

gives the student body the ability to present their experiences of the campus and show that it is

more than just a space to inhabit. Bard’s campus is unique in many ways that have emotional

impacts on students. From the natural beauty of Blithewood, to the academic environment that

the RKC provides, the setting affects students, and I want that effect to be represented in my AR

environment.

8

Figure 4. Subjective map constructed by the children of Rennes [12]

A Mixed Reality System for Learning Data Structures

In his 2020 Senior Project, Cullen Drissel constructed an augmented reality environment,

similar to the one that I am working with, using a projector-camera system. In his project, he

designed a program that would project a spanning tree based on the distances between wooden

tokens taken in by the camera. He also incorporated the ability to detect and analyze text into his

project, which is a unique and useful addition. My project is a partner project to Drissel’s, as his

was the original inspiration for my project. I am following a similar route to Drissel, but adding a

more visual element to the final result by basing mine around a map. Nevertheless, his project

revealed the novelty of projector-camera systems and inspired me to utilize such a system in my

project. I am following in his footsteps by relying heavily on the OpenCV library, and I have

found it useful to have an example Senior Project to base mine around.

9

Figure 5. Snapshot of the early steps in Drissel’s project [6]

An Augmented Workplace for Enabling User-Defined Tangibles

In their paper “An Augmented Workplace for Enabling User-Defined Tangibles,” Markus

Funk, Oliver Korn, and Albrecht Schmidt create an augmented reality system where users can

determine what objects are included in the system and how those objects will operate. According

to the authors, they “introduce an interaction concept for creating bindings using physical objects

as a tangible control and subsequently unlinking objects from the digital function again” [13].

This gives users maximum control over how the system works since they are able to determine

what is included in the system and how it is used. The paper discusses different ways that

user-defined tangibles can be tracked. For example, marker identification is ideal for camera

projector systems that are built into tables. The camera is able to recognize ArUco or fiducial

markers that are placed on the bottom of the object for tracking purposes, though this does

10

present limitations. The use of “bottom mounted markers requires the surface to be sensitive” so

that when an object is placed on the surface, the marker can be distinguished [13]. Their system

uses feature-based identification to determine what objects are associated with function bindings.

Users are therefore able to define tangibles by placing them in a “pre-defined area on the

workspace” after which the “top-mounted camera takes a picture of the object,” and eventually,

the “depth data of the object is captured to learn the object’s shape” [13]. After defining the

tangible, users are able to choose functions to determine how the tangible will be controlled, and

can then use the object as they defined it. Unlinking is the final step, which is only done to “turn

a user-defined tangible into a normal object again” [13].

Figure 6. Examples of user defined tangibles [13]

The concept of user defined tangibles is particularly applicable to my project because it

provides the user with control over the environment they are exploring. When users provide their

own tangibles, they are able to physically connect with the system in a personalized way, making

11

their experience all the more impactful. Though I do not include a user defined tangible

component in my project, I do focus on the subjectivity and control of the user throughout their

experience. Users are able to reposition and alter the ArUco paper screens and are able to use

detection objects to explore space. By making users feel in control of their environment, I hope

to make the experience less technologically overwhelming and more personalized.

Interaction in Augmented Reality: Challenges to Enhance User Experience

Yahya Ghazwani and Shamus Smith explore how the user, the user interface, and the

virtual content interact with one another in AR systems. Augmented reality, defined as

combining virtual and real content, registering in 3D, and interacting in real time, “sits within the

mixed reality space that connects the real world and the virtual world” [16]. They discuss the

variations of user, interface, and content combinations that can be present in an AR environment

ranging from passive users in solo, offline environments to active users in collaborative TUI

based environments.

12

Figure 7. Diagram exploring the options AR systems creators have when defining the environment [16]

By exploring the challenges and benefits to each kind of environment, this paper helped

me determine exactly what kind of system I wanted to create. I wanted my environment to allow

active users, meaning users can “select, manipulate, edit, add or delete virtual content” [16]. I

assumed that users who play an active role in the system have a better sense of content

engagement, and this paper confirms that understanding. I also wanted my environment to be

collaborative. According to Ghazwani and Smith, “collaborative environments are when virtual

information is shared amongst different augmented reality system users” [16]. I want my project

to allow for collaboration between different users within the system, but also want that

interaction to be done offline. No network should be required and no user should be able to

interact with my system without being physically present in the space. Since my project focuses

on tangible interaction, it is imperative for users to be physically engaging with the environment.

Since I will also be utilizing Tangible User Interfaces (TUIs) in my project, this paper was useful

13

in considering the limitations that TUIs present. They restrict a user’s ability to multitask and

restrict the interaction area. I find that these limitations exist when interacting with any tangible

object outside of an AR environment, and therefore are able to mimic reality in a way that does

not impede the success of my project.

Background

OpenCV in Python

This project relies on a Python based interface to OpenCV [14]. OpenCV combines

computer vision techniques such as object detection, color tracking, contour determination, and

more, into a single, easily accessible library. It can be used in multiple programming languages,

including Processing, but I decided to use a Python based implementation. The OpenCV

documentation for Python is robust, making it easy to apply. The utilization of Python itself also

stems from a desire to provide readable code for future progression of this project. Ideally, this is

a project that can remain useful to Bard long after I graduate, and using a language that is easy to

understand makes the transfer of project management much faster. For this reason, I have also

made a point of heavily documenting my project progress.

Homography Matrices

Computer vision and augmented reality often depend on homography matrices.

Homography matrices provide maps between two planes, or more specifically in this project,

14

between two images. When two different points are selected to determine a homography, one

point must undergo a series of transformations to mirror the other and vice versa. The

homography matrix is the matrix containing the transformation instructions from one plane to the

other and is essential when determining how to properly project on a flat surface based on

camera inputs.

Figure 8. The above equation relates the homography between two planes [14]

If two images represent the same plane from different angles, then they are related by a

homography matrix [17]. For example, in my projector-camera system, both my projector and

camera are depicting the real world environment on the same flat plane from slightly different

angles. Though they can be set at different angles, their fields of view must overlap so that they

are representing the same view; otherwise, no homography can be estimated between the two

images. For example, if my projection image is a map of Bard, but my camera input is a blank

wall, there are no points to determine similarities between the two images. If, however, my

projection image is a map of Bard and my camera input is that projected map from an extreme

angle, then a homography can be determined.

15

Figure 9. Two images taken from different angles where a homography matrix is determined [14]

Determining a homography matrix is made simple with OpenCV’s findHomography

method. This method requires two sets of points with at least four correspondents that the matrix

should be drawn between, and it outputs the matrix itself. Without a proper homography, my

projection would be warped, making interaction impossible. Calibration is the first necessary

step in my project so the original grid of the projection and camera scope can be determined and

mapped to one another. Separate homographies are necessary when determining other objects

within the overall projection screen. For example, the ArUco paper screen requires a

homography outside of the calibration matrix so that a projection can occur specifically within

the bounds of that particular paper.

16

Figure 10. An example of an ArUco paper that my campus map could be projected on (Author’s Image, 2022)

While OpenCV’s findHomography determines the homography matrix between two sets

of points, the warpPerspective function alters the image to apply the transformations of the

homography matrix. It takes in the image undergoing the transformation, the homography

matrix, and the size of the desired output image. This function is required in projections so that

the projected image is not applied to the camera coordinate system, but to the coordinate system

of the projected image on a flat surface.

NumPy Arrays

NumPy is a Python Library that provides array objects that are up to 50 times faster to

process than standard Python lists [18]. NumPy arrays have locality of reference, meaning that

while Python Lists are arrays that reference pointers to objects, NumPy array objects are stored

in a contiguous memory block with no pointers. Since the array is stored in a “data buffer” or a

homogenous, constant memory block, rather than being scattered across the system’s memory,

17

programs are able to access NumPy array objects at considerably faster rates [5]. This speed is

necessary in my project since arrays are used to determine points in an image plane. I use

NumPy arrays to construct blank windows for projection, to create homography matrices based

on image points, and to store my ArUco marker objects when detected. Since computer vision

relies so heavily on matrices, and since my project needs to be as fast as possible for accurate

projection without delay, NumPy arrays are essential.

Though NumPy arrays are necessary for my particular project needs, this does not mean

that they can simply replace Python lists as a whole. While NumPy arrays are faster in accessing

points in the given array, they are slow in appending or deleting objects from these arrays. This is

because additions and deletions require a change in the data buffer size and result in a changed

memory allocation for the array itself. Python lists, though spread across a system’s memory, can

add or delete new items much faster since they do not rely on an allocated data buffer.

ArUco Markers

ArUco markers are “synthetic square markers composed by a wide black border and an

inner binary matrix which determines its identifier (ID). The black border facilitates its fast

detection in the image and the binary codification allows its identification and the application of

“error detection and correction techniques” [14]. The markers can be processed by OpenCV

algorithms regardless of positioning based on the dictionaries of markers usable in OpenCV.

These markers are commonly used in augmented reality environments since they are fast and

easy to detect. The marker’s ID and corners can be determined by the aruco.detectMarkers

function. With distinct outputted corners and IDs, projection within the polygon made of ArUco

18

markers is simple and exactly what I want for my project. The markers can be made very small

and can be taped to any flat surface which makes it easy to resize my desired projection window.

Their efficiency, flexibility and speed are why I settled on ArUco markers for detecting paper

screens in my final project.

Figure 11. Examples of ArUco Markers [14]

Projector-Camera Environment

I experimented with several different cameras, projectors, and locations before deciding

on the final set up using a Logitech webcam and an Optoma short throw projector in the

Experimental Humanities shipping container. The Logitech camera was easy to move, and its

feed could be manipulated using a Mac application called Webcam Settings. This application

allowed me to specify the focus of the camera so that moving objects in the frame did not disrupt

the plane it was specifically meant to detect. I could also change aspects of the image input such

as brightness and contrast to provide the clearest image intake despite dynamic lighting

19

conditions. The Optoma short throw projector was my final demonstration projector because it

can be mounted incredibly close to the surface it is projected on yet still illuminate a large

portion of that surface. This makes mounting more portable and simple since the distance from

the projector to the projection surface can be much shorter than the distance of a normal

projector.

Figure 12. Mounted environment setup with Logitech camera taped to the top of the Optoma projector held to the tabletop with
hand clamps (Author’s Photo, 2022)

20

Since I wanted my project to be mobile, the actual mounting of the system was important

for maximizing mobility of the system. The Optoma projector is meant to throw a projection

against a vertical surface rather than a horizontal one, so I had to construct a tabletop mount that

allowed it to face downwards. The mount’s stabilization required the use of hand clamps that

could secure its base firmly to any table with a strong enough edge. The tables in the

Experimental Humanities building proved to be perfect for this task. They are easily moved and

reorganized to quickly assemble this project environment without any permanent installation.

Since my project is categorized as an Experimental Humanities project, it seems fitting that it be

demonstrated and constructed in the shipping container itself. Though light conditions proved to

be inconsistent and, at times, disruptive to the success of this project, the ease and mobility of my

project environment made this location ideal.

Methods

Projector-Camera Calibration

The first step to creating an effective projector-camera environment is calibrating the

camera and projector. While the camera view and projector window overlap, there is often a

certain level of distortion between what the camera sees and what the projector shows.

Essentially, camera calibration recovers the mapping between a point in the projection and a

point viewed by the camera [15]. It determines the homography matrix between the point in the

3D projected world and the point in the 2D plane seen by the camera. Since all the observed

21

points are on a flat surface, every point can be mapped to another using transformations. As long

as neither the camera nor the projector are moved at all after the calibration step, this

transformation will remain the same throughout a session using this program.

My calibration method, calibr.py, takes in three parameters to determine a homography

between the camera and projector. First, it takes in the image from the camera, vidPic, which will

be used in the OpenCV findChessboardCorners function to find the corner intersections in the

projected image detected by the camera [14]. It then takes in patternPoints which is determined

by the intersections detected by findChessboardCorners on the input pattern image in our main

method. Finally, it takes in a boolean, calibrated, to determine if the calibration is successful.

Since the calibr.py method is called after the calibration pattern is shown by the projector, the if

statement is accessed. Corner intersections should have been identified in both the camera and

the pattern image. Homographies, homogCamToComp and homogCompToCam, are then

determined and returned. Two homographies are computed, one representing the translation

needed from the camera to the projected image and the other going from the projected image to

the camera. The calibrated boolean is also returned to show that calibration was successful.

These homographies are used when the projection is updated and they ensure the mapping is

successful and accurate on the determined matrix plane.

22

Figure 13. Warped perspective on the homogCamToComp homography matrix (Author’s Photo, 2022)

ArUco Projection

After performing the calibration step and retrieving the homography matrices, the image

taken in by the webcam must undergo a warpPerspective by the homogCamToComp matrix so it

properly represents how the image is manipulated from the camera to the projection window.

This is done to properly exhibit how the camera detects the 3D space from its perspective and

applies the transformations so that the unwarped image is passed into the method. After the

transformation step is completed, this method uses ArUco markers to determine the space the

23

projected image should be displayed in. The tracker.py file is referenced to find the ArUco

markers within the webcam’s frame. The tracker.findArucoMarkers function used in my

tracker.detectMarkers method takes in the input img, which in this case is the webcam input. The

other parameters of the method are set since I only use the 6x6_250 ArUco dictionary. The

aruco.detectMarkers method determines which objects within the frame are actually ArUco

markers and returns a list of the bounding box and IDs of these markers. After markers have

been found, I use the bounding box arrays that are attached to each individual ArUco ID, and

construct a point array of ArUco ID 1’s bottom-right corner, ArUco ID 2’s bottom-left corner,

ArUco ID 3’s top-left corner, and ArUco ID 4’s top-right corner since this is the space within the

paper I want to project on. This point array is only constructed if ArUco markers 1, 2, 3, and 4 –

ArUco A– are detected, and I construct another point array if ArUco markers 5, 6, 7, and 8 –

ArUco B– are detected where pictures of campus are projected.

24

25

Figure 14. Basic wireframe diagrams of calibration and map projection program and screenshotting (Author’s Image,
2022)

After the edges where the image will be projected are determined by the ArUco markers,

a homography between the projection image and the physical ArUco corners is determined by

the tracker.augmentAruco method which takes in the four identified markers, the webcam input,

and the image to be projected. That homography matrix is finally used to project the image back

onto the physical ArUco paper. I utilize both the findArucoMarkers and augmentAruco twice

26

since there are two ArUco paper screens that I use in the application of this project. ArUco A is a

large blank sheet where the map of campus is projected and ArUco B is a smaller blank sheet

that depicts the Bard Logo when no location is selected on the map. If a location is selected,

ArUco B shows images of the selected building.

Figure 15. ArUco B projecting the Bard logo (left) and ArUco A projecting the campus map (right)
(Author’s Photo, 2022)

I use a series of if statements to determine which projection to show. If only ArUco A is

detected, the campus map will be projected alone, and if only ArUco B is detected, the Bard logo

will be displayed alone. When both sets of ArUcos are detected, I use OpenCV’s bitwise_or

function to combine the two images so both projections can be represented. The bitwise_or

27

function essentially takes two matrices, in this case the projection of the map and the projection

of the logo, and outputs a colored pixel for each of the corresponding bit positions that have a

colored pixel in either or both of the inputs. This only takes place if all eight ArUco markers are

detected within the webcam frame, and only when both are present will ArUco B change based

on the colors detected on ArUco A.

Map Sectioning

My project relies on the sectioning of a Bard map in order to determine which spaces on

campus the user wants to explore. For this reason, it was necessary to separate the map into

sections for each of the main locations on campus. By showing the map image in a window, I

was able to use my mouse to determine which points make up certain portions of the campus. By

clicking on corners of buildings and locations, I was able to determine their bounds. I determined

sectioning around the top left and bottom right corners of the locations I wanted to highlight in

my project, and I assured the accuracy of these points by displaying them on my mapProj image

which depicts the webcam footage of the projected image within the ArUco markers detected,

rather than simply displaying these rectangles on the image itself.

28

Figure 16. Example of a mapProj screenshot with the rectangle outlines depicted (Author’s Image 2022)

These arrays are used in my project to determine when colored objects are placed within their

bounds. If the location of the detected object overlaps with the array, then that map location will

be considered selected and another window will appear displaying an image of the selected

location on ArUco B.

29

Figure 17. Blithewood has been selected on the large map using the pink post-it and an image and title for Blithewood are
projected in the smaller ArUco window. (Author’s Photo, 2022)

Color Detection

Selection capability is essential in this project since portions of the map must be selected

in order to be explored. In order to incorporate selection in this project, color detection is

necessary so that the specific selection tool can be recognized. I originally created a method for

tracking based around a laser pointer. Since laser pointers project a bright beam of light at a

plane, they are easy to track using OpenCV’s minMaxLoc function [14]. The function determines

the brightest point in an image, which is always the laser pointer. Though this program was

successful, I ultimately shifted to color tracking since laser pointers are not as readily available

as normal brightly colored objects. Prototyped in my color-tracking.py program, I began by

determining the upper and lower bounds of the color I want to track. If I am tracking the color

30

red in a range of hues, the bounds will be vast, but if I am detecting a specific red shade, the

bounds will be much slimmer. I construct a mask from the color detected in the image within the

bounds provided. If the area of the mask is large enough to overcome the threshold, then it is

considered to be present in the image. In my prototype code, a projected box appears around the

colored object with words defining the color detected. Implemented into the overall project,

color detection works as laser detection does. When a color is detected over a certain area on the

map, information about that area will be revealed. The bounds of the map are once again defined

by the map sectioning discussed

previously.

Figure 18. Color tracking prototyping with projection of bounding box around color (Author’s Photo, 2022)

In the final implementation of my object color tracking, I utilize a public program on

GitHub by Federico Ponzi, a Systems Developer Engineer at CloudFront [10]. The program uses

a webcam or image to determine the HSV threshold of specific colors. It makes determining the

HSV of a color simple since it implements trackbars and depicts which colors are being excluded

31

as the hue, saturation, and value are manipulated within an image. Using this program, I was able

to determine the HSV range of a bright pink post-it, which is the object I used as a selection tool

in the demonstration of my project.

Figure 19. Ponzi’s threshold.py program applied to a finished, traced map of Bard (Author’s Photo, 2022)

32

Figure 20. Marker scribbles used to test marker HSV in threshold.py (Author’s Photo, 2022)

After determining the bounds of the color, in this case pink, that I want to detect, I

convert the webcam footage from BGR to HSV and create a mask based on the color’s upper and

lower bounds within the webcam scope. After the mask is created, I dilate the mask in order to

maximize the color detected, and I finally determine the contours of color detected. This color

detection is drawn from the “OpenCV and Python Color Detection” article written by Adrian

Rosebrock [1]. With contours detected, I use a for loop to determine which contours have an area

that exceeds the threshold I set. If that threshold is exceeded, then the colored object is

considered to be detected, and its intersections can be tested.

33

Selection

To determine whether my selection object overlaps with the segmented portions of my

map, I created an intersect.py program. The method takes in the top-left and bottom-right corners

of the segmented map coordinates as well as the top-left and bottom-right coordinates of my

post-it contours. Based on the rules of intersection, the two rectangles drawn from the top left

and bottom right corners are considered to be overlapping if they share common points.

Figure 21. Visualization of rectangular intersections [15]

My intersect.py program checks to see if the two rectangles are not overlapping, and

otherwise returns True. They are considered to not be overlapping if the y value of r1 is higher

than the y value of l2 or if the x value of r1 is farther left than the x value of l2 or if the y value of

l1 is lower than the y value of r2 or if the x value of l1 is farther right than the x value of r2. If

none of these conditionals are met, then the method returns True and an intersection is

34

determined. If an intersection is in fact determined, then the ArUco B image projection changes

to show an image of the location selected.

Trace Mode

The final portion of my project methods deals with the tracing of the map. The project is

meant to result in a traced map on ArUco A where the map is projected. Users can

collaboratively trace the map as long as their shadows do not interfere with the light being

projected and the ArUco markers on the corners are not covered. The map is meant to be colored

in all black, but four colors are used to denote the user’s campus preferences. For example, users

have the ability to color locations red to indicate their favorite place on campus to socialize.

Orange denotes the prettiest view on campus, blue is the best place to study, and purple is the

best dorm, or best place to sleep. My traceMode.py program uses a screenshot of the drawn map

to print this data based on the colors and where they are used. Users are meant to begin by

exploring the space using both ArUco windows. This will allow them to determine the names of

each building. After writing down the names of the buildings and tracing the outlines of the map

in black, the colored markers can be utilized to convey preferences. Once the map has been

completed, the pink post-it (or other selection tool) is placed in the small rectangle at location

(0,0) on the mapTransform table projection. This turns the map projection off for as long as the

box is considered to be selected, and screenshots are taken of the map.

35

Figure 22. Example of a screenshot taken by traceMode.py; note that the image is saved based on the date and time the
screenshot was taken (Author’s Image, 2022)

The projection must be turned off so that projected colors do not interfere with the color

detection of the actual markers used. The screenshots are saved and accessed in the

traceMode.py program. The red, orange, blue, and purple bounds are determined using Federico

Ponzi’s threshold.py program once again [10]. When those colors are detected in the screenshot

at the coordinates determined by the map sectioning, words are printed that detail what the

location of those colors means. For example, if the coordinates of Robbins intersect with the

found contours of the red mask, then the traceMode program will project that “The best place to

hang out is Robbins” onto ArUco B when it is detected alone.

36

Figure 23. After traceMode.py is executed, the results of the detected colors are projected when the second ArUco screen is
placed in the frame.(Author’s Photo, 2022)

This piece of the project is meant to incorporate an aspect of subjectivity into the process

of exploring the space. Users can input their own opinions about the campus based on the colors

they utilize and those opinions, ideally, will be stored in a way that future users can see.

37

Evaluations

Paper Detection

One vital component of this augmented reality project is paper detection. Pieces of white

paper are used in the project to act as moveable windows where images are projected. Since they

are designed to be moveable, a homography matrix must be determined for each paper so that the

proper image can be depicted with the correct transformations on each piece. This must be

constantly updated so that when the paper is moved in the camera scope, the projection also

moves to map properly with as little delay as possible. If the homography matrix between the

paper and the projected image is incorrect, it can lead to a warped projection, which can cause

errors in the AR experience. For example, if users are collaboratively tracing the Bard map, the

paper is bound to shift. Proper paper detection will update the map projection to shift with the

moving paper to capture the most optimal environment for tracing.

To achieve this perfect mapping, I tried two methods of paper detection. The first

involved feature detection. Created by D. Lowe, the Scale Invariant Feature Transformation

(SIFT) algorithm is an effective way to determine key points and computed descriptors in an

image [14]. It is particularly useful in determining matching features between two images

because it is “not affected by the size or orientation of the image” [2]. The algorithm relies on

Difference of Gaussians (DoG) which is another algorithm that blurs and subsamples the image

it is applied to in an effort to determine ‘blobs’ based on changes in the image scale. After

blurring is completed using the DoG algorithm, the image is “searched for local extrema over

38

scale and space” [14]. The key points themselves are computed by comparing points in various

scales of the Gaussian Pyramid computed on the image by the DoG algorithm. If a point at one

scale is considered to be a local extrema compared to points in neighboring scales, then that

keypoint is considered to be best represented in that particular scale [14]. Key points must exist

within the threshold of the algorithm, and if they do not meet that threshold, they are rejected.

This component of the algorithm “eliminates any low-contrast key points and edge key points

and what remains is strong interest points” [14]. Orientation is assigned to these key points to

apply image rotation invariance, and descriptors are computed from the 16x16 pixel

neighborhood the key point is drawn from. This descriptor neighborhood is used to achieve more

precise matching based on the key point. Finally, the actual key point matching can occur by

identifying the “nearest neighbor,” but since the second closest neighbor can also be a close

match, there is a threshold to determine how close the two can be in order to be considered a

match. According to D. Lowe, the algorithm “eliminates around 90% of false matches while

discards only 5% correct matches” [14]. Its effectiveness was the main reason why I settled on

the SIFT algorithm for my feature detection, rather than relying on a Brute Force OpenCV

algorithm.

39

Figure 24. Sift algorithm depiction of Gaussian filters to determine keypoints [14]

The key points and descriptors from the algorithm are computed after the sift object is

created using cv2.SIFT_create. The detectAndCompute method returns the key points and

descriptors from an input image. The Fast Library for Approximate Nearest Neighbors (FLANN)

contains other algorithms that I used when computing the similarities between two images. The

FlannBasedMatcher is used to determine which algorithm to use, which in this case is the

FLANN_INDEX_KDTREE algorithm. The flann object created from the parameters is used to

find matches between the descriptors computed from the detectAndCompute algorithm. The good

matches from the computation are used to determine points for computing the homography

between the paper and the map projection.

After successfully implementing a feature detection based map projection method, I

decided to attempt an ArUco marker based projection method. ArUco markers are designed

specifically for pose estimation in augmented reality environments and are explicitly defined in

OpenCV for fast detection. The program I wrote finds the ArUcos in the webcam input and

40

based on the bounding box corners detected from the ArUco.detectMarkers method, projects the

Bard map within the borders of the ArUco markers. This ArUco detection program is also

successful in projecting a moveable map of Bard onto the paper presented with ArUco markers

in each of the corners.

After successfully implementing both SIFT based tracking and ArUco based tracking, I

have found ArUco based tracking to be more efficient and accurate. The SIFT based program

requires expensive calls to calculate the key points and descriptors. After these calls are made, an

expensive for loop is required to cycle through the matches to determine which ones are “good.”

With the moving paper, the key points are constantly moving, changing, and being lost. This

leads to a constantly warping image that is inconsistent and unstable. If too many key points in

the webcam input are not detected, the projection image will glitch and fail to track properly

until the key points are detected again. Though successful under the proper circumstances, this

program is not ideal for my augmented reality system, particularly the tracing component of the

experience.

Figure 25. Feature matching example using SIFT [14]

41

The ArUco tracking, on the other hand, was successful in constantly projecting a crisp

map in the center of the ArUco markers. Since the ArUco algorithms are designed to detect those

specific objects, they are highly accurate. This program also allows me to relocate the ArUco

tags instead of having them printed specifically on an 8.5inx11in piece of paper as the SIFT

program required for feature detection. This algorithm is fast and highly accurate. When tracing

a map using the SIFT algorithm versus the ArUco markers, it is clear that the ArUco program

projects a map perfectly overlaid with the physical drawing despite any changed orientation of

the paper. For this reason, I decided to rely on ArUco tracking in my overall final exhibition.

Color Selection

In comparing the use of a laser pointer and a physical object as selection tools, I decided

that a physical object was more convenient. Any object can be used if thresholding is done to

determine the specific HSV of that object, which makes it a more accessible alternative to laser

pointers since laser pointers are not a common tool on hand. Physical objects also allow users to

more physically engage with the space. By touching the map itself and by physically moving a

tangible object, the physical element of this tour alternative project is maximized. Utilizing a

laser pointer also revealed issues. The brightness of the laser pointer can reflect back against the

projection and distort what is being selected. Since the laser is so bright, it can be difficult to

control the exact bounds that are being detected, and those bounds vary based on how close or

far the laser is used from, as well as the lighting conditions of the room. By using a stable object

as a selection tool, the size of the tool can remain consistent and predictable regardless of

42

lighting conditions, though the exact color of the object can change depending on how bright or

dark the environment is.

Map Sectioning

Originally when determining the sectioning of my map, I determined the bounding

rectangles on the original image that I would later project. This made it possible to get specific

coordinates from the image without requiring projection in the coordinate determination. After

testing, however, the coordinates of the locations that I inputted were slightly off. In an effort to

simplify this sectioning, I ran both my aruco-tracking-perfect.py method at the same time as my

sectioningMap.py so that I could click on the coordinates within the live projected map rather

than within the image itself. This gave me a more accurate representation of the points that I

wanted to use for the top-left and bottom-right rectangles of spaces, since it allowed me to take

into account any updated warping and wavering that the map experienced in the location of the

ArUco markers.

Initially, I was also utilizing OpenCV’s polylines function [14]. This gave me the ability

to construct polygons precisely around the locations that I wanted users to be able to explore.

Though the construction of polylines gave a more precise definition of the spaces to explore, this

proved to be a difficult task when it came to finding intersections. With the contours of polylines

being less predictable compared to rectangles, it would require more time and effort in the

program to determine whether contours of the selection object were intersecting with these

specific bounds. This process was made simpler when I switched to defining the sectioned

spaces as mere rectangles. It is a less precise way to segment the space, but it allows for less user

43

specificity in the placement of the selection object, since the bounds of the locations are less

strict. It also makes my intersect.py program incredibly simple since I am simply determining the

overlap of two rectangles, rather than the overlap of a rectangle and an irregular polygon. I base

my top-left and bottom-right rectangle coordinates on the coordinates determined in my

sectioningMap.py polygons, but I depicted the exact rectangles on my mapProj image to ensure

that there were no overlapping edges between the spaces meant to be explored. Though this is a

less accurate representation of the space on the map, it simplifies the project and allows for users

to be less specific in the placement of the selection object.

Map Creation and Utilization

I used several different maps in the testing of my project, some of which I made and

some of which were pre-existing. The pre-existing maps were useful in determining the spatial

relationships of the campus such as where buildings were located in relation to one another,

where roads and bodies of water are located, and where parking lots exist. Despite being useful

in teaching me how to set up the spatial relationship of the campus itself, I knew from the

beginning of this project that the map I wanted users to trace should be as minimalistic and bare

as possible. This would require users to explore the space with ArUco B in order to construct

their own map without relying on the labels and color indicators of a premade map of the

campus.

44

Figure 26. Pre existing maps of Bard that I utilized in initial testing [3][4][8]

To create the minimal map that I envisioned, I utilized the map on the top-right to trace

the general layout of the campus. Using the photo editor GIMP, I was able to easily extract the

information that I did not want present in my projection map. The colors I used for the exact

projection map proved to be incredibly significant. I could not include any colors that could

possibly fall within the threshold of the selection object, so in the case of my demonstration, I

avoided colors like pink and red in my map. The background color was also significant. I tested

using both white and black backgrounds and found that though a white background is useful in

making the projection vibrant for users, the brightness of that projection makes camera detection

difficult and complicated.

45

Figure 27. Example of a light background map that, when projected, would disrupt webcam feed (Author’s Image,
2022)

In relying on a solely black background, I minimize the extra lighting from the projection

that could influence the camera detection. I originally used blue to indicate the roads throughout

campus, gray for the parking lots, and white for buildings; however, as my testing continued,

these colors changed a bit. There are many small buildings on campus that I found to be

unimportant when exploring the campus from an outsider perspective. Buildings like the Manor

Gatehouse and the Hannah Arendt center did not seem as necessary to include in the exploration

of the campus, so rather than separating my map into roads, parking lots, and buildings, I

separated it into roads, unexplorable locations, and explorable places. The roads remained blue,

unexplorable places, including parking lots, remained gray, and explorable places are now

46

depicted in a vibrant green that makes it easy for users to see.

Figure 28. The original black background map (left) and the final black background map with locations emphasized in
green (right) (Author’s Image, 2022)

This vibrant green draws users to those specific locations rather than wasting their time

by placing the selection object on locations that have nothing attached to them. It would be

simple to go in and change these locations as well. Parking lots could be included in the map

sectioning and the project could include them as places to explore, but I wanted my project to

emphasize the most important aspects of campus without cluttering the user’s mind with less

useful information.

47

Trace Mode

Attempting to construct the traceMode.py functionality of my project proved to be the

most inconsistent and sensitive. Originally, my plan was to detect the colors used on the map in

real time and as users colored portions of the map, projected words would state what colors in

those specific locations indicate. This was an impractical feat for several reasons. The

thresholding of colors is far more difficult to complete in a live image since shadows and

movement are constantly changing the HSV of the color being detected. Skin tone and other

objects introduced into the webcam feed could also be read and detected as falling within the

range of colors that should be detected, when in reality, they are not a part of the project. The

projection of the map itself also changed the color of the marker ink. For example, if a user

colored in Robbins with the purple marker, the color purple detected by the camera would be

different from the pen’s actual ink. The camera would detect the green of the Robbins map

projection combined with the purple of the marker and would result in a new HSV value. When I

realized that the projection was distorting the actual HSV of the marker ink, I originally planned

to simply run my projection program alongside my thresholding program in an effort to get the

specific HSV of the ink and projection color combined. Though this would have been successful,

it was unnecessary.

48

Figure 29. The black and white map used for testing projection color distortion on marker ink.(Author’s Image, 2022)

I also considered creating a separate setting entirely for tracing the map. This setting

would require much more work on the user’s side. They would begin by exploring the space with

ArUco B, and would trace the map using a pen, labeling the buildings. Then, by placing the

selection tool in a certain location on the projection, the “Trace Mode” would be activated in

which the projected image would change from the neon green map to a solely black and white

map. This would prevent the neon green of the original projection from disrupting the color of

the marker ink. Though this was an alternative solution to my color thresholding problem, it was

also unnecessary and complex. The bright white of the projection buildings, though less drastic,

still changed the color of the marker ink in the webcam feed. This finally led me to simply

momentarily pause my projection so that the marker ink could be properly detected.By including

49

a small box that works as a screenshot button in the top left corner of my projection, I allow

users to temporarily pause the projection so a screenshot can be taken. These screenshots allow

the upper and lower bounds of the colors detected to be true to the actual color rather than be

reliant on the projection it is layered with. They also provide a digital archive of past tours’ map

tracings with the projection excluded, which is useful in tracking the progress of this project’s

usage. Once the tracking object is removed from the screenshot box, the projection will continue.

This allows for multiple screenshots to be taken over the course of an instance of this project.

Demonstration

The demonstration of this project took place on April 9, 2022 at the Experimental

Humanities’ New Annandale House for Admitted Students Day. I arrived at 10am to mount the

projector-camera system and test the project before tours began. The weather was overcast, so I

adjusted the webcam settings to most accurately detect colors and contours with the given

lighting conditions. I gave a short introductory presentation for the project in which I

summarized my abstract and communicated the importance of the project. The introduction was

followed by a demonstration of how the project worked. I began by calibrating the system using

the OpenCV chessboard image. After calibration was completed, I placed the large ArUco paper

in the camera frame where the map was then projected. I then placed the smaller ArUco paper in

the frame where the logo was projected. The projections depicted minor flashing due to

inconsistent detection of the ArUco markers, but were generally consistent.

After placing my ArUco screens onto the tables, I then moved the pink post-it across the

map to show how buildings were augmented using the smaller paper. When I moved the post-it

50

over the neon green projected buildings, the second paper depicted the name and image of that

location. I ended the presentation by talking about how users were meant to trace the map, and

showed how a screenshot can be taken by placing the post-it in the top left rectangle of the

projection.

My project was being showcased at this event as an example of how Experimental

Humanities projects are interdisciplinary. Since my project focuses on architecture and visual art

in conjunction with computer science, it was an accurate representation of how these disciplines

are interconnected. In terms of the success of the project demonstration, my program ran with no

errors and was successful in projecting an interactive map of the campus. My code worked as

expected, and received positive feedback from prospective students and their families. Though I

would have considered it to be a more successful demonstration if others had the opportunity to

engage with the map themselves, the large number of people and the short time constrictions

made this impossible. The demonstration was nevertheless a useful exercise in verbally

communicating my project overview to a non technical audience. It provided me the opportunity

to answer questions about how my system works on a broad scale, and allowed me to present

what the project is capable of.

51

Figure 30. Pictures from the EH demo (Author’s Image, 2022)

52

Conclusion

Overall, I was successful in constructing an augmented reality environment that explores

Bard’s campus using a projector-camera system. My project presents an alternative way of

physically exploring space that is accessible to users who struggle with mobility. Users are able

to uncover parts of campus quickly without having to walk across 1,000 acres, and they have the

opportunity to leave their subjective touring experience for future users to see. By using this

system, users are more involved in their tour experience rather than being confined to the strict

route tour guides follow. Users also have the ability to see all parts of campus, not just the select

few included on general campus tours. The user involvement and explorative aspects of my

project make it a more memorable and meaningful experience, especially since other colleges are

not providing prospective students with the opportunity to engage with their campuses in this

way. This is an example of a computer science project that is designed for non technical people

to experience and enjoy. It allows users to be in control of their experience and encourages them

to be creative and collaborative throughout their tour. All of these qualities coalesce to form an

interdisciplinary experience that can be easily categorized as an Experimental Humanities

project.

Limitations

This project, though successful in many aspects, presented me with several challenges

that limited its overall effectiveness. Camera-projector systems in general are known to be reliant

53

on the environments where they are installed. Light conditions greatly affect the efficacy of my

project, particularly when it comes to detection functionality. Since my color detection is based

around color thresholding, the HSV value thresholds of colors are specific to the lighting

conditions of the space when the thresholds were determined. For example, the pink post-it note

could appear within the camera frame with HSV values during the daytime, but those HSV

values are much different when the thresholding is applied at night. Cloudy versus sunny

conditions also play a considerable role in the thresholding of colors.

Color detection is not the only detection that is reliant on lighting conditions. ArUco

marker detection also varies in efficacy depending on the lighting. If the environment where the

project is being presented is not well lit, the contrast between ArUco markers and the paper they

lie on is less accurate. When ArUco markers are less obvious within the webcam frame, the

projection is less accurate and can lead to an inaccurate tracing of the campus map. This in turn

could lead to inaccurate information collection regarding the most popular places on campus.

If my project were permanently installed in a room with consistent lighting conditions,

these limitations could be easily overcome. With software like the Mac Webcam Settings

application, it is possible to set specific camera parameters like camera focus, contrast,

saturation, and sharpness. These specified settings make it simple to create a webcam feed that

consistently detects colors and borders based on the stable lighting conditions; however, since

my camera-projector system is meant to be portable, these settings cannot be preset. Instead,

during the execution of the project, the user must adjust the camera settings to maximize the

accuracy of camera detection. Even with these settings being adjusted, as weather conditions and

sun position change constantly, the project must constantly be adjusted to account for these

54

changes. If a more permanent installation of this project with less natural sunlight were an

option, these limitations could be overcome.

I also faced difficulties with the specific placement of the camera. The webcam I used

was placed atop the projector, which gave the webcam feed a slanting perspective. This was

corrected using the homography matrices I calculated, as seen in Figure 14; however, since the

camera focus is consistent across the plane it is detecting, a slanting viewpoint changes the

sharpness of the image. The camera focus was precise for the ArUco markers that were closest to

the camera, but the two markers that appear farther away from the camera are less clear due to

their distance.

This limitation can be overcome with a better camera installation position. Placing the

camera directly above and perpendicular to the projection will allow the projection to be viewed

on a plane with a consistent focus. No physical or projected aspects of the project would be

closer or farther from the camera, which would make the entire feed cleared after warping

occurred. Overall, the limitations of this project would be remedied by a more stable and

consistent installation, since lighting conditions could be controlled and the camera focus could

be fixed.

Future Work

Upon the completion of this project, there are still steps that can be taken to improve the

impact and efficacy of its application. As I mentioned previously in the Limitations section, a

permanent installation is the first step to making the project easy and accurate in its use. By

installing the system in a building with controlled lighting like the Admissions Office, users will

55

have less set up to maintain before executing the program. By being placed in the Admissions

Office in particular, prospective students and their families will have the opportunity to explore

the campus both physically and virtually. It could also work as an introduction to what the

Experimental Humanities program does. Since it is an obscure concentration at Bard, I want my

project to make students aware of the opportunities available within the program.

When it comes to improving the abilities of the project in general, I believe this project

can be expanded in so many ways. In the future, it would be useful to project pie charts that

detail the colored sections detected from tour maps. For example, a pie chart could be projected

that, based on the archive of map screenshots from the program, depicts which buildings are

considered to be the best places to study. This information would act as a visual representation of

past and present user preferences, and would put the subjective color choices during map tracing

into a broader perspective.

The project would also benefit from more subjective capabilities. I would like for

students, particularly tour guides, to be able to incorporate their own drawings and notes into the

map. For example, rather than just projecting images of the buildings on ArUco B, another

screen could act as a slideshow of drawings or short notes related to the building selected.

Students could draw and write on ArUco screens, then take a screenshot using the pink post-it.

After, those screenshots could be added to the list of images in a slideshow that gets projected on

a future ArUco screen that is placed next to ArUco B. This would add another layer of

subjectivity to the augmented reality tour, and would allow students and visitors to better connect

with the space.

56

Finally, I would have liked to include a more historical component to this project. I would

have liked the ability to include a slider that changes the depiction of the map over time. This

would show the timeline of this land charted from before Bard was founded, and would both pay

respect both to the indigenous people that resided here originally and would acknowledge the

path Bard took in its creation. The project is currently successful in presenting an augmented

reality view of the campus, allowing user subjectivity, and creating an archive of the finished

tours, but future work would improve upon the work already done. It would provide a more

accurate view of the school and would give users a more vivid depiction of the student

population based on their subjective inclusions.

57

Bibliography

[1] Adrian Rosebrock. 2014. OpenCV and Python Color Detection. (August 2014). Retrieved

from https://pyimagesearch.com/2014/08/04/opencv-python-color-detection/

[2] Aishwarya Singh. 2019. A Detailed Guide to the Powerful SIFT Technique for Image

Matching (with Python code). (October 2019). Retrieved from

https://www.analyticsvidhya.com/blog/2019/10/detailed-guide-powerful-sift-technique-i

mage-matching-python/

[3] Annandale Online. Retrieved from

https://www.annandaleonline.org/s/990/images/editor_documents/Commencement/2020_

commencement/comm_weekend_map_fv.pdf

[4] Bard College. Retrieved from https://www.bard.edu/campus/maps/pdfs/campusmap.pdf

[5] Charles Patel. 2020. Underneath Numpy array & Python list. (July 2020). Retrieved from

https://medium.datadriveninvestor.com/underneath-numpy-array-python-list-42a30e62f6

93

[6] Cullen C. Drissell. 2020. A Mixed Reality System for Learning Data Structures. Senior

Projects Spring 2020. 302.

[7] Daniel Moreno and Gabriel Taubin. 2012. Simple, Accurate, and Robust Projector-Camera

Calibration. In Proceedings of the 2012 Second International Conference on 3D Imaging,

Modeling, Processing, Visualization & Transmission (3DIMPVT '12). IEEE Computer

Society, USA, 464–471. DOI:https://doi.org/10.1109/3DIMPVT.2012.77

https://pyimagesearch.com/2014/08/04/opencv-python-color-detection/
https://www.analyticsvidhya.com/blog/author/aishwaryasingh/
https://www.analyticsvidhya.com/blog/2019/10/detailed-guide-powerful-sift-technique-image-matching-python/
https://www.analyticsvidhya.com/blog/2019/10/detailed-guide-powerful-sift-technique-image-matching-python/
https://www.annandaleonline.org/s/990/images/editor_documents/Commencement/2020_commencement/comm_weekend_map_fv.pdf
https://www.annandaleonline.org/s/990/images/editor_documents/Commencement/2020_commencement/comm_weekend_map_fv.pdf
https://www.bard.edu/campus/maps/pdfs/campusmap.pdf
https://medium.datadriveninvestor.com/underneath-numpy-array-python-list-42a30e62f693
https://medium.datadriveninvestor.com/underneath-numpy-array-python-list-42a30e62f693

58

[8] Digital Spaces Unconference. Retrieved from

https://hawksites.newpaltz.edu/digitalspaces/location/directionstobard/

[9] Dynamicland. Retrieved from https://dynamicland.org/#mission

[10] Frederico Ponzi. 2021. hsvThreshold.py. Retrieved from

https://gist.github.com/FedericoPonzi/1728542ae0c8057e43658a3216e385c5

[11] Geeks for Geeks. 2021. Find if two rectangles overlap. (October 2021). Retrieved from

https://www.geeksforgeeks.org/find-two-rectangles-overlap/

[12] Julia Chatain. 2015. SyMAPse: Augmented Interactive Maps for Subjective Expression.

Human-Computer Interaction [cs.HC].. hal-01191429v2

[13] Markus Funk, Oliver Korn, and Albrecht Schmidt. 2014. An augmented workplace for

enabling user-defined tangibles. In CHI '14 Extended Abstracts on Human Factors in

Computing Systems (CHI EA '14). Association for Computing Machinery, New York,

NY, USA, 1285–1290. DOI:https://doi.org/10.1145/2559206.2581142

[14] OpenCV. 2015. Open Source Computer Vision Library.

[15] Rahul Sukthankar, Robert G. Stockton, Matthew D. MullinSmarter Presentations:

Exploiting Homography in Camera-Projector Systems. In ICCV 2001 (pp. 247-253).

[16] Yahya Ghazwani and Shamus Smith. 2020. Interaction in Augmented Reality: Challenges to

Enhance User Experience. In Proceedings of the 2020 4th International Conference on

Virtual and Augmented Reality Simulations (ICVARS 2020). Association for Computing

Machinery, New York, NY, USA, 39–44. DOI:https://doi.org/10.1145/3385378.3385384

https://hawksites.newpaltz.edu/digitalspaces/location/directionstobard/
https://gist.github.com/FedericoPonzi/1728542ae0c8057e43658a3216e385c5
https://www.geeksforgeeks.org/find-two-rectangles-overlap/
https://doi.org/10.1145/2559206.2581142

59

[17] Yalda Shankar. 2021. Homography Estimation. Retrieved from

https://towardsdatascience.com/estimating-a-homography-matrix-522c70ec4b2c

[18] W3 Schools. Numpy Introduction. Retrieved from

https://www.w3schools.com/python/numpy/numpy_intro.asp

https://towardsdatascience.com/estimating-a-homography-matrix-522c70ec4b2c
https://www.w3schools.com/python/numpy/numpy_intro.asp

60

Appendix A: Setup

Step 1. Print out two ArUco tracking papers. One should have ArUco marker 1 in the top left

corner, ArUco marker 2 in the top right corner, ArUco marker 3 in the bottom right corner, and

ArUco marker 4 in the bottom left corner. The other should have markers 5, 6, 7, and 8 in the

same clockwise layout, beginning from the top left corner.

Step 2. Cut out markers 1, 2, 3, and 4 from the printed paper and secure them in the same

alignment to a larger piece of paper, creating ArUco A.

61

Step 3. Attach a mount to the back of the short throw projector using screws and allen wrench.

Elongate the neck of the mount to maximize the size of the projection. Using hand clamps,

secure the base of the mount, with the projector attached, to the edge of a table.

Step 4. Plug in both the power and HDMI chords to the bottom of the projector. Connect the

HDMI via an adaptor to the laptop where the code will be executed.

Step 5. Connect the camera via a USB adapter to the laptop where the code will be executed. Set

the focus of the camera from auto to manual using Webcam Settings App.

62

Step 6. Turn on the projector and the camera, and run the aruco-tracking-perfect.py program.

Step 7. While the camera is on, make sure the calibration pattern is entirely visible within the

frame of the camera.

63

Step 8. Once the projection and camera frames are aligned, press ‘c’ on the laptop keyboard to

properly calibrate.

Step 9. Place ArUco A within the camera frame. The basic map of Bard should appear within the

marker corners.

64

Step 10. Trace the blue roads and color the white boxes with black sharpie. Outline the neon

green buildings with a fine pen or pencil.

Step 11. Place ArUco B within the camera frame beside the large paper. If the images depicted

on the two papers begin flashing, attempt to alter the camera sharpness, brightness, and contrast

to clarify the ArUco markers within the frame.

65

Step 11. Place a neon pink post-it tab on green locations of the map to explore the space. The

image and name of that location should appear on the smaller aruco paper.

Step 12. When a location has been identified, label and trace that location on the map.

Step 13. Once all green map locations have been explored, labeled, and traced, remove the

smaller ArUco paper from the frame.

Step 14. Color in the map using red, orange, blue, and purple sharpies. Red corresponds to the

best place to hang out on campus. Orange represents the prettiest view, blue is the best place to

study, and purple is the best dorm.

66

Step 15. After the map tracing and coloring has been finalized, place the pink post-it in the top

left corner of the projection where a small rectangle box is displayed. This will change the

projection to black and will take a screenshot of the map created.

67

Step 16. Remove the finished map from the frame, and replace it with the smaller aruco paper.

This should display, in words, the best place to hang out, the prettiest view, the best place to

study, and the best dorm based on the colors chosen from the finalized map.

68

Appendix B: Code

aruco-tracking-perfect.py

import cv2

import numpy as np

import calibr

import tracker

import intersect

import traceMode

import datetime

red=favorite places on campus to hang out (problem, hand fits this color range)

blue=favorite places on campus to study

purple=best dorm

orange=prettiest view

used for saving screenshots for archive based on date and time

count = str(datetime.datetime.now())

pictures and vid capture

cap = cv2.VideoCapture(1)

map = cv2.imread('data/diy-map-neon-new.jpg')

aruco = cv2.imread('data/aruco-paper.png')

calib = cv2.imread('data/pattern.png')

logo = cv2.imread('data/logo.png')

sizing for the calibration pattern

scale_percent = 60 # percent of original size

width = int(calib.shape[1] * scale_percent / 100)

height = int(calib.shape[0] * scale_percent / 100)

dim = (width, height)

calib = cv2.resize(calib, dim)

finding middle corners in chessboard pattern (calibration image, not live footage)

69

found, calibPoints = cv2.findChessboardCorners(calib, (9, 6))

makes map the same size as the aruco paper

hT, wT, cT = aruco.shape

map = cv2.resize(map, (wT, hT))

top left and bottom right rectangle bounds of campus buildings

robbinsTL = [490, 163]

robbinsBR = [550, 192]

fisherTL = [587, 58]

fisherBR = [634, 82]

manorTL = [522, 95]

manorBR = [549, 126]

resnickTL = [387, 332]

resnickBR = [418, 411]

stevensonTL = [331, 443]

stevensonBR = [380, 483]

blumTL = [127, 699]

blumBR = [182, 733]

hesselTL = [129, 616]

hesselBR = [181, 654]

southDormsTL = [248, 655]

southDormsBR = [330, 704]

hirschTL = [574, 372]

hirschBR = [610, 417]

kappaTL = [447, 463]

kappaBR = [474, 484]

woodTL = [274, 470]

70

woodBR = [303, 494]

libraryTL = [445, 503]

libraryBR = [469, 535]

klineTL = [406, 536]

klineBR = [430, 570]

sandsTL = [372, 703]

sandsBR = [387, 718]

rkcTL = [389, 634]

rkcBR = [406, 679]

fannexTL = [276, 571]

fannexBR = [290, 601]

ccTL = [294, 609]

ccBR = [346, 646]

blithewoodTL = [15, 569]

blithewoodBR = [80, 623]

centralcampTL = [443, 535]

centralcampBR = [500, 631]

ehTL = [350, 490]

ehBR = [380, 510]

checking booleans

calibrated = False

initializing homography variables

homogCamToComp = []

homogCompToCam = []

initializing variables for location of building text descriptors

71

tlocX = 500

tlocY = 500

text = " "

red = " "

orange = " "

purple = " "

blue = " "

while True:

constantly captures webcam as images, setting all windows to size of callibration

image (dim)

sucess, imgWebcam = cap.read()

change this to resize when the webcam is opened

imgWebcam = cv2.resize(imgWebcam, dim)

moves calibration image to be on separate screen (not laptop); tweak the

'moveWindow' numbers

cv2.namedWindow('calib')

cv2.moveWindow('calib', -1500, 205)

cv2.setWindowProperty(

'calib', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

cv2.imshow('calib', calib)

videostream on laptop

cv2.imshow('vid', imgWebcam)

calibrate when 'c' is pressed, homography matricies

if cv2.waitKey(1) & 0xFF == ord('c'):

homogCamToComp, homogCompToCam, calibrated = calibr.calibrate(

imgWebcam, calibPoints, calibrated)

after calibration, this portion sets up the projection

if calibrated == True:

imgBlank = np.zeros((height, width, 3), np.uint8)

imgBlank = cv2.resize(imgBlank, dim)

cv2.namedWindow('blank', cv2.WINDOW_NORMAL)

72

cv2.moveWindow('blank', -1500, 205)

cv2.setWindowProperty(

'blank', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

cv2.imshow('blank', imgBlank)

initiating blank mapProj here for color tracking

mapProj = np.zeros(

(imgWebcam.shape[0], imgWebcam.shape[1], 3), np.uint8)

image transformed from camera input to screen

mapTransformi = cv2.warpPerspective(imgWebcam, homogCamToComp,

(imgWebcam.shape[1], imgWebcam.shape[0]))

cv2.imshow('mapTransformi', mapTransformi)

findind aruco markers

arucoFound = tracker.findArucoMarkers(imgWebcam)

bboxList = arucoFound[0]

idsList = arucoFound[1]

getting location of markers if they are detected

id1Index = np.where(idsList == 1)

id2Index = np.where(idsList == 2)

id3Index = np.where(idsList == 3)

id4Index = np.where(idsList == 4)

id5Index = np.where(idsList == 5)

id6Index = np.where(idsList == 6)

id7Index = np.where(idsList == 7)

id8Index = np.where(idsList == 8)

bboxListAll = []

for corners in bboxListAll:

bboxList.append(corners[0])

ArUco screen detection booleans

counterUno = False

counterDos = False

73

if aruco 5,6,7,8 paper is detected, warp logo to location

if (id5Index[0].size > 0 and id6Index[0].size > 0 and id7Index[0].size > 0 and

id8Index[0].size > 0):

bbox5 = bboxList[id5Index[0][0]]

bbox6 = bboxList[id6Index[0][0]]

bbox7 = bboxList[id7Index[0][0]]

bbox8 = bboxList[id8Index[0][0]]

mapTranDos, matrixiDos, brDos = tracker.augmentAruco(

bbox5, bbox6, bbox7, bbox8, imgWebcam, logo)

tlocX = int(brDos[0])

tlocY = int(brDos[1]-100)

counterDos = True

if aruco 1,2,3,4 paper is detected, warp map to it

if(id1Index[0].size > 0 and id2Index[0].size > 0 and id3Index[0].size > 0 and

id4Index[0].size > 0):

bbox1 = bboxList[id1Index[0][0]]

bbox2 = bboxList[id2Index[0][0]]

bbox3 = bboxList[id3Index[0][0]]

bbox4 = bboxList[id4Index[0][0]]

mapTran, matrixi, br = tracker.augmentAruco(

bbox1, bbox2, bbox3, bbox4, imgWebcam, map)

mapProj is the smaller image of what is actually being projected on the

paper

mapProj = cv2.warpPerspective(

imgWebcam, matrixi, (imgWebcam.shape[0], imgWebcam.shape[1]))

cv2.rectangle(mapProj, (490, 163), (519, 192), (0, 0, 0), 5)

cv2.rectangle(mapProj, (587, 58), (634, 82), (0, 0, 0)), 5

cv2.rectangle(mapProj, (522, 95), (549, 126), (0, 0, 0), 5)

cv2.rectangle(mapProj, (387, 332), (418, 411), (0, 0, 0), 5)

cv2.rectangle(mapProj, (331, 443), (380, 483), (0, 0, 0), 5)

cv2.rectangle(mapProj, (350, 490), (380, 510), (0, 0, 0), 5)

cv2.rectangle(mapProj, (127, 699), (182, 733), (0, 0, 0), 5)

74

cv2.rectangle(mapProj, (129, 616), (181, 654), (0, 0, 0), 5)

cv2.rectangle(mapProj, (248, 640), (330, 704), (0, 0, 0), 5)

cv2.rectangle(mapProj, (574, 372), (610, 417), (0, 0, 0), 5)

cv2.rectangle(mapProj, (447, 463), (474, 484), (0, 0, 0), 5)

cv2.rectangle(mapProj, (274, 470), (303, 494), (0, 0, 0), 5)

cv2.rectangle(mapProj, (445, 503), (469, 535), (0, 0, 0), 5)

cv2.rectangle(mapProj, (406, 536), (430, 570), (0, 0, 0), 5)

cv2.rectangle(mapProj, (482, 522), (500, 570), (0, 0, 0), 5)

cv2.rectangle(mapProj, (372, 703), (387, 718), (0, 0, 0), 5)

cv2.rectangle(mapProj, (389, 634), (406, 679), (0, 0, 0), 5)

cv2.rectangle(mapProj, (276, 571), (290, 601), (0, 0, 0), 5)

cv2.rectangle(mapProj, (294, 609), (346, 646), (0, 0, 0), 5)

cv2.rectangle(mapProj, (15, 569), (76, 623), (0, 0, 0), 5)

cv2.rectangle(mapProj, (443, 535), (483, 631), (0, 0, 0), 5)

cv2.imshow('mapSmaller', mapProj)

counterUno = True

if both aruco sets are detected

if(counterUno == True and counterDos == True):

combine the projection warps from aruco 1-4 and aruco 5-8

vis = cv2.bitwise_or(mapTran, mapTranDos)

project on the calibration plane

mapTransform = cv2.warpPerspective(vis, homogCamToComp,

(imgWebcam.shape[1],

imgWebcam.shape[0]))

cv2.namedWindow('warp')

cv2.moveWindow('warp', -1500, 205)

cv2.setWindowProperty(

'warp', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

text changes when buildings are selected

cv2.putText(mapTransform, text, (tlocX, tlocY),

cv2.FONT_HERSHEY_SIMPLEX, 1.0,

(255, 255, 255))

cv2.imshow('warp', mapTransform)

75

cv2.waitKey(5) ???

if aruco 1-4 is detected

elif(counterUno == True and counterDos == False):

second warp onto calibration plane

mapTransform = cv2.warpPerspective(mapTran, homogCamToComp,

(imgWebcam.shape[1],

imgWebcam.shape[0]))

rectangle for screenshot purpose

cv2.rectangle(mapTransform, (0, 0),

(50, 50), (255, 255, 255), 5)

cv2.namedWindow('warp')

cv2.moveWindow('warp', -1500, 205)

cv2.setWindowProperty(

'warp', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

only map projection

cv2.imshow('warp', mapTransform)

if only aruco 5-8 is detected

elif(counterUno == False and counterDos == True):

second warp onto calibration plane

mapTransform = cv2.warpPerspective(mapTranDos, homogCamToComp,

(imgWebcam.shape[1],

imgWebcam.shape[0]))

cv2.namedWindow('warp')

cv2.moveWindow('warp', -1500, 205)

cv2.setWindowProperty(

'warp', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

cv2.putText(mapTransform, red, (tlocX-200, tlocY-80),

cv2.FONT_HERSHEY_SIMPLEX, 1.0,

(255, 255, 255))

cv2.putText(mapTransform, blue, (tlocX-200, tlocY-50),

cv2.FONT_HERSHEY_SIMPLEX, 1.0,

(255, 255, 255))

cv2.putText(mapTransform, orange, (tlocX-200, tlocY-20),

cv2.FONT_HERSHEY_SIMPLEX, 1.0,

(255, 255, 255))

76

cv2.putText(mapTransform, purple, (tlocX-200, tlocY),

cv2.FONT_HERSHEY_SIMPLEX, 1.0,

(255, 255, 255))

only logo projection

cv2.imshow('warp', mapTransform)

convert minimap feed to HSV instead of BGR

hsvFrame = cv2.cvtColor(mapProj, cv2.COLOR_BGR2HSV)

converts the overall feed, after warping to HSV instead of BGR

hsvFrameBig = cv2.cvtColor(mapTransformi, cv2.COLOR_BGR2HSV)

bounds of the hot pink post it, determined by threshold.py

pink_lower = np.array([161, 112, 133], np.uint8)

pink_upper = np.array([179, 255, 255], np.uint8)

pink_mask = cv2.inRange(hsvFrame, pink_lower, pink_upper)

pink_mask_big = cv2.inRange(hsvFrameBig, pink_lower, pink_upper)

kernal = np.ones((5, 5), "uint8")

pink_mask = cv2.dilate(pink_mask, kernal)

pink_mask_big = cv2.dilate(pink_mask_big, kernal)

contours, hierarchy = cv2.findContours(pink_mask,

cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

contoursBig, hierarchyBig = cv2.findContours(pink_mask_big,

cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

finding contours of the pink located, if only the map projection is present

if(counterUno == True and counterDos == False):

for pic, contour in enumerate(contoursBig):

area = cv2.contourArea(contour)

if enough pink is located

if(area > 350):

contour dimensions

x, y, w, h = cv2.boundingRect(contour)

77

cv2.rectangle(mapTransformi, (x, y),

(x + w, y + h),

(0, 0, 0), 2)

top left and bottom right corners of contour dimensions

contTL = [x, y]

contBR = [x+w, y+h]

if the pink location overlaps with the box in the top left

corner, take a screenshot

if(intersect.intersect((1, 1), (201, 101), contTL, contBR)):

cv2.namedWindow('warp')

cv2.moveWindow('warp', -1500, 205)

cv2.setWindowProperty(

'warp', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

changes background to black

cv2.imshow('warp', imgBlank)

cv2.waitKey(5)

screenshot saved to Archive folder

cv2.imwrite("data/Archive/mapFrom" +

str(count)+".jpg", mapProj)

print("screenshot")

screenshot read to tracemode program

colors = cv2.imread(

"data/Archive/mapFrom" +

str(count)+".jpg")

#execute traceMode

redOut, orangeOut, blueOut, purpleOut = traceMode.traceMode(

colors, width, height)

#change text to be projected on aruco 5,6,7,8

red = "Best place to hang out is " + redOut

orange = "Prettiest view is "+orangeOut

blue = "Best place to study is "+blueOut

purple = "Best place to sleep is "+purpleOut

if both aruco papers are present, if pink intersects with tl and br building

locations, change logo to picture of location and change

78

text to be the name of that building

elif(counterUno == True and counterDos == True):

print("both")

for pic, contour in enumerate(contours):

area = cv2.contourArea(contour)

if enough pink is located

if(area > 350):

print("enough")

bounds of the located pink

x, y, w, h = cv2.boundingRect(contour)

cv2.rectangle(mapProj, (x, y),

(x + w, y + h),

(0, 0, 0), 2)

cv2.imshow('comp', mapProj)

conts = np.array(

[[x, y], [x+w, y], [x+w, y+h], [x, y+h]], np.int32)

contTL = [x, y]

contBR = [x+w, y+h]

if(intersect.intersect(robbinsTL, robbinsBR, contTL, contBR)):

logo = cv2.imread('data/robbins.jpeg')

text = "ROBBINS"

elif(intersect.intersect(manorTL, manorBR, contTL, contBR)):

logo = cv2.imread('data/manor.jpeg')

text = "MANOR"

elif(intersect.intersect(fisherTL, fisherBR, contTL, contBR)):

logo = cv2.imread('data/fisher.jpeg')

text = "FISHER"

elif(intersect.intersect(resnickTL, resnickBR, contTL, contBR)):

logo = cv2.imread('data/resnick.jpeg')

text = "RESNICK"

elif(intersect.intersect(stevensonTL, stevensonBR, contTL,

contBR)):

logo = cv2.imread(

79

'data/stevenson.jpeg')

text = "STEVENSON"

elif(intersect.intersect(blumTL, blumBR, contTL, contBR)):

logo = cv2.imread('data/blum.jpeg')

text = "BLUM"

elif(intersect.intersect(hesselTL, hesselBR, contTL, contBR)):

logo = cv2.imread('data/hessel.jpeg')

text = "HESSEL"

elif(intersect.intersect(southDormsTL, southDormsBR, contTL,

contBR)):

logo = cv2.imread(

'data/southdorms.jpeg')

text = "SOUTH DORMS"

elif(intersect.intersect(hirschTL, hirschBR, contTL, contBR)):

logo = cv2.imread('data/hirsch.jpeg')

text = "HIRSCH"

elif(intersect.intersect(kappaTL, kappaBR, contTL, contBR)):

logo = cv2.imread('data/kappa.png')

text = "KAPPA"

elif(intersect.intersect(woodTL, woodBR, contTL, contBR)):

logo = cv2.imread('data/wood.jpeg')

text = "WOOD"

elif(intersect.intersect(libraryTL, libraryBR, contTL, contBR)):

logo = cv2.imread('data/library.jpeg')

text = "LIBRARY"

elif(intersect.intersect(klineTL, klineBR, contTL, contBR)):

logo = cv2.imread('data/kline.jpeg')

text = "KLINE"

elif(intersect.intersect(sandsTL, sandsBR, contTL, contBR)):

logo = cv2.imread('data/sands.jpeg')

80

text = "SANDS"

elif(intersect.intersect(rkcTL, rkcBR, contTL, contBR)):

logo = cv2.imread('data/rkc.jpeg')

text = "RKC"

elif(intersect.intersect(fannexTL, fannexBR, contTL, contBR)):

logo = cv2.imread('data/fannex.jpeg')

text = "FISHER ANNEX"

elif(intersect.intersect(ccTL, ccBR, contTL, contBR)):

logo = cv2.imread('data/cc.jpeg')

text = "CAMPUS CENTER"

elif(intersect.intersect(blithewoodTL, blithewoodBR, contTL,

contBR)):

logo = cv2.imread(

'data/blithewood.jpeg')

text = "BLITHEWOOD"

elif(intersect.intersect(centralcampTL, centralcampBR, contTL,

contBR)):

logo = cv2.imread(

'data/centralcamp.jpeg')

text = "CENTRAL CAMPUS"

elif(intersect.intersect(ehTL, ehBR, contTL, contBR)):

logo = cv2.imread(

'data/experimentalhumanities.jpeg')

text = "EH"

else:

logo = cv2.imread('data/logo.png')

cv2.waitKey(1)

81

calibr.py

import cv2

import numpy as np

def calibrate(vidPic, patternPoints, calibrated):

finds corners in the projected calibration image

foundCorn, cornerPoints = cv2.findChessboardCorners(vidPic, (9, 6))

checks if enough points are found to calibrate and that both matrices are the

same size

if cornerPoints is None:

print("try again")

elif(cornerPoints.shape[0] > 4 and patternPoints.shape[0] ==

cornerPoints.shape[0]):

two homography matrices; first is the matrix going from webcam to computer

screen, second is revers

homogCamToComp, maskCamComp = cv2.findHomography(

cornerPoints, patternPoints, cv2.RANSAC, 5.0) # going from the webcam to

the laptop image

homogCompToCam, maskCompCam = cv2.findHomography(

patternPoints, cornerPoints, cv2.RANSAC, 5.0) # going from the laptop

image to the webcam

calibrated = True

print(calibrated)

return (homogCamToComp, homogCompToCam, calibrated)

else:

print("im having issues")

calibrate(vidPic, patternPoints, calibrated)

intersect.py

def intersect(locationTL, locationBR, contourTL, contourBR):

if(locationBR[1] < contourTL[1] or locationBR[0] < contourTL[0] or locationTL[1] >

contourBR[1] or locationTL[0] > contourBR[0]):

82

return False

else:

return True

threshold.py

import cv2

import sys

import numpy as np

cap = cv2.VideoCapture(0)

def nothing(x):

pass

Create a window

cv2.namedWindow('image')

create trackbars for color change

Hue is from 0-179 for Opencv

cv2.createTrackbar('HMin', 'image', 0, 179, nothing)

cv2.createTrackbar('SMin', 'image', 0, 255, nothing)

cv2.createTrackbar('VMin', 'image', 0, 255, nothing)

cv2.createTrackbar('HMax', 'image', 0, 179, nothing)

cv2.createTrackbar('SMax', 'image', 0, 255, nothing)

cv2.createTrackbar('VMax', 'image', 0, 255, nothing)

Set default value for MAX HSV trackbars.

cv2.setTrackbarPos('HMax', 'image', 179)

cv2.setTrackbarPos('SMax', 'image', 255)

cv2.setTrackbarPos('VMax', 'image', 255)

Initialize to check if HSV min/max value changes

hMin = sMin = vMin = hMax = sMax = vMax = 0

phMin = psMin = pvMin = phMax = psMax = pvMax = 0

83

while(1):

success, img = cap.read()

img = cv2.resize(img, (700, 700))

output = img

get current positions of all trackbars

hMin = cv2.getTrackbarPos('HMin', 'image')

sMin = cv2.getTrackbarPos('SMin', 'image')

vMin = cv2.getTrackbarPos('VMin', 'image')

hMax = cv2.getTrackbarPos('HMax', 'image')

sMax = cv2.getTrackbarPos('SMax', 'image')

vMax = cv2.getTrackbarPos('VMax', 'image')

Set minimum and max HSV values to display

lower = np.array([hMin, sMin, vMin])

upper = np.array([hMax, sMax, vMax])

Create HSV Image and threshold into a range.

hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

mask = cv2.inRange(hsv, lower, upper)

output = cv2.bitwise_and(img, img, mask=mask)

Print if there is a change in HSV value

if((phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax

!= sMax) | (pvMax != vMax)):

print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)"

% (

hMin, sMin, vMin, hMax, sMax, vMax))

phMin = hMin

psMin = sMin

pvMin = vMin

phMax = hMax

psMax = sMax

pvMax = vMax

Display output image

84

cv2.imshow('image', output)

Wait longer to prevent freeze for videos.

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cv2.destroyAllWindows()

traceMode.py
import cv2

import numpy as np

import intersect

def traceMode(map, width, height):

map = cv2.imread('ar-image-mapping/data/mapArchive0.jpg')

#coordinates of top left and bottom right points of building locations

robbinsTL = [490, 163]

robbinsBR = [519, 192]

fisherTL = [587, 58]

fisherBR = [634, 82]

manorTL = [522, 95]

manorBR = [549, 126]

resnickTL = [387, 332]

resnickBR = [418, 411]

stevensonTL = [331, 443]

stevensonBR = [380, 483]

blumTL = [127, 699]

blumBR = [182, 733]

hesselTL = [129, 616]

hesselBR = [181, 654]

85

southDormsTL = [248, 640]

southDormsBR = [330, 704]

hirschTL = [574, 372]

hirschBR = [610, 417]

kappaTL = [447, 463]

kappaBR = [474, 484]

woodTL = [274, 470]

woodBR = [303, 494]

libraryTL = [445, 503]

libraryBR = [469, 535]

klineTL = [406, 536]

klineBR = [430, 570]

sandsTL = [372, 703]

sandsBR = [387, 718]

rkcTL = [389, 634]

rkcBR = [406, 679]

fannexTL = [276, 571]

fannexBR = [290, 601]

ccTL = [294, 609]

ccBR = [346, 646]

blithewoodTL = [15, 569]

blithewoodBR = [76, 623]

centralcampTL = [443, 535]

centralcampBR = [500, 631]

#setting bounds for red, blue, orange, and purple markers

hsvFrame = cv2.cvtColor(map, cv2.COLOR_BGR2HSV)

86

red_lower = np.array([2, 45, 89], np.uint8)

red_upper = np.array([6, 145, 168], np.uint8)

red_mask = cv2.inRange(hsvFrame, red_lower, red_upper)

blue_lower = np.array([107, 90, 0], np.uint8)

blue_upper = np.array([162, 255, 255], np.uint8)

blue_mask = cv2.inRange(hsvFrame, blue_lower, blue_upper)

orange_lower = np.array([3, 185, 102], np.uint8)

orange_upper = np.array([14, 255, 255], np.uint8)

orange_mask = cv2.inRange(hsvFrame, orange_lower, orange_upper)

purple_lower = np.array([166, 45, 0], np.uint8)

purple_upper = np.array([179, 255, 255], np.uint8)

purple_mask = cv2.inRange(hsvFrame, purple_lower, purple_upper)

kernal = np.ones((5, 5), "uint8")

red_mask = cv2.dilate(red_mask, kernal)

orange_mask = cv2.dilate(orange_mask, kernal)

blue_mask = cv2.dilate(blue_mask, kernal)

purple_mask = cv2.dilate(purple_mask, kernal)

contoursred, hierarchyred = cv2.findContours(red_mask,

cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

hangOutRed = " "

prettiestViewOrange = " "

placeToStudyBlue = " "

placeToSleepPurple = " "

for pic, contour in enumerate(contoursred):

area = cv2.contourArea(contour)

if enough red is located

if(area > 350):

bounds of the located red

x, y, w, h = cv2.boundingRect(contour)

87

cv2.rectangle(map, (x, y),

(x + w, y + h),

(0, 0, 0), 2)

contTL = [x, y]

contBR = [x+w, y+h]

#if Fisher is red, then change hangout to represent, etc

if(intersect.intersect(fisherTL, fisherBR, contTL, contBR)):

hangOutRed = "Fisher"

elif(intersect.intersect(manorTL, manorBR, contTL, contBR)):

hangOutRed = "Manor"

elif(intersect.intersect(robbinsTL, robbinsBR, contTL, contBR)):

hangOutRed = "Robbins"

elif(intersect.intersect(hirschTL, hirschBR, contTL, contBR)):

hangOutRed = "Hirsch"

elif(intersect.intersect(resnickTL, resnickBR, contTL, contBR)):

hangOutRed = "Resnick"

elif(intersect.intersect(stevensonTL, stevensonBR, contTL, contBR)):

hangOutRed = "Stevenson"

elif(intersect.intersect(woodTL, woodBR, contTL, contBR)):

hangOutRed = "Wood"

elif(intersect.intersect(kappaTL, kappaBR, contTL, contBR)):

hangOutRed = "Kappa"

elif(intersect.intersect(libraryTL, libraryBR, contTL, contBR)):

hangOutRed = "Library"

elif(intersect.intersect(klineTL, klineBR, contTL, contBR)):

hangOutRed = "Kline"

elif(intersect.intersect(fannexTL, fannexBR, contTL, contBR)):

hangOutRed = "Fisher Annex"

88

elif(intersect.intersect(ccTL, ccBR, contTL, contBR)):

hangOutRed = "Campus Center"

elif(intersect.intersect(southDormsTL, southDormsBR, contTL, contBR)):

hangOutRed = "South Dorms"

elif(intersect.intersect(rkcTL, rkcBR, contTL, contBR)):

hangOutRed = "RKC"

elif(intersect.intersect(sandsTL, sandsBR, contTL, contBR)):

hangOutRed = "Sands"

elif(intersect.intersect(hesselTL, hesselBR, contTL, contBR)):

hangOutRed = "Hessel"

elif(intersect.intersect(blumTL, blumBR, contTL, contBR)):

hangOutRed = "Blum"

elif(intersect.intersect(blithewoodTL, blithewoodBR, contTL, contBR)):

hangOutRed = "Blithewood"

contoursorange, hierarchyorange = cv2.findContours(orange_mask,

cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

for pic, contour in enumerate(contoursorange):

area = cv2.contourArea(contour)

if enough orange is located

if(area > 350):

bounds of the located orange

x, y, w, h = cv2.boundingRect(contour)

cv2.rectangle(map, (x, y),

(x + w, y + h),

(0, 0, 0), 2)

contTL = [x, y]

contBR = [x+w, y+h]

if(intersect.intersect(fisherTL, fisherBR, contTL, contBR)):

prettiestViewOrange = "Fisher"

89

elif(intersect.intersect(manorTL, manorBR, contTL, contBR)):

prettiestViewOrange = "Manor"

elif(intersect.intersect(robbinsTL, robbinsBR, contTL, contBR)):

prettiestViewOrange = "Robbins"

elif(intersect.intersect(hirschTL, hirschBR, contTL, contBR)):

prettiestViewOrange = "Hirsch"

elif(intersect.intersect(resnickTL, resnickBR, contTL, contBR)):

prettiestViewOrange ="Resnick"

elif(intersect.intersect(stevensonTL, stevensonBR, contTL, contBR)):

prettiestViewOrange ="Stevenson"

elif(intersect.intersect(woodTL, woodBR, contTL, contBR)):

prettiestViewOrange ="Wood"

elif(intersect.intersect(kappaTL, kappaBR, contTL, contBR)):

prettiestViewOrange ="Kappa"

elif(intersect.intersect(libraryTL, libraryBR, contTL, contBR)):

prettiestViewOrange ="Library"

elif(intersect.intersect(klineTL, klineBR, contTL, contBR)):

prettiestViewOrange ="Kline"

elif(intersect.intersect(fannexTL, fannexBR, contTL, contBR)):

prettiestViewOrange ="Fisher Annex"

elif(intersect.intersect(ccTL, ccBR, contTL, contBR)):

prettiestViewOrange ="Campus Center "

elif(intersect.intersect(southDormsTL, southDormsBR, contTL, contBR)):

prettiestViewOrange = "South Dorms"

elif(intersect.intersect(centralcampTL, centralcampBR, contTL, contBR)):

prettiestViewOrange = "Central Campus"

90

elif(intersect.intersect(rkcTL, rkcBR, contTL, contBR)):

prettiestViewOrange = "RKC"

elif(intersect.intersect(sandsTL, sandsBR, contTL, contBR)):

prettiestViewOrange = "Sands"

elif(intersect.intersect(hesselTL, hesselBR, contTL, contBR)):

prettiestViewOrange = "Hessel"

elif(intersect.intersect(blumTL, blumBR, contTL, contBR)):

prettiestViewOrange = "Blum"

elif(intersect.intersect(blithewoodTL, blithewoodBR, contTL, contBR)):

prettiestViewOrange = "Blithewood"

contoursblue, hierarchyblue = cv2.findContours(blue_mask,

cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

for pic, contour in enumerate(contoursblue):

area = cv2.contourArea(contour)

if enough blue is located

if(area > 350):

bounds of the located blue

x, y, w, h = cv2.boundingRect(contour)

cv2.rectangle(map, (x, y),

(x + w, y + h),

(0, 0, 0), 2)

contTL = [x, y]

contBR = [x+w, y+h]

if(intersect.intersect(fisherTL, fisherBR, contTL, contBR)):

placeToStudyBlue = "Fisher"

elif(intersect.intersect(manorTL, manorBR, contTL, contBR)):

placeToStudyBlue = "Manor"

elif(intersect.intersect(robbinsTL, robbinsBR, contTL, contBR)):

placeToStudyBlue = "Robbins"

91

elif(intersect.intersect(hirschTL, hirschBR, contTL, contBR)):

placeToStudyBlue = "Hirsch"

elif(intersect.intersect(resnickTL, resnickBR, contTL, contBR)):

placeToStudyBlue = "Resnick"

elif(intersect.intersect(stevensonTL, stevensonBR, contTL, contBR)):

placeToStudyBlue = "Stevenson"

elif(intersect.intersect(woodTL, woodBR, contTL, contBR)):

placeToStudyBlue = "Wood"

elif(intersect.intersect(kappaTL, kappaBR, contTL, contBR)):

placeToStudyBlue = "Kappa"

elif(intersect.intersect(libraryTL, libraryBR, contTL, contBR)):

placeToStudyBlue = "Library"

elif(intersect.intersect(klineTL, klineBR, contTL, contBR)):

placeToStudyBlue = "Kline"

elif(intersect.intersect(fannexTL, fannexBR, contTL, contBR)):

placeToStudyBlue = "Fisher Annex"

elif(intersect.intersect(ccTL, ccBR, contTL, contBR)):

placeToStudyBlue = "Campus Center"

elif(intersect.intersect(southDormsTL, southDormsBR, contTL, contBR)):

placeToStudyBlue = "South Dorms"

elif(intersect.intersect(centralcampTL, centralcampBR, contTL, contBR)):

placeToStudyBlue = "Central Campus"

elif(intersect.intersect(rkcTL, rkcBR, contTL, contBR)):

placeToStudyBlue = "RKC"

elif(intersect.intersect(sandsTL, sandsBR, contTL, contBR)):

placeToStudyBlue = "Sands"

92

elif(intersect.intersect(hesselTL, hesselBR, contTL, contBR)):

placeToStudyBlue = "Hessel"

elif(intersect.intersect(blumTL, blumBR, contTL, contBR)):

placeToStudyBlue = "Blum"

elif(intersect.intersect(blithewoodTL, blithewoodBR, contTL, contBR)):

placeToStudyBlue = "Blithewood"

contourspurple, hierarchypurple = cv2.findContours(purple_mask,

cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

for pic, contour in enumerate(contourspurple):

area = cv2.contourArea(contour)

if enough purple is located

if(area > 350):

bounds of the located purple

x, y, w, h = cv2.boundingRect(contour)

cv2.rectangle(map, (x, y),

(x + w, y + h),

(0, 0, 0), 2)

contTL = [x, y]

contBR = [x+w, y+h]

if(intersect.intersect(fisherTL, fisherBR, contTL, contBR)):

placeToSleepPurple = "Fisher"

elif(intersect.intersect(manorTL, manorBR, contTL, contBR)):

placeToSleepPurple = "Manor"

elif(intersect.intersect(robbinsTL, robbinsBR, contTL, contBR)):

placeToSleepPurple = "Robbins"

elif(intersect.intersect(hirschTL, hirschBR, contTL, contBR)):

placeToSleepPurple = "Hirsch"

elif(intersect.intersect(resnickTL, resnickBR, contTL, contBR)):

placeToSleepPurple = "Resnick"

93

elif(intersect.intersect(stevensonTL, stevensonBR, contTL, contBR)):

placeToSleepPurple = "Stevenson"

elif(intersect.intersect(woodTL, woodBR, contTL, contBR)):

placeToSleepPurple = "Wood"

elif(intersect.intersect(kappaTL, kappaBR, contTL, contBR)):

placeToSleepPurple = "Kappa"

elif(intersect.intersect(libraryTL, libraryBR, contTL, contBR)):

placeToSleepPurple = "Library"

elif(intersect.intersect(klineTL, klineBR, contTL, contBR)):

placeToSleepPurple = "Kline"

elif(intersect.intersect(fannexTL, fannexBR, contTL, contBR)):

placeToSleepPurple = "Fisher Annex"

elif(intersect.intersect(ccTL, ccBR, contTL, contBR)):

placeToSleepPurple = "Campus Center"

elif(intersect.intersect(southDormsTL, southDormsBR, contTL, contBR)):

placeToSleepPurple = "South Dorms"

elif(intersect.intersect(centralcampTL, centralcampBR, contTL, contBR)):

placeToSleepPurple = "Central Campus"

elif(intersect.intersect(rkcTL, rkcBR, contTL, contBR)):

placeToSleepPurple = "RKC"

elif(intersect.intersect(sandsTL, sandsBR, contTL, contBR)):

placeToSleepPurple = "Sands"

elif(intersect.intersect(hesselTL, hesselBR, contTL, contBR)):

placeToSleepPurple = "Hessel"

elif(intersect.intersect(blumTL, blumBR, contTL, contBR)):

placeToSleepPurple = "Blum"

94

elif(intersect.intersect(blithewoodTL, blithewoodBR, contTL, contBR)):

placeToSleepPurple = "Blithewood"

return(hangOutRed, prettiestViewOrange, placeToStudyBlue, placeToSleepPurple)

tracker.py
import cv2

import numpy as np

#sets dictionary predefined as 6X6_250

def findArucoMarkers(img, markerSize=6, totalMarkers=250, draw=True):

#convert webcam image to greyscale

imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

key = getattr(cv2.aruco, f'DICT_{markerSize}X{markerSize}_{totalMarkers}')

#creates aruco dictionary as being the 6x6_250 one

arucoDict = cv2.aruco.Dictionary_get(key)

arucoParam = cv2.aruco.DetectorParameters_create()

#detects the markers within the greyscale webcam feed based on the aruco dictionary

specified

bboxs, ids, rejected = cv2.aruco.detectMarkers(imgGray, arucoDict,

parameters=arucoParam)

return [bboxs, ids]

#takes in 4 aruco markers, one for each corner, the webcam feed and the image to map

on

def augmentAruco(bbox1, bbox2, bbox3, bbox4, img, imgAug, drawId=True):

#gets aruco 1 bottom right corner since it is in the top left position

br = bbox1[0][2]

#aruco 2 bottom left corner since it is in the top right position

bl = bbox2[0][3]

#aruco 3 top left corner since it is in the bottom right position

tl = bbox3[0][1]

#aruco 4 top right corner since it is in the bottom left position

tr = bbox4[0][0]

#height and width of the image to map

95

h, w, c = imgAug.shape

#corners from aruco markers

pts1 = np.array([br, bl, tr, tl])

#corners from the image to map

pts2 = np.float32([[0, 0], [w, 0], [w, h], [0, h]])

#homography matricies

matrix, _ = cv2.findHomography(pts2, pts1, cv2.RANSAC, 5)

matrixi, _ = cv2.findHomography(pts1, pts2, cv2.RANSAC, 5)

#warping of image to map as projection

imgOut = cv2.warpPerspective(imgAug, matrix, (img.shape[1], img.shape[0]))

return imgOut, matrixi, br

	An Accessible Approach to Exploring Space through Augmented Reality
	SPROJ Final

