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Abstract

In contrast to most social choice methods, which use ranked ballots, range voting is a well-
known social choice method that offers the voters more choices in the form of an allowed range
of possible scores. In this project, by allowing voters to give positive and negative scores, we
hope to find a way that can explicitly show how voters disapprove, feel neutral, or approve of the
alternatives instead of just giving ranking orders. Also, by applying a function to constrain the
scores given in range voting, each voter will have the same influence when they give scores. After
combining these conditions with Condorcet method by transferring scores into ranked ballot, we
get a new voting function that involves Condorcet, approval and range voting. In this project,
we explore how this new voting function behaves with respect to certain voting criteria.
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Introduction

1.1 Social Choice Procedure

Voting theory is commonly known as the mathematical study of voting systems. There are a

wide variety of voting systems and each has its advantages and disadvantages. Some of the most

common differences among voting systems is how to decide who is the winner, and whether or

not they involve a multi-step ranking process.

In a ranked voting system, voters rank the alternatives in the order they prefer it, ranking

their most preferred alternative as the first choice and their least preferred alternative as the

last choice. Also, tied votes sometimes are allowed in the ranking, depended on the different

voting systems.

Definition 1.1.1. A set of alternative is A = {a1, . . . , am} such that there are m alternatives

in A. 4

Definition 1.1.2. A set of voter is V = {v1, . . . , vn} such that there are n voters in V . 4

It is assumed that each voter arrives at some ordering of the alternatives in accordance with

his preferences.
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The following definitions are from [1].

Definition 1.1.3. Let A = {a1, . . . , am} be a set of alternatives for some m ∈ N. A preference

order of A, written as pA, is a linear order on A. We shall represent pA by a column vector

pA =


aσ(1)
aσ(2)

...
aσ(m)


where σ : {1, . . . ,m} → {1, . . . ,m} is a permutation. The top alternative is most preferred

and the bottom alternative is least preferred. We say voter i prefer aσ(p) to aσ(q) for any

p, q ∈ {1, . . . ,m} if p < q. 4

Definition 1.1.4. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let PA be the set of preference orders of A. A preference

profile is the function f : V → PA. We define XV,A to be the set of preference profiles. 4

Definition 1.1.5. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let P(A) be the power set of A. A social choice

procedure is a function Ψ : XV,A → P(A). 4

The image of Ψ is always a subset of P(A). The output Ψ(f) for some f ∈ XV,A is an element

or several elements of P(A), which is a subset of A (which could be the empty set or a set with

a single element).

1.2 Examples of Social Choice Procedures

Definition 1.2.1. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let p, q ∈ {1, . . . ,m} be such that p 6= q. Let T =

{ap, aq}. Let f ∈ XV,A. Let s = |{i ∈ {1, . . . , n}|aσ(p) > aσ(q)}| and t = |{i ∈ {1, . . . , n}|aσ(p) <

aσ(q)}|. We define ap wins the pairwise comparison if s > t. 4
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Definition 1.2.2. Let A = {a1, . . . , am} be a set of alternatives for some m ∈ N. Let p ∈

{1, . . . ,m}. Let f ∈ XV,A. The alternative ap is a Condorcet winner if ap wins its pairwise

comparison with aq for all q ∈ {1, . . . ,m} such that q 6= p. 4

The following statements are from [2].

For example, let A = {a, b, c} and suppose the preference orders are

p1 =

cb
a

 p2 =

ba
c

 p3 =

bc
a

 p4 =

ab
c

 p5 =

ca
b

 .

Then b defeats a by a score of 3 to 2, since the first three voters prefer b to a, while the last

two voters prefer a to b. We can also check that b defeats c by a score of 3 to 2, and c defeats

a by a score of 3 to 2. Because b defeats each of the other alternatives it is the social choice for

this profile when Condorcet’s method is used. Here, b is the Condorcet Winner.

The social choice procedure Plurality voting declares that the alternative(s) who gets the

largest number of first place rankings in the preference order should be in the social choice set.

The social choice procedure Borda Count uses each preference order to award “score” to

each of m alternatives as follows: for each voter, the alternative at the bottom of the order gets

zero points, the alternative at the next to the bottom spot gets one point, the next one up gets

two points and so on up to the top alternative which gets m− 1 points. For each alternative, we

add the score awarded it from each of the individual preference orders. The alternative(s) with

the highest “Borda score” is declared to be the social choice.

The social choice procedure Instant runoff voting is based on the idea of arriving at a social

choice by successive deletions of less desirable alternatives. We begin by deleting the alternative

or alternatives who get the smallest number of first place rankings. At this stage we have orders

that are at least one alternative fewer than that with which we started. Now, we simply repeat

this process of deleting the least desirable alternative or alternatives (as measured by the number
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of preference orders on top of which it, or they, appear). The alternative(s) deleted last is declared

the social choice.

The social choice procedure Dictatorship ignores all the preference orders except that of the

dictator vd. The alternative in first place rankings of vd is now declared to be the social choice.

1.3 Properties of Social Choice Procedures

An ideal social choice procedure demands as many as possible of the following conditions be

satisfied.

Definition 1.3.1. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let Ψ : XV,A → P(A) be a social choice procedure. We

say Ψ satisfies the Always-A-Winner Condition if Ψ(f) 6= ∅ for all f ∈ XV,A. 4

Definition 1.3.2. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let Ψ : XV,A → P(A) be a social choice procedure.

We say Ψ satisfies the Majority Criterion if the following condition holds: for each f ∈ XV,A,

if alternative aj for some j ∈ {1, . . . ,m}, is most preferred by more than n
2 the voters, then aj

should be in Ψ(f). 4

Definition 1.3.3. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let Ψ : XV,A → P(A) be a social choice procedure.

We say Ψ satisfies the Pareto condition if the following condition holds: for each f ∈ XV,A, if

j, k ∈ {1, . . . ,m}, and if every voters prefers aj to ak, then ak cannot be in Ψ(f). 4

Definition 1.3.4. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let Ψ : XV,A → P(A) be a social choice procedure. We

say Ψ satisfies the Condorcet Criterion if it always chooses the Condorcet Winner to be the

only element in Ψ(f) when one exists. 4
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Definition 1.3.5. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let Ψ : XV,A → P(A) be a social choice procedure. We

say Ψ satisfies the Monotonicity Criterion if the following holds: for each f ∈ XV,A, if aj is

in Ψ(f) for some j ∈ {1, . . . ,m} and one voter changes his/her preference order by moving aj

up one spot, then aj should still be in Ψ(f). 4

Definition 1.3.6. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let Ψ : XV,A → P(A) be a social choice procedure. We

say Ψ satisfies the Independence of irrelevant alternatives if the following condition holds:

if aj ∈ Ψ(f) but ak /∈ Ψ(f) for some j, k ∈ {1, . . . ,m}, and one or more voters change their

preference orders, but no one changes about whether aj is preferred to ak or ak to aj , then ak

should still not be in Ψ(f). 4

Definition 1.3.7. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let Ψ : XV,A → P(A) be a social choice procedure. We

say Ψ satisfies the Participation Criterion if the following condition holds: if aj ∈ Ψ(f) but

ak /∈ Ψ(f) for some j, k ∈ {1, . . . ,m}, and we add one voter with aj preferred to ak, then ak

should still not be in Ψ(f). 4



6 INTRODUCTION



2

Range Voting with Limits

2.1 Range Voting

Here, we introduce another social choice procedure, called as Range Voting, that offers the voter

more choices in the form of an allowed range of possible scores.

Definition 2.1.1. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. A ranging profile is the function

f : V → Bm. 4

Definition 2.1.2. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N. Let A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. We define RV,A,B as the set of ranging

profiles. 4

Definition 2.1.3. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let f ∈ RV,A,B. Let i ∈ {1, . . . , n}.

The alternative ak for some k ∈ {1, . . . ,m} is most preferred by vi if f(vi)k > f(vi)j for all

j ∈ {1, . . . ,m}. 4
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Definition 2.1.4. Let V = {v1, . . . , vn} be a set of voters such that n ∈ N and A = {a1, . . . , am}

be a set of alternatives such that m ∈ N. Let B ⊆ R. For all f ∈ RV,A,B, the scoring function

for V and A is the function Sf : A→ R such that

Sf (aj) =
n∑
i=1

f(vi)j ,

for all j ∈ {1, . . . ,m}. 4

Definition 2.1.5. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let Sf be the scoring function for V and

A. The range voting function is the function φ : RV,A,B → P(A) defined by letting φ(f) be

the set of all ak ∈ A such that Sf (ak) ≥ Sf (aj) for all j ∈ {1, . . . ,m}, for all f ∈ RV,A,B. 4

As we mentioned above, one of the most commonly used social choice procedures is the

plurality voting.

In the plurality voting each voter casts one vote for his most preferred alternative, and the

alternative(s) with the largest total number of votes constitute the social choice set. We may

think of this procedure as assigning a score of 1 to each voter’s most preferred alternative, a

score of 0 to the others such that B = {0, 1} where {1} can only be assigned once, and selecting

the alternative(s) with highest total score, summed over all voters.

Another well-known social choice procedure is the Borda Count. It asks each voter to assign

score m−1 to his most preferred alternative, score m−2 to his second most preferred alternative,

and in general score m− i to his ith most preferred alternative such that B = {0, 1, . . . ,m− 1}

where each element can only be assigned once. Then the alternative(s) with highest total score

define the social choice set for Borda Count Voting. Therefore, these two social choice procedures

can be described as special cases for range voting function.

Another special case of range voting is approval voting, where B = {0, 1}.
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2.2 Properties of Social Choice Procedures for Range Voting

Some of the criteria for voting methods mentioned above can be applied as stated to range

voting, somehow we need to have them reformulated for regular Range Voting.

2.2.1 Always-A-Winner Condition for Range Voting

Definition 2.2.1. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let φ : RV,A,B → P(A) be the range voting function.

The range voting function is said to satisfy the Always-A-Winner Condition for range

voting if φ(f) 6= ∅, for all f ∈ RV,A,B. 4

Theorem 2.2.2. Range voting satisfies Always-A-Winner Condition for range voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a

set of alternatives for some m ∈ N. Let φ : RV,A,B → P(A) be the range voting function. Let

f ∈ RV,A,B. Let Sf be the scoring function for V and A.

For any f , it is clear that Range Voting satisfies Always-A-Winner Criterion, since for some

k ∈ {1, . . . , n}, there always exists one or some of alternatives ak that lie in φ(f) such that

Sf (ak) ≥ Sf (aj) for all j ∈ {1, . . . , n} .

2.2.2 Majority Criterion for Range Voting

Definition 2.2.3. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting

function. The range voting function is said to satisfy the Majority Criterion for range voting

if the following condition holds: for all f ∈ RV,A,B, if for any k ∈ {1, . . . ,m}, the alternative ak

is most preferred by more than n
2 voters, then ak ∈ φ(f). 4
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I will show that range voting does not satisfy the Majority Criterion by giving the following

example.

Example 2.2.4. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let B = [−10, 10]. Let φ : RV,A,B → P(A) be the range voting function. Let

f ∈ RV,A,B shown as below.

v1 v2 v3
a1 5 3 -9

a2 2 2 3

a3 -8 -10 3

Let Sf be the scoring function for V and A. We observe that alternative a1 is most preferred

by the majority of voters since there are 2 voters out of 3 who choose a1 as their most preferred

alternative. However, we have Sf (a1) = 5 + 3 + (−9) = −1, and Sf (a2) = 2 + 2 + 3 = 7, and

Sf (a3) = −8 + (−10) + 3 = −1. Since Sf (a2) ≥ Sf (aj) for all aj ∈ A, then we know that

φ(f) = {a2} instead of {a1}. ♦

2.2.3 Condorcet Criterion for Range Voting

Definition 2.2.5. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let p, q ∈ {1, . . . ,m} be such that p 6= q. Let T =

{ap, aq}. Let B ⊆ R. Let f ∈ RV,A,B. Let s = |{i ∈ {1, . . . , n}|f(vi)p > f(vi)q}| and t = |{i ∈

{1, . . . , n}|f(vi)p < f(vi)q}|. We define ap wins the pairwise comparison for range voting

if s > t. 4

Definition 2.2.6. Let A = {a1, . . . , am} be a set of alternatives for some m ∈ N. Let p ∈

{1, . . . ,m}. Let B ⊆ R. Let f ∈ RV,A,B. The alternative ap is a Condorcet winner for range

voting if ap wins its pairwise comparison with aq for all q ∈ {1, . . . ,m} such that q 6= p. 4

Definition 2.2.7. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting
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function. The range voting function is said to satisfy the Condorcet Winner Criterion for

range voting if the following condition holds: for each f ∈ RV,A,B, if there exists a Condorcet

winner for range voting ap for f for some p ∈ {1, . . . ,m}, then ap alone is in φ(f). 4

In order to check if Range Voting satisfies the Condorcet Winner Criterion, we need to convert

Bm from range profile to preference orders, and then determine the Condorcet Winner with

pairwise comparisons.

I will show that range voting function does not satisfy the Condorcet Criterion for range

voting by giving the following example.

Example 2.2.8. Let V = {v1, . . . , v3} be a set of voters and A = {a1, . . . , a3} be a set of

alternatives. Let B = [−10, 10]. Let φ : RV,A,B → P(A) be the range voting function. Let

f ∈ RV,A,B shown as below.

v1 v2 v3
a1 -7 5 6

a2 8 4 2

a3 0 -6 -7

After converting the previous table to preference orders by looking at each column separately,

we obtain the following table.

v1 v2 v3
a2 a1 a1
a3 a2 a2
a1 a3 a3

Now we do pairwise comparisons among the alternatives. The results of which are summarized

in the following. The alternative with square is the one who wins the pairwise comparison.

a1 vs a2 2:1
a1 vs a3 2:1
a2 vs a3 2:1

As shown in the table, a1 wins each pairwise comparison with a2 and a3, therefore a1 is the

Condorcet winner.
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Let Sf be the scoring function for V and A. We have Sf (a1) = (−7) + 5 + 6 = 4, and

Sf (a2) = 8 + 4 + 2 = 14, and Sf (3) = 0 + (−6) = (−7) = −13. Since Sf (a1) ≥ Sf (aj) for all

j ∈ {1, . . . ,m}, then φ(f) = {a2}. ♦

2.2.4 Pareto Criterion for Range Voting

Definition 2.2.9. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting

function. The range voting function is said to satisfy the Pareto Criterion for range voting

if the following condition holds: for each f ∈ RV,A,B, if k, j ∈ {1, . . . ,m}, and if f(vi)k > f(vi)j

for all i ∈ {1, . . . , n}, then alternative aj /∈ φ(f). 4

Theorem 2.2.10. Range voting satisfies Pareto Criterion for range voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting function.

Let k, j ∈ {1, . . . ,m}. Let Sf be the scoring function for V and A.

Suppose f(vi)k > f(vi)j for all i ∈ {1, ...n}. Then we know Sf (ak) > Sf (aj). By the definition

of the range voting function, we know that aj can never be in φ(f). Therefore, Range Voting

satisfies the Pareto Criterion.

2.2.5 Monotonicity Criterion for Range Voting

Definition 2.2.11. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting

function. The range voting function is said to satisfy the Monotonicity Criterion for Range

Voting if the following condition holds: for each f ∈ RV,A,B, if aj is in φ(f) and f(vi)j increases

for some i ∈ {1, . . . , n}, then aj should still be in φ(f). 4
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Theorem 2.2.12. Range voting satisfies Monotonicity Criterion for range voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting function.

Let j ∈ {1, . . . ,m}. Let Sf be the scoring function for V and A.

Suppose aj is in φ(f). Then we know Sf (aj) ≥ Sf (ak) for all k ∈ {1, . . . ,m}.

If f(vi)j increases for some i ∈ {1, . . . , n}, then we have Sf (aj) > Sf (ak) for all k ∈ {1, . . . ,m}.

Hence, by the definition of range voting function, aj ∈ φ(f).

2.2.6 Independence of Irrelevant Alternative Criterion for Range Voting

Definition 2.2.13. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range

voting function. The range voting function is said to satisfy the Independence of Irrelevant

Alternative Criterion for Range Voting if the following condition holds: for each f ∈

RV,A,B, if j, k ∈ {1, . . . ,m} and aj ∈ φ(f) and ak /∈ φ(f), and if f(vi)j and f(vi)k are changed

for some i ∈ {1, . . . , n}, but remaining in f(vi)j > f(vi)k, then φ(f) should not change so as to

include ak. 4

I will show range voting function does not satisfy the Independence of Irrelevant Alternative

Criterion for Range Voting by giving the following example.

Example 2.2.14. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let B = [−10, 10]. Let φ : R V,A,B → P(A) be the range voting function.

Let f ∈ R V,A,B be given as the following chart.
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v1 v2 v3
a1 7 -7 2

a2 2 5 -6

a3 -6 3 7

Let Sf be the scoring function for V and A. We have Sf (a1) = 7 + (−7) + 2 = 2, and

Sf (a2) = 2 + 5 + (−6) = 1, and Sf (a3) = −6 + 3 + 7 = 4. Since Sf (a3) ≥ Sf (aj) for all

j ∈ {1, 2, 3}, then φ(f) = {a3}.

We change f(v3)1 and f(v3)3 but keep f(v3)1 < f(v3)3. Let f ′ ∈ R V,A,B be given as in the

following table.

v1 v2 v3
a1 7 -7 4

a2 2 5 -6

a3 -6 3 5

Before we change f(v3)1 and f(v3)3, we had φ(f) = {a3}. However, in the second table, since

we have Sf ′(a1) = 7+(−7)+4 = 4 and Sf ′(a2) = 2+5+(−6) = 1, while Sf ′(a3) = −6+3+5 = 2.

Since Sf ′(a1) ≥ Sf ′(aj) for all j ∈ {1, 2, 3}, then φ(f ′) = {a1} 6= {a3}. ♦

2.2.7 Intensity of Independence of Irrelevant Alternative Criterion for Range Voting

Definition 2.2.15. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let j, k ∈ {1, . . . ,m}. If i ∈ {1, . . . , n} and

f ∈ RV,A,B, intensity of preference of voter vi for aj over ak is f(vi)j − f(vi)k. 4

Note that for voter vi, the intensity of preference for aj over candidate ak could be positive,

0 or negative. Also, the intensity of preference of voter vi for ak over aj is the negative of the

intensity of preference of voter vi for aj over ak.

Definition 2.2.16. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range
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voting function. The range voting function is said to satisfy the Intensity of Independence

of Irrelevant Alternatives Criterion for Range Voting if the following holds: for each

f ∈ RV,A,B, if j, k ∈ {1, . . . ,m}, and if aj ∈ φ(f) and ak /∈ φ(f), and if for some i ∈ {1, . . . , n},

f(vi)p changes for some p ∈ {1, . . . ,m}, and the intensity of preference of vi for aj over ak does

not change, then still ak /∈ φ(f). 4

Theorem 2.2.17. Range voting satisfies the Intensity of Independence of Irrelevant Alternatives

Criterion for Range Voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting function.

Let Sf be the scoring function for V and A.

Suppose that aj ∈ φ(f) and ak /∈ φ(f), and that f(vi)p changes for some i ∈ {1, . . . , n} and

for some p ∈ {1, . . . ,m} while f(vi)j − f(vi)k remains the same for some i ∈ {1, . . . , n}. Since

none of the voters change their intensity of preference for aj over ak, which is f(vi)j − f(vi)k

does not change for all i ∈ {1, . . . , n}, and so Sf (aj)−Sf (ak) does not change as well. Therefore,

by the definition of range voting, we conclude that it is always the case that Sf (aj) > Sf (ak),

and thus ak /∈ φ(f).

2.2.8 Participation Criterion for Range Voting

Definition 2.2.18. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range

voting function. The range voting function is said to satisfy the Participation Criterion if

the following condition holds: for each f ∈ RV,A,B, suppose aj ∈ φ(f) and ak /∈ φ(f) for some

j, k ∈ {1, . . . ,m}. If one more voter vi is added to V , who gives f(vi)j > f(vi)k, then it should

not be the case that ak ∈ φ(f ′) and aj /∈ φ(f ′). 4

Theorem 2.2.19. Range voting satisfies the Participation Criterion for Range Voting.
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Proof. Suppose that aj ∈ φ(f) and ak /∈ φ(f). By the definition of φ, we know that Sf (aj) ≥

Sf (ak). After adding vi, we get new S′f (aj) = Sf (aj) + f(vi)j and S′f (ak) = Sf (ak) + f(vi)k.

Since f(vi)j > f(vi)k, then we get S′f (aj) > S′f (ak). Hence ak /∈ φ(f).

The following definitions are from [3] .

2.2.9 Consistent property for range voting

Definition 2.2.20. Let V1 = {v1, . . . , vn} be a set of voters for some n ∈ N and V2 =

{vn+1, . . . , vq} be another set of voters for some q ∈ N such the q < n and A = {a1, . . . , am} be

a set of alternatives for some m ∈ N. Let B ⊆ R. For f1 ∈ RV1,A,B and f2 ∈ RV2,A,B, we call f1

and f2 disjoint profiles. Then f1 + f2 denotes the profile with voter set V1 ∪ V2, which when

restricted to Vi agrees with fi for each i ∈ {1, 2}. 4

Definition 2.2.21. Let V1 = {v1, . . . , vn} be a set of voters for some n ∈ N and V2 =

{vn+1, . . . , vq} be another set of voters for some q ∈ N such that q < n and A = {a1, . . . , am} be

a set of alternatives for some m ∈ N. Let φ be the range voting function. We define the social

choice function φ satisfies consistent property if the following condition is satisfied: for disjoint

profiles f1 ∈ RV1,A,B and f2 ∈ RV2,A,B, if φ(f1)∩ φ(f2) 6= ∅ then φ(f1)∩ φ(f2) = φ(f1 + f2). 4

Theorem 2.2.22. The range voting function satisfies consistent property.

Proof. Let V1 = {v1, . . . , vn} be a set of voters for some n ∈ N and V2 = {vn+1, . . . , vq}

be another set of voters for some q ∈ N such that q < n and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let B ⊆ R. Let φ be the range voting function. Let f1 ∈ RV1,A,B

and f2 ∈ RV2,A,B. Let Sf1 be the score function for f1; let Sf2 be the score function for f2.

Suppose φ(f1) ∩ φ(f2) 6= ∅.



2.2. PROPERTIES OF SOCIAL CHOICE PROCEDURES FOR RANGE VOTING 17

Let ak ∈ φ(f1) ∩ φ(f2). Then by the definition of φ we know that Sf1(ak) ≥ Sf1(aj) for all

j ∈ {1, . . . ,m}, as well as Sf2(ak) ≥ Sf2(aj) for all j ∈ {1, . . . ,m}. Then we get Sf1(ak) +

Sf2(ak) ≥ Sf1(aj) + Sf2(aj) for all j ∈ {1, . . . ,m}. Since f1 and f2 are disjoint profiles, then

Sf1+f2(ak) ≥ Sf1+f2(aj) for all j ∈ {1, . . . ,m}, hence ak ∈ φ(f1 + f2). Therefore φ(f1)∩ φ(f2) ⊆

φ(f1 + f2).

I will prove the other direction by contradiction.

Let ak ∈ φ(f1 + f2). Suppose ak /∈ φ(f1) ∩ φ(f2). There are three cases.

First, suppose ak /∈ φ(f1) and ak ∈ φ(f2). Let aj ∈ φ(f1) ∩ φ(f2). Then it has to be the

case that Sf1(aj) > Sf1(ak). Since ak ∈ φ(f2), then we have Sf2(aj) = Sf2(ak) ≥ Sf2(ai) for

all i ∈ {n + 1, . . . , q}. Then Sf1(aj) + Sf2(aj) > Sf1(ak) + Sf2(ak). Since f1 and f2 are disjoint

profiles, then Sf1+f2(aj) > Sf1+f2(ak). Hence ak /∈ φ(f1 + f2). A contradiction.

In the second case, suppose ak ∈ φ(f1) and ak /∈ φ(f2). Let aj ∈ φ(f1)∩ φ(f2). Then it has to

be the case that Sf2(aj) > Sf2(ak). Since ak ∈ φ(f1), then we have Sf1(aj) = Sf1(ak) ≥ Sf1(ai)

for all i ∈ {1, . . . , n}. Then Sf1(aj) + Sf2(aj) > Sf1(ak) + Sf2(ak). Since f1 and f2 are disjoint

profiles, then Sf1+f2(aj) > Sf1+f2(ak). Hence ak /∈ φ(f1 + f2). A contradiction.

In the third case, suppose ak /∈ φ(f1) and ak /∈ φ(f2). Let aj ∈ φ(f1) ∩ φ(f2). Then it

has to be the case that Sf1(aj) > Sf1(ak) and Sf2(aj) > Sf2(ak). Then Sf1(aj) + Sf2(aj) >

Sf1(ak) + Sf2(ak). Since f1 and f2 are disjoint profiles, then Sf1+f2(aj) > Sf1+f2(ak). Hence

ak /∈ φ(f1 + f2). A contradiction.

So, φ(f1 + f2) ⊆ φ(f1) ∩ φ(f2).

Therefore φ(f1) ∩ φ(f2) = φ(f1 + f2).
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2.2.10 Faithful Property for range voting

Definition 2.2.23. Let V = {v} be a set of one voter and A = {a1, . . . , am} be a set of

alternatives for somem ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting function. We

define the social choice function φ satisfies faithful property if the following condition is satisfied:

for any profile f ∈ RV,A,B, if f(v)j > f(v)k for some j, k ∈ {1, . . . ,m}, then ak /∈ φ(f). 4

Theorem 2.2.24. The range voting function satisfies faithful property.

Proof. Let V = {v} be a set of voter and A = {a1, . . . , am} be a set of alternatives for some

m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting function.

Let f ∈ RV,A,B. I will prove this by contrapositive. Suppose ak ∈ φ(f). Let Sf be the scoring

function for V and A. Then by the definition of φ, we have Sf (ak) ≥ Sf (aj) for all j ∈ {1, . . . ,m}.

Since |V | = 1, then we know that f(v)k ≥ f(v)j for all j ∈ {1, . . . ,m}.

Therefore, by contrapositive, if f(v)j > f(v)k for some j, k ∈ {1, . . . ,m} , then ak /∈ φ(f ′).

2.2.11 Cancellation property for range voting

Definition 2.2.25. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let B ⊆ R. Let φ : RV,A,B → P(A) be the range voting

function. For a profile f ∈ RV,A,B and j, k ∈ {1, . . . ,m} such that j 6= k, let πajak(f) =

|{i ∈ {1, . . . , n}|f(vi)j > f(vi)k}|. We define the social choice function φ satisfies cancellation

property if the following condition is satisfied: for any f ∈ RV,A,B, if πajak(f) = πakaj (f) for

all j, k ∈ {1, . . . ,m} such that j 6= k, then φ(f) = A. 4

I will show that the range voting function does not satisfy the cancellation property by giving

the following example.
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Example 2.2.26. Let V = {v1, v2} be a set of voter and A = {a1, a2} be a set of alternatives.

Let B = [−10, 10]. Let φ : RV,A,B → P(A) be the range voting function.Let f ∈ R V,A,B be

given as the following chart.

v1 v2
a1 8 3

a2 2 7

As we can see from the chart that f(v1)1 > f(v1)2. So πa1a2(f) = 1. Also f(v2)2 > f(v2)1,

which means πa2a1(f) = 1. Thus, in this case πa1a2(f) = πa2a1(f) = 1.

Let Sf be the scoring function for V and A. We have Sf (a1) = 8 + 3 = 11 and Sf (a2) =

2 + 7 = 9. Since Sf (a1) > Sf (a2), then φ(f) = {a1}.

However, we notice that φ(f) 6= A. Hence, range voting function does not satisfy the cancel-

lation property. ♦

2.3 Range Voting Function with Limits

As we see in several examples of range voting function, generally speaking, in a ranging profile,

the range of B can be restricted in different ways. However, more than setting restrictions on

B, we hope to let voters distribute their scores in a fairer way. Hence, I try to find a limited

function that can be applied to the general range voting, and make our voters have an equal

influence on the alternatives.

It takes me a while to determine our limited function. At first, we tried to set ξ(f(vi)1 + . . .+

f(vi)m) = f(vi)1 + · · ·+f(vi)m−k = 0. However, we realized that if we set k > 0, we are forcing

our voters to give positive score to at least one alternative; similarly, if we set k < 0, we are

forcing our voters to give negative score to at least one alternative. If we set k = 0, then we are

forcing our voters either give 0 scores to all alternative, either they have to give both positive

and negative scores to different alternative in order to balance their total score. Therefore, I
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decide it is better to use absolute value as a constraint to the total score instead of simply use

sum.

Also, I took some time to think about a reasonable value for k such that |f(vi)1| + · · · +

|f(vi)m)| − k = 0. At first, I tried to set a range for k, i.e. k ∈ (0,mb), so that voters cannot

give 0 score or b score to all voters; otherwise, anything in between is allowed. However, that

is a problem as we now see. For example, when k = 1, means that b has to be somehow equal

or smaller than 1, which leaves a really limited space for voter to assign their scores; when

k = mb− 1, means that each alternative has to receive a score that has an absolute value pretty

close to b, which seems not to be a rational assignment as well. And then, I got some inspired by

[3]. In this paper, the author mentions constant total weight condition for classic Borda and the

total score is actually m(m−1)
2 ; so this idea of mb2 comes to my mind and seems to be a reasonable

condition to impose on our range voting function to avoid favoring certain preference rankings

over others.

Definition 2.3.1. Let A = {a1, . . . , am} be a set of alternatives for some m ∈ N. Let b > 0,

and B = [−b, b]. We define the limited function to be the function ξ : Bm → R defined by

ξ(x1, . . . , xm) = |x1|+ · · ·+ |xm| − mb
2 for all (x1, . . . , xm) ∈ Bm. 4

Definition 2.3.2. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let b > 0. Let B = [−b, b]. Then we define

RξV,A,B = {f ∈ RV,A,B|ξ(f(vi)1, . . . , f(vi)m) = 0 for all i ∈ {1, . . . , n}} .

4

Note that RξV,A,B ⊆ RV,A,B.

Definition 2.3.3. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let b > 0. Let B = [−b, b]. Let Sf be the scoring function

for V and A. The range voting function with limit is a function Φ : RξV,A,B → P(A) defined
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by letting Φ(f) be the set of all ak ∈ A such that Sf (ak) ≥ Sf (aj) for all j ∈ {1, . . . ,m}, for all

f ∈ RξV,A,B. 4

Furthermore, it is worth to point out that in our following example, I will mostly set B =

[−10, 10]. Since our mb
2 is a fixed value based on score b and the number of alternative m, it is

clear that my example can be generalized by applying different value of b proportionately with

same outcome when m keeps the same for the voting function. To illustrate this, we can compare

two following examples.

Example 2.3.4. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, then B = [−10, 10]. Let Φ : RξV,A,B → P(A) be the range voting

function with limit.

We have mb
2 = 3·10

2 = 15. Then we suppose |f(vi)1| + |f(vi)2| + |f(vi)3| − 15 = 0 for all

i ∈ {1, 2, 3}. Let us consider the following example. Let f ∈ RξV,A,B be given as the following

chart.

v1 v2 v3
a1 10 8 8

a2 0 4 -4

a3 5 -3 3

Let Sf be the scoring function for V and A. Here, we can see that Sf (a1) = 10 + 8 + 8 = 26

while Sf (a2) = 0 + 4 + (−4) = 0, and Sf (a3) = 5 + (−3) + 3 = 5. So Φ(f) = {a2}. ♦

Example 2.3.5. Let V = {v1, . . . , v3} be a set of voters and A = {a1, . . . , a3} be a set of

alternatives. Now we set b = 5, then B = [−5, 5]. Let Φ : RξV,A,B → P(A) be the range voting

function with limit.

We have mb
2 = 3·5

2 = 7.5. Then we suppose |f(vi)1| + |f(vi)2| + |f(vi)3| − 7.5 = 0 for all

i ∈ {1, 2, 3}. Let us consider the following example. Let f ∈ RξV,A,B be given as the following

chart.
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v1 v2 v3
a1 5 4 4

a2 0 2 -2

a3 2.5 -1.5 1.5

Let Sf be the scoring function for V and A. Here, we can see that Sf (a1) = 5 + 4 + 4 = 13

while Sf (a2) = 0 + 2 + (−2) = 0, and Sf (a3) = 2.5 + (−1.5) + 1.5 = 2.5. So Φ(f) = {a2}. ♦

As we see from Example 2.3.4 and Example 2.3.5, no matter what value b is, the example I

give can be always applied to the general case and have the same winner set since our limited

function does not change.

Also, from now on, instead of writing in the form of ξ(f(vi)1, . . . , f(vi)m) = |f(vi)1| + · · · +

|f(vi)m|− mb
2 = 0 for our limited function, I will write |f(vi)1|+ · · ·+ |f(vi)m| = mb

2 , where they

expresses the same thing but the second one looks more familiar.

In the next part, we will check if range voting function with limit works better in satisfying

the criterions we showed in Section 2.2, and therefore to see if this restriction actually helps to

improve Range Voting, whether it matters if we impose some restrictions on RV,A,B.

2.4 Properties of Social Choice Procedures for Range Voting Function
with Limits

2.4.1 Always-A-Winner Condition for Range Voting Function with Limits

Theorem 2.4.1. Range voting function with limits satisfies Always-A-Winner Condition.

The proof is the same as for Theorem 2.2.2 except we let B = [−b, b] for some b ∈ R such that

b > 0 and let Φ : RξV,A,B → P(A) be the range voting function with limits.
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2.4.2 Majority Criterion for Range Voting Function with Limits

Range voting function with limits does not satisfy the Majority Criterion for Range Voting. The

counter example is the same as in Example 2.2.4 except we let Φ : RξV,A,B → P(A) be the range

voting function with limits, and we observe that |f(vi)1| + |f(vi)2| + |f(vi)3| = 15 = mb
2 = 3·10

2

for all i ∈ {1, 2, 3}.

2.4.3 Condorcet Criterion for Range Voting Function with Limits

Range voting function with limits does not satisfy the Majority Criterion for Range Voting. The

counter example is the same as in Example 2.2.8 except we let Φ : RξV,A,B → P(A) be the range

voting function with limits, and we observe that |f(vi)1| + |f(vi)2| + |f(vi)3| = 15 = mb
2 = 3·10

2

for all i ∈ {1, 2, 3}.

2.4.4 Pareto Criterion for Range Voting Function with Limits

Theorem 2.4.2. Range voting function with limits satisfies Pareto Criterion for range voting.

The proof is the same as for Theorem 2.2.10 except we let B = [−b, b] for some b ∈ R such

that b > 0 and let Φ : RξV,A,B → P(A) be the range voting function with limits.

2.4.5 Monotonicity Criterion for Range Voting Function with Limits

Theorem 2.4.3. Range voting function with limits satisfies Monotonicity Criterion for range

voting.

The proof is the same as for Theorem 2.2.12 except we let B = [−b, b] for some b ∈ R such

that b > 0 and let Φ : RξV,A,B → P(A) be the range voting function with limits.
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2.4.6 Independence of Irrelevant Alternative Criterion for Range Voting Function with
Limits

Range voting function with limits does not satisfy the Independence of Irrelevant Alternative

Criterionfor Range Voting. The counter example is the same as in Example 2.2.14 except we let

Φ : RξV,A,B → P(A) be the range voting function with limits, and we observe that |f(vi)1| +

|f(vi)2|+ |f(vi)3| = 15 = mb
2 = 3·10

2 for all i ∈ {1, 2, 3}.

2.4.7 Intensity of Independence of Irrelevant Alternative Criterion for Range Voting
Function with Limits

Theorem 2.4.4. The range voting function with limits satisfies the Intensity of Independence

of Irrelevant Alternatives Criterion for Range Voting.

The proof is the same as for Theorem 2.2.17 except we let B = [−b, b] for some b ∈ R such

that b > 0 and let Φ : RξV,A,B → P(A) be the range voting function with limits.

2.4.8 Participation Criterion for Range Voting Function with limits

Theorem 2.4.5. Range voting function with limits satisfies participation criterion.

The proof is the same as for Theorem 2.2.19 except we let B = [−b, b] for some b ∈ R such

that b > 0 and let Φ : RξV,A,B → P(A) be the range voting function with limits.

2.4.9 Consistent Property for range voting with limits

Theorem 2.4.6. The range voting function with limits satisfies consistent property.
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The proof is the same as for Theorem 2.2.22 except we B = [−b, b] for some b ∈ R such

that b > 0 , and we let Φ : RξV,A,B → P(A) be the range voting function with limits, and

f1 ∈ RξV1,A,B and f2 ∈ RξV2,A,B.

2.4.10 Faithful Property for range voting with limits

Theorem 2.4.7. The range voting function with limits satisfies faithful property.

The proof is the same as for Theorem 2.2.24 except we let B = [−b, b] for some b ∈ R such

that b > 0 , and we let Φ : RξV,A,B → P(A) be the range voting function with limits.

2.4.11 Cancellation Property for range voting with limits

The range voting function with limits does not satisfy the cancellation property. The counter

example is the same as in Example 2.2.26 except we let B = [−b, b] for some b ∈ R such that

b > 0 and Φ : RξV,A,B → P(A) be the range voting function with limits, and we observe that

|f(vi)1|+ |f(vi)2| = 10 = mb
2 = 2·10

2 for all i ∈ {1, 2}.
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3

A-R Voting Function With Limits

3.1 Approval voting function

Definition 3.1.1. The approval voting function α : RV,A,B → P(A) is the same as the range

voting function φ : R V,A,B → P(A) in the case where B = {0, 1}. 4

Here is an example for approval voting function.

Example 3.1.2. Let V = {v1, . . . , v4} be a set of voters and A = {a1, . . . , a4} be a set of

alternatives. Let B ∈ {0, 1}. Let α : RV,A,B → P(A) be the approval voting function.

Let f ∈ R V,A,B be given as the following chart.

v1 v2 v3 v4
a1 0 0 0 1

a2 1 1 0 0

a3 1 0 0 1

a4 1 1 1 0

Let Sf be the scoring function for V and A. We notice that Sf (a1) = 0 + 0 + 0 + 1 = 1,

Sf (a2) = 1 + 1 + 0 + 0 = 2, Sf (a3) = 1 + 0 + 0 + 1 = 2 and Sf (a4) = 1 + 1 + 1 + 0 = 3. Since

Sf (a4) ≥ Sf (aj) for all j ∈ {1, . . . , 4}, then α(f) = {a4}. ♦
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It’s obvious that the approval voting function satisfies the same properties mentioned above

that are satisfied by range voting function. More than this, we notice that approval voting plays

a perfect role in showing voters’ attitude towards alternatives on whether he/she approves the

alternative or not.

Inspired by this, we hope to combine approval voting function with our range voting function

with limits. In the approval voting function, voters show their disapproval attitude towards the

alternative by giving 0 score, as well as show their approval by giving 1 score. In the previous

chapter, we allows negative scores in our range voting system, since we set B = [−b, b]; so it

comes to our mind that if we can use negative scores to Exampleress disapproval and positive

score for approval. In this way, we can observe whether a voter like or dislike the alternative,

eliminate the alternatives who are not approved by the majority of voters as well as determine

the winner(s) by summing the score, which is actually the same process in range voting function

besides the approval voting part.

3.2 Approval-Range Voting function

Definition 3.2.1. 1. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A =

{a1, . . . , am} be a set of alternatives for some m ∈ N. Let B ⊆ R. For all f ∈ RV,A,B, the

alternative ak ∈ A is approved by vi if f(vi)k ≥ 0 for some i ∈ {1, . . . , vn}.

2. An alternative ak ∈ A is majority-approved if ak is approved by vi for at least n
2

values of i. The approved alternative set Apf of A is the subset of A such that ak is

majority-approved.

3. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let b > 0 and B = [−b, b]. Let Apf be the approved alternative

set for A. Let Sf be the scoring function for V and A. The A-R voting function is a
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function ε : RV,A,B → P(A) defined by letting ε(f) be the subset of all ak ∈ Apf such that

Sf (ak) ≥ Sf (aj) for all aj ∈ Apf , for all f ∈ RV,A,B.

4

Here, let us look at an example to see how A-R voting function differs from regular range voting

function. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of alternatives. Let

B = [−10, 10]. Let f ∈ RV,A,B be given as the following chart.

v1 v2 v3
a1 -2 -1 10

a2 1 -3 3

a3 6 10 -10

Let Sf be the scoring function for V and A. Let φ : RV,A,B → P(A) be the range voting

function. By regular range voting function, we have Sf (a1) = −2 + (−1) + 10 = 7, Sf (a2) =

1 + (−3) + 3 = 1, Sf (a3) = 6 + 10 + (−10) = 6. Since Sf (a1) ≥ Sf (aj) for all j ∈ {1, 2, 3}, for

all f ∈ RV,A,B, then we know that φ(f) = {a1}.

Now, let us consider A-R voting function. Let ε : RV,A,B → P(A) be the A-R voting function.

Here we can see alternative a1 is given positive score by 1 voters v3, a2 is given positive scores

by 2 voters v1 and v3, and a3 is given positive scores by 2 voters v1 and v2. Therefore, we know

that a2 and a3 are approved by the majority of voters. Hence, the approved alternative set for

A is Apf = {a2, a3}. Since Sf (a3) ≥ Sf (aj) for all aj ∈ Apf , then ε(f) = {a3} instead of {a1} in

the regular range voting function.

3.3 Approval-Range voting function with limits

This A-R voting function also works with limited function.

Definition 3.3.1. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let b > 0, and B = [−b, b]. Let Apf be the approved
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alternative set for A. Let Sf be the scoring function for V and A. The A-R voting function

with limits is a function ε : RξV,A,B → P(A) defined by letting ε(f) be the subset of Apf such

that Sf (ak) ≥ Sf (aj) for all ak ∈ ε(f) and aj ∈ Apf , for all f ∈ RξV,A,B. 4

Here is an example for Approval-Range voting function with limits.

Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of alternatives. Let b = 10,

then B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function with limit.

Let us consider the following situation. Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3
a1 -1 -1 10

a2 8 -10 2

a3 6 4 -3

Let Sf be the scoring function for V and A. As we can see from the chart, |f(vi)1|+ |f(vi)2|+

|f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}. Let Φ : RV,A,B → P(A) be the range voting

function with limits. By regular range voting function, we have Sf (a1) = (−1) + (−1) + 10 = 8,

and Sf (a2) = 8 + (−10) + 2 = 0, and Sf (a3) = 6 + 4 + (−3) = 7. Since Sf (a1) ≥ Sf (aj) for all

j ∈ {1, 2, 3}, for all f ∈ RV,A,B, then we know that Φ(f) = {a1}.

Now, let us consider A-R voting function with limits. Let ε : RV,A,B → P(A) be the A-R

voting function. Here we can see alternative a1 is given positive score by 1 voters v3, a2 is given

positive scores by 2 voters v1 and v3, and a3 is given positive scores by 2 voters v1 and v2.

Therefore, we know that a2 and a3 are approved by the majority of voters. Hence, the approved

alternative set for A is Apf = {a2, a3}. Since Sf (a3) ≥ Sf (aj) for all aj ∈ Apf , then ε(f) = {a3}

instead of {a1} in the regular range voting function.
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3.4 Properties for A-R Voting Function with Limits

3.4.1 Always-A-Winner Condition for A-R Voting Function with Limits

I will show that A-R voting function with limits does not satisfy the Always-A-Winner Condition

for Range Voting by illustrating a counter example.

Example 3.4.1. Let V = {v1, . . . , v3} be a set of voters and A = {a1, . . . , a3} be a set of

alternatives. Let b = 10, and B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3
a1 -5 5 -5

a2 -5 -5 5

a3 5 -5 -5

As we can see from the chart, |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

Here we know alternative a1 is given positive score by 1 voters v2, a2 is given positive score by

1 voters v3, and a3 is given positive score by 1 voters v1. Since none of them is majority-approved,

then the approved alternative set Apf = ∅. Therefore, ε(f) = ∅. ♦

Thus, A-R voting function with limits does not satisfy the Always-A-Winner Condition for

Range Voting.

However, considering that this condition does not usually happen in the reality, we can some-

how improve our A-R voting function to avoid this violation of always-a-winner condition.

Definition 3.4.2. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let b > 0, and B = [−b, b]. Let Apf be the approved

alternative set for A. Let Sf be the scoring function for V and A. Let ε : RξV,A,B → P(A) be
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the A-R voting function with limits. The improved A-R voting function with limits is a

function ε′ : RξV,A,B → P(A) such that for all f ∈ RξV,A,B, and if Apf 6= ∅, then ε′(f) = ε(f); If

Apf (f) = ∅, then ε′(f) is be the set of all ak ∈ A such that Sf (ak) ≥ Sf (aj) for all j ∈ {1, . . . ,m}.

4

In this way, the improved A-R voting function with limits satisfies the Always-A-Winner

Condition for Range Voting as well as regular range voting function does.

The following theorem is trivial.

Theorem 3.4.3. The improved A-R voting function with limits satisfies the Always-A-Winner

Condition for Range Voting.

In the reality world, although it barely happens that in an election, all the alternatives are

not liked by most voters, which means the people who hold such an election should probably

reconsider the legitimacy of their alternatives, mathematically we need to consider the case that

every alternative is not approved by most of voters. If such an election is for a small group of

people, for example club election, then when this situation takes place, people should consider

if they pick the suitable alternatives and therefore may hold another election with different

alternatives; if this happens in politics, with a great amount of voters, it may be unrealistic to

regather our voters and ask them to vote for a new group of alternatives, then our improved

A-R voting function with limits can be used in such condition, in order to choose the one(s)

that our voters disapproves the least.

3.4.2 Majority Criterion for A-R Voting Function with Limits

I will show that A-R voting function with limits does not satisfy Majority Criterion for Range

Voting by giving the following example.



3.4. PROPERTIES FOR A-R FUNCTION WITH LIMITS 33

Example 3.4.4. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, and B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits. Let f ∈ RξV,A,B be given as the following chart. (Here, all f are the same as the

ones for Example 2.2.4.)

v1 v2 v3
a1 5 3 -9

a2 2 2 3

a3 -8 -10 3

As we can see from the chart, |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

Here we can see alternative a1 is given positive score by 2 voters v1 and v2, a2 is given positive

score by all 3 voters, and a3 is given positive or 0 score by 1 voter v3. Therefore Apf = {a1, a2}.

Let Sf be the scoring function for V and A. We observe that alternative a1 is most preferred

by the majority of voters since there are 2 voters out of 3 who choose a1 as their most preferred

alternative. However, we have Sf (a1) = 5 + 3 + (−9) = −1, and Sf (a2) = 2 + 2 + 3 = 7,

Sf (a3) = −8 + (−10) + 3 = −1. Since Sf (a2) ≥ Sf (aj) for all aj ∈ Apf , then we know that

ε(f) = {a2} instead of {a1}. ♦

3.4.3 Condorcet Criterion for A-R Voting Function with Limits

I will show that A-R voting function with limits does not satisfy Condorcet Criterion for Range

Voting by giving the following example.

Example 3.4.5. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, and B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits. Let f ∈ RξV,A,B be given as the following chart. (Here, all f are the same as the

ones for Example 2.2.8.)

As we can see from the chart, |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.



34 3. A-R VOTING FUNCTION WITH LIMITS

v1 v2 v3
a1 -7 5 6

a2 8 4 2

a3 0 -6 -7

After converting the previous table to preference orders by looking at each column separately,

we obtain the following table.

v1 v2 v3
a2 a1 a1
a3 a2 a2
a1 a3 a3

Now we do pairwise comparisons among the alternatives. The results of which are summarized

in the following. The alternative with square is the one who wins the pairwise comparison.

a1 vs a2 2:1
a1 vs a3 2:1
a2 vs a3 2:1

As shown in the table a1 wins each pairwise comparison with a2 and a3, therefore a1 is the

Condorcet winner.

However, we observe that alternative a1 is given positive score by 2 voters v2 and v3, a2 is given

positive score by all 3 voters, and a3 is given positive or 0 score by only 1 voters v1. Therefore,

a1 and a2 are majority-approved, then the approved alternative set Apf = {a1, a2}. Let Sf be the

scoring function for V and A. We have Sf (a1) = (−7) + 5 + 6 = 4 and Sf (a2) = 8 + 4 + 2 = 14.

Since Sf (a2) ≥ Sf (aj) for all aj ∈ Apf , then we know that ε(f) = {a2} instead of {a1} . ♦

3.4.4 Pareto Criterion for A-R Voting Function with Limits

Theorem 3.4.6. A-R voting function with limits satisfies Pareto Criterion for range voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set

of alternatives for some m ∈ N. Let b > 0 and B = [−b,−b]. Let Sf be the score function for
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V and A. Let ε : RξV,A,B → P(A) be the A-R voting function with limit. Let f ∈ RξV,A,B. Let

Apf ⊆ A be the approved alternative set of A. Let ak, aj ∈ A. Suppose we have f(vi)k > f(vi)j

for all i ∈ {1, . . . , n}.

There are three cases for this situation. First suppose ak /∈ Apf and aj /∈ Apf . Then aj /∈ ε(f).

Second, suppose ak ∈ Apf and aj /∈ Apf . Then aj /∈ ε(f).

Third, suppose ak ∈ Apf and aj ∈ Apf . Then we have Sf (ak) > Sf (aj). By the definition of the

A-R voting function with limits, we have aj /∈ ε(f).

It cannot be the case that ak /∈ Apf and aj ∈ Apf , since f(vi)k > f(vi)j for all i ∈ {1, ...n}.

Therefore aj can never be in ε(f).

3.4.5 Monotonicity Criterion for A-R Voting Function with Limits

Theorem 3.4.7. A-R voting function with limits satisfies Monotonicity Criterion for range

voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set

of alternatives for some m ∈ N. Let b > 0 and B = [−b,−b]. For f ∈ RξV,A,B, let Sf be the

score function for V and A. Let Φ : RξV,A,B → P(A) be the range voting function with limit.

Let Apf ⊆ A be the approved alternative set of A. Let j ∈ {1, . . . ,m}.

Suppose aj is in ε(f). Then we know aj ∈ Apf and Sf (aj) ≥ Sf (ak) for all ak ∈ Apf . If f(vi)j

increases for some i ∈ {1, . . . , n}, then we have aj ∈ Apf still and Sf (aj) > Sf (ak) for all ak ∈ Apf .

Hence, by the definition of range voting function with limits, we have aj ∈ ε(f).
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3.4.6 Independence of Irrelevant Alternative Criterion for A-R Voting Function with
Limits

I will show that A-R voting function with limits does not satisfy Independence of Irrelevant

Alternative Criterion for Range Voting by giving the following example.

Example 3.4.8. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, and B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits. Let f ∈ RξV,A,B be given as the following chart. (Here, all f are the same as the

ones for Example 2.2.14.)

v1 v2 v3
a1 7 -7 2

a2 2 5 -6

a3 -6 3 7

As we can see from the chart, |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

Let Sf be the scoring function for V and A. We can see alternative a1 is given positive or 0

scores by 2 voters, v1 and v3, while a2 is given positive or 0 scores by 2 voters v1 and v2, and

a3 is given positive or 0 scores by 2 voters v2 and v3. Therefore, the approved alternative set

Apf = {a1, a2, a3}. Let Sf be the scoring function for V and A. Since Sf (a3) ≥ Sf (aj) for all

aj ∈ Apf , then we know that ε(f) = {a3}.

We change f(v3)1 and f(v3)3 but keep f(v3)1 < f(v3)3, we get new f ′ ∈ RξV,A,B as in the

following table.

v1 v2 v3
a1 7 -7 4

a2 2 5 -6

a3 -6 3 5

After changing f(v3)1 and f(v3)3, let Sf ′ be the score function for new V and A. We can see

alternative a1 is given positive or 0 scores by 2 voters, v1 and v3, while a2 is given positive or 0



3.4. PROPERTIES FOR A-R FUNCTION WITH LIMITS 37

scores by 2 voters v1 and v2, and a3 is given positive or 0 scores by 2 voters v2 and v3. Therefore,

the approved alternative set Apf ′ = {a1, a2, a3}. Since Sf (a1) ≥ Sf (aj) for all aj ∈ Apf ′ , then we

know that ε(f ′) = {a1} instead of {a3}. ♦

3.4.7 Intensity of Independence of Irrelevant Alternative Criterion for A-R Voting
Function with Limits

Theorem 3.4.9. A-R voting function with limits satisfies the Intensity of Independence of

Irrelevant Alternatives Criterion for Range Voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set

of alternatives for some m ∈ N. Let b > 0 and B = [−b, b]. Let ε : RξV,A,B → P(A) be the

A-R voting function with limit. Let f ∈ RξV,A,B and Sf be the score function for V and A. Let

j, k ∈ {1, . . . ,m}.

Suppose that aj ∈ ε(f) and ak /∈ ε(f), and for some i ∈ {1, . . . , n}, and f(vi)p changes for

some p ∈ {1, . . . ,m} while f(vi)j − f(vi)k remains the same.

There are three cases for this situation. First, suppose that after f(vi)p changes, we have

aj /∈ Apf ′ and ak /∈ Apf ′ where f ′ ∈ RξV,A,B as our new profile. Then ak /∈ ε(f ′).

Second, suppose that aj ∈ Apf ′ and ak /∈ Apf ′ . Then ak /∈ ε(f ′).

Third, suppose that aj ∈ Apf ′ and ak ∈ Apf ′ . Since none of the voters change their intensity of

preference for aj over ak, which means f(vi)j−f(vi)k does not change for all i ∈ {1, . . . , n}, then

Sf (aj)− Sf (ak) does not change as well. So we always have Sf (aj) > Sf (ak). By the definition

of the A-R voting function with limits, we know ak /∈ ε(f).

It cannot be the case that aj /∈ Apf and ak ∈ Apf , since f(vi)j − f(vi)k does not change.
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Therefore, we conclude that it is always the case that ak /∈ ε(f).

3.4.8 Consistency Property for A-R Voting Function with Limits

I will show that the A-R Voting function with limits does not satisfy consistency property by

giving the following example.

Example 3.4.10. Let V = {v1, . . . , v6} be a set of voters and A = {a1, . . . , a3} be a set of

alternatives. Let b = 10, then B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3 v4 v5 v6
a1 10 -1 -1 8 5 3

a2 0 -6 10 -2 7 4

a3 -5 8 4 5 3 8

As we can see from the chart, |f(vi)1|+|f(vi)2|+|f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, . . . , 6}.

Let V1 = {v1, v2, v3} and V2 = {v4, v5, v6}.

Here we can get disjoint profiles f1 ∈ RV1,A,B as below.

v1 v2 v3
a1 10 -1 -1

a2 0 -6 10

a3 -5 8 4

In f1,we can see alternative a1 is given positive score or zero by 1 voter v1, and a2 is given

positive or 0 score by 2 voters v1, v3, and a3 is given positive or 0 score by 2 voters, v2, v3.

Therefore, a2 and a3 are majority-approved, then the approved alternative set Apf = {a2, a3}.

Let Sf be the scoring function for V and A. We have Sf (a2) = 0 + (−6) + 10 = 4, Sf (a3) =

(−5) + 8 + 4 = 7. Since Sf (a3) ≥ Sf (aj) for all aj ∈ Apf , then we know that ε(f1) = {a3}.

Then let us look at f2 ∈ RV2,A,B as given.
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v4 v5 v6
a1 8 5 3

a2 -2 7 4

a3 5 3 8

In f2, we can see alternative a1 is given positive or 0 score by all 3 voters, a2 is given positive

score by 2 voters v5 and v6, and a3 is given positive or 0 score by all 3 voters. Therefore, a1, a2

and a3 are majority-approved, then the approved alternative set Apf = {a1, a2, a3}. Let Sf be

the scoring function for V and A. We have Sf (a1) = 8 + 5 + 3 = 16, Sf (a2) = (−2) + 7 + 4 = 9,

Sf (a3) = 5 + 3 + 8 = 16. Since Sf (a1) = Sf (a3) ≥ Sf (aj) for all aj ∈ Apf , then we know that

ε(f2) = {a1, a3}.

Then we observe that ε(f1) ∩ ε(f2) = {a3}.

However, let us take a look at ε(f1 + f2). In f1 + f2, we can see alternative a1 is given

positive score by 4 voters v1, v4, v5 and v6, a2 is given positive or 0 score by 4 voters v1,

v3, v5 and v6, and a3 is given positive or 0 score by 5 voters except for v1. Therefore, the

approved alternative set Apf = {a1, a2, a3}. Let Sf be the scoring function for V and A. We have

Sf (a1) = 10 + (−1) + (−1) + 8 + 5 + 3 = 24, Sf (a2) = 0 + (−6) + 10 + (−2) + 7 + 4 = 13,

Sf (a3) = (−5) + 8 + 4 + 5 + 3 + 8 = 23. Since Sf (a1) ≥ Sf (aj) for all aj ∈ Apf , then we know

that ε(f1 + f2) = {a1}.

Here, we notice that ε(f1 + f2) = {a1} while ε(f1) ∩ ε(f2) does exist and is actually {a3}.

Hence ε(f1 + f2) 6= ε(f1) ∩ ε(f2). ♦

3.4.9 Faithful Property for A-R Voting Function with Limits

Theorem 3.4.11. A-R voting function with limits satisfies faithful property.
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Proof. Let V = {v} be a set of voter and A = {a1, . . . , am} be a set of alternatives for some

m ∈ N. Let b > 0 and B = [−b, b]. Let ε : RξV,A,B → P(A) be the A-R voting function with

limits. Let Sf be the scoring function for V and A.

Suppose f(v)j > f(v)k for some j, k ∈ {1, . . . ,m}. There are three cases for this situation.

First, suppose that aj /∈ Apf and ak /∈ Apf . Then ak /∈ ε(f).

Second, suppose that aj ∈ Apf and ak /∈ Apf . Then ak /∈ ε(f).

Third, suppose that aj ∈ Apf and ak ∈ Apf . Since f(v)j > f(v)k, then Sf (aj) > Sf (ak) with

only one voter. By the definition of the A-R voting function with limits, we know ak /∈ ε(f).

It cannot be the case that aj /∈ Apf and ak ∈ Apf , since f(v)j > f(v)k.

Therefore, we always have ak /∈ ε(f).

3.4.10 Cancellation Property for A-R Voting Function with limits

I will show that the A-R voting function does not satisfy the cancellation property by giving the

following example.

Example 3.4.12. Let V = {v1, v2} be a set of voters and A = {a1, a2} be a set of alternatives.

Let b = 10, and B = [−10, 10]. Let Φ : RξV,A,B → P(A) be the range voting function with

limits. Let f ∈ RξV,A,B be given as the following chart. (Here, all f are the same as the ones for

Example 2.2.26.)

v1 v2
a1 8 3

a2 2 7
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As we can see from the chart |f(vi)1| + |f(vi)2| = mb
2 = 2·10

2 = 10 for all i ∈ {1, 2}. And

we observe from the chart that f(v1)1 > f(v1)2. So πa1a2(f) = 1. Also f(v2)2 > f(v2)1, which

means πa2a1(f) = 1. Thus, in this case, πa1a2(f) = πa2a1(f) = 1.

Let Sf be the scoring function for V and A. Alternative a1 is given positive score by all

2 voters v1, a2 is given positive score by all 2 voters. Therefore, the approved alternative set

Apf = {a1, a2}. We see that Sf (a1) = 8 + 3 = 11 and Sf (a2) = 2 + 7 = 9. Since Sf (a1) > Sf (a2),

then ε(f) = {a1}.

However, we notice that ε(f) 6= A.

Hence, A-R voting function with limits does not satisfy the cancellation property. ♦

3.4.11 Participation Criterion for A-R Voting Function with limits

I will show that A-R voting function with limits does not satisfy Participation Criterion by

giving a counter example.

Example 3.4.13. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, and B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3
a1 10 -1 -1

a2 2 7 -6

a3 3 7 -8

From this chart, we can see alternative a1 is given positive score by 1 voter v1, a2 is given

positive or 0 score by 2 voters v1, v2, and a3 is given positive or 0 score by 2 voter v1, v2. Therefore,

a2 and a3 are majority-approved, then the approved alternative set Apf = {a2, a3}. Let Sf be the
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scoring function for V and A. We have Sf (a2) = 2 + 7 + (−6) = 3, Sf (a3) = 3 + 7 + (−8) = 2.

Since Sf (a2) ≥ Sf (aj) for all aj ∈ Apf , then we know that ε(f) = {a2}.

Now add another v4 to our voter set, with f(v4)1 < f(v4)2. Then we obtain f ′ ∈ RξV,A,B as

follow.

v1 v2 v3 v4
a1 10 -1 -1 5

a2 2 7 -6 6

a3 3 7 -8 4

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, . . . , 4}.

From this new chart, we can see alternative a1 is given positive score by 2 voter v1, v4, a2 is

given positive or 0 score by 3 voters v1, v2, v4, and a3 is given positive or 0 score by 3 voters v1,

v2, v4. Therefore, a1, a2 and a3 are majority-approved, then the approved alternative set Apf =

{a1, a2, a3}. Then we have Sf (a1) = 10+(−1)+(−1)+5 = 13, and Sf (a2) = 2+7+(−6)+6 = 9,

and Sf (a3) = 3 + 7 + (−8) + 6 = 8. Since Sf (a1) ≥ Sf (aj) for all aj ∈ Apf , then we know that

ε(f) = {a1}.

We observe that before v4 is added, a2 ∈ ε(f) and a1 /∈ ε(f). However, we get a1 ∈ ε(f) and

a2 /∈ ε(f).

Hence, A-R voting function with new limits does not satisfy participation criterion. ♦

Since here is the case that a1 gets 2 approved and 2 disapproved and hence become an element

of the approved alternative set, which is similar to a tied condition; I manage to add another

v5 to see what happens if we add two voters for Participation Criterion. Same as above, we let

f(v5)1 < f(v5)2. And we obtain our new f ∈ RξV,A,B as follow.

Example 3.4.14. Let V = {v1, . . . , v5} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, and B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits.
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Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3 v4 v5
a1 10 -1 -1 5 5

a2 2 7 -6 6 6

a3 3 7 -8 4 4

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, . . . , 5}.

We can see alternative a1 is given positive score by 3 voter v1, v4, v5; and a2 is given positive

or 0 score by 4 voters v1, v2, v4, v5, and a3 is given positive or 0 score by 4 voters v1, v2, v4

and v5. Therefore, a1, a2 and a3 are majority-approved, then the approved alternative set Apf =

{a1, a2, a3}. Then we have Sf (a1) = 10+(−1)+(−1)+5+5 = 18, Sf (a2) = 2+7+(−6)+6+6 = 16,

Sf (a3) = 3 + 7 + (−8) + 6 + 4 = 14. Since Sf (a1) ≥ Sf (aj) for all aj ∈ Apf , then we know that

ε(f) = {a1}.

Hence, we still get a1 ∈ ε(f) and a2 /∈ ε(f).

Therefore, A-R voting function with new limits does not satisfy participation criterion as

well. ♦
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4

C-A-R Voting Function With Limits

4.1 Condorcet-Approval-Range voting function with limits

As we introduced Condorcet voting method earlier, we can review our definition for Condorcet

winner for range voting through Definition 2.2.5 to Definition 2.2.6.

Definition 4.1.1. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let b > 0 and B = [−b, b]. Let Apf be the approved

alternative set for A. Let Sf be the scoring function for V and A. Let ε : RξV,A,B → P(A) be

the A-R voting function with limits. The C-A-R voting function with limits is a function

ψ : RξV,A,B → P(A) defined by two conditions. First, determine whether there exists a Condorcet

winner ap in A; if so, let ψ(f) = {ap}. If there does not exist a Condorcet winner, let ψ(f) =

ε(f). 4

I will illustrate this C-A-R voting function by showing the following example.

Example 4.1.2. Let V = {v1, . . . , v4} be a set of voters and A = {a1, . . . , a4} be a set of

alternatives. Let b > 0, then B = [−10, 10]. Let ψ : RξV,A,B → P(A) be the C-A-R voting

function with limits.
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Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3 v4
a1 -5 -5 -5 10

a2 4 4 4 10

a3 -1 -1 -1 0

a4 10 10 10 0

We observe that |f(vi)1|+ · · ·+ |f(vi)4| = mb
2 = 4·10

2 = 20 for all i ∈ {1, . . . , 4}.

After converting the previous table to preference orders by looking at each column separately,

we obtain the following table.

v1 v2 v3 v4
a4 a4 a4 a1, a2(tied)
a2 a2 a2 a3, a4 (tied)
a3 a3 a3
a1 a1 a1

Same as what we did for original range voting, now we do pairwise comparisons among the

alternatives. The results of which are summarized in the following.

a1 vs a2 0:3 a2 vs a3 4:0 a3 vs a4 0:3

a1 vs a3 1:3 a2 vs a4 1:3

a1 vs a4 1:3

As shown in the graph, a4 wins each pairwise comparison with a2, a3 and a4, therefore a4 is

the Condorcet winner. Hence ψ(f) = {a4}. ♦

Now let us look at another example that there is no Condorcet winner.

Example 4.1.3. Let V = {v1, v2, v3} be a set of voters and A = {a1, v2, a3} be a set of

alternatives. Let b = 10, then B = [−10, 10]. Let ψ : RξV,A,B → P(A) be the C-A-R voting

function with limits.

Let f ∈ RξV,A,B be given as the following chart.
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v1 v2 v3
a1 -1 10 -1

a2 8 5 -4

a3 6 0 10

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

After converting the previous table to preference orders by looking at each column separately,

we obtain the following table.

v1 v2 v3
a2 a1 a3
a3 a2 a1
a1 a3 a2

Same as what we did for original range voting, now we do pairwise comparisons among the

alternatives. The results of which are summarized in the following.

a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 1:2

As shown in the chart, no alternative ap wins each pairwise comparison for all q ∈ {1, 2, 3}

such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R part.

Here we can see alternative a1 is given positive score by 1 voters v3, a2 is given positive scores

by 2 voters v1 and v2, and a3 is given positive or 0 scores by all 3 voters. Therefore, we know

that a2 and a3 are approved by the majority of voters. Hence, the approved alternative set for A

is Apf = {a2, a3}. Let Sf be the scoring function for V and A. We have Sf (a2) = 8+5+(−4) = 9

and Sf (a3) = 6 + 0 + 10 = 16. Since Sf (a3) ≥ Sf (aj) for all aj ∈ Apf , then ψ(f) = {a3}. ♦
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4.2 Properties for C-A-R Voting Function with Limits

4.2.1 Always-A-Winner Condition for C-A-R Voting Function with Limits

I will show that C-A-R voting function with limits does not satisfy the Always-A-Winner Con-

dition for Range Voting. by giving the following example.

Example 4.2.1. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, and B = [−10, 10]. Let ψ : RξV,A,B → P(A) be the C-A-R voting

function with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3
a1 -1 10 -3

a2 -5 -1 10

a3 10 -4 -2

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

After converting the previous table to preference orders by looking at each column separately,

we obtain the following table.

v1 v2 v3
a3 a1 a2
a1 a2 a3
a2 a3 a1

Then we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.

a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 1:2

As shown in the graph, there is no Condorcet winner. Now we check the approval alternative

set. Here we can see alternative a1 is given positive score by 1 voters v2, a2 is given positive

score by 1 voters v3, and a3 is given positive score by 1 voters v1. Since none of them is majority-
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approved, then the approved alternative set Apf = ∅. Therefore, ψ(f) = ∅. Hence, there is no

winner for this example. ♦

Thus, C-A-R voting function with limits does not satisfy the Always-A-Winner Condition for

Range Voting.

However, considering that this condition does not usually happen in the reality, similarly we

can do what we did for A-R voting to improve C-A-R voting function and avoid this violation

of always-a-winner condition.

Definition 4.2.2. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am}

be a set of alternatives for some m ∈ N. Let b > 0, and B = [−b, b]. Let Apf be the approved

alternative set for A. Let Sf be the scoring function for V and A. Let ψ : RξV,A,B → P(A) be

the A-R voting function with limits. The improved C-A-R voting function with limits is

a function ψ′ : RξV,A,B → P(A) such that for all f ∈ RξV,A,B, if there exists a Condorcet winner

or Apf 6= ∅, then ψ′(f) = ψ(f), and if Apf (f) = ∅, then ψ′(f) is the set of all ak ∈ A such that

Sf (ak) ≥ Sf (aj) for all j ∈ {1, . . . ,m}. 4

In this way, improved C-A-R voting function with limits satisfies the Always-A-Winner Con-

dition for Range Voting as well as regular range voting function does.

The following theorem is trivial.

Theorem 4.2.3. The improved A-R voting function with limits satisfies the Always-A-Winner

Condition for Range Voting.

4.2.2 Majority Criterion for C-A-R Voting Function with Limits

Theorem 4.2.4. C-A-R voting function with limits satisfies the Majority Criterion for Range

Voting.
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Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let b > 0 and B = [−b, b]. Let ψ : RξV,A,B → P(A) be the C-A-R

voting function with limits.

Suppose k ∈ {1, . . . ,m} and ak is most preferred by more than n
2 voters, which says that ak

wins each pairwise comparison for all j ∈ {1, . . . ,m} such that k 6= j.

Then by the definition of C-A-R voting function, we know that we do have a Condorcet winner

in A which is ak. Hence, ak ∈ ψ(f) for all f ∈ RξV,A,B.

4.2.3 Condorcet Criterion for C-A-R Voting Function with Limits

Theorem 4.2.5. C-A-R voting function with limits satisfies the Condorcet Criterion for Range

Voting.

The proof for this theorem is trivial.

4.2.4 Pareto Criterion for C-A-R Voting Function with Limits

Theorem 4.2.6. C-A-R voting function with limits satisfies the Pareto Criterion for Range

Voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let b > 0 and B = [−b, b]. Let ψ : RξV,A,B → P(A) be the C-A-R

voting function with limits.

Let f ∈ RξV,A,B. Suppose f(vi)k > f(vi)j for all i ∈ {1, . . . , n}. There are actually two cases

depended on Condorcet winner. If there exists a Condorcet winner in A, by the definition of C-
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A-R voting function, since aj cannot win pairwise comparison with ak, then aj naturally cannot

be that Condorcet winner.

Suppose there is no Condorcet winner. Let Sf be the scoring function for V and A. There

are three cases. First, suppose aj , ak ∈ Afp . However, since we know that it is always the case

that f(vi)k > f(vi)j , then we have Sf (ak) > Sf (aj), then by the definition of C-A-R voting

function with limits, so aj /∈ ψ(f). Second, suppose ak ∈ Afp and aj /∈ Afp . Then aj /∈ ψ(f).

Third, suppose ak, aj /∈ Afp . Then still aj /∈ ψ(f). Note that it cannot be the case that aj ∈ Afp

but ak /∈ Afp , since f(vi)k > f(vi)j for all i ∈ {1, . . . , n}.

Therefore, we always have aj /∈ ψ(f).

4.2.5 Monotonicity Criterion for C-A-R Voting Function with Limits

Theorem 4.2.7. C-A-R voting function with limits satisfies the Monotonicity Criterion for

Range Voting.

Proof. Let V = {v1, . . . , vn} be a set of voters for some n ∈ N and A = {a1, . . . , am} be a set of

alternatives for some m ∈ N. Let b > 0 and B = [−b, b]. Let ψ : RξV,A,B → P(A) be the C-A-R

voting function with limits.

For all f ∈ RξV,A,B, suppose aj is in ψ(f) and f(vi)j increases for some i ∈ {1, . . . , n}. There

are two cases. First, suppose there exists a Condorcet winner before f(vi)j increases, which is

aj . By the definition of C-A-R voting function, since aj wins each pairwise comparison, then

aj still wins each pairwise comparison when f(vi)j increases. Hence aj is still in ψ(f). Second,

suppose there is no Condorcet winner before f(vi)j increases. Let Sf be the scoring function

for V and A. Since aj ∈ ψ(f), then from the definition of C-A-R voting function, we know that

Sf (aj) ≥ Sf (ak) for all ak ∈ Apf . When f(vi)j increases, we get that Sf (aj) > Sf (ak) for all
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ak ∈ Apf . By the definition of C-A-R voting function, aj is still in ψ(f). Therefore, under both

cases, aj ∈ ψ(f).

4.2.6 Independence of Irrelevant Alternative Criterion for C-A-R Voting Function with
Limits

I will show C-A-R voting function with limits does not satisfy the Independence of Irrelevant

Alternative Criterion for Range Voting by giving the following example.

Example 4.2.8. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, then B = [−10, 10]. Let ψ : RξV,A,B → P(A) be the C-A-R voting

function with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3
a1 7 -7 2

a2 2 5 -6

a3 -6 3 7

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

After converting the previous table to preference orders by looking at each column separately,

we obtain the following table.

v1 v2 v3
a1 a2 a3
a2 a3 a1
a3 a1 a2

Same as what we did for original range voting, now we do pairwise comparisons among the

alternatives. The results of which are summarized in the following.

a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 1:2
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As shown in the chart, no alternative ap wins each pairwise comparison for all q ∈ {1, . . . ,m}

such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R part.

Here we can see alternative a1 is given positive or 0 scores by 2 voters, v1 and v3, a2 is given

positive or 0 scores by 2 voters v1 and v2, and a3 is given positive or 0 scores by 2 voters v2 and

v3. Therefore, we know that a1, a2 and a3 are approved by the majority of voters. Hence, the

approved alternative set for A is Apf = {a1, a2, a3}. Let Sf be the scoring function for V and A.

We have Sf (a1) = 7 + (−7) + 2 = 2, Sf (a2) = 2 + 5 + (−6) = 1, and Sf (a3) = −6 + 3 + 7 = 4.

SinceSf (a3) ≥ Sf (aj) for all aj ∈ Apf , then we know that ψ(f) = {a3}.

We change f(v3)1 and f(v3)3 but keep f(v3)1 < f(v3)3, then we have new f ′ ∈ RξV,A,B as in

the following table.

v1 v2 v3
a1 7 -7 4

a2 2 5 -6

a3 -6 3 5

Same as above, we convert the previous table to preference orders by looking at each column

separately and obtain the following table.

v1 v2 v3
a1 a2 a3
a2 a3 a1
a3 a1 a2

Then we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.

a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 1:2

As shown in the graph, no alternative ap wins each pairwise comparison for all q ∈ {1, . . . ,m}

such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R part.
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Let Sf ′ be the score function for our new V and A. Before we change f(v3)2 and f(v3)2,

ψ(f) = {a3}. However, in the second table, since Sf ′(a1) = 7 + (−7) + 4 = 4 while Sf ′(a3) =

−6 + 3 + 5 = 2, Sf ′(a1) > Sf ′(a3), then ψ(f ′) = {a1}. Therefore, C-A-R voting function with

limits does not satisfy the Independence of Irrelevant Alternative Criterion for Range Voting. ♦

4.2.7 Intensity of Independence of Irrelevant Alternative Criterion for C-A-R Voting
Function with Limits

I will show that C-A-R voting function with limits does not satisfy the Intensity of Independence

of Irrelevant Alternative Criterion for Range Voting by giving the following example.

Example 4.2.9. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, then B = [−10, 10]. Let ψ : RξV,A,B → P(A) be the C-A-R voting

function with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3
a1 5 5 5

a2 4 10 4

a3 -6 0 6

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

After converting the previous table to preference orders by looking at each column separately,

we obtain the following table.

v1 v2 v3
a1 a2 a3
a2 a1 a1
a3 a3 a2

Same as what we did for original range voting, now we do pairwise comparisons among the

alternatives. The results of which are summarized in the following.
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a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 2:1

As shown in the chart, alternative a1 wins each pairwise comparison for all k ∈ {2, 3} and

therefore a1 is the Condorcet winner.

We change f(v2)1, as well as f(v2)2 and f(v2)3 but keep f(v2)1 − f(v2)2 the same as before,

then we have new f ′ ∈ RξV,A,B as in the following table.

v1 v2 v3
a1 5 2 5

a2 4 7 4

a3 -6 6 6

Same as above, we convert the previous table to preference orders by looking at each column

separately and obtain the following table.

v1 v2 v3
a1 a2 a3
a2 a3 a1
a3 a1 a2

Then we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.

a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 1:2

As shown in the graph, no alternative ap wins each pairwise comparison for all q ∈ {1, . . . ,m}

such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R part.

Let Sf ′ be the score function for our new V and A. We can see alternative a1 is given positive or

0 scores by all 3 voters, and a2 is given positive or 0 scores by all 3 voters, and a3 is given positive

or 0 scores by 2 voters v2 and v3. Hence, the approved alternative set for A is Apf ′ = {a1, a2, a3}.

Since Sf ′(a1) = 5+2+5 = 12, and Sf ′(a2) = 4+7+4 = 15, and Sf ′(a3) = −6+6+6 = 6. Since

Sf ′(a2) ≥ Sf ′(ak) for all ak ∈ Apf ′ , then ψ(f ′) = {a2}. Before we change f(v2)1, and f(v2)2 and
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f(v2)3, we have ψ(f) = {a1}. Therefore, C-A-R voting function with limits does not satisfy the

Intensity of Independence of Irrelevant Alternative Criterion for Range Voting. ♦

4.2.8 Participation Criterion for C-A-R Voting Function with limits

I will show C-A-R voting function with limits does not satisfy Participation Criterion by giving

a counter example.

Example 4.2.10. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, then B = [−10, 10]. Let ψ : RξV,A,B → P(A) be the C-A-R voting

function with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3
a1 10 -1 -1

a2 2 10 -9

a3 -3 4 5

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, 2, 3}.

Then we convert the previous table to preference orders by looking at each column separately

and obtain the following table.

v1 v2 v3
a1 a2 a3
a2 a3 a1
a3 a1 a2

Then we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.

a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 1:2
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As shown in the table, no alternative ap ∈ A wins each pairwise comparison for all q ∈

{1, . . . ,m} such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R

part.

From this chart, we can see alternative a1 is given positive score by 1 voter v1, a2 is given

positive or 0 score by 2 voters v1, v2; a3 is given positive or 0 score by 2 voters v2, v3 . Therefore,

a2 and a3 are majority-approved, then the approved alternative set Apf = {a2, a3}. Let Sf be the

scoring function for V and A. We have Sf (a2) = 2 + 10 + (−9) = 3, Sf (a3) = (−3) + 4 + 5 = 6.

Since Sf (a2) ≥ Sf (aj) for all aj ∈ Apf , then we know that ε(f) = {a3}.

Then add another v4 to our voter set such that f(v4)1 < f(v4)3. Then we may obtain f ′ ∈

RξV,A,B as follow.

v1 v2 v3 v4
a1 10 -1 -1 4

a2 2 10 -10 5

a3 -3 4 4 5

Then we convert the previous table to preference orders by looking at each column separately

and obtain the following table.

v1 v2 v3 v4
a1 a2 a3 a2, a3 tied
a2 a3 a1 a1
a3 a1 a2

Then we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.

a1vs a2 2:2 a2 vs a3 2:1

a1 vs a3 3:1

As shown in the table, no alternative ap ∈ A wins each pairwise comparison for all q ∈

{1, . . . ,m} such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R

part.
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From this new chart, we can see alternative a1 is given positive or 0 score by 2 voter v1, v4,

a2 is given positive score by 3 voters v1, v2, v4, and a3 is given positive or 0 score by 3 voters v2,

v3, v4. Therefore, a1, a2, and a3 are majority-approved, then the approved alternative set Apf ′ =

{a1, a2, a3}. Then we have Sf ′(a1) = 10+(−1)+(−1)+4 = 12, Sf ′(a2) = 2+10+(−10)+5 = 7,

Sf ′(a3) = (−3) + 4 + 4 + 5 = 10. Since Sf ′(a1) ≥ Sf ′(aj) for all aj ∈ Apf ′ , then we know that

ψ(f ′) = {a1}.

We observe that before v4 is added, we had a3 ∈ ψ(f) and a1 /∈ ψ(f). However, after v4 is

added, we get a1 ∈ ψ(f) and a3 /∈ ψ(f). Hence, C-A-R voting function with limits does not

satisfy the participation criterion. ♦

4.2.9 Consistency Property for C-A-R Voting Function with Limits

I will show C-A-R Voting function with limits does not satisfy consistency property by giving a

counter example.

Example 4.2.11. Let V = {v1, v2, v3} be a set of voters and A = {a1, a2, a3} be a set of

alternatives. Let b = 10, then B = [−10, 10]. Let ε : RξV,A,B → P(A) be the A-R voting function

with limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2 v3 v4 v5 v6
a1 10 -1 -1 8 5 3

a2 0 -6 10 -2 7 4

a3 -5 8 4 5 3 8

We observe that |f(vi)1|+ |f(vi)2|+ |f(vi)3| = mb
2 = 3·10

2 = 15 for all i ∈ {1, . . . , 6}.

Let V1 = {v1, v2, v3} and V2 = {v4, v5, v6}. Here we can get disjoint profiles f1 ∈ RV1,A,B as

below.
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v1 v2 v3
a1 10 -1 -1

a2 0 -6 10

a3 -5 8 4

Then we convert the previous table to preference orders by looking at each column separately

and obtain the following table.

v1 v2 v3
a1 a3 a2
a2 a1 a3
a3 a2 a1

Now we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.

a1 vs a2 2:1 a2 vs a3 2:1

a1 vs a3 1:2

As shown in the graph, In f1, no alternative ap ∈ A wins each pairwise comparison for all

q ∈ {1, 2, 3} such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R

part.

From the table, we can see alternative a1 is given positive score by all 1 voter v1, a2 is given

positive or 0 score by all 2 voters v1, v3, and a3 is given positive or 0 score by 2 voters, v2, v3.

Therefore, a2 and a3 are majority-approved, then the approved alternative set Apf = {a2, a3}.

Let Sf be the scoring function for V and A. We have Sf (a2) = 0 + (−6) + 10 = 4, Sf (a3) =

(−5) + 8 + 4 = 7. Since Sf (a3)) ≥ Sf (aj) for all aj ∈ Apf , then we know that ψ(f1) = {a3}.

Then let us look at f2 ∈ RV2,A,B as given.

v4 v5 v6
a1 8 5 3

a2 -2 7 4

a3 5 3 8
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Then we convert the previous table to preference orders by looking at each column separately

and obtain the following table.

v4 v5 v6
a1 a2 a3
a3 a1 a2
a2 a3 a1

Now we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.

a1vs a2 1:2 a2 vs a3 1:2

a1 vs a3 2:1

As shown in the graph, In f2, no alternative ap ∈ A wins each pairwise comparison for all

q ∈ {1, 2, 3} such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R

part.

In f2, we can see alternative a1 is given positive or 0 score by all 3 voters, a2 is given positive

score by 2 voters v5 and v6, and a3 is given positive or 0 score by all 3 voters. Therefore, a1, a2

and a3 are majority-approved, then the approved alternative set Apf = {a1, a2, a3}. Let Sf be

the scoring function for V and A. We have Sf (a1) = 8 + 5 + 3 = 16, Sf (a2) = (−2) + 7 + 4 = 9,

Sf (a3) = 5 + 3 + 8 = 16. Since Sf (a1) = Sf (a3) ≥ Sf (aj) for all aj ∈ Apf , then we know that

ψ(f2) = {a1, a3}.

Then we observe that ψ(f1) ∩ ψ(f3) = {a3}.

Let us take a look at ψ(f1 + f2).

Let us convert f1 + f2 to preference orders by looking at each column separately and obtain

the following table.

Now we do pairwise comparisons among the alternatives. The results of which are summarized

in the following.
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v1 v2 v3 v4 v5 v6
a1 a3 a2 a1 a2 a3
a2 a1 a3 a3 a1 a2
a3 a2 a1 a2 a3 a1

a1 vs a2 3:3 a2 vs a3 3:3
a1 vs a3 3:3

As shown in the graph, In f1 + f2, no alternative ap ∈ wins each pairwise comparison for all

q ∈ {1, 2, 3} such that q 6= p, and therefore there is no Condorcet winner. Then we go to A-R

part.

In f1 + f2, we can see alternative a1 is given positive score by 4 voters v1, v4, v5 and v6, a2

is given positive or 0 score by 4 voters v1, v3, v5 and v6, and a3 is given positive or 0 score

by 5 voters except for v1. Therefore, a1, a2 and a3 are majority-approved, then the approved

alternative set Apf = {a1, a2, a3}. Let Sf be the scoring function for V and A. We have Sf (a1) =

10 + (−1) + (−1) + 8 + 5 + 3 = 24, Sf (a2) = 0 + (−6) + 10 + (−2) + 7 + 4 = 13, Sf (a3) =

(−5) + 8 + 4 + 5 + 3 + 8 = 23. Since Sf (a1) ≥ Sf (aj) for all aj ∈ Apf , then we know that

ψ(f1 + f2) = {a1}.

Here, we notice that ψ(f1+f2) = {a1} while ψ(f1)∩ψ(f2) does exist and is actually {a2}. Hence

ψ(f1 + f2) 6= ψ(f1) ∩ ψ(f2). Therefore, C-A-R voting function does not satisfy the consistency

property. ♦

4.2.10 Faithful Property for C-A-R Voting Function with Limits

Theorem 4.2.12. C-A-R voting function with limits satisfies the faithful property.

Proof. Let V = {v} be a set of voter and A = {a1, . . . , am} be a set of alternatives for some

m ∈ N. Let b > 0 and B = [−b,−b]. Let ψ : RξV,A,B → P(A) be the C-A-R voting function with

limits.



62 4. C-A-R VOTING FUNCTION WITH LIMITS

Let f ∈ RV,A,B and ak, aj ∈ A. Let Sf be the scoring fucntion for V and A. Suppose f(v)j >

f(v)k.

By the definition of ψ, we have pairwise comparison aj vs ak: 1 : 0. Hence ak is defeated by

aj in pairwise comparison, then ak /∈ ψ(f).

4.2.11 Cancellation Property for A-R Voting Function with limits

I will show that C-A-R voting function does not satisfy the cancellation property by showing

the following example.

Example 4.2.13. Let V = {v1, v2} be a set of voters and A = {a1, a2} be a set of alternatives.

Let b = 10, and B = [−10, 10]. Let ψ : RξV,A,B → P(A) be the C-A-R voting function with

limits.

Let f ∈ RξV,A,B be given as the following chart.

v1 v2
a1 8 4

a2 2 6

As we can see from the chart |f(vi)1|+ |f(vi)2| = mb
2 = 2·10

2 = 10 for all i ∈ {1, 2}.

We observe that there is one voter v1 that f(v1)1 > f(v1)2. So, πa1a2(f) = 1. Also, there is

one voter v2 that f(v2)2 > f(v2)1, which means πa2a1(f) = 1. Thus, in this case, πa1a2(f) =

πa2a1(f) = 1.

After converting the table to preference orders, we obtain the following table.

v1 v2
a1 a2
a2 a1
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Now we do pairwise comparisons among the alternatives. Then we get a1 vs a2: 1 : 1. Hence

there is no Condorcet winner. Then we check A-R part.

Let Sf be the scoring function for V and A. Alternative a1 is given positive score by all 2 voters

v1, a2 is given positive score by all 2 voters. Therefore, a1, a2 are majority-approved, then the

approved alternative set Apf = {a1, a2}. We see that Sf (a1) = 8+4 = 12 and Sf (a2) = 2+6 = 8.

Since Sf (a1) > Sf (a2), then ψ(f) = {a1}.

However, we notice that ψ(f) 6= A.

Hence, C-A-R voting function with limits does not satisfy the cancellation property. ♦
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5

Result and further discussion

5.1 Result

Here is the table for what we found in regular range voting function, range voting function with

limits, A-R voting function with limits and C-A-R voting function with limits.

R/ R WL A-R WL C-A-R WL

Always A Winner Yes (Thm 2.2.2) Yes∗ (Thm 3.4.3) Yes∗ (Thm 4.2.3)

Majority No (Exp 2.2.4) No (Exp 3.4.4) Yes (Thm 4.2.4)

Condorcet No (Exp 2.2.8) No (Exp 3.4.5) Yes (Thm 4.2.5)

Pareto Yes (Thm 2.2.10) Yes (Thm 3.4.6) Yes (Thm 4.2.6)

Monotonicity Yes (Thm 2.2.12) Yes (Thm 3.4.7) Yes (Thm 4.2.7)

Independence of Irrelevant Alternative No (Exp 2.2.14) No (Exp 3.4.8) No (Exp 4.2.8)

Intensity of IIA Yes (Thm 2.2.17) Yes (Thm 3.4.9) No (Exp 4.2.9)

Participation Yes (Thm 2.2.19) No (Exp 3.4.13) No (Exp 4.2.10)

Consistency Yes (Thm 2.2.22) No (Exp 3.4.10) No (Exp 4.2.11)

Faithful Yes (Thm 2.2.24) Yes (Thm 3.4.11) Yes (Thm 4.2.12)

Cancellation No (Thm 2.2.26) No (Exp 3.4.12) No (Exp 4.2.13)

As we can see from the chart, we check on 12 Criteria in total. Range voting and range voting

with limits satisfies 8 of them, and A-R voting function with limits satisfies 6 of them, while C-

A-R voting function with limits satisfies 8 of them. In some way our C-A-R voting function with

limits does improve and behave better than original range voting function, since it satisfies the
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Majority and Condorcet Criteria which are not satisfied by original range voting function; but

it fails in satisfying the Independence of Irrelevant Alternative, Participation and Consistency

Criteria, since the ranking ballots and choosing the approval set leave impacts on how function

behaves. However, I think it is still reasonable to say that the process of determining whether an

alternative is approved by the majority of voters is beneficial. We don’t want our voting function

completely relies on alternative’s total score; firstly voters should express their overall opinions

towards the alternatives with positive or negative score, then we may know how the majority of

voters regards our alternatives and only those who are approved by the majority are qualified

to compete for the winner spot.

5.2 Further thoughts

In our definition for range voting function with limits, we mention that it does not matter what

value b is since we can always use decimal score and therefore scale up or scale down according

to a fixed ratio. However, in the reality world, it is not always the case that people are willing to

give decimal scores. If we give a range for B such that B = [−10, 10], then people are inclined

to give integer scores such as −8,−5,−1, 0, 3, 6, 10, etc. If we only allow integer for B, then it

does matter what value b we choose, because now we cannot apply our example to any general

case. If we set B = [−1, 1], then people can only give −1, 0 and 1 to the alternatives; if we

set B = [−100, 100], then it gives our voters a great freedom to Exampleress their altitudes to

our alternatives. We don’t know if [−10, 10] is a rational choice for our score range then. The

difference of range may psychologically influence voters’ rating as well.

Furthermore, I am also thinking about if it is possible that we don’t impose a limited function

to our voting function at all: instead of doing that, for each voter vi, we may calculate the

|f(vi)1| + · · · + |f(vi)m| and then have their score divided by |f(vi)1| + · · · + |f(vi)m|. For

example, if there are three alternatives, and voter vi gives a1 −2 points, a2 −10 points, and a3
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5 points. Then we calculate the total points of the absolute value is | − 2| + | − 10| + |5| = 17,

and a1 gets −217 = −0.11, a2 gets −1017 = −0.59, and a3 = 5
17 = 0.29. So the absolute value of

their total score is 1, and it seems that each voters have a same influence on the score as well:

they can give whatever points they would like to give, with no restriction, both mathematically

and psychologically.
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