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Abstract

This project focuses on the mathematical study of voting systems, known as voting theory.
The procedure in which each voting system selects a winner is different for each one. There
were some situations that we analyzed where the population generally liked an alternative
more, but no pre-existing voting system chose them as a winner. The Lose Big method was
created by the writer to choose this more average alternative, and through the creation
of Lose Big, the Win Big and Sum Big method also formed. We analyze the various pre-
existing ranked voting methods and compare them to the Win Big, Lose Big, and Sum
Big method, exploring the fairness criteria that they satisfy or violate. We also explore
some connections found between the Sum Big voting system and Borda Count.
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1
Introduction

1.1 Voting

In order to make a decision or express an opinion within a group where not all members

agree, each individual preference needs to be accounted for. Voting is a very common

method used for reaching a decision peacefully and voting theory or social choice

theory is the mathematical treatment and study of these social choice procedures (voting

systems). A formal definition is given:

Definition 1.1.1. A social choice procedure is a function that takes as input a se-

quence of lists (without ties) of some set A (the set of alternatives) and the corresponding

output is either an element of A, a subset of A, or NW (no winner) [9]. 4

There are over 50 different social choice procedures, and since democracy in ancient

Athens, these methods have been developed and heavily debated. For which social choice

procedure will select a winner that best represents the collective body? At the heart of

social choice theory is the study of preferential aggregation, which is the aggregation of

several individual preference rankings of two or more alternatives into a single, collective
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preference ranking over these alternatives [7]. These types of social choice procedures,

known as ranked voting systems, will be the focus of this project.

In this years American Presidential election (2016), we have seen that it is possible for

a candidate who is greatly disliked by many, even by his/her own party, to still have a

chance at winning the general election. For example, while Donald Trump has a massive

following, his opposition is probably just as big. Since the American voting system only

accounts for voter’s first preference, the voters who dislike Trump can only represent their

dislike for an alternative by voting against them.

By using preferential voting systems to select a winner, voters preferences are more

accurately accounted for. It is common though, for many ranked systems to still put a

heavier weight on a voter’s first choice. This is of course more favorable, since the main

purpose of an election is to select an alternative that is most liked by the group. But there

are some situations where perhaps selecting an alternative that is least disliked would be

more suitable.

For example, let’s say three friends were trying to decide on what to eat and came up

with two options: pizza or a burger. Two of the friends want pizza but would settle for a

burger, while the third friend hates pizza but loves burgers. In this situation, it seems that

a burger would be the better option since everyone would be able to enjoy the meal; but

if they were to merely take into account their first choice, they would chose pizza, since

two out of three prefer pizza, and one friend would not eat.

The positional voting system, defined below, that I created, the Lose Big method,

was designed to place more importance on a voter’s dislikes, which was influenced by this

years election. From this, we observed when flipping/reversing the Lose Big voting system,

alternatives who were placed higher in a ballot would receive a greater score. We called

this system Win Big. Then, when adding Win Big and Lose Big’s scoring procedure,

another voting system formed. We call this the Sum Big voting system.
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Definition 1.1.2. A positional voting system is a ranked voting method in which the

alternatives receive points based on their rank position in each ballot and the alternative

with the most points overall wins [11]. 4

While there are other voting systems that exist based off the same idea as the Lose Big

method, there were certain situations where our voting system would select a unique set

of plausible winners that no other voting system which we analyzed selected.

In order to get a general idea of how different ranked voting systems produce various

outcomes, including ours, a more formal example is shown below:

Example 1.1.3. The Bard Mathematics department is looking to hire a new faculty

member for the tenure-track position. The math committee, made up of 3 faculty members,

interview 3 candidates: Olivia, Larry, and Yang. After each candidate is interviewed, each

faculty member votes by ranking the candidates in descending order of preference, from

most to least preferred. Below are the faculty’s ballots:

Olivia Y ang Olivia

Y ang Larry Y ang

Larry Olivia Larry

B1 B2 B3

Depending on which voting system is used, different results will occur. Voting systems

such as the Plurality method, Instant Run-Off, Coombs, and Win Big method would

chose Olivia; Sum Big and Borda Count would tie Yang and Olivia; and Anti-Plurality

and Lose Big would chose Yang. These voting systems will be further explained later in

the project. ♦

We see in the example above, that two out of the three of the candidates have the

potential to win. So, who do you think the Bard Math Committee should hire?
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All voting systems make assumptions on what aspects of an election are important

when aggregating the votes based on the certain fairness criteria it satisfies or violates. It

turns out that there is a theorem, Arrow’s Impossibility Theorem, that tells us that

no voting system satisfies a certain set of fairness criteria, which will be defined later. In

other words, it is impossible a voting system will chose a winner that satisfies the desires

of an entire population. Refer to [7] or [9] for more information on Arrow’s Impossibility

Theorem. Therefore, it is important that there be a voting system in place that satisfies

and violates different sets of fairness criteria.

In this project we will explore different positional voting systems including the Win Big,

Lose Big, and Sum Big method, and see which fairness criteria are dismissed or highlighted,

and compare their properties to other systems such as Borda Count, Instant Runoff,

Coombs, Plurality, and Anti-Plurality.

In Chapter 2, we introduce some basic voting theory terminology as well as theorems

that will be used throughout this project. We also define the ranked voting systems ana-

lyzed in this project. Chapter 3 is where certain fairness criteria are defined and we see

which voting systems violate or satisfy which criteria. In Chapter 4, we introduce the Lose

Big, Win Big, and Sum Big method and explain how they work. We then show which

fairness criteria they satisfy or violate and compare them with the pre-existing systems

defined in Chapter 2. In Chapter 5, we ground our voting systems by showing that the

Sum Big method is in fact an affine transformation of the Borda Count method.



2
Preliminaries

In this chapter we will define the basics of voting theory, introduce some existing voting

systems, and explore a few characteristics needed for our voting system.

2.1 Basics of Voting Theory

In this section we will define some basic voting theory terminology as well as some defi-

nitions and theorems that will be needed for later in this project. In an election that uses

a preferential voting system to select a winner, a set of voters rank a set of alternatives,

A, in order of each voters’ personal preference. Each voters’ preferences are arranged in a

preferential ballot. The set of all preferential ballots within an election is called aprofile.

We formalize this below.

Definition 2.1.1. A preferential ballot, B, is a total order on a set of alternatives

A = {a1, a2, · · · , an}, where n ∈ N [4]. 4

Since we will only be working with preferential ballots, we will refer to them as merely

ballots.
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Definition 2.1.2. A profile, P , is a set of ballots. 4

Example 2.1.3. From Example 1.1.3, A = {Nora, Ying, Mario, Stephan} is the set of

alternatives and the profile is P = {B1, B2, B3}. ♦

Notation: Since each ballot is a linearly ordered set, we use the notation x > y to

mean x is preferred over y. Also if x, y, z ∈ A are ranked in a ballot as such: x > y > z,

we say x is in row 1, first place, y is in row 2, second place, and z is in row 3, last place.

Example 2.1.4. From Example 1.1.3, B1’s linearly ordered set could be notated as such:

Nora > Mario > Ying > Stephan. ♦

All positional voting systems rely on some weighted vector, defined below, where the

first weight corresponds to the alternative in row 1, the second weight to the alternative

in row 2, and so on.

Definition 2.1.5. Let A be a set of n alternatives and P be a profile. Let V be a voting

system. Then the weighted vector, #»wV = [w1, w2, . . . , wn]t, corresponding to V , is a

column vector in Rn, where w1 ≥ w2 ≥ . . . ≥ wn and for each ballots B ∈ P and a ∈ A,

wB(a) = wi, where a is in the ith row of B [1]. 4

Example 2.1.6. Consider the ballot, B, below where A = {a, b, c, d}.

a

b

c

d

B

Suppose a positional voting, V , was used on this ballot. This means #»wV =

[w1, w2, w3, w4]
t since n = |A| = 4. This means
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• wB(a) = w1

• wB(b) = w2

• wB(c) = w3

• wB(d) = w4.

♦

Definition 2.1.7. Let a ∈ A and P = {B1, B2, . . . , Bk} where k ∈ N. The total score of

a in an election is s(a) =
k∑

i=1

#»wBi(a) where k = |P |. 4

Notation:

• The winners of a social choice procedure are the set f(P ) = {a ∈ A| s(a) is maximal}

[5].

Example 2.1.8. Suppose we conduct an election with a set of ballots where P =

{B1, B2, B3} and a set of alternatives A = {a, b, c, d}. In the ballots below, each row is as-

signed a weight, the Borda Count, BC, weighted vector #»wBC = [(n−1), (n−2), . . . , 1, 0]t,

where n = |A|, which will be explained further in the next section.

[3] a b c

[2] c c b

[1] d a d

[0] b d a

#»wBC B1 Bv2 B3

So in a single ballot, an alternative will receive (n − i) points, where i is the row

corresponding to the alternative. For example, the resulting weights for a are:
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• #»wB1(a) = (4− 1) = 3

• #»wB2(a) = (4− 3) = 1

• #»wB3(a) = (4− 4) = 0

Now calculating the score for each candidate using the corresponding weights we get:

• s(a) =
3∑

i=1
wBi(a) = 3 + 1 + 0 = 4

• s(b) =
3∑

i=1
wBi(b) = 0 + 3 + 2 = 5

• s(c) =
3∑

i=1
wBi(c) = 2 + 2 + 3 = 7

• s(d) =
3∑

i=1
wBi(d) = 1 + 0 + 1 = 2

Since s(c) > s(b) > s(a) > s(d), we see f(P ) = {c}. Therefore, c is the winner. ♦

Each preferential voting system will produce a final ranking, in the form of an ordered

list (with possible ties), of the alternatives that according to the used voting system, best

represents the will of the voters. This is known as the societal preference order.

Definition 2.1.9. The societal preference order of a ranked voting system is the

aggregate of single preferential ballots [4]. 4

Example 2.1.10. Using Example 2.1.8., the societal preference order would be

c > b > a > d or

c

b

a

d

♦
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Figure 2.2.1. Triangle Numbers, Tn[12].

2.2 Triangle Numbers

In this section, we introduce triangle numbers, which will be used throughout this project.

First, a formal definition is given below:

Definition 2.2.1. Let n ∈ N ∪ {0}. A triangle number, Tn, is a number obtained

by adding all positive integers less than or equal to a given positive integer n i.e. Tn =

1 + 2 + 3 + . . . + n =
n∑

k=1

k. 4

Lemma 2.2.2. The nth triangle number is,

Tn =
n∑

k=0

k = n(n+1)
2 [12].

The reason {T} are called triangle numbers is because they have a geometric inter-

pretation: Tn is equal to the number of nodes that complete an equilateral triangle with

side-length n [12]. Figure 2.1.1. shows the first four triangle numbers.

For our purposes, we introduce a slight variation of the triangle numbers, tn. Instead of

starting at T0 = 0, we will denote the first triangle number as t1 = 0. For the rest of this

project we will be referring to {t} as the t-numbers.

Definition 2.2.3. Let n ∈ N. Then

tn = T(n−1)
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Figure 2.2.2. Tetrahedral Numbers [12].

is called the nth triangle number. 4

The first few t-numbers are listed below:

t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 10.

Lemma 2.2.4. Let n ∈ N. Then

tn =
n−1∑
k=0

k = n(n−1)
2 .

Proof. By Definition 2.2.3, we know tn = Tn−1. Then by Lemma 2.2.2, we see that

Tn−1 = (n−1)n
2 . Thus, tn = n(n−1)

2 .

Definition 2.2.5. The sum of the first n t-numbers, 0 + 1 + 3 + . . .+ n(n−1)
2 , is called the

nth tetrahedral number or triangle pyramidal number, denoted Sn [12]. 4

These numbers correspond to placing discrete points in the configuration of a tetrahe-

dron (triangle base pyramid) [12]. Figure 2.2.2. shows the first few tetrahedral numbers.

Theorem 2.2.6. Let Sn be the nth tetrahedral number. Then

Sn =
n∑

k=1

tk = n(n−1)(n+1)
6 .

Proof. We can prove this by induction.

Let n ∈ N.
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Case 1: Let n = 1

Then S1 = 1(0)(2)
6 = 0

6 = 0.

Case 2: When n = k,

assume Sk = t1 + t2 + . . . + tk = k(k−1)(k+1)
6 is true.

Let n = k + 1.

Then S(k+1) = t1 + t2 + . . . + tk + t(k+1). Since Sk = t1 + t2 + . . . + tk = k(k−1)(k+1)
6 we

can deduce that S(k+1) = t1 + t2 + . . . + tk + t(k+1) = Sk + t(k+1). Using the hypothesis,

Sn = n(n−1)(n+1)
6 and the fact that t(k+1) = (k+1)((k+1)−1)

2 = k(k+1)
2 , we see that

S(k+1) =
k(k − 1)(k + 1)

6
+

(k + 1)(k)

2

=
k(k − 1)(k + 1)

6
+

3(k + 1)(k)

6

=
k(k − 1)(k + 1) + 3(k + 1)(k)

6

=
k3 + 3k2 + 2k

6

=
(k + 1)k(k + 2)

6

=
(k + 1)((k + 1)− 1)((k + 1) + 1)

6
.

Thus, by induction, Sn = n(n−1)(n+1)
6 for all n > 0.

2.3 Voting Systems

In this section, we will introduce several different types of ranked voting systems: Plurality,

Anti-Plurality, Instant Runoff, Coombs, and Borda Count.

First we look at the Plurality method. According to [6], the plurality voting system is

the oldest voting system and is most often used in the United States.

Definition 2.3.1. The Plurality voting system selects the alternative(s) with the most

first place votes, i.e. #»wP = [1, 0, 0, . . . , 0]t [9]. 4
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Note that the Plurality method only takes into account the first row of information in

a preferential ballot, resulting in the weighted vector #»wP = [1, 0, · · · , 0]t. So a voters first

choice is all that matters.

Example 2.3.2. Let C be the set of Republican candidates running in the 2016 presi-

dential election. In the 2016 Georgia GOP primary, the three leading competitors were

Donald Trump, Ted Cruz, and Marc Rubio. In a study, in [6], they were able to use polls

to get an idea of how people might have voted if the election used preferential ballots.

Candidate Other will represent any candidate in C−{Trump, Cruz, Rubio}. The results

are below:

38.8% 20.5% 24.4% 6.0% 3.8% 3.2% 3.1%

Trump Cruz Rubio Other Other Other Cruz

Rubio Other Cruz Rubio Trump Cruz Other

Cruz Trump Other Cruz Rubio Rubio Trump

Other Rubio Trump Trump Cruz Trump Rubio

Since the Plurality method only assigns 1 point for each time a candidate is ranked in

first place, the end result is:

Candidate Score

Trump 38.8

Rubio 24.4

Cruz 23.6

Other 13.0

From this, we see that the Plurality method choses Trump as the winner. So f(P ) =

{Trump}. ♦

The next voting system we will look at is the Anti-Plurality method, also known as the

Inverse Plurality Rule. This method is the opposite of Plurality such that the candidate
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in last place receives one point and the candidate with the lowest score is selected to be

the winner. So voters vote against against a single candidate instead of for.

Definition 2.3.3. The Anti-Plurality voting system selects the alternative with the

least last place vote, i.e. #»wA = [0, 0, . . . , 1]t [8]. 4

Note when using the Anti-Plurality method, f(P ) = {a ∈ A|s(a) is minimal}.

Example 2.3.4. If we apply the Anti-Plurality method to Example 2.3.2, then we get:

Candidate Score

Cruz 3.8

Rubio 23.5

Trump 33.6

Other 38.8

From this, we can see that Cruz has the least amount of points, therefore he would be

selected as the winner. ♦

Although this voting system is rarely used, it proposes an interesting method by trying

to avoid selecting a winner who the majority of voters dislike, rather than trying to select

a winner who is most preferred.

The Coombs method, used more frequently than Anti-Plurality, is based off the same

idea. It could be thought of as Anti-Plurality with Elimination– the alternative bottom-

ranked by the most voters is eliminated and the ballots are re-counted until an alternative

receives a majority, meaning that an alternative gets more than 50% of the first place

votes. Note that this is not a positional voting system but uses elimination instead of

weights.

Definition 2.3.5. The Coombs voting system eliminates the alternative with the most

last place votes and recounts the ballots until one alternative receives the majority of first

place votes [8]. 4
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Example 2.3.6. Using Coombs method on Example 2.3.2, since there is no majority,

we see that Other has the most last place votes. When we eliminate Other, the resulting

ballots are:

38.8% 20.5% 24.4% 6.0% 3.8% 3.2% 3.1%

Trump Cruz Rubio Rubio Trump Cruz Cruz

Rubio Rubio Cruz Cruz Rubio Trump Trump

Cruz Trump Trump Trump Cruz Rubio Rubio

Notice now that Trump is ranked last the most. So we eliminate him and get the resulting

ballots:

72.4% 26.8%

Rubio Cruz

Cruz Rubio

From this, we see that f(P ) = {Rubio}, resulting in the societal preference order

Rubio

Cruz

Trump

Other

♦

The Coombs method was actually based off of the Instant Runoff voting system, also

known as Plurality with Elimination. Instant Runoff, like Plurality is to Anti-Plurality, can
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be thought of as the reversal of the Coombs method. Instead of eliminating the alternative

with the most last place votes, it eliminates the alternative with the least first place votes.

Definition 2.3.7. The Instant Runoff voting system eliminates the alternative with

the least first-place votes from the election. Any votes for that alternative are redistributed

to the voters’ next choice. This continues until a choice has a majority (over 50%) [8]. 4

Example 2.3.8. Again, using Example 2.3.2, we see that Other has the least first-place

votes. When Other is eliminated we get the resulting ballots (which happens to be the

same as Example 2.3.6 when using Coombs method):

38.8% 20.5% 24.4% 6.0% 3.8% 3.2% 3.1%

Trump Cruz Rubio Rubio Trump Cruz Cruz

Rubio Rubio Cruz Cruz Rubio Trump Trump

Cruz Trump Trump Trump Cruz Rubio Rubio

Since there is still no majority, we eliminate Cruz since he 26.8% of the first-place votes

while Trump has 42.6% and Rubio has 30.4%. So,

50.9% 48.9%

Rubio Trump

Trump Rubio

Therefore, since Rubio has more than 50% of the first-place votes, f(P ) = {Rubio}.

The societal preference order is
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Rubio

Trump

Cruz

Other

♦

Next, we will look at Borda Count– briefly mentioned in Example 2.1.8. Borda Count

is used extensively; for example it is used for the NBA’s Most Valuable Player award, the

Eurovision Song Contest, Presidential elections in Kiribati, and more [8]. The Borda Count

method determines a winner by assigning each alternative, for each ballot, a number of

points corresponding to the number of alternatives ranked below them. A formal definition

is given below.

Definition 2.3.9. Suppose n = |A|. The Borda Count voting system gives each

alternative (n − i) points for each ballot that ranks the alternative(s) in the ith row, i.e.

the #»wBC = [(n − 1), (n − 2), . . . , 1, 0]t. These points are totaled for each alternative and

the alternative(s) with the most points wins [8]. 4

Example 2.3.10. Using the Borda Count method on Example 2.3.2 we get,

#»wBC 38.8% 20.5% 24.4% 6.0% 3.8% 3.2% 3.1%

[3] Trump Cruz Rubio Other Other Other Cruz

[2] Rubio Other Cruz Rubio Trump Cruz Other

[1] Cruz Trump Other Cruz Rubio Rubio Trump

[0] Other Rubio Trump Trump Cruz Trump Rubio
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This means

s(Trump) = (3 · 38.8) + (1 · 20.5) + (0 · 24.4) + (0 · 6.0) + (2 · 3.8) + (0 · 3.2) + (1 · 3.1) = 147.6

s(Rubio) = (2 · 38.8) + (0 · 20.5) + (3 · 24.4) + (2 · 6.0) + (1 · 3.8) + (1 · 3.2) + (0 · 3.1) = 169.8

s(Cruz) = (1 · 38.8) + (3 · 20.5) + (2 · 24.4) + (1 · 6.0) + (0 · 3.8) + (2 · 3.2) + (3 · 3.1) = 170.8

s(Other) = (0 · 38.8) + (2 · 20.5) + (1 · 24.4) + (3 · 6.0) + (3 · 3.8) + (3 · 3.2) + (2 · 3.1) = 110.6.

From this we can see that s(Cruz) > s(Rubio) > s(Trump) > s(Other). Therefore,

f(P ) = {Cruz} and the societal preference order is

Cruz

Rubio

Trump

Other

♦

When comparing all the different ways a winner was found and the different resulting

societal preference orders, using the ballots from Example 2.3.2, one can notice the many

possible outcomes.

Plurality Anti-Plurality Coombs Instant RunOff Borda Count

Trump Cruz Rubio Rubio Cruz

Rubio Rubio Cruz Trump Rubio

Cruz Trump Trump Cruz Trump

Other Other Other Other Other
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An interesting thing to note is that Plurality, the voting system the United States uses,

is the only method in which Trump was selected as the winner, while the other voting

systems chose either Cruz or Rubio. This is due to Trump being preferred less by many

voters. Which voting system an electorate or group will use is usually based off of which

fairness criteria the voting system satisfies or fails. This will be discussed more in the next

chapter.



3
Properties of Voting Systems

In order to understand what kind of winner a voting system selects, voting theorists have

evaluated social choice procedures using certain voting system fairness criteria, which

define potentially desirable properties of voting systems mathematically [11]. In this chap-

ter, we will be looking at several of these fairness criteria and seeing which voting systems

satisfy or violate criteria.

3.1 Fairness Criteria

In this section, we will define several of the main fairness criteria discussed in voting

theory: the Majority Criterion, the Condorcet Criterion, the Monotonicity Cri-

terion,and the Independence of Irrelevant Alternatives (IIA) Criterion. We will

also be looking at the Majority Loser Criterion as well as the Condorcet Loser Cri-

terion since we are dealing with reversed systems, i.e. Anti-Plurality and Coombs. The

first criteria we will look at is the Majority criterion.
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Definition 3.1.1. A voting system satisfies the Majority Criterion if it choses the

alternative who receives more than 50% of the first place votes as the winner [11]. We call

this winner the Majority winner. 4

Example 3.1.2. The United States Department of Agriculture started a campaign ”You

Control the School Menu”, where middle school students sample and vote on a variety

of school menu options [10]. Suppose 60 8th grade students used preferential voting and

P ={Plate A, Plate B, Plate C}. Suppose the final results were the following:

12 18 20 10

PlateA P lateB P lateA P lateC

P lateB P lateC P lateB P lateB

P lateC P lateA P lateC P lateA

Since there are an even number of votes, where v = 60, a plate must have v
2 + 1 votes,

which would be 60
2 + 1 = 31 votes in order to have a majority. From the preference table

we see that Plate A has 32 first place votes, Plate B has 18, and Plate C has 10. Since

32 ≥ 31, Plate A is the Majority winner.

Using the Plurality method, Plate A would win, satisfying the Majority criterion. Using

Borda Count, with the weighted vector #»w = {2, 1, 0}, Plate A receives 64 points, Plate B

68 points, and Plate C 38 points. This means Plate B would win, violating the Majority

criterion. ♦

The Plurality, Instant RunOff, and the Coombs method satisfy the Majority criterion,

while Borda Count and Anti-Plurality violate the Majority Criterion [11].
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Related to the Majority criterion is the Condorcet criterion, which we formally define

below.

Definition 3.1.3. Let a ∈ A. A voting system satisfies the Condorcet Criterion if

a ∈ f(P ), such that a > b for all b ∈ A − {a} by more voters than b > a [11]. We call a

the Condorcet winner. 4

Informally, a voting system that satisfies the Condorcet Criterion would select the al-

ternative who would win a two-candidate election against every other candidate [11].

Example 3.1.4. Using Example 3.1.2, when comparing each alternative head-to-head we

get

{Plate A, Plate B}
32 Plate A > Plate B

28 Plate B > Plate A

{Plate A, Plate C}
32 Plate A > Plate C

28 Plate C > Plate A

{Plate B, Plate C}
50 Plate B > Plate C

10 Plate C > Plate B

From this we see that Plate A is preferred by more voters over every other Plate.

Therefore a voting system that selects Plate A as the winner satisfies the Condorcet

Criterion. ♦

Notice in that the Majority winner and Condorcet winner are the same when using the

ballots from Example 3.1.2. In fact, the Condorcet criterion implies the Majority criterion.

We will prove this below.

Theorem 3.1.5. Every Majority winner is a Condorcet winner.

Proof. Let P be a profile and let a ∈ A and b ∈ A−{a}. Suppose a is a Majority winner

of P . This means a is in the first row in at least k+1
2 ballots. This also means that a > b in

at least k+1
2 ballots, meaning that a would win in a head-to-head competition with every

other alternative. Thus, by Definition Condorcet, a is also a Condorcet winner.

Theorem 3.1.6. If a voting system, V , satisfies the Condorcet criterion, then it also

satisfies the Majority criterion.
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Proof. We will prove this by contrapositive. Let V be a voting system that fails the

Majority criterion. This means there exists a profile, P , such that a ∈ A is the Majority

winner and a 6∈ f(P ). By Theorem 3.1.5, since a is a Majority winner, a is also a Condorcet

winner. Since a 6∈ f(P ), we can conclude that V fails the Condorcet criterion.

Although the Condorcet criterion is very well known, none of the voting systems we are

looking at satisfy it. The Condorcet and Majority criterion both have ”loser” versions of

them. We will first look at the Majority Loser criterion, which ensures that an alternative

least preferred is never selected as a winner.

Definition 3.1.7. A voting system satisfies the Majority Loser Criterion if it never

selects an alternative who the majority prefers every other alternative over as the winner

[11]. 4

Example 3.1.8. Referencing Example 3.1.2, we see that Plate C would be the majority

loser and that f(P ) 6= {Plate C} when using the Plurality and the Borda Count method.

Therefore, in this case, Plurality and Borda Count satisfy the Majority Loser Criterion. ♦

In general Borda Count, Coombs, Instant RunOff, and Anti-Plurality satisfy the Ma-

jority Loser Criterion while Plurality does not.

Example 3.1.9. We will show that Plurality violates the Majority Loser criterion. Con-

sider an election where A = {a, b, c, d} and P = {B1, B2, B3, B4, B5}, forming the below

ballots.
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a a d c b

b c c d c

d d b b d

c b a a a

B1 B2 B3 B4 B5

From the ballots above we can see that a is the majority loser but the Plurality would

choose a as its winner since s(a) > s(b) = s(c) = s(d). Thus, the Plurality method violates

the Majority Loser criterion.

♦

Similar to the Majority Loser criterion is the Condorcet Loser criterion, and this is

satisfied by Anti-Plurality, Coombs, Instant Runoff and Borda Count method while the

Plurality method violates it [11].

Definition 3.1.10. Let a ∈ A. A voting system satisfies the Condorcet Loser Criterion

if a 6∈ f(P ), such that for all b ∈ A− {a}, b > a by more voters than a > b. We call a the

Condorcet Loser [11]. 4

Example 3.1.11. Using Example 3.1.2 and comparing each alternative to one another,

we get

{Plate A, Plate B}
32 Plate A > Plate B

28 Plate B > Plate A

{Plate A, Plate C}
32 Plate A > Plate C

28 Plate C > Plate A

{Plate B, Plate C}
50 Plate B > Plate C

10 Plate C > Plate B

From these tables we can see that Plate C is least preferred by more voters than any

other plate. This means any voting system that never selects Plate C as a winner would

satisfy the Condorcet Loser Criterion. ♦
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Just like the Condorcet criterion is a stronger version of the Majority criterion, the

Condorcet Loser criterion is a stronger version of the Majority Loser criterion. A similar

proof is given below.

Theorem 3.1.12. Every Majority Loser is a Condorcet Loser.

Proof. Let P be a profile and let a ∈ A and b ∈ A− {a}. Suppose a is a Majority Loser

of P . This means a is in the last row in at least k+1
2 ballots. This also means that b > a in

at least k+1
2 ballots, meaning that a would lose in a head-to-head competition with every

other alternative. Thus, by the Definition 3.1.10, a is also a Condorcet Loser.

Theorem 3.1.13. If a voting system satisfies the Condorcet Loser criterion, then it also

satisfies the Majority Loser criterion.

Proof. We will prove this using the contrapositive. Let V be a voting system that fails the

Majority Loser criterion. Then there exists a profile, P , such that a ∈ A is the Majority

loser and a ∈ f(P ). By Theorem 3.1.12, since a is the Majority Loser, a is also the

Condorcet Loser and since a ∈ f(P ), V also fails the Condorcet Loser criterion.

The next fairness criterion we will look at is the Monotonicity Criterion.

Definition 3.1.14. Let a ∈ A. Suppose a ∈ f(P ). A voting system satisfies the Mono-

tonicity Criterion if when voters move a higher in a new set of ballots, P ′, then a ∈ f(P ′)

also [3]. 4

Example 3.1.15. Using the Plurality method with Example 3.1.2, we see that Plate A

would be the winner of profile P . Now suppose the original ballots were changed, P ′, in

favor of Plate A as below,
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P =

12 18 20 10

PlateA P lateB P lateA P lateC

P lateB P lateC P lateB P lateB

P lateC Plate A PlateC Plate A

P’ =

Plate A Plate A PlateA P lateC

P lateB P lateC P lateB Plate A

PlateC P lateB P lateC P lateB

Using the Plurality method on the altered ballots, we see that Plate A is still the winner,

thus satisfying the Monotonicity Criterion. ♦

The voting systems which satisfy the Monotonicity Criterion are Plurality, Ant-Plurality

and Borda Count while Coombs and Instant Runoff fail.

The final criterion we will look at is the Independence of Irrelevant Alternatives (IIA)

Criterion. This Criterion basically states that if an election is held and a winner declared,

this winner should remain the winner if one or more of the losing alternatives drops out

[11]. A more formal definition is given below:

Definition 3.1.16. Let a ∈ A. A voting system satisfies the Independence of Irrele-

vant Alternatives Criterion if a ∈ f(P ) and a revote is taken where losing alternative(s)

drop out, forming a new set of ballots, P ′, then a ∈ f(P ′) also [3]. 4

Example 3.1.17. Using the Anti-Plurality method with the ballots from Example 3.1.2,

we see that f(P ) = {Plate B}. Suppose we remove Plate A from P and recalculate the

ballots, P ′. We get
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12 18 20 10

PlateB P lateB P lateB P lateB

P lateC P lateC P lateC P lateC

From this we can see that, using the Anti-Plurality method on the ballots above, s(Plate

B) = 0 and s(Plate C) = 60, so f(P ) = {Plate B}. Recall f(P ) = {a ∈ A| s(a) is

minimal}.

If we remove Plate C instead of Plate A, P ′ will be:

12 18 20 10

PlateA P lateB P lateA P lateB

P lateB P lateA P lateB P lateA

Still using Anti-Plurality, we see that Plate A and Plate B tie, showing that Plate B is

also in f(P ′). Thus Anti-Plurality satisfies the IIA criterion in this case. ♦

The IIA criterion is violated by all the voting systems we analyze in this project: Borda

Count, Plurality, Anti-Plurality, Instant Runoff, Coombs and Instant Runoff [11].



4
Win Big, Lose Big, Sum Big

In this chapter, we will explain how the Win Big, Lose Big, and Sum Big voting systems

work and see what fairness criteria they satisfy or violate.

4.1 Win Big, Lose Big, Sum Big

In this section will show how the voting systems Win Big, Lose Big, and Sum Big work.

First, we will look at the Win Big method. Similar to Borda Count, the Win Big method

assigns points to an alternative based on their position in a preferential ballot. The dif-

ference is that the Win Big method gives an alternative a greater reward for being more

preferred by a voter than the Borda Count method, selecting a winner that is generally

liked.

Instead of counting how many alternatives are below, an alternative’s score is calculated

by counting the number of positions they are above each alternative; the last place alter-

native receives 0 points, the second-to-last place alternative receives 1 point, for being 1

row above an alternative, the third-to-last place alternative receives 3 points, 1 for being 1
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row above the second-to-last place alternative and 2 for being 2 rows above the last place

alternative and so on. The alternative with the highest score wins.

Example 4.1.1. Let P = {B1, B2, B3} and A = {a, b, c, d}. Consider the following ballots:

a c a

b b b

c d d

d a c

B1 B2 B3

Using the Win Big method, the weights distributed in B1 are

• wB1(a) = 0 + 1 + 2 + 3 = 6

• wB1(b) = 0 + 1 + 2 = 3

• wB1(c) = 0 + 1 = 1

• wB1(d) = 0.

So the final score for each alternative would be

• s(a) = 6 + 0 + 6 = 12

• s(b) = 3 + 3 + 3 = 9

• s(c) = 1 + 6 + 0 = 7

• s(d) = 0 + 1 + 1 = 2.

Resulting in s(a) > s(b) > s(c) > s(d). So f(P ) = {a}. ♦
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From the Example above, we see that the weighted vector would be #»w = [6, 3, 1, 0]t.

Note that these are the first 4 terms of t-numbers, i.e. #»w = [t4, t3, t2, t1]. We now define

this formally,

Definition 4.1.2. Let n = |A|. The Win Big method is a voting system with weighted

vector #»wW = [tn, t(n−1), . . . , t2, t1]
t, i.e. if a ∈ A is in row i in B ∈ P then wB(a) =

tn−i+1. 4

Example 4.1.3. If n = 4, then #»wW = [t4, t3, t2, t1]
t = [6, 3, 1, 0]t. ♦

The Lose Big voting system also uses the t-numbers when assigning points to alterna-

tives. Similar to how Anti-Plurality is the reversal of Plurality, Lose Big is the negative

reversal of Win Big. The idea is that the least preferred an alternative is, the more they

are penalized, selecting a winner that is generally not disliked.

Instead of counting the number of positions the alternative is above every other alterna-

tive, we count the number of positions the alternative is below each alternative, assigning

a negative value. This means the first place alternative receives 0 points, the second place

alternative receives -1 points, for being 1 row below the first place alternative, the third

place alternative receives -3 points, -1 for being 1 row below the second place alternative

and -2 for being 2 rows below the first place alternative, and so on. The alternative with

the highest score wins.

Like in the Win Big method, notice that the weights are the t-numbers, merely negated.

Definition 4.1.4. Let n = |A|. The Lose Big method is a voting system with weighted

vector #»wL = −[t1, t2, . . . , t(n−1), tn]t, i.e. if a ∈ A is in row i in B ∈ P then wB(a) =

−ti. 4

Example 4.1.5. If n = 5, then #»wL = −[t1, t2, t3, t4, t5]
t = [0,−1,−3,−6,−10]t. ♦
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Example 4.1.6. Using the ballots from Example 4.1.1 and the Lose Big weighted vector,

#»wL = [0,−1,−3,−6]t, we see

[0] a c a

[-1] b b b

[-3] c d d

[-6] d a c

#»wL B1 B2 B3

Therefore, the final score for each alternative is

• s(a) = 0 +−6 + 0 = −6

• s(b) = −1 +−1 +−1 = −3

• s(c) = −3 + 0 +−6 = −9

• s(d) = −6 +−3 +−3 = −12.

This means s(b) > s(a) > s(c) > s(d), resulting in f(P ) = {b}. ♦

Referring back to Example 4.1.1, notice that Win Big chose a as the winner since a

was first in two out of three of the ballots, therefore receiving a greater reward. In Exam-

ple 4.1.6, b was chosen as the winner instead of a. This is because a was put last in B2,

therefore being penalized more, while b was never placed below second place, since b is

not truly disliked by any of the voters.



4. WIN BIG, LOSE BIG, SUM BIG 34

The Sum Big voting system is a combination of the Lose Big and Win Big method. It

scores alternatives by adding the weights that an alternative would receive from using the

Lose Big and Win Big method.

Definition 4.1.7. Let n = |A|. The Sum Big method is a voting system with weighted

vector

#»wSB = #»wWB + #»wLB =



tn
t(n−1)
t(n−2)

...
t3
t2
t1


+



−t1
−t2
−t3

...
−t(n−2)
−t(n−1)
−tn


=



tn − t1
t(n−1) − t2
t(n−2) − t3

...
t3 − t(n−2)
t2 − t(n−1)
t1 − tn


,

i.e. if a ∈ A is in the ith row in B ∈ P , then wB(a) = tn−i+1 − ti. 4

Example 4.1.8. Let n = 4, then using Example 4.1.1, we see that

#»wSB = [t4, t3, t2, t1]
t +−[t1, t2, t3, t4]

t = [6, 3, 1, 0]t +−[0, 1, 3, 6]t = [6, 2,−2,−6]t.

So,

[6] a c a

[2] b b b

[-2] c d d

[-6] d a c

#»wS B1 B2 B3

The resulting scores for each alternative is
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• s(a) = 6 +−6 + 6 = 6

• s(b) = 2 + 2 + 2 = 6

• s(c) = −2 + 6 +−6 = −2

• s(d) = −6 +−2 +−6 = −14,

which shows s(a) = s(b) > s(c) > s(d). Therefore, f(P ) = {a, b}. ♦

Proposition 4.1.9. Let B be a ballot and a ∈ A. Let a be in the ith row of B, then using

the Sum Big method, wB(a) = t(n+1) − ni.

Proof. Let B be a ballot and a ∈ A. Suppose a is in row i in ballot B.

By Definition 4.3.1, we know #»wS = #»wW + #»wL. Since wB(a) = tn−i+1 using the Win Big

method and wB(a) = −ti using the Lose Big method, wB(a) = tn−i+1− ti when using the

Sum Big method. Therefore,

wB(a) = tn−i+1 − ti

=
(n− i + 1)(n− i)

2
− i(i− 1)

2

=
n2 + n− 2ni

2

=
n(n + 1)

2
− ni.

Since tn+1 = n(n+1)
2 , we see that wB(a) = t(n+1) − ni using the Sum Big method.

Notation: Let P be a profile and let a ∈ A.

• We will denote the winners of a Win Big election as fW (P ), the winners of a Lose

Big election fL(P ), and the winners of a Sum Big election as fS(P ).

• We will denote the score of an alternative in a similar way. The score of a in a Win

Big election will be denoted as sW (a), for Lose Big, sL(a), and Sum Big, sS(a).
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Theorem 4.1.10. Let P be a profile and let a ∈ A. If a ∈ fW (P ) and a ∈ fL(P ), then

a ∈ fS(P ).

Proof. Let P be a profile and A be a set of alternative. Let a ∈ A. Suppose the Win

Big method was used on P such that a ∈ fW (P ). Now suppose that on the same set of

ballots, P , the Lose Big method was used and resulted in the same winner(s), a ∈ fL(P ).

This means

sW (a) ≥ sW (b) and sL(a) ≥ sL(b) for all b ∈ A− {a}.

From this, we can deduce that sW (a) + sL(a) ≥ sW (b) + sL(b) for all b ∈ A− {a}. Then,

using the Sum Big method on P , we get

sS(a) = sW (a) + sL(a) and sS(b) = sW (b) + sL(b) for all b ∈ A− {a}.

Since sW (a) + sL(a) ≥ sW (b) + sL(b) for all b ∈ A− {a} we can conclude that sS(a) ≥

sS(b) for all b ∈ A− {a}. Thus, a ∈ fS(P ) when a ∈ fW (P ) and a ∈ fL(P ).

4.2 Properties of Win Big

In the following sections, we will see which fairness criteria the Win Big and Lose Big

method satisfies or violates and then compare them with existing voting systems. Figure

4.2.1. summarizes the results from Chapter 3.

Theorem 4.2.1. The Win Big Voting System violates the

1. Condorcet criterion.

2. Majority criterion.

3. Condorcet Loser criterion.

4. Majority Loser criterion.

5. Independence of Irrelevant Alternatives criterion.
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Figure 4.2.1. Voting System’s and their Fairness Criteria
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Proof. (1)

We will show that the Win Big voting system violates the Condorcet criterion by a coun-

terexample. Suppose the Win Big method is used on a set of ballots {B1, B2, B3, B4} with

a set of alternatives {A,B,C,D}.

A A A B B

B B B D C

D D D C D

C C C A A

B1 B2 B3 B4 B5

Suppose the Win Big method satisfies the Condorcet Criterion. Comparing each alter-

native head-to-head in the table below we see that

{A, B}
3 A > B

2 B > A

{A, C}
3 A > C

2 C > A

{A, D}
3 A > D

2 D > A

{B, C}
5 B > C

0 C > B

{B, D}
5 B > D

0 D > B

{D, C}
4 D > C

1 C > D

.

From the tables above, we can deduce that A is the Condorcet winner. Using the Win

Big method, since #»wW = [6, 3, 1, 0]t, the final scores for each alternative are

• s(A) = 6 + 6 + 0 + 6 + 0 = 18

• s(B) = 3 + 3 + 6 + 3 + 6 = 21

• s(C) = 0 + 0 + 1 + 0 + 6 = 7

• s(D) = 1 + 1 + 3 + 1 + 1 = 6

Therefore, f(P ) = {B} 6= {A}. Thus, the Win Big method violates the Condorcet

Criterion.



4. WIN BIG, LOSE BIG, SUM BIG 39

(2)

By Theorem 3.1.6, since Win Big violates the Condorcet criterion it also violates the

Majority criterion.

(3)

We will show that the Win Big voting system violates the Condorcer Loser criterion by a

counterexample. Suppose a Win Big election was held with 7 voters voting for the set of

alternatives {a, b, c, d, e}. Suppose the ballots below occurred:

e e e a d b c

a d a b c c d

b c b c b d a

c b d d a a b

d a c e e e e

B1 B2 B3 B4 B5 B6 B7

From these ballots we see that e is the Condorcet loser since e loses in a head-to-head

competition with every other alternative at least 4 out of 7 times. This means e must not

win if the Win Big method satisfies the Condorcet Loser criterion. Using the Win Big

weighted vector, #»wW = [t5, t4, t3, t2, t1]
t = [10, 6, 3, 1, 0]t, we get the resulting scores:

• s(a) = 6 + 0 + 6 + 10 + 1 + 1 + 3 = 27

• s(b) = 3 + 1 + 3 + 6 + 3 + 10 + 1 = 27

• s(c) = 1 + 3 + 0 + 3 + 6 + 6 + 10 = 29

• s(d) = 0 + 6 + 1 + 1 + 10 + 3 + 6 = 27

• s(e) = 10 + 10 + 10 + 0 + 0 + 0 + 0 = 30
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Thus we see that f(P ) = {e}, the Majority Loser, when using the Win Big method.

Therefore, the Win Big method violates the Majority Loser criterion.

(4)

By Theorem refconlos-majlos, since the Lose Big method violates the Condorcet Loser

criterion by Part (3) of this theorem, the Lose Big method also violates the Majority

Loser criterion.

(5)

We will show that the Win Big voting system violates the Independence of Irrelevant Alter-

natives criterion by a counterexample. Let A = {a, b, c, d} and let P = {B1, B2, B3, B4}.

Suppose the preference rankings were made and the Win Big method, with #»wWB =

[6, 3, 1, 0]t, is used

a b d a

d c b d

b a a b

c d c c

B1 B2 B3 B4

This means

• s(a) = 14

• s(b) = 11

• s(c) = 3

• s(d) = 12



4. WIN BIG, LOSE BIG, SUM BIG 41

resulting in f(P ) = {a}. Since d 6∈ f(P ), lets remove d from the above ballots. This

would result in the ballots below,

a b b a

b c a b

c a c c

B1 B2 B3 B4

resulting in f(P ) = {b} 6= {a}. Thus, the Win Big method fails the IIA criterion since

the removal of a non-winning alternative changes the original winner.

It makes sense that the Win Big method fails the Majority, Majority Loser, Condorcet,

and Condorcet Loser criterion. While the more preferred alternatives do receive more

points than the least preferred, unlike Borda Count the points attributed to the alter-

natives in higher rows increase exponentially. This means that when an alternative is

preferred less, proportionally they are more penalized than, and the reverse for if an al-

ternative is preferred more. By creating a larger range for points to be distributed it gives

alternatives who are rarely least preferred a greater chance at winning.

For the IIA criterion, if we look at the counterexample in Theorem 4.2.1 (5), when d is

removed from the first set of ballots, we see that b is placed first twice and second twice

while a also placed first twice, a is placed second only once and last once. This difference

of a being placed last should result in b being the favorable alternative. Borda count and

Anti-Plurality would also fail the IIA criterion in the counterexample for Theorem 4.2.1

(5) while Plurality, Instant Runoff, and Coombs tie a and b in the second round. In fact,

as seen in Figure 4.2.1., all the voting systems we analyzed also fail this criterion.
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Theorem 4.2.2. The Win Big method satisfies the Monotonicity criterion.

Proof. Let P be a profile and A be a set of alternatives in an election using the Win

Big method. Let a ∈ A and f(P ) = {a}. This means s(a) > s(b) for all b ∈ A− {a}. Let

B ∈ P and let a be in row i in B. This means wB(a) = tn−i+1. Let b ∈ A and assume b is

in row (i− 1) in B1, the row above a, such that wB(b) =tn−(i−1)+1 = tn−i+2. Note that in

this ballot, wB(a) < wB(b). Let s(a) be the score of a in P and let s′(a) be the score of a

in P ′. In a revote, forming the profile P ′, assume a and b swap rows, i.e. change ballot B

to B′ ∈ P ′.This means a would receive an additional

tn−(i+1)+1 − tn−i+1 = (n−i+2)(n−i+1)
2 − (n−i+1)(n−i)

2 = 2n−2i+2
2 = n− i + 1

points while b will lose n− i + 1 points. So,

s′(a) = s(a) + (n− i + 1) and s′(b) = s(b)− (n− i + 1).

Since s(a) > s(b) and i < n, we can deduce that s(a)+(n−i+1) > s(b) > s(b)−(n−i+1).

Therefore s′(a) > s′(b). Thus, f(P ) = {a} remains.

4.3 Properties of Lose Big

In this section we will see what fairness criteria Lose Big satisfies or violates. First, we

look at the fairness criteria the Lose Big method violates.

Theorem 4.3.1. The Lose Big method violates the

1. Condorcet criterion.

2. Majority criterion.

3. Condorcet Loser criterion.

4. Independence of Irrelevant Alternatives criterion.
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Proof. (1)

We will show that the Lose Big voting system violates the Condorcet criterion by a coun-

terexample. Consider the ballots below:

A A B A B

B B D B C

D D C D D

C C A C A

B1 B2 B3 B4 B5

Suppose the Lose Big method satisfies the Condorcet criterion. From the above ballots,

we see that A is above every other alternative 3 out of 5, therefore, by Definition 3.1.3, A

is the Condorcet winner. This means f(P ) = {A}. Since we know #»wL = [0,−1,−3,−6]t,

the final scores for each alternative are

• s(A) = −12

• s(B) = −3

• s(C) = −22

• s(D) = −13

Notice that s(B) > s(A) > s(D) > s(C). This means f(P ) = {B}, which is a contra-

diction. Thus, the Lose Big method violates the Condorcet criterion.

(2)

By Theorem 3.1.6, since the Win Big voting system violates the Condorcet criterion it

also violates the Majority criterion.

This can also be seen by using the ballots in Part (1) of this theorem. Since A is placed

first three out of five of the ballots, A is the Majority winner. But we saw from Part (1)
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that the Lose Big method chose B as it’s winner. Therefore, the Lose Big method violates

the Majority criterion.

(3)

We will show that the Lose Big voting system violates the Condorcet Loser criterion by a

counterexample. Let A = {a, b, c} and let |P | = 7. Consider the following ballots:

a a a a b b b

b c c c c c c

c b b b a a a

Since a is preferred to c four out of seven times and b is also preferred to c four out of

seven times, c loses each head-to-head competition. Therefore, c is the Condorcet loser.

Using the Lose Big method, we see that

• s(a) = 4(0) + 0(-1) + 3(-3) = -9

• s(b) = 3(0) + 1(-1) + 3(-3) = -10

• s(c) = 0(0) + 6(-1) + 1(-3) = -9

This means f(P ) = {a, c} which means the Condorcet loser, c, is a winner. Therefore,

the Win Big method violates the Condorcet Loser Criterion.

(4)

We will show that the Lose Big voting system violates the Independence of Irrelevant

Alternatives criterion by a counterexample. Using the Lose Big method on the same ballots

from the counterexample for Theorem 4.2.1 (5),
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a b d a

d c b d

b a a b

c d c c

B1 B2 B3 B4

we see that

• s(a) = −6

• s(b) = −7

• s(c) = −19

• s(d) = −8

resulting in f(P ) = {a}. Since d 6∈ f(P ), lets remove d from the above ballots. This would

result in the below ballots

a b b a

b c a b

c a c c

B1 B2 B3 B4

resulting in f(P ) = {b}. Thus, the Lose Big method fails the IIA criterion since the

removal of a non-winning alternative changed the original winner.

Just like the Win Big method, the Lose Big method tries to avoid selecting an alternative

who is preferred less, giving a chance for alternatives who are barely ranked low in a profile

the chance to win. In the counterexample for Theore 4.3.1, we see that while A is preferred

by three out of five voters (B1, B2, B4) and B is preferred only two out of five (B3, B5), B
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is pretty liked by the remaining three voters (B1, B2, B4) while A is hated by two (B3, B5).

The Lose Big method was designed to avoid selecting an alternative like A so it makes

sense that Lose Big would fail the Majority and Condorcet criterion.

One would think that the Condorcet Loser criterion would be satisfied by the Lose Big

voting system. But in the counterexample of Theorem 4.3.1 (3) we see again the same

issue that arose in the counterexample for the Majority and Condorcet criterion. Since a

and b are both ranked last three out of seven times and c only once, a and b appropriate

more negative points, resulting in c winning.

Notice that if in the first ballot of Theorem 4.3.1 (3)’s counterexample, if b and c swapped

places, b would now be the Condorcet Loser as well as the Majority Loser and in this case,

the Lose Big theorem would still select c, not the Majority Loser. We will now prove the

fairness criteria the Lose Big method satisfies.

Theorem 4.3.2. The Lose Big method satisfies the

1. Majority Loser criterion.

2. Monotonicity criterion.

Proof. (1) We want to prove that the Lose Big method will never select the alternative

who is least preferred by a majority of voters. Meaning that the majority loser’s final score

will be less then the average amount of points in a Lose Big election. Recall the Lose Big

method uses negative weights.

Let A be a set of alternatives, where n = |A|, and P = {B1, B2, . . . , Bk} be a set of

ballots, where k = |P |. Since each ballot has a total of Sn = −n(n−1)(n+1)
6 points, by

Corollary 2.2.6, we can deduce that the average number of points per alternative would

be
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M =
k
(
−n(n−1)(n+1)

6

)
n

=
−k(n− 1)(n + 1)

6
.

Let a ∈ A and let a be the majority loser. In order for a to lose, s(a) ≤M .

Not that since 2 ≥ n, we can deduce that

nk ≥ 2k

nk + 3n > 2k

2(nk + 3n) > 4k

2(nk + 3n) + 4nk > 4k + 4nk

6nk + 6n > 4k + 4nk

−(6nk + 6n) < −(4k + 4nk)

−6n(k + 1) < −4k(n + 1)

−n(k + 1)(n− 1)

4
<
−k(n + 1)(n− 1)

6

.

This will be used in the following two cases.

Case 1: Suppose k is odd.

Then the majority of ballots would be k+1
2 . Let X = {B1, B2, . . . , B k+1

2
} and let a be last

in all ballots in X. This means a would be in the nth row and

wX(a) = wB1(a) + wB2(a) + . . . + wB k+1
2

= −tn +−tn + . . . +−tn.

Since |X| = k+1
2 , we see that

wX(a) =
(
k+1
2

)
· −tn.
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This means the most points a could acquire is by being first in the remaining ballots.

Let Y = P − X, represent the remaining ballots. Let a be in row 1 in all the ballots in

Y . This means, sY (a) = 0 when a ∈ Y since the the weighted vector for Lose Big maps

t1 = 0 to the alternative in the first row. This means

s(a) ≤
(
k + 1

2

)
· −tn

= −
(
k + 1

2

)(
(n)(n− 1)

2

)
= −n(k + 1)(n− 1)

4
.

Since we know −n(k+1)(n−1)
4 < −k(n+1)(n−1)

6 , we see that s(a) < M , when k is odd.

Case 2: Suppose k is even.

Then the majoring of the ballots would be k
2 + 1. Let X = {B1, B2, . . . , B k

2
+1}. Suppose

a is preferred last in all B ∈ X and first in all B ∈ (P −X). This means,

s(a) ≤
(
k

2
+ 1

)
· −tn

= −
(
k

2
+ 1

)(
n(n− 1)

2

)
= −(k + 2)(n)(n− 1)

4
.

Since −(k + 2) < −(k + 1) we can deduce that

−n(k+2)(n−1)
4 < − (k+1)(n)(n−1)

4

By Case 1, since −n(k+1)(n−1)
4 < −k(n+1)(n−1)

6 , by transitivity

−n(k+2)(n−1)
4 < −k(n+1)(n−1)

6 .

This means s(a) < M when k is also even. Therefore we can conclude that if a is preferred

last is more than half of the ballots, a will never win. So the Lose Big method satisfies the

Majority Lose Criterion.

(2)

Let P be a profile and A be a set of alternative in an election using the Lose Big method.
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Let a ∈ A. Assume f(P ) = {a}. This means s(a) > s(b) for all b ∈ A − {a}. Let B ∈ P

and let a be in row i in B. This means wB(a) = −ti.

Now let b ∈ A and assume b is in row (i− 1) in B, the row above a, such that wB1(b) =

−ti−1. Thus, wB1(b) > wB1(a), which implies −ti−1 > −ti.

Let s(a) be the score of a in P and s′(a) be the score of a in P ′. In a revote, forming P ′,

assume a and b swap rows, i.e. change ballots from B to B′. This means a would receive

an additional

(−ti−1)− (−ti) = −(i−1)(i−2)
2 − −i(i−1)2 = 2i−2

2 = i− 1

points while b will lose i + 1 points. So

s′(a) = s(a) + (i− 1) and s′(b) = s(b)− (i− 1).

Since s(a) > s(b), we can deduce that s(a) + (i − 1) > s(b) > s(b) − (i − 1). Therefore,

s′(a) > s′(b). Thus, f(P ) = f(P ′) = {a} showing that the Lose Big method satisfies the

Monotonicity criterion.

4.4 Relating Win Big and Lose Big to Other Voting Systems

From figure 4.4.1, we see that just like the other voting systems both Win Big and Lose Big

violate the Condorcet and Independence of Irrelevant Alternatives criterion and satisfy a

unique set. We now show, in the example below, a situation where the Lose Big method

selects a unique plausible winner:

Example 4.4.1. Let A = {a, b, c, d} and P = {B1, B2, B3, B4, B5}. Suppose an election

was run and the following ballots formed.



4. WIN BIG, LOSE BIG, SUM BIG 50

Figure 4.4.1. Voting System’s and their Fairness Criteria
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a a a d d

b b b b b

c c c c c

d d d a a

B1 B2 B3 B4 B5

When using the different voting systems, the resulting winner occur: For Borda Count,

Sum Big, Win Big, Plurality, Coombs, and Instant Runoff f(P ) = {a} and for Anti-

Plurality f(P ) = {b, c}. The Lose Big method is the only system that selects b as its

winner since b is the least disliked alternative in profile P . ♦

The Win Big method can be used in situations similar to when Plurality,



5
Sum Big’s Relationship to Borda Count

In working with the Sum Big voting system, we noticed some connections with the Borda

Count voting system. In this chapter, we will prove some of these connections.

5.1 Affine Transformation of Borda Count

In this section, we will show that the Sum Big’s weighted vector is actually an affine

transformation of Borda Count’s weighted vector.

Notation: Let a ∈ A and let B ∈ P .

• Let wB(a) be the weight of a in B when using the Sum Big method and w′B(a) be

the weight of a in B when using the Borda Count method.

• Let s(a) be the total score of a in an election using the Sum Big method and let s′(a)

be the total score of a in an election using the Borda Count method.

• Let f(P ) be the set of winners in a Sum Big election and f ′(P ) be the set of winners

in a Borda Count election.

• Let
#»
1 n be a vector with n rows of 1.
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Example 5.1.1. Let A = {a, b, c, d} where n = |A| = 4. Consider profile, P, with the

single ballot shown below:

a

b

c

d

The weighted vectors for Sum Big and Borda Count for this profile are shown below:

Sum Big:


6
2
−2
−6

 Borda Count:


3
2
1
0


We noticed some correlation between Sum Big and Borda Count. Note that

n · #»wB − tn
#»
1 n = 4 ·


3
2
1
0

− ·3(4)

2
·


1
1
1
1



=


12
8
4
0

−


6
6
6
6



=


6
2
−2
−6


= #»wS

Therefore, from this example we see that the Sum Big method’s weighted vector is an

affine transformation of the Borda Count method’s weighted vector. ♦

Theorem 5.1.2. Let P be a profile and A be a set of alternatives. Let n = |A|. Then

#»wS = n · #»wB − tn ·
#»
1 n.
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Proof. Let n = |A| and let a ∈ A. This means the weight of a in row i using the Sum

Big method and the Borda Count method is, w(a) = (tn+1 − ni) and w′(a) = (n − i).

Expanding w(a) we see that,

w(a) = tn+1 − ni = n(n+1)
2 − ni = n2+n−2ni

2

and since

n · w′(a)− tn
#»
1 n = n · (n− i)− n(n− 1)

2

#»
1 n

=
2n2 − 2ni− n2 + n

2

=
n2 + n− 2ni

2

we can deduce that

w(a) = n · w′(a)− tn
#»
1 n.

when a is in row i. This holds for all weights in #»wS and #»wB. Thus, we can conclude that

#»wS = n · #»wB − tn ·
#»
1 n.

Theorem 5.1.3. Let a, b ∈ A. Then s(a) > s(b) if and only if s′(a) > s′(b).

Proof. Let P be a profile where k = |P |. Let a, b ∈ A and let n = |A|. Let ai be the

number of times alternative a is in row i in a ballot.

By Theorem 5.1.2, we know that #»wS = n · #»wB − tn
#»
1 n. Then we know for the ith row

in #»wS and #»wB we get tn+1 − ni = n · (n − i) − tn
#»
1 n. Since s(a) =

n∑
i=1

ai(tn+1 − ni) and

s′(a) =
n∑

i=1
ai(n− i), we can deduce that
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n∑
i=1

ai(tn+1 − ni) =
n∑

i=1

ai[n(n− i)− tn]

= n
n∑

i=1

ai(n− i)− tn

n∑
i=1

ai

= n · s′(a)− k · tn.

Therefore, s(a) = n · s′(a)− k · tn.

Assume s(a) > s(b).

Since s(a) = n · s′(a)− k · tn and s(b) = n · s′(b)− k · tn, this means

n · s′(a)− k · tn > n · s′(b)− k · tnso,

s′(a) > s′(b)

Assume s′(a) > s′(b).

Then n ·s′(a)−k ·tn > n ·s′(b)−k ·tn. Since s(a) = n ·s′(a)−k ·tn and s(b) = n ·s′(b)−k ·tn

we can conclude that s(a) > s(b).

Therefore, s(a) > s(b) if and only if s′(a) > s′(b).

Corollary 5.1.4. The Sum Big voting system and the Borda Count voting system will

always produce the same societal preference order and f(P ) = f ′(P ).

Proof. Let A = {a1, a2, . . . , an} where n = |A|. Assume in an election using the Sum Big

method with profile P , the societal preference order was

a1 > a2 > . . . > an

such that f(P ) = {a1}. This means that s(a1) > s(a2) > . . . > s(an). By Theorem 5.1.3,

this means when using the Borda Count method on P , s′(a1) > s′(a2) > . . . > s′(an).

This means Borda Count would produce the societal preferential order below

a1 > a2 > . . . > an,
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the same as Sum Big, and f ′(P ) = {a1} = f(P ).

Corollary 5.1.5. Let P be a profile and let a ∈ A. If a ∈ fW (P ) and a ∈ fL(P ), then

a ∈ f ′(P ).

Proof. Let P be a profile and let a ∈ A. Suppose the Win Big and Lose Big method

was used on P , resulting in a ∈ fW (P ) and a ∈ fL(P ). By Theorem 4.1.10, this mean

a ∈ f(P ). By Corollary 5.1.4, since f(P ) = f ′(P ), a ∈ f ′(P ).

Thus, we can conclude that since the Sum Big method aggregates and assigns points

proportionally to how the Borda Count method does, producing the same societal pref-

erence order, that the Sum Big method satisfies the same fairness criteria as the Borda

Count voting system. See Figure 5.1.1. for a complete summary on which voting systems

satisfies which unique set of fairness criteria.
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Figure 5.1.1. Voting System’s and their Fairness Criteria



6
Future Work

After finding this connection between the Sum Big method and the Borda Count method,

we wanted to see if any sequence of weights, when reversed and added, would be some

affine transformation of Borda Count. In some quick examples, one can see that this is

not true. So what is it about the triangle numbers that makes this connection.

We also wanted to come up with a method to use the Lose Big, Win Big, and Sum Big

weighted vector on bucket posets and see if the Sum Big’s weighted vector was an affine

transformation of the partial Borda Count method. Refer to [2] for more information on

partial Borda.
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