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Abstract

Tverberg’s theorem states that any set of (q − 1)(d + 1) + 1 points in Rd can be partitioned
into q disjoint subsets whose convex hulls intersect. Topologically, any continuous map f :
∂∆(q−1)(d+1) → Rd has q disjoint faces of the simplex ∂∆(d+1)(q−1) whose images intersect,
given q is a prime power. The dimension of the simplex is tight, meaning if it is lower then
f will admit a full Tverberg partition with probability zero. This paper discusses continuous
functions f : ∂∆2d(q−2)+(q−1) → Cd, where the simplicial dimension is lower than required for a
full Tverberg partition. It results in having q disjoint faces of ∂∆2d(q−2)+(q−1) that, instead of
intersecting, contain points that form a regular q-gon. The van Kampen-Flores theorem increases
the dimension of the simplex in order to restrict the dimension of the q disjoint faces. Similarly, we
found that if 2d(q−2)+1 < qk < 2d(q−1), then any continuous function f : ∂∆2d(q−2)+2(q−1) →
Cd has a q-gon partition such that the q disjoint faces all come from the k-skeleton.
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1
Introduction

In 1921 Radon proved that any set of d + 2 points in Rd can be partitioned into two disjoint

subsets whose convex hulls intersect.[9] The problem was reformulated to looking at affine maps

f : ∆d+1 → Rd, where ∆d+1 is an (d + 1)-dimensional simplex, having 2 disjoint faces of ∆d+1

whose images intersect. This naturally led to the question: if this is true for affine maps, is it also

true for continuous maps? This was addressed with the Topological Radon Theorem, proven by

Bajmóczy and Bárány in 1979.[1]

Tverberg’s theorem is a generalization of Radon’s theorem, stating that any set of (q− 1)(d+

1) + 1 points in Rd can be partitioned into q subsets whose convex hulls intersect. [13] In 1959,

Birch proved Tverberg’s Theorem for d = 2.[4] However, it was not until 1966 that Tverberg

proved it for all d using algebraic topology.

Similarly to Radon’s theorem, Tverberg’s theorem is equivalent to saying that for any affine

map f : ∆(q−1)(d+1) → Rd, there are q disjoint faces of ∆(q−1)(d+1) whose images intersect,

again shifting it from a question of convex geometry to a question of algebraic topology. The

conjecture of whether we can replace our affine maps with non-affine continuous maps is known

as the Topological Tverberg theorem. Unlike Radon’s theorem, moving from affine maps to

continuous maps gets messy with different values of q. Bárány, Shlosman, and Szűcs [2] proved
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it for prime q in 1981. In 1987, Özaydin [8] proved it for a prime power q, and in 2014 Frick [6]

disproved it for all non-prime powers.

It was then asked whether we could restrict where the intersecting disjoint faces were coming

from on the simplex, raising a question of restricting the dimension of our disjoint faces. Van

Kampen and Flores found for Radon’s theorem, if d is even, then we can find two disjoint faces of

dimension at most d
2 that form a Radon partition.[5] From there Frick showed that if k ≥

⌈ q−1
q d
⌉
,

then we can find a full Tverberg partition where the dimensions for all of the disjoint faces are

less than or equal to k.

The number of points in Tverberg’s theorem is incredibly tight, meaning that if we have

fewer than (q − 1)(d + 1) + 1 points in Rd, there will not be a full Tverberg partition with

probability one. However, there do exist collections of n < (q− 1)(d+ 1) + 1 points that admit a

full q-fold Tverberg partition. This happens when the points are not in strong general position

[3]; strong general position considers the affine hulls of all possible q partitions of our points,

relating the codimension of their intersection to the sum of their codimension. As Perles and

Sigron showed in [10], when our points are in strong general position, then any collection of

points n < (q − 1)(d + 1) will not admit a full Tverberg partition; in fact, not only will the

convex hulls of our partitions not intersect, but neither will the affine hulls. A set of points is in

strong general position with probability one, which demonstrates the optimality of Tverberg’s

theorem.[10]

Let f : ∆N → Rd be continuous, like in the topological Tverberg Theorem. Our project

considers when N < (q − 1)(d + 1). Since the dimension for Tverberg’s theorem is tight, we

know, generically, we will not get an intersection of disjoint faces. However, using finite Fourier

analysis [4], we were able to show that, if N = d(q−2)+(q−1), then there will be q disjoint faces

whose images contain points that form a regular q-gon [6]. In the affine case, this is equivalent

to saying if we have d(q − 2) + (q − 1) points in Rd, then we can partition our points into q

subsets whose convex hulls contain points that form a regular q-gon.
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We then looked at where we can force these disjoint faces to come from on our simplex, similar

to van Kampen-Flores. We show if N = 2d(q − 2) + 2(q − 1) and 2d(q − 2) ≤ qk < 2d(q − 1),

then there exist q disjoint faces of dimension at most k whose images contain points that form

a regular q-gon. Let k =

⌈
2(q−2)
q d

⌉
= 2d(q−2)+r

q . If r < 2d, then we will always find a q-gon

partition whose points come from the k-skeleton, meaning the dimension of the disjoint faces

they come from has at most dimension

⌈
2(q−2)
q d

⌉
. For the affine case, this equivalently says if

we have N + 1 points in Cd, and 2d(q − 2) ≤ qk < 2d(q − 1), then there is some collection of at

most q(k+ 1) points that has a q-partition where the convex hulls the partitions contain points

that form a regular q-gon.
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2
Background

2.1 Preliminaries and Background Theorems

Definition 2.1.1. A set X ⊆ Rd is convex if for every two points x, y ∈ X, the line segment

from x to y, defined by l(x, y) = (1− t)x+ ty for all t ∈ [0, 1], is also contained X.

Let Y = {y1, . . . , yq} be a collection of points. A convex combination of the elements of Y

is a sum

α1y1 + · · ·+ αqyq

where αi ∈ [0, 1] for all i ∈ {1, . . . , q} and α1 + · · ·+ αq = 1.

The convex hull of Y , denoted conv Y , is the set of all convex combinations of Y , being the

smallest convex set that contains Y .

Theorem 2.1.2 (Radon’s Theorem, 1921). [9] Every set X = {x1, . . . , xd+2} of d+ 2 points in

Rd can be partitioned into two disjoint subsets whose convex hulls intersect.

Example 2.1.3. Let d = 2. Then every set of d + 2 = 4 points x1, . . . , x4 can be partitioned

into two disjoint subsets whose convex hulls intersect. They come in two basic configurations:
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Definition 2.1.4. An affine space is like a shifted vector space, with no point acting as the

origin. An affine map is a function f : X → Y , where X and Y are affine spaces, such that

f((1−t)x+ty) = (1−t)f(x)+t·f(y). Affine maps preserve points, lines, and parallel relationships.

Let A be an affine space. The points {x1, . . . , xk} ∈ A are affinely independent if the vectors

{x2 − x1, . . . , xk − x1} are linearly independent.

Let B be a set. An affine combination of the elements of B is the sum
∑

i αibi where bi ∈ B

and αi ∈ R for all i such that
∑

i αi = 1.

The affine hull of B, denoted aff B, is the set of all affine combinations of elements of B.

This is the smallest affine space that contains B. For example, the affine hull of a set of three

affinely independent points is the plane going through them.

Definition 2.1.5. A simplex ∆ is the convex hull of a set of affinely independent points. These

affinely independent points are called vertices. A face of the simplex is the convex hull of an

arbitrary set of vertices. The simplices ∆0,∆1,∆2, and ∆3 are shown below:

Although Radon’s Theorem is a question of convex geometry, we can also view it from an

algebraic topology perspective. We do so by considering affine maps from a (d+ 1)-dimensional

simplex to the plane.[7]
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Theorem 2.1.6 (Affine Radon Theorem). [9] For any affine map f : ∆d+1 → Rd, where

∆d+1 is a (d + 1)-dimensional simplex, there exist two disjoint faces σ1, σ2 of ∆d+1 such that

f(σ1) ∩ f(σ2) 6= ∅.

The Theorems 2.1.2 and 2.1.6 are equivalent, except in the degenerate case where the affine

map sends multiple vertices to the same point. As described by Matoušek in [7], if the vertices

of the simplex map down to our collection of points, then the face containing those vertices will

map to the convex hull of our collection of points.

Theorem 2.1.6 naturally leads to considering all continuous maps, rather than just the affine

case. Radon’s theorm holds for all continuous functions and all simplicial dimensions. The dis-

tinction between the affine Radon theorem and topological Radon theorem is shown below, from

[3] (p.464), where the affine map on the left and a non-affine continuous map on the right.

Theorem 2.1.7 (Topological Radon Theorem). [9] For any continuous function f : ∆d+1 → Rd,

where ∆d+1 is a (d+ 1)-dimensional simplex, there exist two disjoint faces σ1, σ2 of ∆d+1 such

that f(σ1) ∩ f(σ2) 6= ∅.

Example 2.1.8. Below are two examples of the Topological Radon Theorem, from [7] (p. 89).

The left image is when d = 1, so we are looking at the 2-dimensional simplex. The right image

is where d = 2, so we are looking at the 3-dimensional simplex.
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Radon’s theorem induces the question of whether we can achieve something similar with more

than two disjoint faces.

Theorem 2.1.9 (Tverberg’s Theorem, 1966). [13] Any set of (d + 1)(q − 1) + 1 points in Rd

can be partitioned into q disjoint sets A1, . . . , Aq such that conv A1 ∩ · · · ∩ conv Aq 6= ∅.

This is called a q-fold Tverberg partition. Note that Radon’s Theorem is Tverberg’s The-

orem when q = 2.

Example 2.1.10. Below is a 3-fold Tverberg partition with d = 2. Observe that there are

(q− 1)(d+ 1) + 1 = (3− 1)(2 + 1) + 1 = 7 points in R2. The different colors indicate the convex

hulls of our 3 disjoint sets. Notice that they intersect at the red point, thus admitting a full

Tverberg partition.

Example 2.1.11. Below is a 4-fold Tverberg partition with d = 2. Note that there are (q −

1)(d + 1) + 1 = (4 − 1)(2 + 1) + 1 = 10 points in R2. Here the convex hulls of our disjoint sets
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are the two triangles and two line segments. Observe that they intersect at the red point, thus

admitting a full Tverberg partition.

Similarly to Radon’s theorem, we can shift this from a question of convex geometry to a

question of algebraic topology by looking at affine maps from a (q − 1)(d + 1)-dimensional

simplex to Rd.

Theorem 2.1.12 (Affine Tverberg Theorem). [13] Let d, q ∈ Z such that d ≥ 1 and q ≥ 2. Let

N = (q − 1)(d + 1). Every affine map f : ∆N → Rd has q pairwise disjoint faces σ1, . . . , σq of

∆N such that f(σ1) ∩ · · · ∩ f(σq) 6= ∅.

Again, this naturally leads to the question of whether the affine Tverberg theorem can be

extended to all continuous maps. While the topological Radon theorem is always true, the

topological Tverberg theorem depends on the value of q.

Theorem 2.1.13 (Topological Tverberg Theorem). [13] Let d, q ∈ Z such that d ≥ 1 and q ≥ 2.

Let N = (q − 1)(d + 1). If q is a prime power, than every continuous map f : ∆N → Rd has q

pairwise disjoint faces σ1, . . . , σq of ∆N such that f(σ1) ∩ · · · ∩ f(σq) 6= ∅.

Dissimilar to the affine Tverberg theorem, the topological Tverberg theorem requires the

number of partitions q to be a prime power. In 1989, Özaydin proved in [8] that the topological

Tverberg theorem is true for prime powers, and in 2014 Frick proved the inverse in [6].
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3
Strong General Position

3.1 Strong General Position

Sometimes, even if we have fewer points than Tverberg’s Theorem says is necessary for a full

Tverberg partition, we still get a full Tverberg partition. As shown by Perles and Sigron in [10],

this happens when the points are not in strong general position. Because this paper considers

collections of points with fewer than (q − 1)(d + 1) + 1 points, some of which will admit a full

Tverberg partition, we must consider when our points are in strong general position and when

they are not.

Definition 3.1.1. [10] A set S of points in Rd is in general position if every set of d+1 points

of S is affinely independent.

This is a pretty weak condition. It means that no collection of l ≤ d + 1 points in Rd lie on

the same (l − 2)-flat. For example, no collection of 3 points in general position are colinear in

R2, and no collection of 4 points in general position are coplanar in R3.

We define dim ∅ := −1. Let P be a set of points. We denote the dimension of the affine hull

of P with dim aff P .

Proposition 3.1.2. Let S be a set of |S| points. The points in S are all affinely independent if

and only if dim aff S = |S| − 1.
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Proof. Suppose all points in S are affinely independent. Let S be a set with one point in it.

Note that the affine space of S has dimension zero, so dim aff S = |S| − 1. If we add an affinely

independent point, then the dimension of the S goes up by one, and dim aff S increases linearly

at the same rate as |S|. Hence dim aff S = |S|−1 for all collections of affinely independent points

S.

Suppose dim aff S = |S| − 1. Suppose there exist distinct points x1, x2, x3 ∈ S such that

x1, x2, x3 are affinely dependent, while all other points are affinely independent. Let T = S −

{x1, x2, x3}. Then dim aff S = dim aff T ∪{x1, x2, x3} = dim aff T +dim aff {x1, x2, x3} = [(|S|−

3) − 1] + 1 = |S| − 3 6= |S| − 1, which is a contradiction. Hence all points in S are affinely

independent.

Therefore the points of S are affinely independent if and only if dim aff S = |S| − 1.

Remark 3.1.3. [10] A set of points S ⊂ Rd is in general position if and only if dim aff F =

min(d, |F | − 1) for all F ⊆ S.

Proof. Suppose the set of points S is in general position. Let F ⊆ S. Then F is also in general

position. Suppose d + 1 ≤ |F |, meaning d ≤ |F | − 1 = dim aff F . We know dim aff F = d,

because F ⊆ S ⊆ Rd, so the largest affine set F can be in is Rd. Suppose |F | < d+ 1. Hence by

proposition 3.1.2, we know dim aff F = |F |−1 < d. This tells us that dim aff F = min(d, |F |−1)

for all F ⊆ S.

Suppose dim aff F = min(d, |F |−1). Let F ⊆ S be such that |F | ≤ d+1. Suppose |F | = d+1.

Then |F | − 1 = d, so by 3.1.2, we know all points of F are affinely independent. Suppose

|F | = p+ 1 < d+ 1. Then F can exist in at most p dimensions of R, meaning F ⊂ Rp. Then by

3.1.2, the points of F are affinely independent.

Thus a set of points S ⊂ Rd is in general position if and only if dim aff F = min(d, |F | − 1)

for all F ⊆ S.

Definition 3.1.4. [10] A finite set S ⊂ Rd is in strong general position if:

(1) S is in general position.
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(2) For any collection {F1, . . . , Fq} of q pairwise disjoint subsets of S (1 ≤ q ≤ |S|),

d− dim

q⋂
v=1

aff Fv = min

(
d+ 1,

q∑
v=1

(d− dim aff Fv)

)
.

This means that for any collection of q subsets, the codimension of their intersection equals

the sum of their codimensions. Below is an example, where q = 3 and d = 2:

Since no three points are colinear, then our collection of points is in general position. Note

that the intersection
⋂3
v=1 aff Fv = ∅, as there is no total intersection of our affine hulls. Thus

dim
⋂3
v=1 aff Fv = −1. Observe that each affine hull is a line segment, so dim aff Fv = 1 for all

v. Thus

d− dim

3⋂
v=1

aff Fv = 2− (−1)

= min(3, 3)

= min

(
2 + 1,

3∑
v=1

(2− 1)

)

= min

(
d+ 1,

3∑
v=1

(d− dim aff Fv)

)

We would have to check for all 3-partitions of the points, but we would find that they are indeed

in strong general position.

Below is an example of a collection of points that are not in strong general position:
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Observe that these points have a Tverberg partition, even though they have one fewer

points than required. It is because these points are not in strong general position. Notice how

dim
⋂3
v=1 aff Fv = 0, so d− dim

⋂3
v=1 aff Fv = 2. However, each disjoint set Fv has dimension 1.

Thus

d− dim

3⋂
v=1

aff Fv = 2− 0

6= 3

= min

(
2 + 1,

3∑
v=1

(2− 1)

)

= min

(
d+ 1,

3∑
v=1

(d− dim aff Fv)

)

Because d−dim
⋂q
v=1 aff Fv = 2 6= 3 = min (d+ 1,

∑q
v=1(d− dim aff Fv)), then the collection of

points is not in strong general position.

Definition 3.1.5. [10] The Tverberg number T (q, d) is defined by T (q, d) = (d+1)(q−1)+1

with d, q ∈ N, as that is the number of points needed to ensure a q-fold Tverberg partition in

Rd.

This number T (q, d) is extremely tight. If we have N = T (q, d) − 1 points in Rd that are in

strong general position, there will not be a q-fold Tverberg partition.

Example 3.1.6. Let S be a set of N = (q − 1)(d + 1) = T (q, d) − 1 points in Rd that are

in strong general position. For any A1, . . . , Aq pairwise disjoint subsets of S, the intersection⋂q
i=1 aff (Ai) = ∅.



3.1. STRONG GENERAL POSITION 15

Proof. We want d− dim
⋂q
i=1 aff Ai = d+ 1, because it implies dim

⋂q
i=1 aff Ai = −1, meaning⋂q

i=1 aff Ai = ∅. Because S is in strong general position, we know that d − dim
⋂q
v=1 aff Fv =

min (d+ 1,
∑q

v=1(d− dim aff Fv)). If min (d+ 1,
∑q

v=1(d− dim aff Fv)) = d + 1, then we are

done.

Thus all we have to show is that
∑q

i=1(d− dim aff Ai) ≥ d+ 1. Note that by remark 3.1.2, we

know that dim aff Ai = |Ai| − 1. Hence the sum
∑q

i=1 dim aff Ai =
∑q

i=1 |Ai| − 1 =
∑q

i=1 |Ai| −∑q
i=1 1 = N − q. Therefore

q∑
i=1

(d− dim aff Ai) =

q∑
i=1

d−
q∑
i=1

dim aff Ai

= qd− (N − q)

= q(d+ 1)− (q − 1)(d+ 1)

= (q − (q − 1))(d+ 1) = d+ 1.

Hence d−
⋂q
i=1 aff (Ai) = d+ 1, so dim

⋂q
i=1 aff (Ai) = −1. Thus

⋂q
i=1 aff (Ai) = ∅.

We know from Tverberg’s theorem that if we have at least T (q, d) points in Rd we can ensure

a q-fold Tverberg partition. What example 3.1.6 tells us is that a collection of points has a q-fold

Tverberg partition if and only if we have at least T (q, d) points in Rd.

As shown by Perles and Sigron in [10], points are in strong general position with probability

one. Thus we will get a Tverberg partition with fewer than T (q, d) points with probability zero.
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4
Fourier Analysis for Finite Cyclic Groups

4.1 L2(G)

Let G = Zm be a finite abelian cyclic group. Let L2(G) be defined as the set of all functions

from G to the complex numbers:

L2(G) := {all f : G→ C}.

The set L2(G) is a complex vector space under function addition and scalar multiplication, and

is equivalent to C[G].

It also comes equipped with a complex-valued inner product.

Definition 4.1.1. [12] For any f1, f2 ∈ L2(G), let

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g),

where z is the complex conjugate of z for all z ∈ C. 4

Remark 4.1.2. [12]The inner product satisfies the following properties:

(a) 〈f1, f2〉 = 〈f2, f1〉 for all f1, f2 ∈ L2(G),

(b) 〈f, f〉 ≥ 0 for all f ∈ L2(G), and 〈f, f〉 = 0 if and only if f is the zero-function,

(c) 〈f1 +f2, f3〉 = 〈f1, f3〉+ 〈f2, f3〉 and 〈f1, f2 +f3〉 = 〈f1, f2〉+ 〈f1, f3〉 for all f1, f2, f3 ∈ L2(G),

(d) 〈λf1, f2〉 = λ〈f1, f2〉 and 〈f1, λf2〉 = λ〈f1, f2〉 for all f1, f2 ∈ L2(G) and any scalar λ ∈ C.
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Proof. (a) Observe 〈f1, f2〉 = 1
|G|
∑

g∈G fq(g)f2(g) = 1
|G|
∑

g∈G f1(g)f2(g) = 1
|G|f1(g)f2(g) =

〈f2, f1〉

(b) Let f(g) = a+bi where a, b ∈ R. Then 〈f, f〉 = 1
|G|
∑

g∈G(a+bi)(a−bi) = 1
|G|
∑

g∈G a
2+b2,

which is always positive, unless a = b = 0 for all g ∈ G.

(c) Observe 〈f1 + f2, f3〉 = 1
|G|
∑

g∈G(f1(g) + f2(g))f3(g) = 1
|G|
∑

g∈G f1(g)f3(g) +

f2(g)f3(g) = 〈f1, f3〉 + 〈f2, f3〉. Also observe 〈f1, f2 + f3〉 = 1
|G|
∑

g∈G f1(g)(f2(g) + f3(g)) =

1
|G|
∑

g∈G f1(g)f2(g) + f1(g)f3(g) = 〈f1, f2〉+ 〈f1, f3〉.

(d) Observe 〈λf1, f2〉 = 1
|G|
∑

g∈G λf1(g)f2(g) = λ
|G|
∑

g∈G f1(g)f2(g) = λ〈f1, f2〉, and

〈f1, λf2〉 = 1
|G|
∑

g∈G f1(g)λf2(g) = λ
|G|
∑

g∈G f1(g)f2(g) = λ〈f1, f2〉.

The vector space L2(G) has a norm, called the L2-norm, defined by ||f || =
√
〈f, f〉.

4.2 Classification of Homomorphisms of G to S1 ⊂ C

We want to construct a particularly nice orthonormal basis for L2(G) so we can decompose any

function f ∈ L2(G) into a linear combination of the basis elements. The nicer the basis elements,

the easier the decompositions are to work with. It turns out that the set of homomorphisms

χ : G→ S1 from G to the unit circle forms such a basis. [12]

Definition 4.2.1. Let H1(G) be defined by

H1(G) := {homomorphisms χ : G→ C∗},

where C∗ = C− {0}. 4

Lemma 4.2.2. [12] Let G = Zm be a cyclic group, and let ξm = e
2πi
m be the mth primitive root

of unity. Then

H1(G) = {χε | 0 ≤ ε < m},

where for each 0 ≤ ε < m, we define χε : G→ C by raising ξm to successive powers of ε:

χε(k) = [ξεm]k .
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Proof. Let χε : G→ C be defined by

χε(k) = [ξεm]k

for all 0 ≤ ε < m. Let j, k ∈ G. Then

χε(k + j) = [ξεm]k+j = [ξεm]k[ξεm]j = χε(k) · χε(j).

Hence χε is a homomorphism, so {χε | 0 ≤ ε < m} ⊆ H1(G).

Let φ ∈ H1(G). Since φ is a homomorphism, then 1 = φ(0) = φ(m) = φ(1 + 1 + · · · + 1) =

φ(1) + φ(1) + · · ·+ φ(1) = φ(1)m in G. Hence φ(1) is an mth root of unity, meaning φ(1) = ξtm

for some t ∈ Z. Since 1 is a generator for G, then φ(k) = φ(1 + · · · + 1) = φ(1) + · · · + φ(1) =

φ(1)k = (ξtm)k = ξtkm will also be an mth root of unity for all k ∈ G. Hence φ ∈ {χε | 0 ≤ ε < m}.

Therefore H1(G) ⊆ {χε | 0 ≤ ε < m}. Thus H1(G) = {χε | 0 ≤ ε < m}.

Note that H1(G) forms a group under multiplication. As shown above, there is a bijective

correspondence between G and H1(G), defined by ε 7→ χε. Let L : G → H1(G) be a bijection

defined by L(ε) = χε. Then L(ε + δ) = χε+δ = ξε+δm = ξεmξ
δ
m = χε · χδ = L(ε)L(δ). Hence L is

also a homomorphism. Thus G and H1(G) are isomorphic. [12]

4.3 H1(G) as an Orthogonal Basis for L2(G)

To verify that H1(G) is indeed an orthonormal basis for L2(G), we must first confirm that H1(G)

is an orthonormal set. We will then show that the elements both are linearly independent and

span, thus forming a basis.

An orthonormal set is one where all of the elements are both orthogonal, meaning the inner

product of any two distinct elements is 0, and normal, meaning their norm is 1. Hence we must

show that the inner product of any two elements is 0 if they are distinct and 1 if they are not.

Lemma 4.3.1. [12]

〈χε, χδ〉 =

{
0 if ε 6= δ

1 if ε = δ.
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Proof. Let ξm = e
2πi
m , and let 0 ≤ ε < m. We will first show that

1

m

m−1∑
k=0

ξkεm =

{
0 if ε 6= 0

1 if ε = 0.
(4.3.1)

Case 1: Suppose ε 6= 0. Then

1

m

m−1∑
k=0

ξkεm =
1

m
[1 + ξεm + ξ2εm + · · ·+ ξ(m−1)εm ].

Observe

1 + ξεm + · · ·+ ξ(m−1)εm =
∞∑
j=0

ξjεm −
∞∑
j=m

ξjεm =
1

1− ξεm
− ξmεm

1− ξεm
=

1− 1

1− ξεm
= 0.

Thus 1
m

∑m−1
k=0 ξ

kε
m = 0. We can also tell that summing all mth roots of unity together equals

zero because they form a regular polygon centered at zero. Below is an example when m = 5:

Adding five vectors would get us back to the origin.

Case 2: Suppose ε = 0. Then

1

m

m−1∑
k=0

ξkεm =
1

m

m−1∑
k=0

ξ0m =
1

m

m−1∑
k=0

1 =
1

m
·m = 1.

Hence

1

m

m−1∑
k=0

ξkεm =

{
0 if ε 6= 0

1 if ε = 0.

Next we will show that 〈χε, χδ〉 =

{
0 if ε 6= δ

1 if ε = δ.
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Let G = Zm. Let χε, χδ ∈ H1(G) such that χε : 1 7→ ξεm and χδ : 1 7→ ξδm. Then by 4.3.1

〈χε, χδ〉 =
1

|G|
∑
g∈G

χε(g)χ−1δ (g) =
1

|G|
∑
g∈G

ξεgmξ
−δg
m =

1

|G|
∑
g∈G

ξg(ε−δ)m =

{
0 if ε 6= δ

1 if ε = δ.

Thus the set H1(G) is orthonormal.

We wind up getting that the elements of H1(G) are linearly independent for free. Note that

any orthogonal elements are linearly independent, and since H1(G) is an orthonormal set, all of

its elements are orthogonal. Thus H1(G) is linearly independent.

Lastly, we must show that H1(G) spans. To show that it spans, we will show any f ∈ L2(G) can

be expressed as a linear combination of χε ∈ H1(G). Namely, we will show that any f ∈ L2(G)

can be written as f =
∑

ε cεχε. We will start by showing that if f can be written as a linear

combination f =
∑

ε cεχε, then cε must equal the inner product of f and χε. We will then show

that implies f =
∑

ε cεχε. [12]

Lemma 4.3.2. [12] (a) Let f ∈ L2(G). Suppose f =
∑

ε cεχε could be expressed as a linear

combination of χε. Then

cε = 〈f, χε〉 =
1

|G|
∑
g∈G

f(g)χ−1ε (g).

(b) Any f ∈ L2(G) can be decomposed as

f =
∑
ε

cεχε.

Proof. (a) Suppose f =
∑

ε cεχε = c0χ0 + · · ·+cq−1χq−1 can be written as a linear combination

of the χε. Then

〈f, χi〉 =

〈∑
j∈G

cjχj , χi

〉
=
∑
j∈G

cj〈χj , χi〉 4.1.2

= c0〈χ0, χi〉+ · · ·+ ci〈χi, χi〉+ · · ·+ cm−1〈χm−1, χi〉

= ci. 4.3.1

Thus if f =
∑

ε∈G ciχi, then ci = 〈f, χi〉 = 1
|G|
∑

g∈G f(g)χ−1ε (g).
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(b) Let G = Zm. Let f ∈ L2(G). Let cε = 〈f, χε〉 = 1
|G|
∑

g∈G f(g)χ−1ε (g). Then

∑
ε∈G

cεχε(a) =

m−1∑
ε=0

(
1

m

m−1∑
k=0

f(k)ξ−kεm

)
ξaεm

=
1

m

m−1∑
k=0

(
m−1∑
ε=0

f(k)ξ−kεm

)
ξaεm

=
1

m

(
m−1∑
k=0

f(k)
m−1∑
ε=0

ξ−kεm

)
ξaεm

=
1

m

m−1∑
k=0

f(k)
m−1∑
ε=0

ξε(a−k)m

=
1

m

[
f(0)

m−1∑
ε=0

ξε(a)m + · · ·+ f(a)

m−1∑
ε=0

ξε(a−a)m + · · ·+ f(m− 1)

m−1∑
ε=0

ξε(a−(m−1))m

]

=
1

m
[f(0) · 0 + · · ·+ f(a) · 1 + · · ·+ f(m− 1) · 0] 4.3.1

= f(a).

Hence any element f ∈ L2(G) can be decomposed as f =
∑

ε cεχε.

The coefficients cε are called the Fourier Coefficients, or Fourier Transforms of f with

respect to χε. The decomposition is called the Fourier Inversion Formula, as it completely

determines the functions f ∈ L2(G) simply by knowing the Fourier Transforms.

Finite Fourier analysis will help us figure out whether the continuous function f : ∂∆n → Cd

admits a Tverberg partition. We will do so by indexing the points on our simplex by a finite

abelian group G. Then we can use the Fourier decomposition to see if there is a collection of

points on our simplex that makes f constant, showing they must intersect in the image. We will

know if the function f is constant based on how many Fourier coefficients cε are equal to zero.

[11]



5
A Topological Description

5.1 Finite Fourier Approach to the Topological Tverberg Theorem

Suppose we are looking for a q-fold Tverberg partition from a simplex ∆n. We can index all

collections of q points x1 ∈ σq, . . . , xq ∈ σq from disjoint faces σ1, . . . , σq of ∂∆n by any group

of order |G| = q.

Let f = (f1, . . . , fd) : ∂∆n → Cd be a continuous map. From f , we get a collection of maps

F1, . . . , Fd : G→ C, one for each dimension of Cd, defined by Fi(g) = fi(xg).[11] If we let G = Zq

be a finite cyclic group, then our functions F1, . . . , Fd have a nice Fourier decomposition:

Fi(g) =
∑
ε∈G

c(i,ε)χε(g)

where

c(i,ε) =
1

|G|
∑
v∈G

fi(xv)χ
−1
ε (v) ∈ C.

Recall χε(g) = ξεgq for ε, g ∈ G.

Observe Fi =
∑

ε∈G c(i,ε)χε = c(i,0)χ0 +
∑

ε6=0 c(i,ε)χε = c(i,0) +
∑

ε6=0 c(i,ε)χε; note χ0 is trivial,

as χ0(t) = ξ0·tq = 1 for all t ∈ G. Suppose Fi is a constant map for all i ∈ {1, . . . , d}. Then fi is

constant for all i ∈ {1, . . . , d}. Hence f is a constant function, so f(xg) = k for all g ∈ G, where

k ∈ Cd is some constant. Hence all of our q points x0 ∈ σ0, . . . , xq−1 ∈ σq−1 from disjoint faces

σ0, . . . , σq−1 map to the single point k. That is a Tverberg partition.[11]
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Lemma 5.1.1. [11] Let f = (f1, . . . , fd) : ∂∆n → Cd be a continuous function. Let {xg}g∈G be

a collection of q points x0 ∈ σ0, . . . , xq−1 ∈ σq−1 from disjoint faces σ0, . . . , σq−1 of ∂∆n, where

G = Zq. Let F1, . . . , Fd : G → C be defined by Fi(g) = fi(xg), and let Fi(g) =
∑

ε∈G c(i,ε)χε(g)

be the Fourier decomposition of Fi for all i ∈ {1, . . . , d}. If c(i,ε) = 0 for all i ∈ {1, . . . , d} and

all ε 6= 0, then f admits a full Tverberg partition.

Proof. Suppose c(i,ε) = 0 for all i ∈ {1, . . . , d} and all ε 6= 0. Then

Fi = c(i,0) +
∑
ε6=0

c(i,ε)χε = c(i,0) +
∑
ε 6=0

0 · χε = c(i,0),

which is a constant map. Thus, as explained above, f admits a Tverberg partition.

We now know that if all Fourier coefficients for the decomposition of Fi equal zero except

c(i,0), then we get a full Tverberg partition. However, we cannot always ensure that there will

be a collection of q points from disjoint faces of ∂∆n that will make the Fourier coefficients zero.

We can test whether there exists a collection of points that make the Fourier coefficients zero

with the following theorem by Simon from [11].

Theorem 5.1.2. [11] Let q ∈ N and let ε1, . . . , εm ∈ Zq.

Let n = 2dm+ (q − 1). If the vanishing polynomial

h(y) = Πm
j=1(εjy)d

is non-zero in Z[y]/qZ, then for any continuous map f : ∂∆n → Cd, there exist q points of ∂∆n

from pairwise disjoint faces such that c(i,εj) = 0 for all j ∈ {1, . . . ,m} and all i ∈ {1, . . . , d} in

the Fourier expansion.

Here m is the number of Fourier coefficients we want to set to zero. The vanishing polynomial

of 5.1.2 will be pivotal in proving whether a function f : ∂∆n → C has a Tverberg partition.

Example 5.1.3. Let f : ∂∆n → Cd be a continuous function, where n = 2dm + (q − 1) for

q prime. Let m = q − 1, because if we can eliminate q − 1 coefficients c1, . . . , cq−1, then f will

admit a full Tverberg partition. Then the vanishing polynomial

h(y) = [y(2y) · · · (q − 1)y]d = [(q − 1)!]dyd(q−1).
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Note that by Wilson’s Theorem, because q is prime then (q − 1)! ≡ −1 (mod q), so

h(y) = [(q − 1)!]dyd(q−1) ≡ (−1)dyd(q−1)

is non-zero in Z[y]/qZ. Then by 5.1.1 and 5.1.2 there exist q points x1, . . . , xq of disjoint faces

σ1, . . . , σq such that f(x1) = · · · = f(xq).

Example 5.1.4. Let f : ∂∆n → C be a continuous function and let q = 6, meaning n =

2(1)(6 − 1) + (6 − 1) = 15. However, not every continuous function f : ∆15 → C can be

guaranteed to admit a full 6-fold Tverberg partition [5], as the vanishing polynomial is

h(y) = Πq−1
j=1εjy = y(2y)(3y)(4y)(5y) = 120y5 ≡ 0

in Z[y]/6Z. Thus Theorem 5.1.2 does not apply.

However, suppose all Fourier coefficients except c0 and c3 were zero. Then the vanishing

polynomial is

h(y) = y(2y)(4y)(5y) = 40y4 ≡ 4y4

in Z[y]/6Z. Since the vanishing polynomial is not zero, then we can eliminate all coefficients

except c0 and c3. Therefore

f(xg) = c0 + c3χ
3
6(g) = c0 + c3ξ

3g
6 = c0 + c3(−1)g.

Thus if g is odd then f(xg) = c0 − c3 and if g is even then f(xg) = c0 + c3. This means that

f(x1), f(x3), f(x5) get mapped to one point, and f(x0), f(x2), f(x4) get mapped to another

point.
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Now we will show that Theorem 5.1.2 implies that we get a full Tverberg partition when q is

an odd prime.

Example 5.1.5. Let f : ∂∆n → Rd be a continuous function, where n = 2dm + (q − 1) for q

prime. Let cε be a Fourier coefficient. Note that

cε =
∑
g∈G

f(xg)χ
−1
ε (g) =

∑
g∈G

f(xg)χ
−1
ε (g) =

∑
g∈G

f(xg)χ
−1
ε (g).

Because f(xg) is real-valued, then f(xg) = f(xg). Observe χ−1ε (g) = ξ
−(−gε)
q = [ξ−ε·gq ]−1 =

χ−1−ε (g). Then

cε =
∑
g∈G

f(xg)χ
−1
−ε (g) = c−ε.

If cε = 0, then its conjugate is zero, meaning c−ε = 0 as well. Hence for a full Tverberg

partition, we need only set m = q−1
2 Fourier coefficients to zero. Then n = 2d

(
q−1
2

)
+ (q− 1) =

d(q − 1) + (q − 1) = (d+ 1)(q − 1). The vanishing polynomial

h(y) =

[
y(2y) · · ·

(
q − 1

2

)
y

]d
=

[(
q − 1

2

)
!

]d
y
q−1
2
·d.

is non-zero in Z[y]/qZ. Then by 5.1.2 there exist q points x0, . . . , xq−1 from disjoint faces

σ0, . . . , σq−1 of ∂∆n such that f(x0) = · · · = f(xq−1), which we recall is the definition of a

full q-fold Tverberg partition.
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Example 5.1.6. Let f : ∂∆n → Cd be a continuous function, where n = 2(1)m+ (q − 1) for q

prime. Suppose we want to eliminate all Fourier coefficients except c0 and c1. Then the vanishing

polynomial is

h(y) = [(2y)(3y) · · · (q − 1)y]d = [(q − 1)!]dy(q−1)d ≡ (−1)dy(q−1)d

in Z[y]/qZ. Since the vanishing polynomial is never zero, we know we can kill all coefficients but

c0 and c1. Then

f(xg) = c0 + c1χq(g) = c0 + c1ξ
g
q .

By 4.3, we know the collection of points ξ0q , ξ
1
q , . . . , ξ

q−1
q form a regular q-gon, lying on the unit

circle centered at zero. The coefficient c1 does not change the shape, but rather makes the points

form a regular q-gon centered at zero on a circle of radius c1. By adding a c0, it shifts the circle

to be centered at c0. Hence the points form a regular q-gon centered at c0. Thus our collection

of points {f(xg)}q−1g=0 form a regular q-gon.

The proof of 5.1.2 follows a configuration-space/test-map scheme. First, we need a work-

ing understanding of group actions.

5.2 G-actions

Let G be a finite group, and let X be a topological space. The action of G on X is a function

φ : G×X → X where φ(g, x) = g ·x for all (g, x) ∈ G×X. A group action satisfies the following

properties:

(1) if e is the identity element of G, then φ(e, x) = x for all x ∈ X, and

(2) g1 · (g2 · x) = (g1 · g2) · x.

A G-action is free if there is no g ∈ G−{e} such that φ(g, x) = x. If there is some g ∈ G−{e}

such that φ(g, x) = x, then it is called a fixed point.

Example 5.2.1. Let G = Z2. We then get a Z2-action, which is a function φ : Z2 × X → X

such that φ(g2, x) = g2 · x = g(gx) = x.



28 5. A TOPOLOGICAL DESCRIPTION

For example, let X be a topological space. Then an example of a Z2-action on X×X coordinate

permutation, where φ : Z2× (X ×X)→ X ×X is defined by 1(x1, x2) = (x1+1, x1+2) = (x2, x1)

for all (x1, x2) ∈ X × X. The coordinate subsrcipts are evaluated in Z2. Note 0(x1, x2) =

(x1+0, x2+0) = (x1, x2). Observe 1(1(x1, x2)) = 1(x2, x1) = (x2+1, x1+1) = (x1, x2) = (1 +

1)(x1, x2). Hence φ is a group action.

Note that this Z2 action is not free, because if x1 = x2, then 1(x1, x2) = (x2, x1) = (x1, x2)

for all x1 ∈ X. This gives rise to the notion of the deleted product. The deleted product is

defined by

(X ×X)(2) := {(x, y) | x, y ∈ X and x 6= y}.

Observe that if we restrict our coordinate permutation Z2-action to the deleted product (X ×

X)(2), then it does become a free action.

Example 5.2.2. Let G = Zq be a restriction of the symmetric group action Sq. Let X be the

set of all collections of q points x = (x1, . . . , xq) from the boundary of the simplex ∂∆n. Then

the Zq-action on x would permute the points of x:

g · x = (xg+1, xg+2, . . . , xg+q) for all g ∈ G,

where the subscript g + n is evaluated in Zq for all n ∈ {1, . . . , q}. This action is not free. For

example, let x1 = · · · = xq. Then g · x = (xg+1, xg+2, . . . , xg+q) = x for all g ∈ G. However,

it becomes free if the points x ∈ ∂∆n instead come from the q-fold deleted product (∂∆n)×q(2),

where all of the points (x1, . . . , xq) come from pairwise disjoint faces.

Example 5.2.3. We can also look at the Z2 action from example 5.2.1 on Rd restricted to

the (d − 1)-sphere Sd−1. Let x ∈ Sd−1 be a point. Then the standard Z2-action is defined by

g · x = −x. Note that this is an antipodal action, meaning g · (−x) = −(g · x) for all x.

This Z2 action is free. For example, consider the S1 sphere in R2, being the unit circle. The

only point in R2 such that (x, y) = −(x, y) = (−x,−y) is the point (0, 0), which does not lie on

the unit circle. Hence this Z2-action has no fixed point.
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Example 5.2.4. Let G = Zp act on C∗, where C∗ = C − {0}. Let χε : G → C∗ be defined as

usual. Then G acts on C∗ with φ : G × C∗ → C∗ defined by left multiplication of χε, meaning

g · z = χε(g) · z for all g ∈ G and z ∈ C∗. Let x ∈ C∗. Then 0 · x = χε(0)x = ξε·0q x = x. Let

h, g ∈ G. Then h·(g ·x) = h·(χε(g)x) = χε(h)χε(g)x = ξhεq ξ
gε
q = ξ

(h+g)ε
q = χε(h+g)x = (h+g)·x.

Hence φ is a group action.

Given χε1 , . . . , χεd : G→ C∗, we have an action defined by componentwise left multiplication

of χεi for all i ∈ {1, . . . , d}. If z = (z1, . . . , zd) ∈ (C∗)d, then g · z = (χε1(g)x, . . . , χεd(g)x).

Note that this Zp-action is free on the unit sphere S1 ⊂ Cd.

5.3 The Borsuk-Ulam Theorem

The Borsuk-Ulam theorem is a critical tool in algebraic topology. Moving forward we will use it

analogously.

Definition 5.3.1. [7] Let X,Y be topological spaces with the standard Z2-action described in

5.2.3. An antipodal map f : X → Y is one where f(−x) = −f(x) for all x ∈ X. 4

Theorem 5.3.2 (Borsuk-Ulam). [7] Let n ≥ 0. Then for every antipodal map f : Sn → Rn

there exists some point x ∈ Sn such that f(x) = 0.

Example 5.3.3. Let h : R → S1 be defined by h(t) = (cos(t), sin(t)). Let f : S1 → R be

continuous. Note that f ◦ h : R → R is continuous. Let g : R → R be defined by g(x) =

(f ◦ h)(x) − (f ◦ h)(−x); note that g is also continuous. Suppose there exists some x ∈ R such

that (f ◦ h)(x) = (f ◦ h)(−x). Then g(x) = 0. Suppose there is no point x ∈ R such that

(f ◦ h)(x) = (f ◦ h)(−x). Without loss of generality, suppose (f ◦ h)(x) > (f ◦ h)(−x) for some

x ∈ S1. Then g(x) ≥ 0. Then

g(−x) = (f ◦ h)(−x)− (f ◦ h)(−(−x)) = (f ◦ h)(−x)− (f ◦ h)(x) = −g(x) ≤ 0.

Then by the Intermediate Value Theorem there exists some c ∈ (−x, x) such that g(c) = 0.

Hence (f ◦ h)(c) = (f ◦ h)(−c).
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In the case of the Z2-action, saying f is an antipodal map is equivalent to saying f is equiv-

ariant.

Definition 5.3.4. [7] Let X,Y be topological spaces and let G act on X and Y . Then f : X → Y

is an equivariant map if f(g · x) = g · f(x) for all g ∈ G and all x ∈ X. 4

Example 5.3.5. Let Z2 be the standard action on S1 and R2, as shown in 5.2.3. Let f : S1 → R2

be the identity map. Note that f(−x) = −x = −(x) = −f(x) for all x ∈ S1, so f is equivariant.

However, since there is no x ∈ S1 such that x = 0, then there is no x ∈ S1 such that f(x) = 0.

Thus f does not have a zero. This is because the dimensions of S1 and R2 do not match.

Example 5.3.6. Let Z2 be the standard action on R. Let f : R → R be a continuous map

defined by f(x) = 5 for all x ∈ R. Note that f is not equivariant, as f(−x) = 5 6= −5 = −f(x).

Observe that f does not have a zero, as there does not exist some x ∈ R such that f(x) = 0.

This is because f is not equivariant.

As shown in examples 5.3.5 and 5.3.6, both f : X → Y being equivariant and X and Y having

matching dimensions is pivotal to f having zero. We will use this analogously later to ensure we

can set our Fourier coefficients to zero.

5.4 Configuration Space/Test Map Scheme and Equivariance

Definition 5.4.1. The configuration space of a problem is the set of all possible outcomes,

similar to the sample space in probability. In our case, it will be the set of all collections of q

points from disjoint faces of ∂∆n. The test map is the way we distinguish between elements

in the configuration space, searching for a suitable solution. Our test map will determine what

collection of q points will have a test map that sets all of the Fourier coefficients to zero. [11]

We can parameterize our collections of q points from disjoint faces σ1, . . . , σq of ∂∆n by the

deleted product

X := (∂∆n)×q(2) = {x = (x1, . . . , xq) ∈ σ1 × · · · × σq | σi ∩ σj = ∅ for all i 6= j}.
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This is our configuration space. Let the Zq-action discussed in example 5.2.2 act on the config-

uration space X, after indexing subscripts {1, . . . , q} by the abelian group Zq. This means our

elements x ∈ X are now indexed with x = (x0, . . . , xq−1). Note that because X is a deleted

product, then this Zq-action is free. [11]

We consider a solution to be some x ∈ X such that the Fourier transforms are zero. Hence

we will define our test map F : X → Cdm by our Fourier transforms, because that is how we

want to distinguish between elements of x. Recall that m is the number of Fourier coefficients

we want to be zero. Thus the dimensions of X and Cdm match, as in example 5.3.5. The map

F : X → Cdm is defined as follows:

F(x) =
1

|G|
∑
g∈G

fi(xg)χ
−1
εj (g),

where 1 ≤ i ≤ d and 1 ≤ j ≤ m. [11]

The group G = Zq acts on the domain X via permutation, like in example 5.2.2. The group

G acts linearly on the codomain Cdm with componentwise left multiplication, as described in

example 5.2.4.

Note that F is equivariant with respect to the two actions, as shown below:

F(g · x) =
1

|G|
∑
h∈G

f(xh+g)χ
−1
ε (h)

=
1

|G|
∑
h∈G

f(xh+g)χ
−1
ε (h)χ−1ε (g)χε(g)

= χε(g)
1

|G|
∑
h∈G

f(xh+g)χ
−1
ε (h+ g)

= χε(g)F(x)

= g · F(x).

Similarly to the Borsuk-Ulam example 5.3.3, having F be equivariant and the dimensions of

X and Cdm matching guarantees there is some x ∈ X such that F(x) = 0. [11]

Example 5.4.2. Let f : ∂∆n → Cd, where n = (2d + 1)(q − 1), meaning we aim to kill

m = q − 1 Fourier coefficients. If the test map F : X → Cd(q−1) has a zero, then there is some
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x = (x0, . . . , xq−1) ∈ X such that the q−1 Fourier coefficients c1, . . . , cq−1 are zero. By 5.1.1, this

tells us the points x0, . . . , xq−1 form a Tverberg partition. If there does not exist some x ∈ X

such that F(x) = 0, then there is no collection of points x0, . . . , xq−1 that form a Tverberg

partition.
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Tverberg-type Results

6.1 The Theorem

Theorem 6.1.1. Let m = q−2 and n = 2dm+(q−1) = 2d(q−2)+(q−1) = (2d+1)(q−2)+1.

Let f : ∂∆n → Cd be a continuous function. Then there exists a collection of q points x1 ∈

σ1, . . . , xq ∈ σq from disjoint faces σ1, . . . , σq of ∂∆n such that either

(1)f(x1) = · · · = f(xq) or

(2)f(x1), . . . , f(xq) form a regular q-gon.

Remark 6.1.2. Note that if f is affine and maps the vertices of ∆n to points that are in strong

general position, then we need only consider (2). If f is affine, then this will be the case with

probability one. [10]

Proof. If f is continuous, then it is possible to get a full Tverberg partition with N < T (q, 2d)−

1, being case (1). However, if we do not get a full Tverberg partition, then our disjoint faces will

contain points that, rather than intersect, form a regular q-gon, as in case (2).

Suppose there does not exist a collection of q points x1 ∈ σ1, . . . , xq ∈ σq from disjoint faces

σ1, . . . , σq of ∂∆n such that f(x1) = · · · = f(xq). Let {xg}g∈G be a collection of q points in from

disjoint faces σ1, . . . , σq of ∂∆n indexed by G = Zq, with q prime. Let f = (f1, . . . , fd) : ∂∆n →

Cd be a continuous function. This gives way to the collection of maps F1, . . . , Fd : G→ C defined
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by Fi(g) = fi(xg) for all g ∈ G. We also get the standard Fourier decomposition:

Fi(g) =
∑
ε∈G

c(i,ε)χε(g)

where

c(i,ε) =
1

|G|
∑
v∈G

fi(xv)χ
−1
ε (v) ∈ C.

For f to admit a full Tverberg partition, we needed to find some collection of points that

made f was constant. We did that by having the number of Fouerier coefficients be m = q − 1.

In order to have a collection of points that form a polygon, we will need one term that varies

between points, so we will want to add another Fourier coefficient back in. We will always be

setting all Fourier coefficients to zero except c(i,0) and c(i,1) for all i ∈ {1, . . . , d}. Thus we want

m = q − 2.

By example 5.1.6, we know that the vanishing polynomial will be non-zero in Z[y]/qZ. Hence by

Theorem 5.1.2 there exists a collection of q points (x0, . . . , xq−1) such that the Fourier coefficients

c(i,ε) = 0 for all ε ∈ {2, . . . , q − 1} and all i ∈ {1, . . . , d}.

Suppose we set all Fourier coefficients equal to zero except c(i,0) and c(i,1). Then

Fi(g) = c(i,0) + c(i,1)χ1(g) + · · ·+ c(i,q−1)χq−1(g)

= c(i,0) + c(i,1)χ1(g) + 0 + · · ·+ 0

= c(i,0) + c(i,1)χ1(g)

= c(i,0) + c(i,1)ξ
g
q

for all i ∈ {1, . . . , d}. Observe that χ1(g) = ξ1·gq = ξgq . Therefore Fi(g) = c(i,0) + c(i,1)χ1(g) =

c(i,0) + c(i,1)ξ
g
q for all i ∈ {1, . . . , d}. Thus

F (g) = (F1(g), . . . , Fd(g))

= (c(1,0) + c(1,1)ξ
g
q , . . . , c(d,0) + c(d,1)ξ

g
q )

= (c(1,0), . . . , c(d,0)) + ξgq (c(1,1), . . . , c(d,1))

= c0 + c1ξ
g
q ,
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where c0 = (c(1,0), . . . , c(d,0)) and c1 = (c(1,1), . . . , c(d,1)) are constants in Cd.

Then the average of F for all g ∈ G is

F (0) + F (1) + · · ·+ F (q − 1)

q
=

(c0 + c1) + (c0 + ξqc1) + · · ·+ (c0 + ξq−1q c1)

q

=
qc0 + (1 + ξq + · · ·+ ξq−1q )c1

q

=
qc0
q

= c0.

Hence the points {F (g)}g∈G are centered at c0. Because each F (g) is of the form c0 + c1ξ
t
q, we

know that the distance from c0 will always be the length of the vector c1. Finally, the ξtq changes

the angle of the point with respect to c0, but they are all powers of the same root of unity, so

the points will be equidistantly distributed around c0. Hence they will form a regular q-gon.

Example 6.1.3. Let q = 3 and d = 1. Then the points F (0), F (1), F (2) are configured as such:

Notice how all three points lie on a circle centered at c0 with radius c1. Because the points lie

on all of the third roots of unity (scaled by c1), then they form an equilateral triangle.

Similarly, with q points the image will result in a regular q-gon. Thus the collection of points

{f(xg)}g∈G also form a regular q-gon.
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Definition 6.1.4. Let f : ∂∆n → Cd is a continuous function with a collection of q points

x1 ∈ σ1, . . . , xq ∈ σq from disjoint faces σ1, . . . , σq of ∂∆n such that f(x1), . . . , f(xq) form a

reqular q-gon. Then f admits a q-gon partition.

The following corollary is for the affine case.

Corollary 6.1.5. If we have n + 1 = (2d + 1)(q − 2) + 2 points in Cd, then we can partition

them into q disjoint sets whose convex hulls have points that form a regular q-gon.

Proof. This relates to Theorem 6.1.1 similarly to how the Topological Tverberg theorem relates

to Tverberg’s theorem.

6.2 Examples

Example 6.2.1. Let d = 1 and q = 3, meaning G = Z3. Then n = 2d(q − 2) + (q − 1) =

2(3 − 2) + (3 − 1) = 2 + 2 = 4. Let f : ∂∆4 → C be a continuous function. Because we have 3

Fourier coefficients, we need only set c2 to zero. Observe the vanishing polynomial

h(y) = Π1
j=1(εjy)d = 2(y) ≡ 2y

is non-zero in Z[y]/3Z. Then there exist 3 points x1, x2, x3 from disjoint faces σ1, σ2, σ3 of ∂∆4

such that x1, x2, x3 form an equilateral triangle. Thus for any n+1 = 5 points in C ∼= R2, we can

partition them into three disjoint sets whose convex hulls contain points that form an equilateral

triangle.
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Example 6.2.2. Let d = 1 and q = 5, meaning G = Z5. Then n = 2d(q − 2) + (q − 1) =

2(5− 2) + (5− 1) = 6 + 4 = 10. Let f : ∂∆10 → C be a continuous function. Note that we must

set the Fourier coefficients c2, c3, c4 to zero. Observe the vanishing polynomial

h(y) = Π3
j=1(εjy)d = (2y)(3y)(4y) = 24y3 ≡ 4y3

is non-zero in Z[y]/5Z. Then there exist 5 points x1, . . . , x5 from disjoint faces σ1, . . . , σ5 of ∂∆10

such that x1, . . . , x5 form a regular pentagon. Thus for any n + 1 = 11 points in C ∼= R2, we

can partition them into five disjoint sets whose convex hulls contain points that form a regular

pentagon.

Example 6.2.3. Let d = 1 and q = 4, meaning G = Z4. Then we will set c2 and c3 to zero.

Observe that the vanishing polynomial

h(y) = 2y · 3y = 6y2 ≡ 2y2

is nonzero in Z/4Z, despite 4 not being prime. This is a bit of a fluke, which happens because

the polynomial is too short for the coefficient to reach a pair of zero divisors, so it does not

vanish. Note that n = 2(1)(4 − 2) + (4 − 1) = 7. Let f : ∂∆7 → C be a continuous map. Then

there exist 4 points x1, . . . , x4 from disjoint faces σ1, . . . , σ4 of ∂∆7 such that x1, . . . x4 form a

square. Therefore for any n+ 1 = 8 points in C ∼= R2, we can partition them into 4 disjoint sets

whose convex hulls contain points that form a square.
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7
Van Kapmen-Flores

7.1 Tverberg Unavoidable

Here we will be forcing our points that form our Tverberg partitions to come from certain faces

on the simplex, namely the k-skeleton, which is the set of faces on the simplex of dimension

at most k. We will do so by adding a constraint function to our continuous map, following a

method developed by Frick in [5]. We can say that the continuous map f : ∂∆n → Cd admits

a q-fold Tverberg partition if there are q points {xg ∈ σg}g∈G from disjoint faces σg of the

simplex ∂∆n such that f(x1) = · · · = f(xq). Similarly, when we add a distance constraint

g : ∂∆n → R, the collection of points will also have equal distance from the k-skeleton, meaning

g(x1) = · · · = g(xq). Hence if that distance is zero for one point, it will be zero for all of them.

Our goal is to find the smallest k ∈ N so that we can force our q points to come from the

k-skeleton.

Lemma 7.1.1 (Frick). [5] Let q ≥ 2 be a prime power, let d ≥ 1 and c ≥ 0. Let N ≥ Nc :=

(q − 1)(d + 1 + c) and let f : ∆N → Rd, g : ∆N → Rc be continuous. Then there exist q points

x1, . . . , xq of disjoint faces σ1, . . . , σq, where f(x1) = · · · = f(xq) and g(x1) = · · · = g(xq).
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Proof. Since f : ∂∆N → Rd and g : ∂∆N → Rc both admit full Tverberg partitions, then the

continuous function h : ∂∆N → Rd ⊕ Rc = Rc+d defined by h(x) = (f(x), g(x)) also admits a

full Tverberg partition. Then the dimension of the simplex is N = (q − 1)[(d+ c) + 1].

Remark 7.1.2. For each constraint function applied, we increase the simplicial dimension N

by q − 1.

The dimension c is the number of constraints being applied to the Tverberg partition. Since

we will be adding one distance constraint function, then c = 1. If we increase the dimension of

our codomain, we must increase the dimension of our simplex so the dimension of our domain

and codomain match, as in example 5.3.5.

Let g(x) = dist(x,∆N
(k)) be the distance function from a point x to the k-skeleton. Then

Lemma 7.1.1 tells us that from our increased collection of points, not only will there be q points

that intersect in the image, but these q points also have equal distance from the k-skeleton. Note

that because the k-skeleton is closed and bounded, if g(x) = dist(x,∆N
(k)) = 0, then x lies on

the k-skeleton. Hence if one point lies on the k-skeleton, we can ensure that all of them lie on

the k-skeleton.[5]

Definition 7.1.3. [7] A simplicial complex is a nonempty collection of simplices ∆ such that

(1) The face of any simplex in ∆ is also in ∆

(2) The intersection of any two simplices σ1, σ2 in ∆ is a face of both σ1 and σ2.

Given a simplex ∆N , a simplicial complex of ∆N is a collection of faces that are closed under

intersection.

Definition 7.1.4. [7] A subcomplex Σ of a simplicial complex ∆ is a subset of ∆ that is itself

a simplicial complex.

Definition 7.1.5. [5] Let q, d,N ∈ Z such that q ≥ 2, d ≥ 1, and N ≥ q − 1. A subcomplex

Σ ⊆ ∆N is Tverberg unavoidable if for every Tverberg partition {σ1, . . . , σq} of ∆N there

exists some j ∈ {1, . . . , q} such that σj ⊆ Σ.
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That is, a subcomplex Σ ⊆ ∆N is Tverberg unavoidable if it is big enough in our simplex ∆N

so that every q-fold Tverberg partition has some disjoint face σi that lies in Σ.

Example 7.1.6. Let q = 2 and N = 2. Let Σ be the blue 1-simplex shown below.

We cannot pick the interior to be a disjoint face because faces are necessarily closed, while the

interior is necessarily open. Then there are two types of faces to choose from: the vertices and

the edges. Note that when we consider the edges, they contain the vertices at either end. Hence

if we want to avoid the blue edge and vertices, we must pick the purple vertex across from it.

However, now there are no other faces that are disjoint from the purple vertex and are not blue.

Hence Σ is Tverberg unavoidable.

Lemma 7.1.7. [5] Let d, q,N ∈ Z be such that d ≥ 1, q ≥ 2, and N ≥ q − 1. Let k ∈ N ∪ {0}.

If q(k + 2) > N + 1, then the k-skeleton ∆N
(k) ⊆ ∆N is Tverberg unavoidable.

Proof. Suppose q(k + 2) > N + 1. Suppose the k-skeleton ∆N
(k) is not Tverberg unavoidable.

Then every disjoint σ1, . . . , σq has a dimension of at least k+1. Because every k+1-dimensional

face has k + 2 vertices, and all of the q faces are disjoint, then our simplex ∆N would need at

least q(k + 2) vertices. Then N + 1 ≥ q(k + 2), which is a contradiction. Thus the k-skeleton is

Tverberg unavoidable.

Lemma 7.1.8. [5] Let q, d,N ∈ Z such that q ≥ 2 is prime, d ≥ 1, and N ≥ (q − 1)(d + 2).

Let f : ∆N → Rd be a continuous function that admits a q-fold Tverberg partition. Suppose
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that the subcomplex Σ ⊆ ∆N is Tverberg unavoidable. Then there exist q pairwise disjoint faces

σ1, . . . , σq of ∆N , all contained in Σ, such that f(σ1) ∩ · · · ∩ f(σq) 6= ∅.

Proof. Note that if we can show this for N = (q − 1)(d + 2), it will definitely work for larger

values of N . Without loss of generality, let N = (q−1)(d+2) = (q−1)(d+1+1). Suppose Σ ⊆ ∆N

is Tverberg unavoidable. Let g : ∆N → R assign each point xi ∈ ∆N to its distance from the

subcomplex Σ. Note that g is continuous. Then by Lemma 7.1.1 there exist q points x1, . . . , xq of

disjoint faces σ1, . . . , σq such that f(x1) = · · · = f(xq) and g(x1) = · · · = g(xq). Thus f admits

a Tverberg partition, and the distance from xi to Σ is equal for all i ∈ {1, . . . , q}. Because Σ is

Tverberg unavoidable, there exists some i ∈ {1, . . . , q} such that g(xi) = 0. Hence x1, . . . , xq all

lie in Σ. Thus the disjoint faces σ1, . . . , σq are all in Σ, and f(σ1) ∩ · · · ∩ f(σq) 6= ∅.

7.2 Van Kampen-Flores

Theorem 7.2.1 (van Kampen-Flores). [5] Let d ∈ N be even. Then for every continuous map

f : ∆d+2 → Rd there are two disjoint faces σ1, σ2 of ∆d+2 such that σ1, σ2 have dimensions of

at most d
2 and f(σ1) ∩ f(σ2) 6= ∅.

Proof. Note that q(k+ 2) = 2(d2 + 2) = d+ 4 > d+ 3 = (d+ 2) + 1 = N + 1. Hence by Lemma

7.1.7, the d
2 -skeleton is Tverberg unavoidable. Then by Lemma 7.1.8 there exist σ1, σ2 contained

in the d
2 -skeleton ∆d+2

( d
2
)

such that f(σ1) ∩ f(σ2) 6= ∅. Note that since σ1, σ2 ⊆ ∆d+2

( d
2
)

, then the

dimensions of σ1 and σ2 are at most d
2 .

Example 7.2.2. Let f : ∆4 → R2 be a continuous function. Then by Theorem 7.2.1, there exist

two disjoint faces σ1, σ2 of ∆4 such that f(σ1)∩ f(σ2) 6= ∅, where σ1, σ2 have at most dimension

2
2 = 1. Hence if we have N+1 = 5 points in R2, then 4 of them can be partitioned into 2 disjoint

sets with at most (dimσ1 + 1) = 2 points whose convex hulls intersect. Originally, we needed

d + 2 = 4 points in R2 to ensure any intersection (left), but the additional point allows us to

restrict the size of each partition (right).
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Theorem 7.2.3 (Generalized van Kampen-Flores). [5] Let q ≥ 2 be a prime power, let d ≥ 1,

let N ≥ (q− 1)(d+ 2), and let k ≥
⌈
q−1
q d

⌉
. Then for every continuous map f : ∆N → Rd, there

are q pairwise disjoint faces σ1, . . . , σq of ∆N , where dimσi ≤ k for all i ∈ {1, . . . , q}, such that

f(σ1) ∩ · · · ∩ f(σq) 6= ∅.

Proof. Note that if we show this for N = (q−1)(d+2), then it will definitely be true for greater

N . Without loss of generality, suppose N = (q − 1)(d+ 2).

Recall k ≥
⌈
q−1
q d

⌉
. This is because we want our collection of qk points to be in strong general

position, so in order to ensure a full Tverberg partition we cannot have k <

⌈
q−1
q d

⌉
. Note that

the codimension for each disjoint subset is d − k. Since there are q of them, the the sum of

the codimensions of our subsets is q(d − k). We want this to be equal to the codimension of

our intersection, by the definition of strong general position. Because the intersection of our q

disjoint faces will be nonempty, as it will admit a full Tverberg partition, then the codimension

of the intersection of our faces will be less than or equal to d. Thus

q∑
i=1

(d− dimσi) = d− dim

q⋂
i=1

σq ≤ d

q(d− k) ≤ d

d(q − 1) ≤ qk

d(q − 1)

q
≤ k.

Because k must be an interger, then k ≥
⌈
d(q−1)
q

⌉
.
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Observe

N =(q − 1)(d+ 2) = (q − 1)

(
d

q
· q + 2

)
=
d(q − 1)

q
· q + 2(q − 1)

≤
⌈
d(q − 1)

q

⌉
· q + 2(q − 1) = kq + 2(q − 1) < qk + 2q = q(k + 2).

Then by Lemma 7.1.7, we know the k-skeleton ∆N
(k) is Tverberg unavoidable. Hence by Lemma

7.1.8, there exist σ1, . . . , σq of ∆N , all contained in the k-skeleton ∆N
(k), such that f(σ1) ∩ · · · ∩

f(σq) 6= ∅. Note that since all disjoint σi are contained in the k-skeleton, they have at most

dimension k. Hence dimσi ≤ k for all i ∈ {1, . . . , q}.

7.3 Results

When looking at Tverberg partitions, we increased the dimension of our simplex to add in more

points, q of which formed a Tverberg partition. Similarly, when looking at q-gon partitions we

need to increase the dimension of the simplex by q − 1 for every constraint function appliex, so

the dimensions match, as in remark 7.1.2. Since we will only be adding one distance constraint

function, then N = [2d(q − 2) + (q − 1)] + (q − 1) = 2d(q − 2) + 2(q − 1).

Definition 7.3.1. Let q, d,N ∈ Z such that q ≥ 2, d ≥ 1, and N ≥ q − 1. Let f : ∂∆N → Rd

be a continuous map with at least one q-gon partition. Then the subcomplex Σ ⊆ ∆N is q-gon

unavoidable if for every q-gon partition σ1, . . . , σq there exists some j ∈ {1, . . . , q} such that

σj ⊆ Σ.

Theorem 7.3.2. Let q, k, d,N ∈ Z be such that q ≥ 2 is prime, k ≥ 1, d ≥ 1, and N =

2d(q−2)+2(q−1). Let f : ∂∆N → Cd be a continuous function. If 2d(q−2) ≤ qk < 2d(q−1), then

there exist q points x1, . . . , xq from pairwise disjoint faces σ1, . . . , σq of the k-skeleton ∆N
(k) ⊆ ∆N

such that f(x1), . . . , f(xq) form a regular q-gon.

Proof. For this to be true, we not only need the k-skeleton to be q-gon unavoidable, but also

need N to not be so large that it reaches the Tverberg number T (q, 2d), or our f(x1), . . . , f(xq)

could intersect, rather than forming a regular q-gon.



7.3. RESULTS 45

Suppose 2d(q − 2) ≤ qk < 2d(q − 1). Observe

N + 1 = [2d(q − 2) + 2(q − 1)] + 1 ≤ qk + 2(q − 1) + 1 = q(k + 2)− 1 < q(k + 2).

Then by Lemma 7.1.7, the k-skeleton of ∆N is q-gon unavoidable.

We also want to make sure N+1 is still less than the Tverberg number T (q, 2d). We need

each point to come from disjoint faces of dimension at most k + 1 to ensure they come from

the k-skeleton. Hence the disjoint faces σ1, . . . , σq have a total dimension of at most q(k + 1),

with x1 ∈ σ1, . . . , xq ∈ σq. Because we want this to be less than the Tverberg number, then

q(k+1) < (2d+1)(q−1)+1, which is true if and only if qk < (2d+1)(q−1)+(1−q) = 2d(q−1).

Hence if 2d(q − 2) ≤ qk < 2d(q − 1), then there are q points x1, . . . , xq from disjoint faces

σ1, . . . , σq of the k-skeleton ∆N
(k) such that f(x1), . . . , f(xq) form a regular q-gon.

We want to minimize k, meaning we want to find the k that makes qk closest to 2d(q − 1)

while still being larger or equal to it. Note

2d(q − 2) ≤ qk

2d

(
q − 2

q

)
≤ k.

Hence the smallest value of k that makes this inequality hold is k =

⌈
2d
(
q−2
q

)⌉
. Since k is as

small as it can be, it will mostly still hold for the inequality qk < 2d(q − 1).

Corollary 7.3.3. Let q, k, d,N ∈ Z be such that q > 2 is prime, k ≥ 1, d ≥ 1, and N = 2d(q −

2) + 2(q − 1). Let f : ∂∆N → Cd be a continuous function, and let k =

⌈
2d(q−2)

q

⌉
= 2d(q−2)+r

q .

If r < 2d, then there exist q points x1, . . . , xq from pairwise disjoint faces σ1, . . . , σq of the

k-skeleton ∆N
(k) ⊆ ∆N such that f(x1), . . . , f(xq) form a regular q-gon.

Proof. Suppose r < 2d. Observe

2d(q − 1) ≤ 2dq ≤ 2d(q − 2)

q
q ≤

⌈
2d(q − 2)

q

⌉
q = qk

and

qk =

⌈
2d(q − 2)

q

⌉
q =

[
2d(q − 2) + r

q

]
q = 2d(q − 2) + r < 2d(q − 2) + 2d = 2d(q − 1).
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Hence 2d(q− 1) ≤ qk ≤ 2d(q− 1), so by Theorem 7.3.2, we know there exist q points x1, . . . , xq

from pairwise disjoint faces σ1, . . . , σq of the k-skeleton ∆N
(k) ⊆ ∆N , where k =

⌈
2d(q−2)

q

⌉
, such

that f(x1), . . . , f(xq) form a regular q-gon.

7.4 Examples

Corollary 7.4.1. Given q2 − q + 1 points in C
d−1
2 , there exist q(q − 1) points that can be

partitioned into q disjoint sets of q − 1 points such that the convex hulls of each disjoint set

contains a point xi where x1, . . . , xq form a regular q-gon.

Topologically, this says that if f : ∂∆N → C
d−1
2 is a continuous function with N = q2 − q,

then there exist q disjoint faces σ1, . . . , σq of dimension at most q−2 containing points x1, . . . , xq

such that f(x1), . . . , f(xq) form a regular q-gon.

Proof. Let k = q − 2 and d = q−1
2 . Observe

N + 1 = 2d(q − 2) + 2(q − 1) + 1 = (q − 1)(q − 2) + 2(q − 1) + 1 = q(q − 1) + 1

= (q − 1 + 1)(q − 1) + 1 = (2d+ 1)(q − 1) + 1 = T (q, 2d).

Note

2d(q − 2) = 2

(
q − 1

2

)
(q − 2) = (q − 1)(q − 2),

qk = q(q − 2) = q2 − 2q, and

2d(q − 1) = 2

(
q − 1

2

)
(q − 1) = (q − 1)2 = q2 − 2q + 1.

Observe (q − 1)(q − 2) ≤ q(q − 2) = q2 − 2q < q2 − 2q + 1. Then by Theorem 7.3.2, there exist

q(q − 1) points of the original q(q − 1) + 1 points that form a q-gon partition, coming from q

disjoint sets with at most q − 1 points in them.

Thus any continuous function f : ∂∆N → C
q−1
2 contains q disjoint faces σ1, . . . , σ1 from the

(q − 1)− 1 = q − 2-skeleton with points x1 ∈ σ1, . . . , xq ∈ σq such that f(x1), . . . , f(xq) form a

regular q-gon.
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Observe that for the affine case the number of points N + 1 is the Tverberg number T (q, 2d).

The number of points that are in our q disjoint partitions is N = T (q, 2d)− 1.

Example 7.4.2. Let q = 3, d = 1. Then N = 2d(q − 2) + 2(q − 1) = 2 + 4 = 6. We want some

k such that 2 ≤ 3k < 4. Hence k = 1.

We could also use Corollary 7.3.3 to find k. Observe

k =

⌈
2(q − 2)

q
d

⌉
=

⌈
2

3
· 1
⌉

= 1.

Thus for any continuous function ∂∆6 → C, there exist 3 points x1, x2, x3 from pairwise

disjoint edges σ1, σ2, σ3 such that f(x1), f(x2), f(x3) form an equilateral triangle.

Normally, when q = 3 and d = 1, we have N ′+1 = 2d(q−2)+(q−1)+1 = 2+2+1 = 5 points

in the plane. Below is an example when we have 5 points in the plane, and one of our partitioned

sets has more than k + 1 = 2 points in it. Here the green, blue, and purple vertices are our 5

points, and the red triangle is equilateral. Note that the green partition has 3 > 2 = k+1 points

in it.

By Corollary 7.4.1, if we have N +1 = 7 points in the plane, we can find q(k+1) = q(q−1) =

3 · 2 = 6 of them such that each of our 3 disjoint sets will have at most k+ 1 = 2 points in them,

and there will be a point from each disjoint set that forms the vertices of an equilateral triangle.

Note that N+1 = 7 is the Tverberg number T (3, 2). Below on the left we have a full Tverberg

partition with 7 points, and on the right we have a q-gon partition from the same points, where
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our 3 disjoint sets union to a total of 6 points. Notice that all of the vertices of the equilateral

triange lie on a line, meaning each disjoint set has at k + 1 = 2 points.
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