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Abstract

This paper explored the electronic properties of the graphene sheet and also developed basis for
understanding the electronic properties of the curved graphene sheet. This paper began with
setting up basic knowledge about solid-state physics including introducing band structure, band
gap, crystal structure, and reviews for quantum mechanical operators. Then this paper described
two potential models that are suitable for considering periodic potential: the weak potential and
the tight-binding model. We discovered the tight-binding model is better for our graphene case
and by applying this model we find the energies of the graphene sheet. Next, we constructed
the 1D and 2D Hamiltonian matrix in python with periodic potentials and plotted the energy
levels and wave functions. Finally, this paper touched on gaussian curvatures and two possible
shapes for graphene to be curved.
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1
Introduction

In 2005 Andre Geim’s group and Philip Kim and Horst Stormer’s group have discovered the

quantum Hall effect of graphene. Since then graphene has become a popular topic to study in

condensed-matter physics. Graphene has a great potential for applications in industry such as

making phone chips. It is possible to control the carrier density in graphene sheet by simple

application of a gate voltage, and this effect is a fundamental element for the design of electrical

devices.[5] Hence I am interested in studying graphene. There are also some personal reasons:

I have been working in the Bard Nanolab under the instruction of Professor Paul Cadden-

Zimansky on graphene fabrication and laser ablation. I joined the Bard Summer Research In-

stitute in 2019 and with this group, I attended two American Physics Society’s meetings. These

experiences all strengthened my interests in knowing the mystery of graphene. I found myself is

familiar with the experiments but I never understand the theory behind it, so I have a strong

desire to dedicate this project to study the electronic properties of graphene. This project is

for juniors who also interested in condensed-matter physics and I hope it will help them set up

basic understanding of solid state physics.

In this paper, I began with introducing the basic knowledge of solid state physics: crystal

structure and the band structure. Under these two big sections, I include descriptions about

Bravais lattice, reciprocal lattice, Brillouin zone and how they look like in graphene; then I
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introduce the band structures and band gap with its application in identifying the resistance. I

also proved one theorem that we used throughout the project, Bloch’s theorem. Then I discussed

two models: the weak potential and the tight-binding model. Then by comparison, we found the

tight-binding model is more suitable for graphene and by applying this model, we find the energy

levels of graphene sheet. Next we constructed 1D and 2D Hamiltonian matrix with periodic

potentials in Python with plottings of energy levels and energy eigenstates. I developed Python

codes over the last two semesters and have shared them in the appendix. Finally, this paper

introduced Gaussian curvature and discussed future thoughts on how to construct the curved

graphene sheets’ Hamiltonian.



2
Basic Knowledge of Solid

2.1 Crystal Structure

In this section, we are going to discuss the crystal structure: a group of atoms attached to every

lattice point, is called the basis; when repeated in space it forms the crystal structure. [4]

2.1.1 Reciprocal Lattice

There are three translational vectors ~a1, ~a2, ~a3 and lattice defined by these vectors. When viewed

from a random point ~r, defined by

~r′ = ~r + u1 ~a1 + u2 ~a2 + u3 ~a3 (2.1.1)

where u1, u2, u3 are integers, it should look the same as if you see from other directions. Hence,

the set of ~r′ defined the lattice. If ~r and ~r′ have the same atomic arrangement, lattice and

~a1, ~a2, ~a3 are primitive. Then we can introduce few definitions before we fully explained the

reciprocal lattce.

“The parallelepiped defined by primitive axes, ~a1, ~a2, ~a3 is called a primitive cell. One specific

example, is the Wigner-Seitz cell: it can choose to be full symmetry about a lattice point is

the region of space that is closer to that point then to any other lattice point. And a Bravais

Lattice is an infinite array of discrete points with an arrangement and orientation that appears

exactly the same, from whichever of the points the array is viewed.” [4]



4 2. BASIC KNOWLEDGE OF SOLID

Let a set of ~R(points) constituting a Bravais lattice and a set of all wave vector ~K yield plane

waves with periodicity of a given Bravais lattice is known as its reciprocal lattice. With

ei
~K·(~r+~R) = ei

~K·~r (2.1.2)

ei
~K·~R = 1. (2.1.3)

Again let ~a1, ~a2, ~a3 be a set of primitive vectors. The reciprocal lattice can be presented as:

~b1 = 2π
~a2 × ~a3

~a1 · ( ~a2 × ~a3)
(2.1.4)

~b2 = 2π
~a3 × ~a1

~a1 · ( ~a2 × ~a3)
(2.1.5)

~b3 = 2π
~a1 × ~a2

~a1 · ( ~a2 × ~a3)
. (2.1.6)

And the relation between ~as and ~bs are ~bi · ~aj = 2πδij . So when i = j, δij = 1 and when i 6= j,

δij = 0.

When we compute ~b1 ·(~b2×~b3), we get (2π)3

~a1·( ~a2× ~a3) , by using the facts that ~A·( ~B× ~C) = ~B ·(~C× ~A)

and ~A× ( ~B × ~C) = ~B( ~A · ~C − ~C( ~A · ~B).

2.1.2 Operators

We take a side way here to discuss how to determine wether a wave function is a momen-

tum eigenstate or not. In a traditional way, we usually apply momentum operator to the wave

function:

P̂ = −i~ ∂
∂x
.

We have two wave functions:

ψ = A sin(wt+ kx), (2.1.7)

and

ψ = ei(kx+wt). (2.1.8)

We act P̂ on 2.1.7 and we get:

P̂ψ = Ak cos(wt+ kx).
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We did not get a constant times the same wave function, so the wave function is not a momentum

eigenstate. We can get this result also by understanding whether it has translational invariance

or not. By times the conjugate to the original wave function, we get the probability of where to

find the particle. For 2.1.7, we times it with its conjugate and get: ψ = A2 sin2(wt + kx). We

plot the sine square graph. If we shifted shifted the graph, the probability will not remain the

Figure 2.1.1. If we shifted the sine square curve, the probability of finding the particle will change too.

same. Therefore, this wave function does not have translational invariance, therefore, it will not

be a momentum eigenstate.

We can try also for 2.1.8 Apply the P̂ :

P̂ψ = −i~ei(kx+wt)ik = ~kei(kx+wt).

We get a constant times the original wave function, therefore, the wave function is a momentum

eigenstate. For 2.1.8, we times it with its conjugate and get: ψ = ei(kx+wt)e−i(kx+wt) = 1. We

plot the y = 1 graph.

If we shifted shifted the graph, the probability will remain the same. Therefore, this wave

function has translational invariance, therefore, it is a momentum eigenstate.
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Figure 2.1.2. This is a momentum eigenstate.

2.1.3 Crystal Structure of Graphene

In this section, let us zoom in to the crystal structure of graphene. The carbon atoms within

graphene form the honeycomb structure. From Fig 2.1.3(a) shows the honeycomb lattice of

graphene. And A and B in Fig 2.1.3(a) are two sublattices. The distance between two neighbor

carbon atoms is 0.142nm. In Fig 2.1.3(b), we can review the triangular Braivais lattice with

two-atom basis. The three vectors δ1, δ2 and δ3 are connecting sublattice A to sublattice B and

they are defining by:

δ1 =
a

2
(
√

3ex + ey), (2.1.9)

δ2 =
a

2
(−
√

3ex + ey), (2.1.10)

δ3 = −aey, (2.1.11)

where ex and ey are basis vectors. a1 and a2 are defined by:

a1 =
√

3aex and a2 =

√
3a

2
(ex +

√
3ey). (2.1.12)
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Finally, “the reciprocal lattice, which is defined with respect to the triangular Bravais lattice, is

depicted in Fig 2.1.3(b).”[5] It is spanned by the vectors:

a∗1 =
2π√
3a

(
ex −

ey√
3

)
and a∗2 =

4π

3a
ey. (2.1.13)

Figure 2.1.3. is from [5]. (a)Shows the honeycomb lattice and (b) shows the triangular Bravais lattice.

2.1.4 Boundary Conditions

I mentioned in the previous proof of Bloch’s theorem that the plane wave satisfies the Born-von

Karman boundary conditions and now we are focusing on how what is this boundary condition.

The Born-von Karman boundary condition is about macroscopic periodicity, which is defined

by:

ψ(x, y, z + L) = ψ(x, y, z)

ψ(x, y + L, z) = ψ(x, y, z)

ψ(x+ L, y, z) = ψ(x, y, z),

with the Bravais lattice is cubic and L is an integral multiple of the lattice constant a. However,

not all the Bravais lattices are cubic and for general application, we consider working with a

primitive cell of the underlying Bravais lattice. That is if we want to move one lattice, we move a,
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if we want to move over one crystal. we move Niai for a can be in any directions and i = 1, 2, 3,.

Then we can rewrite the boundary condition to be:

ψ(r +Niai) = ψ(r). (2.1.14)

Then we apply the Bloch’s theorem ψ(r + R) = eik·Rψ(r) to 2.1.14:

ψ(r +Niai) = eiNik·aiψ(r).

That is to say, the exponential term must satisfy the following condition:

eiNik·ai = 1,

with i = 1, 2, 3,. We also defines k to be k = x1b1 + x2b2 + x3b3. And then by substituting k

in, we get:

e2πiNik·xi = 1.

Therefore we can conclude that:

xi =
mi

Ni
,

for mi integral. Thus the general form for allowed Bloch wave vectors is:

k =
3∑
i=1

mi

Ni
bi. (2.1.15)

2.2 Band Structure

We want to study the electronic properties of graphene, and one important factor to consider

would be the band structure. The Electronic Band Structure of a solid describes the range of

energy for each allowed state that electrons may have within it. These states also have particular

periodicity. The band structure can be thought of as an energy-momentum map. To understand

band structure of a solid, we need to first understand the one-dimensional Dirac Comb and

describe the Dirac Comb limit of the “Kronig-Penny Model”. One specific quality that solids

can be described using periodic potentials that repeat after some fixed distance a:

V (x+ a) = V (x). (2.2.1)
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Figure 2.2.1. is from [2]. The potential tells us that there is a long string of delta-function spikes. These
spikes are the one-dimensional Kronig-Penny model.

By Bloch’s Theorem, the solution to the Schödinger equation has the property that:

ψ(x+ a) = eiqaψ(x). (2.2.2)

However, no realistic solid truly goes on forever, so at the end of a solid structure, the boundary

condition has changed. One trick is to wrap the x axis around in a circle and connect it onto its

tail, so this structure has no end and we can apply a periodic boundary condition. Then, the

wave function repeats N times. The Dirac Comb potential is:

V (x) = α

N−1∑
j=0

δ(x− ja). (2.2.3)

From the figure, we can see that when 0 < x < a, the potential is zero. Therefore,

d2ψ

dx2
= −k2ψ,with k ≡

√
2mE

~
. (2.2.4)

Then the general solution is just:

ψ(x) = A sin(kx) +B cos(kx) (0 < x < a). (2.2.5)

According to Bloch’s Theorem, the wave function from −a < x < 0 is:

ψ(x) = e−iqa{A sin[k(x+ a)] +B cos[k(x+ a)]}. (2.2.6)

Since ψ(x) = e−iqa{A sin[k(x+ a)] +B cos[k(x+ a)]} is to the left of the initial region, when the

original wave equation is at x = 0, here x is at −a and ψ must be continuous, therefore,

B = e−iqa[Asin(ka) +Bcos(ka)]. (2.2.7)
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Moreover, because the derivative of ψ suffers a discontinuity proportional to the delta

function(∆(dψdx ) = −2mα
~2 ψ(0)), we get

kA− e−iqak[A cos(ka)−B sin(ka)] =
2mα

~2
B. (2.2.8)

There is a sign change, because we have spikes instead of wells. By solving 2.2.7, we get expres-

sions for A sin(ka) and by plugging that back into 2.2.8, we can cancel kB and hence simplify

to:

cos(qa) = cos(ka) +
mα

~2k
sin(ka), (2.2.9)

for q = 2πn
Na , (n = 0,±1,±2, ...). By defining z ≡ ka and β ≡ mαa

~2 , we can rewrite 2.2.9:

f(z) ≡ cos(z) + β
sin(z)

z
. (2.2.10)

By plotting f(z) vs. z, we get that there are only certain energies that are allowed the particles to

be in. Some closely packed allowed energies form a band and together we get the band structure

with gaps existing between each band.

2.2.1 The Use of Band Structure

After gaining the basic knowledge of band structure, we want to further understand what things

the band structure can tell us. The band structure can help us define the conductivity of a

material. For a conductor, the highest band is partially filled; whereas for an insulator, the

highest band is completely filled. And before introducing the semiconductor, I would like to

introduce the valence band and the conduction band first. The valence band is completely

filled at zero temperature, and the band just above it is the conduction band. If a material

is an insulator at zero temperature, but the gap between the valence band and the conduction

band is small (smaller than 2eV), it is known as a semiconductor.[3] By understanding the

band structure of a material, we can tell its electric conductivity.
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Figure 2.2.2. is from [13]. For conductor, there is an overlap between conduction band and valence band;
for semiconductor the band between valence band and conduction band is small; for insulator, the gap is
big.

Figure 2.2.3. is from [10].This is the band structure of graphene. The touch points are where valence band
and conduction band meet and form Dirac cones.

From this figure, we can see the orange region is the conduction band and the blue region is

the valence band. And when the two bands meet, it forms a hexagonal Brillouin zone. Then let’s

discuss what is the Brillouin zone. We usually consider the 1st Brillouin zone to be the most

important factor to understand. Brillouin zone is the primitive cell of the reciprocal lattice. We

can confine all the periodicities of the lattice within the first Brillouin zone. So by understand-
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ing the electronic properties within the first Brillouin zone, we can understand the electronic

properties of the whole lattice.

2.2.2 The Proof of Bloch’s Theorem

We’ve been using Bloch’s Theorem for a long time and now we want to understand how we prove

Bloch’s Theorem. This proof is following Ashcroft and Mermin.[1] We first consider a Fourier

expansion of periodic potential and an associated wave function:

U(r) =
∑
K

UK eiK·r, (2.2.11)

ψ(r) =
∑
q

cq e
iq·r. (2.2.12)

Then we want to find the Fourier coefficient of U(r), that is:

UK =
1

v

∫
cell

dr e−iK·r U(r).

Contrast standard Fourier expansion, there are two changes: first is to require the potential

energy all over the primitive cell is zero (U0 = 1
v

∫
cell drU(r) = 0) and second we choose an origin

at a symmetry point, so that U(−r) = U(r) (inversion symmetry). Since U(r) is real, then UK

is also real, which means U−K = UK = U∗K. Then we consider the Schödinger’s equation:

− ~2

2m
∇2 ψ(r) + U(r)ψ(r) = E ψ(r).

By algebraic manipulations and substituting the Fourier expansions of ψ(r) and U(r), we get

the result:

− ~2

2m
∇2 ψ =

∑
q

~2

2m
q2 cq e

iq·r and

U ψ =

(∑
K

UK eiK·r

) (∑
q

cq e
iq·r

)
=
∑
K

∑
q

[UK cq e
−i(K+q)·r].

Defining q′ = K + q, we get U ψ =
∑

Kq′ UK cq′−Ke
iq′·r. Then we simply change the indexing

from q′ and K to q and K′ and plug into the Schödinger’s equation:∑
q

eiq·r

{(
~2

2m
q2 − E

)
cq +

∑
K′

UK′ cq−K′

}
= 0.
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Since plane waves satisfying the Born-von Karman boundary condition are orthogonal, the

separation coefficients(cq, UK′) will vanish, therefore, we have:(
~2

2m
q2 − E

)
cq +

∑
K′

UK′ cq−K′ = 0.

Here we do another rewriting of the indices. Because q is any wave vectors, we define q = k−K,

where k lies in the first Brillouin zone and K represents the reciprocal lattice. Because the

lattice is repeating, we can get to anywhere in the lattice by defining q = k−K. Therefore, we

can constrain the problem to the first Brillouin zone and our result apply anywhere else in the

lattice. Thus, the Schödinger’s equation becomes:(
~2

2m
(k−K)2 − E

)
ck−K +

∑
K′

UK′ cq−K′ = 0.

Here comes the third change in indexing, that is to write K′ → K′ −K. Thus:(
~2

2m
(k−K)2 − E

)
ck−K +

∑
K′

UK′−K cq−K′ = 0.

Therefore, we get the wave function as:

ψk =
∑
K

ck−K ei(k−K)·r. (2.2.13)

Factoring the eik·r out:

ψk(r) = eik·r

(∑
K

ck−K e−iK·r

)
.

This is the Bloch’s Theorem with a periodic function u(r):

u(r) =
∑
K

ck−K e−iK·r. (2.2.14)

This completes the proof of Bloch’s Theorem.

2.3 Band Gap

Here I want to further discuss the electronic band and gap. This discussion follows Professor

Matthew Deady’s personal notes. First let us consider “single atom electron states”. That is, we

will consider a single atom in a finite square well and its attracting electrons. The well has width
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Figure 2.3.1. is from [9]. On the left shows the wave functions out side the finite square well; on the right
shows the wave functions within the finite square well.

L and depth −V0. The electron states are presented below. Inside the well, the time-independent

Schrödinger’s Equation needs:

− ~2

2m

d2ψ

dx2
− V0ψ(x) = Eψ(x),

d2ψ

dx2
= −

(
~2

2m

)
(E + V0)ψ(x).

For negative “bound state” energies −V0 < E < 0, this gives ψ′′ = −ψ meaning that the

curvature of the wave function is opposite the magnitude and the wave function looks vaguely

sinusoidal inside the wells. When outside of the wells, there is no potential, but E is still negative,

so ψ′′ = +ψ, meaning the curvature has the same sign as the wave function. This indicates that

when outside the well, the wave function looks vaguely exponential, sloping toward ψ = 0 as x

gets farther from the well.

In order to find the energies of these states, we make the following general observations:

1. For each state ψn, the number of nodes in the well region is (n− 1).
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2. For small values of n, the finite well energies are close to the infinite well energies

En ≈ −V0 + p2n
2m , with pn = ~

λn
= n2~

L .

3. As n gets larger, and En → 0, the states look less and less like the infinite well states, with

more of ψn being outside of the well.

4. For unbound states, with E > 0, these are similar to traveling wave sinusoidal functions

for −∞ < x < +∞, with some alteration in the region near the well.

Building on this, we want to understand a more complicated system: the two-atom electron

states. Then we now put two atoms A and B, a distance a apart from each other, modeling this

as two finite wells of width L and depth −V0, whose centers are a distance a apart from each

other. Starting with a� L, the states of the two wells are almost unaffected by the other well.

For each n, the electron is highly likely to be found near one atom or the other, which indicates

there are two distinct single-electron states with identical energies: state has an electron almost

certainly near atom A, and the other is such that the electron is almost certainly near atom B.

When the atoms get closer together, the likelihood that the electron could be found in the region

between the atoms is no longer ignorable, so we have to construct wave functions that combine

probabilities of being near A with being near B. And the relative phases of the two atomic

regions’ contributions matters. When we combine independent wave functions into composite

functions, N individual states lead to N linearly independent combined states. Then we can find

the energy of electron in various situations:

1. The contribution of being near one atom center or the other is the Coulomb attraction of

the nucleus on the electron, which we know gives E ≈ E1 for each state.

2. If the electron has any sizable probability to be found in the region between A and B,

that is a negative charge between two positive atomic charge centers, giving an attractive

force and a lower overall potential energy.
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3. So, the “double-hump state” will have a slightly lower energy than the “up and down

state” because of the higher electron density in between-atoms region in the first case.

4. Also, the “double-hump state”(see E3 on the right of Fig 2.3.1) changes less rapidly than

the state with normal sine or cosine waves (see E2 on the right of Fig 2.3.1) as x changes,

meaning that its |ψ′′| is smaller, giving it has ess kinetic energy.

The two possible states are known as “bonding” and “anti-bonding” molecular orbitals.

Then we can go to the N -atom electron states. If we have a 1D lattice of N atoms, modeled

as a series of finite wells of width L and depth V0, with a distance a from one well to the

next, the combined states will again fall into sets roughly near the single-well energies. The N

linearly independent wave functions will come from combining the states with all of the possible

symmetric/anti-symmetric choices. At each value, E ≈ En, there will be N distinct single-

electron energies, spread out by a small deviations with ∆En � (En+1−En). We illustrate from

the origin n = 1 single-atom states:

1. The lowest energy combination is the symmetric addition of the four contributions,

A + B + C + D. This gives no additional nodes, and the non-zero probabilities in the

regions between each atom reduces the overall energy.

2. Then we add them as A + B−C−D, giving one new node in the center of the pattern.

The lower probability to have an electron in this B to C region increases the energy a bit

compared the first case.

3. I now add them as A − B − C + D, giving two new nodes in the pattern. The lower

probability to have an electron in the A to B and C to D regions increases the energy a

bit compared the second case.

4. Then we add them anti-symmetrically as A−B + C−D, giving three new nodes in the

pattern. The lower probability to have an electron in any the inter-atom regions increases
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the energy a bit compared the other cases.

5. Going from the first case to the last, the ψ functions vary more rapidly with x, giving

higher kinetic energy. This also contributes to the energy split between levels.

For the types of ridiculously large N -atom systems that make up condensed matter crystals,

the end result is sets of energy levels which bunch together very closely. Within any bunch, the

energies are so close together that for N ≈ 1020, it is reasonable to think of them as forming a

continuous set of energies in a band. The fact that these bunches are widely spaced is what we

call the band gaps.

2.3.1 1D Energy Band

Here I want to illustrate general conclusions in one dimension, that is where the occurrence rate

of the twofold degeneracy is the greatest. When there are no interactions, the energy levels are

just the Fig 2.3.2 (a). It is just a simple parabola.

Things are different when the curve nears the Bragg planes, in one dimension, Bragg planes

are actually points. When q is near a Bragg plane with a corresponding reciprocal lattice vector

K, the energy level becomes another free electron parabola centered at K, which indicates in

Fig 2.3.2 (b). The degeneracy at the intersection point is split by 2|Uk|, and both curves have

zero slope at the intersection and then by taking this zero slope, we can redraw Fig 2.3.2 (b)

into Fig 2.3.2 (c).

We then incorporate all these conditions in the original free electron case and we get Fig 2.3.2

(d). When we include all the Bragg planes and their associated Fourier components, we can get

the set of curves shown in Fig 2.3.2 (e). And this method of demonstrating the energy levels

is called the extended-zone scheme. If we want to include all the energy levels within the first

Brillouin zone, then we have to translate Fig 2.3.2 (e) through reciprocal lattice vectors into

the first Brillouin zone and hence we get Fig 2.3.2 (f) and it is called the reduced-zone scheme.

Finally, if we want to repeat the energy levels in every Brillouin zone, then we can generate Fig
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2.3.2 (g), and it is in a repeated-zone scheme. Fig 2.3.2 (g) emphasizes that a particular level at

k can be described by any wave vector differing from k by a reciprocal lattice vector.
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Figure 2.3.2. is from [1]. (a) The free electron case. (b) We determine the potential near Bragg plane. (c)
We split the degeneracy at the point of intersection. (d) We add the degeneracy to the first free electron
case. (e) Expand what we did to all the Bragg planes. (f) Constraining all the potentials to the first
Brillouin zone. (g) Repeating to other Brillouin zones.
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3
Potential and Models

3.1 Perturbation Theory

By using the known eigenvalues and eigenvectors of a known system, we can find small modi-

fications to the energies and wave functions when the system is a little more complicated than

the simple system. This is done by expressing the perturbation to the system in terms of an

adjustable parameter, λ and then matching up terms of the same power of λ. “Perturbation

theory is a systematic procedure for obtaining approximate solutions to the perturbed prob-

lem, by building on the known exact solutions to the unperturbed case.”[2] We first find the

first-order perturbed energy, i.e. the modification to E0
n. We first introduce an equation:

H0|ψ1
n〉+H ′|ψ0

n〉 = E0
n|ψ1

n〉+ E1
n|ψ0

n〉. (3.1.1)

And then we act the bra co-vector 〈ψ0
n| on 3.1.1, and it becomes:

〈ψ0
n|H0|ψ1

n〉+ 〈ψ0
n|H ′|ψ0

n〉 = 〈ψ0
n|E0

n|ψ1
n〉+ 〈ψ0

n|E1
n|ψ0

n〉

E0
n〈ψ0

n|ψ1
n〉+ 〈ψ0

n|H ′|ψ0
n〉 = E0

n〈ψ0
n|ψ1

n〉+ E1
n〈ψ0

n|ψ0
n〉

〈ψ0
n|H ′|ψ0

n〉 = E1
n〈ψ0

n| = E1
n · 1.

So, we can find the first-order contribution to the energy En by evaluating the expectation

value of the perturbing Hamiltonian on the nth unperturbed wave function: E1
n = 〈ψ0

n|H ′|ψ0
n〉.
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Figure 3.1.1. is from [2]. This is the perturbation in infinite square well.

This is the energy shift. Then we can discuss the first order wave function.

Working only to the first order, the perturbed wave function is expressed as the zeroth-order

wave function, plus something different,

|ψn〉 = |ψ0
n〉+ λ · |ψ1

n〉.

The additional term can be expanded in terms of the complete orthonormal basis provided by

the eigenfunctions of the unperturbed Hamiltonian,

|ψ1
n〉 =

∑
m6=n

c(n)m |ψ0
m〉. (3.1.2)

We did not include the m = n term because any contribution from ψ0
n could be incorporated

into the first term in the equation above. As for the coefficients c
(n)
m , those are found using the

orthonormality of the ψ0
m wave functions,

〈ψ0
m|ψ1

n〉 =
∑
k 6=n

c
(n)
k 〈ψ

0
m|ψ0

k〉 =
∑
k 6=n

c
(n)
k δmk =⇒ 〈ψ0

m|ψ1
n〉 = c(n)m .
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Going back to equation 3.1.1, we act on it with the bra co-vector 〈ψ0
m|, this time with m 6= n.

H0|ψ1
n〉+H ′|ψ0

n〉 = E0
n|ψ1

n〉+ E1
n|ψ0

n〉

〈ψ0
m|H0|ψ1

n〉+ 〈ψ0
m|H ′|ψ0

n〉 = 〈ψ0
m|E0

n|ψ1
n〉+ 〈ψ0

m|E1
n|ψ0

n〉

E0
m〈ψ0

m|ψ1
n〉+ 〈ψ0

m|H ′|ψ0
n〉 = E0

n〈ψ0
m|ψ1

n〉+ E1
n〈ψ0

m|ψ0
n〉

E0
m〈ψ0

m|ψ1
n〉+ 〈ψ0

m|H ′|ψ0
n〉 = E0

n〈ψ0
m|ψ1

n〉+ E1
n · 0.

The last term is zero because of the orthogonality of the ψ0
n set.

Then I want to introduce the Second-Order Energies. Here we take the inner product of the

second order of 3.1.1 with ψ0
n:

〈ψ0
n |H0 ψ2

n〉+ 〈ψ0
n |H ′ ψ1

n〉 = E0
n〈ψ0

n |ψ2
n〉+ E1

n〈ψ0
n |ψ1

n〉+ E2
n〈ψ0

n |ψ0
n〉.

Since H0 has hermiticity:

〈ψ0
n |H0 ψ2

n〉 = 〈H0 ψ0
n |ψ2

n〉 = E0
n〈ψ0

n |ψ2
n〉

Since 〈ψ0
n |H0 ψ2

n〉+ 〈= E0
n〈ψ0

n |ψ2
n〉 and 〈ψ0

n |ψ0
n〉 = 1, then we can develop an equation for E2

n:

E2
n = 〈ψ0

n |H ′|ψ1
n〉 − E1

n〈ψ0
n |ψ1

n〉.

And we know what is 〈ψ0
n |ψ1

n〉:

〈ψ0
n |ψ1

n〉 =
∑
m 6=n

c(n)m 〈ψ0
n |ψ0

n〉 = 0.

Put this back to the E2
n equation, we get:

E2
n = 〈ψ0

n |H ′|ψ1
n〉 =

∑
m 6=n

c(n)m 〈ψ0
n |H ′|ψ0

n〉 =
∑
m6=n

〈ψ0
m |H ′|ψ0

n〉〈ψ0
n |H ′|ψ0

m〉
E0
n − E0

m

,

and finally we get the second order energy to be:

E2
n =

∑
m 6=n

|〈ψ0
m |H ′|ψ0

n〉|2

E0
n − E0

m

. (3.1.3)
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3.2 Weak Potential

Starting from the simple system of plane wave electron motions, we introduce the perturbation

is periodic potential of the atoms in the lattice. Now let’s consider the general approach to

the Schrödinger’s Equation for weak potentials. This following description follows Ashcroft and

Mermin[1]. Recall from Bloch’s Theorem with k the crystal momentum, we have:

ψk(r) =
∑
K

ck−K ei(k−K)·r (3.2.1)

and recall from the proof of Bloch’s Theorem:

(
~2

2m
(k−K)2 − E

)
ck−K +

∑
K′

UK′−K cq−K′ = 0. (3.2.2)

Since k has many solutions lying in the first Brillouin zone that correspond with each reciprocal

lattice, if we consider the free electron case, then the previous equation becomes:

(E0k−K − E)ck−K = 0. (3.2.3)

In order to make the equation simpler, we set:

E0q =
~2

2m
q2.

To get 3.2.3 to work, we require either ck−K = 0 or E = E0k−K. Therefore, we divide the treatment

of the weak potential into two cases.

1. The first case is to fix k and take a specific reciprocal lattice vector K1, so the free electron

energy E0k−K1
is greater than the E0k−K by the energy needed to the next state U , that is:

|E0k−K1
− E0k−K| � U, (3.2.4)

for fixed k and all K 6= K1.

If we let K 6= K1, then 3.2.4 will become:

(E − E0k−K1
)ck−K1 =

∑
K

Uk−K1ck−K (3.2.5)
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From the proof of Bloch’s Theorem, we have that when K = 0, then UK = 0. Other terms from

the right hand side of the previous equation will vanish, until we reach K = K1. Therefore, the

sum will only be left with second order in U :

ck−K =
UK1−Kck−K1

E − E0k−K
+
∑

K6=K1

UK’−Kck−K’

E − E0k−K
.

Since there is no near degeneracy, we have:

ck−K =
UK1−Kck−K1

E − E0k−K
+ O(U2).

Put this equation back to 3.2.5, we have:

(E − E0k−K1
)ck−K1 =

∑
K

UK−K1UK1−K
E − E0k−K

ck−K1 + O(U3).

Therefore the perturbed energy level E is greater than the free electron value by order of U2.

To solve the previous equation for E , we have to change the index of the denominator from the

right hand side:

E = E0k−K1
+
∑
K

|UK−K1 |2

E0k−K1
− E0k−K

+ O(U3).

2. Then we will discuss the second case. That is we assume the value of k such that the

reciprocal lattice vectors K1,...,Km and the E0k−K1
, ..., E0k−Km

are all within order of U of each

other, but they are far away from E0k−K by the scale of U :

|E0k−K − E0k−Ki
| � U,

with i = 1, ...,m, and K 6= K1, ...,Km.

In this case we have to separate those equations given by 3.2.2 when we let K equal to any of

the m values K1, ...,Km. This gives m equations relating to the single equation in 3.2.5 in the

non-degenerate case. When we separate the m equations from the sum that contain coefficients

ck−Kj
with j = 1, ...,m will not be small when the limit vanishes from the remaining ck−K,

which will be at most of order U . Then we have:

(E − E0k−Ki
)ck−Ki

=

m∑
j=1

UKj−Ki
ck−Kj

+
∑

K 6=K1,...,Km

UK−Ki
ck−K, (3.2.6)
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with i = 1, ...,m.

Then we follow the same separating method as the sum, we then write 3.2.2 for the remaining

levels:

ck−K =
1

E − E0k−K

 m∑
j=1

UKj−Ki
ck−Kj

+
∑

K6=K1,...,Km

UK’−Ki
ck−K’

 ,

with K 6= K1,...,Km.

Since ck−K will be most of order U when K 6= K1,...,Km, the previous equation gives:

ck−K =
1

E − E0k−K

m∑
j=1

UKj−Ki
ck−Kj

+ O(U2).

Putting this equation back to Eqn.4.2.6, we get:

(
E − E0k−Ki

)
ck−Ki

=

m∑
j=1

UKj−Ki
ck−Kj

+

m∑
j=1

 ∑
K6=K1,...,Km

UK−Ki
UKj−K

E − E0k−K

 ck−Kj
+ O(U3).

(3.2.7)

Compare this equation with what we got from Case 1: (E−E0k−K1
)ck−K1 =

∑
K

UK−K1
UK1−K

E−E0k−K
ck−K1+

O(U3), where there is no near degeneracy. And we found an explicit expression for the shift

in energy of order U2. Nevertheless, we find that to accuracy of order U2 the determination of

the shifts in the m nearly degeneracy levels reduces to the solution of m coupled equations for

the ck−Kj
. The coefficients in the second term on the right-hand side of these equations are of

higher order in U than those in the first. Then we replace 3.2.7 by a sinple equation:

(
E − E0k−Ki

)
ck−Ki

=
m∑
j=1

UKj−Ki
ck−Kj

,

with i = 1, ...,m.

These are the general equations for a system of m quantum levels.

3.3 Tight-binding Model

In the previous section, we discussed the weakly perturbed periodic potential and now let us

explore a totally different model that is more suitable to graphene, that is the tight-binding

model. In this model, we are treating the solid (graphene) as a group of weakly interactive

neutral atoms. “The tight-binding approximation deals with the case in which the overlap of
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atomic wave function is enough to require corrections to the picture of isolated atoms, but not

so much as to render the atomic description completely irrelevant. The approximation is most

useful for describing the energy bands that arise from the partially filled d-shells of transition

metal atoms and for describing the electronic structure of insulators.”[1] We know from the

previous chapters that graphene is a semi-metal, which means at low temperature it has the

property of an insulator. Hence, the tight-binding model can fit graphene pretty well.

Now I am going to introduce the general formulation of the tight-binding approximation. This

introduction follows Chapter 10 in Ashcroft and Mermin’s Solid State Physics.[1] To develop the

tight-binding approximation, we assume that in the neighborhood of each lattice point the

periodic crystal Hamiltonian, H, can be estimated by the Hamiltonian, Hat, of a single atom

located at each lattice point. “We also assumed the bound levels of atomic Hamiltonian are well

localized; i.e., if ψn is a bound level of Hat for an atom at the origin.”[1]

Hatψn = Enψn. (3.3.1)

Then we restrict ψn(r) to be very small when r is large in comparison to the lattice constant |R|.

If r is comparable different to |R|, then H is no longer equal to Hat. Then the wave function ψn(r)

will become a good estimation to the stationary-state wave function for the full Hamiltonian,

which has the eigenvalue En. And we can also know the wave functions ψn(r−R), when a set

of R are in the Bravais lattice and we know H has periodicity over the lattice. The main idea

is to set up the Perturbation theory when the wave functions are perturbed when r is different

from |R|. In this extreme case, we rewrite the crystal Hamiltonian as:

H = Hat + ∆U(r).

Here ∆U(r) represents the corrections with all the atomic potential that can construct the

full periodic potential of the lattice. From the graph, we can see that when ψn(r) is at the

discontinuity, we have ∆U(r) to make up that point. The ∆U(r) line lies along the line of

atomic sites. When the upper curve gets larger, the lower curve ∆U(r) gets smaller and vice
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Figure 3.3.1. is from [1]. This figure explains how ∆U(r) corrects the discontinuity in ψn(r).

versa. Hence we define a new wave function ψn(r−R) corresponding with N levels in the periodic

potential, for N sites R in the lattice. We must obey Bloch’s theorem, so that we need to find N

linear combinations of the degenerate wave functions which are satisfying the Bloch condition

2.2.2:

ψn(r + R) = eik·Rψn(r). (3.3.2)

Then we sum up all N linear combinations:

ψnk(r) =
∑
R

eik·Rψn(r−R), (3.3.3)
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with the set of k in the first Brillouin zone and it satisfies the Born-von Karman boundary

condition. To prove the wave function ψn(r + R) satisfies the Bloch’s theorem, we have:

ψn(r + R) =
∑
R

eik·R
′
ψn(r + R−R′)

= eik·R

[∑
R′

eik·(R
′−R)ψn(r + R−R′)

]

= eik·R

∑
R

eik·Rψn(r} −R)


= eik·Rψ(r).

Hence, we can conclude that the set of wave functions does fit the Bloch’s condition with the set

of ks. The energy bands E are just the energy En at the atomic level. Then we define a solution of

the full Schrödinger’s equation that still obeys the general form of ψnk(r) =
∑

R e
ik·Rψn(r−R):

ψn(r) =
∑
R

eik·Rφ(r−R). (3.3.4)

Then the next step would be to define what is φ(r−R). Since we expect φ(r) to be close to the

degenerate wave functions ψn(r), we have:

φ(r) =
∑
n

bnψn(r). (3.3.5)

Then we multiply the crystal Schrödinger’s equation by the wave function ψ∗m(r) and integrate

over the set if r we get:

Hψ(r) = (Hat + ∆U(r))ψ(r) = E(k)ψ(r) (3.3.6)∫
ψ∗m(r)Hatψ(r) dr =

∫
(Hatψm(r))∗ψ(r) dr = Em

∫
ψ∗m(r)ψ(r) dr, (3.3.7)

and then we find:

(E(k)− Em)

∫
ψ∗m(r)ψ(r) dr =

∫
ψ∗m(r)∆U(r)ψ(r) dr. (3.3.8)

Now we put 3.3.4 and 3.3.5 into 3.3.8 and combining the knowledge of orthonormality of the

atomic wave functions. we get: ∫
ψ∗m(r)ψ(r) dr = δnm.
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Then we can construct an eigenvalue equation that can help us to find the coefficients bn(k) and

the Bloch energies E(k):

(E(k)− Em)bm = −(E(k)− Em)
∑
n

∑
R6=0

∫
ψ∗m(r)ψn(r−R)eik·R dr

 bn

+
∑
n

(∫
ψ∗m(r)∆U(r)ψn(r) dr

)
bn

+
∑
n

∑
R6=0

∫
ψ∗m(r)∆U(r)ψn(r−R)eik·R dr

 bn

The first term on the right of the previous equation has the form:∫
drψ∗m(r)ψn(r−R),

is known as the overlap integral and the tight-binding approximation assume it is small compare

to unity. We also assume the third term to be small because it also contains two wave functions

evaluated at different locations. The second term is also small because we assume before that

ψn(r) is very small when r is different to the lattice constant |R|.

Consequently, the right hand side of the previous equation is always small. For the left hand

side, it is either E(k)− Emt is small or bm is small. Therefore we can conclude that:

E(k) ≈ E0, bm ≈ 0 unless Em ≈ E0. (3.3.9)

3.3.1 Tight-binding Model for Graphene

Now, let us explore how the tight-binding model applied to graphene, that is to apply the

tight-binding model on the honeycomb lattice with two atoms per unit cell.

On the left, Fig 3.3.2 indicates the honeycomb lattice of graphene. The a1 and a2 are the unit

vectors. On the right it is the first Brillouin zone of graphene. The Dirac points are at K and

K′ points.

The following analysis is followed by M. O. Goerbig[5]. We first write a wave function for two

atoms in the unit cell:

ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r), (3.3.10)
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Figure 3.3.2. is from [11]. This is the honeycomb lattice with the triangular Bravais lattice.

with ak and bk are complex functions of the set of k. From the general case, we know both

ψ
(A)
k (r) and ψ

(B)
k (r) satisfy the Bloch condition with:

ψ
(j)
k (r) =

∑
Rl

eik·Rl φ(j)(r + δj −Rl),

with j labels the order of the two atoms within the unit cell and δj is a vector that connects the

atom with the Bravais lattice. The function φ here are similar to the general case, which are the

atomic orbital wave functions. And then again, we want to find the solutions to the Schrödinger’s

equation. And like in the general case, we multiply the each side of the Schrödinger’s equation

with ψ∗k. Then we define the Hamiltonian in the matrix way:

Hk ≡

ψ(A)
k (r)∗Hψ

(A)
k (r) ψ

(A)
k (r)∗Hψ

(B)
k (r)

ψ
(B)
k (r)∗Hψ

(A)
k (r) ψ

(B)
k (r)∗Hψ

(B)
k (r)

 ≡ H†k. (3.3.11)

Then we multiply the Hamiltonian matrix with ψ∗k:

(a∗k, b
∗
k)Hk

(
ak
bk

)
= εk(a∗k, b

∗
k)S

(
ak
bk

)
,

with the overlap matrix S defined by:

Sk ≡

ψ(A)
k (r)∗ψ

(A)
k (r) ψ

(A)
k (r)∗ψ

(B)
k (r)

ψ
(B)
k (r)∗ψ

(A)
k (r) ψ

(B)
k (r)∗ψ

(B)
k (r)

 ≡ S†k.
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The overlap matrix S covers the nonorthogonality of the atomic wave functions. To find the

eigenvalues εk, we determine:

det = [Hk − ελk Sk] = 0,

with λ being the energy bands and the number of energy bands equal to the number of solutions

to the secular equation. Now we zoom in on the honeycomb lattice.

Figure 3.3.3. is from [5]. This is the honeycomb lattice with two sublattices.

In Fig 3.3.3, the site we choose to evaluate the the tight-binding model is in the sublattice

A. We are considering the three Bravais lattice: a1, a2, a3. We define the nearest neighbor(NN)

hopping amplitude to be:

t ≡
∫
d2rφA∗(r)∆V φB(r + δ3). (3.3.12)

The hopping amplitude is the distance when you “hop” on to the next nearest neighbor(NNN)

and in Fig 3.3.3 we hop to the next nearest neighbor through a1. Hence we define:

tNNN ≡
∫
d2rφA∗(r)φB(r + a1).

Then we normalize the atomic wave function and get:∫
d2rφ(j)∗(r)φ(j)(r) = 1.

We then define the overlap corrections to be:

s ≡
∫
d2rφA∗(r)φB(r + δ3).
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We only consider the overlap between orbitals of nearest neighbor and next nearest neighbor.

For instance, in Fig 3.3.3, we move from sides B1 to B2 by shifts through the lattice vector a2

and we have a3 ≡ a2 − a1. The next step is to consider the phase factors and we sum them of

the nearest neighbor as:

γAAk ≡ 1 + eik·a2 + eik·a3 .

Just as we construct the Hamiltonian matrix, we define the diagonal elements of the hopping

matrix first:

tAAk = tBBk = 2tNNN

3∑
i=1

cos(k · ai) = tNNN(|γt|2 − 3). (3.3.13)

Then we find the determinant as:

det =

[
tAAk − εk (t− sεk)γ∗t

(t− sεk)γt tAAk − εk

]
, (3.3.14)

with two solutions:

ελk =
tAAk ± λt|γt|
1± λs|γt|

. (3.3.15)

We now assume s� 1 and tNNN � t and the previous equation becomes:

ελk 'tAAk + λt|γt| − st|γt|2 = tNNN|γt|2 + λt|γt|

= t′NNN

[
3 + 2

3∑
i=1

cos(k · ai)

]
+ λt

√√√√3 + 2
3∑
i=1

cos(k · ai).

Therefore we have found the eigenvalues of the hopping matrix and hence we know the energy

level of graphene.
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4
Hamiltonian Matrix

4.1 Quantum Operators

This project is heavily reliant on quantum mechanics, especially its use of the operators. Since

graphene is symmetric and has periodic wave functions, we want to explore the translational

operator. The translational operator takes a function and shifts it a distance a. The operator

that accomplishes this is defined by

T̂ (a)ψ(x) = ψ′(x) = ψ(x− a) (4.1.1)

=

∞∑
m=0

1

n!
(−a)n

dn

dxn
ψ(x)

=
∞∑
m=0

1

n!

(
−ia
~
P̂

)n
ψ(x). (4.1.2)

Therefore

T̂ (a) = e
−ia
~ P̂ , (4.1.3)

T̂ (a)−1 = T̂ (a) = T̂ (a)†. (4.1.4)

Here we can say that momentum is the ”generator” of translations. Then we define another

operator Q̂′ called the transformed operator and it is defined by

〈ψ′|Q̂|ψ′〉 = 〈ψ|Q̂′|ψ〉. (4.1.5)
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This equation means the transformed operator Q̂′ gives the same expected value when acts on

untranslated state ψ as the untransformed operator Q̂ acts on translated state ψ′. Therefore

Q̂′ = T̂ †Q̂T̂ . Use the ”bra-ket” notation, we have T̂ |f〉 ≡ |Tf〉, where f is a wave function and

〈Tf | = 〈f |T̂ †.

Then let us discuss about translational symmetry. A system is translational invariant (it has

translational symmetry) if the Hamiltonian is unchanged by the transformation:

Ĥ ′ = T̂ †ĤT̂ , (4.1.6)

and ĤT̂ = T̂ Ĥ. (4.1.7)

To talk about a system, it has translational symmetry if the Hamiltonian commutes with the

translational operator:

[Ĥ, T̂ ] = 0. (4.1.8)

And if V (x+a) = V (x) holds for continuous sets of a, we called continuous symmetry. However,

graphene has discrete translational symmetry and we will discuss this more when we see how to

construct the Hamiltonian matrix.

4.2 Linear Algebra and Hamiltonian Matrix

To approach quantum mechanics through linear algebra, we need to first consider operators

in matrix mechanics. Now, let’s introduce a simple one-body potential that satisfies periodic

boundary conditions: ψ(x + a) = ψ(x). The plane-wave basis we choose to work on is defined

by:

ψ(0)
n (x) =

√
1

a
e(i

2πn
a
x). (4.2.1)

The kinetic energy operator is: K̂ = P̂ 2

2m , where P̂ is the momentum operator. We act the kinetic

energy operator on the plane-wave basis, we get:

K̂ψ(0)
n (x) =

P̂

2m

[
−i~

(√
1

a
i
2πn

a
e(i

2πn
a
x)

)]
(4.2.2)

=
~2

2m

√
1

a

4π2n2

a2
e(i

2πn
a
x), (4.2.3)
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with eigenvalue 4
(
~2π2n2

2ma2

)
. We first define the Hamiltonian:

Hnm = 〈ψ(0)
n |(H0 + V (x))|ψ(0)

m 〉.

Then we write this equation in terms of a matrix:

∞∑
m=1

Hnmcm = Ecn.

For Hnm is a matrix, cm and cn are vectors and E is a constant.

To understand this ”braket” notation, we treat 〈ψ(0)
n | as transpose vector and |ψ(0)

m 〉 as vector.

Then we can do some algebraic manipulation to this equation:

Hnm = 〈ψ(0)
n |H0|ψ(0)

m 〉+ 〈ψ(0)
n |V (x)|ψ(0)

m 〉 (4.2.4)

= 〈ψ(0)
n |4

(
~2π2n2

2ma2

)
|ψ(0)
m 〉+ 〈ψ(0)

n |V (x)|ψ(0)
m 〉 (4.2.5)

=
2~2π2n2

ma2
〈ψ(0)

n |ψ(0)
m 〉+ 〈ψ(0)

n |V (x)|ψ(0)
m 〉 (4.2.6)

=
2~2π2n2

ma2
δnm +HV

nm. (4.2.7)

For Hnm = 1
a

∫ a
0 dxe

(−i 2πn
a
x)V (x)e(i

2πn
a
x). We now can realize that, this is just the matrix version

of expected value. For computer programing, we define hnm = Hnm
EISW

(ISW stands for infinite

square well). By Bloch’s Theorem 2.2.2, we get

ψ(x+ a) = eiKaψ(x).

For −π 6 Ka 6 π. Then we define ka = 2πn+Ka, therefore,

k =
2πn

a
+K.

The kinetic energy equals momentum squared over 2m and P = ~k. Therefore,

E =
~2k2

2m

=
~2(2πna +K)2

2m

=
~2[πn(2n+ Ka

n )]2

2m

=
~2π2(2n+ Ka

n )2

2ma2

= EISW

(
2n+

Ka

n

)2

.



38 4. HAMILTONIAN MATRIX

Now let’s consider the 2D case. Here we introduce a rectangular unit cell with side lengths ax

and ay obeying the periodicity conditions just as the 1D case.

ψ(x+ ax, y) = ψ(x, y),

ψ(x, y + ay) = ψ(x, y).

Again, we introduce the basis to work on as:

ψ(0)
nxny(x, y) =

1
√
axay

e

(
i 2πnx
ax

x+i
2πny
ay

y
)
, (4.2.8)

where nx, ny are integers, with energy eigenvalues.

E(0)
nxny(x, y) = 4

[
n2x + n2y

(
a2x
a2y

)]
EISW = E(0)

nx + E(0)
ny , (4.2.9)

here we define EISW = ~2π2

2ma2
. Then the Hamiltonian matrix elements will be of the form:

Hnxny ,mxmy = 〈ψ(0)
nxny |(H0 + V (x, y))|ψ(0)

mxmy〉 (4.2.10)

= δnxmxδnymyE
(0)
nxny +HV

nxny ,mxmy , (4.2.11)

where mx and my are also integers, and

Hnxny ,mxmy = 〈ψ(0)
nxny |V (x, y)|ψ(0)

mxmy〉.

By imposing the Bloch’s condition, we get similar result as 1D case:

ψ(x+ ax, y) = eiKxaxψ(x, y),

ψ(x, y + ay) = eiKyayψ(x, y).

Then, we can write the total energy separately in terms of x and y:

E(0)
nx = EISW

(
2nx +

Kxax
π

)2

, E(0)
ny = EISW

(
2ny +

Kyay
π

)2(a2x
a2y

)
.

Then we jump into understanding the matrix mechanics and we will start with how to find

eigenvalues and eigenvectors in linear algebra. To solve for the eigenvalues λi and the corre-

sponding eigenvectors xi of an n× n matrix A, do the following:
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1. Multiply an n× n identity matrix by the scalar λ.

2. Subtract the identity matrix multiple from the matrix A.

3. Find the determinant of the matrix we get from last step.

4. Solve for the eigenvalues of λ that satisfy the equation: det(A− λI) = 0.

5. Then solve for the corresponding eigenvector to each λ.

4.3 Coding of the Hamiltonian Matrix

Here we want to use Python to compute the matrix in the 1D periodic, and let’s go back to the

1D periodic potential case. We understand that HV
nm is a matrix and is defined by

1

a

∫ a

0
dxe−i

2πn
a
xV (x)ei

2πm
a
x. (4.3.1)

And we define V (x) = V0 cos
(
2πx
a

)
. Plug this back into the HV

nm equation and solve the integra-

tion.

HV
nm =

1

a

∫ a

0
dxe−i

2πn
a
xV0 cos

(
2πx

a

)
ei

2πm
a
x.

By using Euler’s identity, cos
(
2πx
a

)
= ei

2πx
a +e−i

2πx
a

2 . Hence,

HV
nm =

V0
2a

∫ a

0
dxe−i

2πn
a
x
(
ei

2πx
a + e−i

2πx
a

)
ei

2πm
a
x

=
V0
2a

∫ a

0
dxe−i

2πn
a
xei

2πx
a

(1+m) + ei
2πm
a
xe−i

2πx
a

(1+n)

=
V0
2a

∫ a

0
dxei

2πx
a

(1+m−n) + e−i
2πx
a

(1+n−m)

=
V0
2a

[
a

i2π(1 +m− n)
ei

2πx
a

(1+m−n) − a

i2π(1 + n−m)
e−i

2πx
a

(1+n−m)

]a
0

= −V0i
4π

[
1

(1 +m− n)
ei

2πx
a

(1+m−n) − 1

(1 + n−m)
e−i

2πx
a

(1+n−m)

]a
0

= −V0i
4π

[
1

(1 +m− n)
ei2π(1+m−n) − 1

(1 + n−m)
e−i2π(1+n−m) − 1

(1 +m− n)
+

1

(1 + n−m)

]
.

n and m are integers that indicate the rows and columns of the matrix. Therefore, 1 +m− n

and 1 + n−m are both integers. Again, by using Euler’s identity,

ei2π(1+m−n) = e−i2π(1+n−m) = 1.
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Thus,

HV
nm = −V0i

4π

[
1

(1 +m− n)
− 1

(1 + n−m)
− 1

(1 +m− n)
+

1

(1 + n−m)

]
= 0.

Then let’s consider a special case, when 1 +m− n = 0, which means n = m+ 1. Therefore,

HV
m+1m =

1

a

∫ a

0
dxe−i

2π(m+1)
a

xV (x)ei
2πm
a
x

=
1

a

∫ a

0
dxe−i

2πx
a V (x)

=
V0
2a

∫ a

0
dxe−i

2πx
a

(
ei

2πx
a + e−i

2πx
a

)
=
V0
2a

∫ a

0
dxe−i

4πx
a + 1

=
V0
2a

(
a

−i4π
e−i

4πx
a + x

)a
0

=
V0
2a

(
a

−i4π
e−i4π + a− a

−i4π

)
=
V0
2
.

This calculation allows us to construct the (n,m) elements of the HV
nm is a n by m matrix.

The nth diagonal element equals 4
(
~2π2n2

2ma2

)
.whereas the off diagonal elements when n = m+ 1

are V0
2 . For the rest of the other entries in the matrix we get 0. This calculation helps us to

construct the Hamiltonian matrix. Then we can input this matrix into computer and to do more

manipulations.

In order to code this matrix in Python, we first define the size of the matrix and form two

arrays to label the rows and the columns. And since the m’s and n’s are integers, they can be

positive, zero or negative. But Python labels things starting from 0, so we derive a formula to

convert the indexing:

y =
1 + (−1)(x+1)(2x+ 1)

4
, (4.3.2)

where x is the python indexing and y can be either m’s or n’s. That is to say, we can run a forloop

over over the list of m’s and n’s with this function and get two new lists with appropriate Python

indexing. Then we construct a 0 matrix with appropriate size we defined at the beginning, and

use the indexing to assign values for diagonal and off-diagonal elements that we calculated before.
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Finally, we use the built-in linear algebra package “scipy.linalg” to calculate the eigenvalues and

eigenvectors. For each eigenvector, we can construct a wave-function and the final step would

be to plot the wave-function.

Since graphene is a 2D flat sheet, what we really want to consider is the 2-Dimensional

Hamiltonian matrix. To construct the 2D Hamiltonian matrix, we need to first define the 2D

wave function and the basis we are going to work on. For wave functions, we define

ψ(x+ ax, y) = ψ(x, y) (4.3.3)

ψ(x, y + ay) = ψ(x, y), (4.3.4)

for similar periodicity as the 1D case. Here ax and ay act like a in the 1D case. Similar to the

1D case, we work in a basis like this:

ψnxny(x, y) =
1

√
axay

e

(
i 2πnx
ax

x+i
2πny
ay

y
)
, (4.3.5)

where nx, ny are integers. From 4.2.11, we have Hnxny ,mxmy = δnxmxδnymyE
(0)
nxny +HV

nxny ,mxmy ,

and we want to find HV
nxny ,mxmy first and then we can define the relation between nx, ny,mx,my.

With HV
nxny ,mxmy = 〈ψ(0)

nxny |V (x, y)|ψ(0)
mxmy〉, we have

HV
nxny ,mxmy =

1

axay

∫ a

0

∫ a

0
e

(
i 2πnx
ax

x+i
2πny
ay

y
)
V (x, y) e

(
i 2πmx
ax

x+i
2πmy
ay

y
)
dxdy. (4.3.6)

We define V (x, y) to be some function has periodicity: V (x, y) = V0

[
cos
(
2πx
ax

)
· cos

(
2πy
ay

)]
.

By Euler’s identity, we get cos
(
2πx
ax

)
= e

i 2πxax +e
−i 2πxax

2 . Then we substitute the Euler’s identity

version into the expression of V (x, y), and we get

V (x, y) =
V0
2

[(
ei

2πx
ax + e−i

2πx
ax

)(
e
i 2πy
ay + e

−i 2πy
ay

)]
=
V0
2

(
e
i 2πx
ax

+i 2πy
ay + e

i 2πx
ax
−i 2πy

ay + e
−i 2πx

ax
+i 2πy

ay + e
−i 2πx

ax
−i 2πy

ay

)
.

Next step is to substitute this expression into the HV
nxny ,mxmy equation and we get

HV
nxny ,mxmy =

V0
2axay

∫ a

0

∫ a

0
e

(
i 2πnx
ax

x+i
2πny
ay

y
) (

e
i 2πx
ax

+i 2πy
ay + e

i 2πx
ax
−i 2πy

ay + e
−i 2πx

ax
+i 2πy

ay + e
−i 2πx

ax
−i 2πy

ay

)
e

(
i 2πmx
ax

x+i
2πmy
ay

y
)
dxdy. (4.3.7)
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By combining terms, we find most of the terms are zero and left with some none zero terms

which indicate the relations between nx,mx, ny,my. We get

nx + 1 +mx = 0

nx − 1 +mx = 0

ny + 1 +my = 0

ny − 1 +my = 0.

We simplify these equations and find

nx = ±1−mx (4.3.8)

ny = ±1−my. (4.3.9)

In terms of constructing the 2D Hamiltonian matrix, the trickiest thing is to find out proper

indexing. Just as in the 1D case, we have to convert Python indexing. Just as the 1D case,

we need to define a function to convert the indices. But now we have a pair of integers to

represent another positive integer. For instance, (nx, ny) pair represents the rows and (mx,my)

pair represents the columns. How can we use these pairs to indicate one positive integer? The

answer is to give the pair an order. For example, we say a positive integer always goes before

a negative, so instead of using the pairs for indexing, we can use the order of the pair for

indexing. For Python, we first define a function that is the square of the first element in the

function plus the square of the second element. Then we insert this function in the ”sort”

command to make our list of pair in the order we want. Then we use the length n of the list

of pairs to define the size of the Hamiltonian matrix, which is n × n. Then we assign values

to each entries of the matrix when the indexing of the matrix satisfies the combinations of

these two relations: nx = ±1−mx, ny = ±1−my. When the indexing satisfies these relations,

the entries will be V0
2 . The matrix entries remain zero. Then we calculate the eigenvalues and

eigenvectors. I plotted the energy levels out of the eigenvalues. Then we multiply the plane wave

basis ψnxny(x, y) = 1√
axay

e

(
i 2πnx
ax

x+i
2πny
ay

y
)

with each eigenvectors. Then we sum them together



4.3. CODING OF THE HAMILTONIAN MATRIX 43

and get the absolute value of the sum. Then the sum will be all real numbers and we can then

make a 3D plot to see the energy eigenstates. Below are my outputs of the energy eigenstates

with both imaginary and real part and the energy levels.

Figure 4.3.1. This is the real part of the energy eigenstate.

Figure 4.3.2. This is the imaginary part of the energy eigenstate.
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Figure 4.3.3. This is the absolute value squared of the energy eigenstates.

Figure 4.3.4. This figure indicates the energy levels.
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Curvature and Future Thoughts

5.1 Gaussian Curvature

Now let me introduce curvature to this project. Intuitively, the curvature is the amount by which

a curve deviates from being a straight line, or a surface deviates from being a plane. By using

the osculating circle, we get the curvature(κ) equals one over the radius of the osculating circle.

But what is an osculating circle? An osculating circle is the circle that nest approximate the

curve at a point. Therefore the formula is:

Figure 5.1.1. is from [8]. This is the osculating circle that we used to find the curvature.

κ =
1

R
. (5.1.1)
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After understanding the curvature of 1D curve, we now want to understand the Gaussian cur-

vature of 2D shape. Since our graphene is a 2D curved sheet, what we really need to consider is

the 2D curvature. The Gaussian curvature is the product of the two principal curvatures:

K = κ1κ2. (5.1.2)

The other formula for 2D curvature would be:

K =
Fxx · Fyy − F 2

xy

(1 + F 2
x + F 2

y )2
. (5.1.3)

We first find a function F that defines how the curvature changes in both x and y directions.

Then Fx = ∂xF , Fxx = ∂x∂xF , same for y and Fxy = ∂x∂yF . I will introduce one example,

that is to calculate the curvature of a sphere. When we define a sphere, we use x2+y2+z2 = R2,

then F (x, y) = z =
√
R2 − x2 − y2. Therefore, by our formula:

Fx = ∂xF =
−x√

R2 − x2 − y2
,

Fy = ∂yF =
−y√

R2 − x2 − y2
.

And

Fxx = ∂x∂xF

=
−1√

R2 − x2 − y2
+

[
−x · (−1

2)

(R2 − x2 − y2)3/2
· (−2x)

]

=
−1√

R2 − x2 − y2
− x2

(R2 − x2 − y2)3/2

Fyy = ∂y∂yF

=
−1√

R2 − x2 − y2
+

[
−y · (−1

2)

(R2 − x2 − y2)3/2
· (−2y)

]

=
−1√

R2 − x2 − y2
− y2

(R2 − x2 − y2)3/2

Fxy = ∂x∂yF

= ∂x

(
−y√

R2 − x2 − y2

)

=
−y · (−1

2)

(R2 − x2 − y2)3/2
· (−2x) =

−xy
(R2 − x2 − y2)3/2

.
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Then we plug those items into the curvature formula and we get:

K =
Fxx · Fyy − F 2

xy

(1 + F 2
x + F 2

y )2

=

(
−1√

R2 − x2 − y2
− x2

(R2 − x2 − y2)3/2

)
·

(
−1√

R2 − x2 − y2
− y2

(R2 − x2 − y2)3/2

)

−
(

−xy
(R2 − x2 − y2)3/2

)2

÷

1 +

(
−x√

R2 − x2 − y2

)2

+

(
−y√

R2 − x2 − y2

)2
2

.

We calculate the numerator first:

Fxx · Fyy − F 2
xy =

1

R2 − x2 − y2
+

y2

(R2 − x2 − y2)2
+

x2

(R2 − x2 − y2)2
+

x2y2

(R2 − x2 − y2)3
− x2y2

(R2 − x2 − y2)3

=
R2 − x2 − y2 + y2 + x2

(R2 − x2 − y2)2

=
R2

(R2 − x2 − y2)2
.

Then we calculate the denominator:

1

(1 + F 2
x + F 2

y )2
=

1[
1 +

(
−x√

R2−x2−y2

)2

+

(
−y√

R2−x2−y2

)2
]2

=
1(

1 + x2+y2

(R2−x2−y2)

)2
=

1

1 + 2x2+2y2

(R2−x2−y2) + (x2+y2)2

(R2−x2−y2)2

=
(R2 − x2 − y2)2

R4
.

Then we put the numerator and denominator together, we get:

K =
R2

(R2 − x2 − y2)2
· (R2 − x2 − y2)2

R4
=

1

R2
. (5.1.4)

By definition of Gaussian curvature, Ksphere = κ1κ2 = 1
R

1
R = 1

R2 , which agrees what we found

by parametrizing the sphere.
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Another example would be to calculate the curvature of a cylinder.

Figure 5.1.2. is from [12]. In the middle of the figure, we can tell the curvature from the horizontal
direction of the cylinder is zero.

From 5.1.2, we get Kcylinder = κ1κ2 and from Fig 5.1.2, we know κ2 = 0. Therefore the

Gaussian curvature of the cylinder is 0.

5.2 Conclusion and Future Thoughts

In conclusion, this project has set up the strategy towards how to explore the electronic properties

of curved graphene sheet. This project begins with set up the basic knowledge of solid state

physics. We introduced crystal structure with fine discussions on Bravais lattice, reciprocal

lattice and Brillouin zone. These help us build the mind set of treating lattice as vectors, thinking

lattice with periodicity and due to periodicity we can constraint the momentum and potential

of the whole lattice within the first Brillouin zone and this will save us a lot of time. Next,

we introduced what is band structure and the use of it, then we specifically mentioned the

unique band structure graphene has, which including introduce the Dirac cone. Then we proof

an important theorem used throughout this project, the Bloch’s theorem, which tells us:

ψn(r + R) = eik·Rψn(r),

and helps us to explore the periodicity within the lattice. The next step is to understand the

potentials of the flat sheet graphene. We introduced the perturbation theory which will help us

find the potential when the wave function is tilted a little bit and this theory sets up a strong

base for us to understand the potential models introduced later. Then we came to two potential
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models: the weak potential and the tight-binding model and the tight-binding model is more

suitable for graphene due to its consideration of insulator. Hence, this project further discussed

the application of tight-binding model on graphene and we successfully find the energy levels of

flat sheet graphene.

Next, I constructed the Hamiltonian matrix in 1D and 2D with periodic potential cos(x). I

used Python to find the eigenvalues and eigenvectors of the Hamiltonian matrix and then plot the

energy levels. Then I multiply the eigenvectors with the plane wave basis and sum them to plot

the specific states. I also wrote another code that will do the numerical integration with different

periodic potentials. The next step would be to diagonalize the matrix with different potential

and repeat the process of plotting the energy levels and the state. Then I briefly introduced the

the Gaussian curvature and examine the curvature of the sphere and the cylinder.

Future thoughts diverge in two directions: first is to consider the “buckyball” structure; the

second is to consider the nano tube. For the buckyball structure, since its a ball we know the

gaussian curvature of it but the periodicity of the potential is more complicated, because it has

mixture of pentagons and hexagons. For the nano tube, it is a cylinder, so it has no gaussian

curvature, so we have to change the boundary conditions to parametrize the curved side. For

example, we need to define a function between x and y to tell how the boundary changes. Below

attached two figures describing the shapes of buckyball and nano tube.

Figure 5.2.1. is from [6]. This is the buckyball shape.
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Figure 5.2.2. is from [7]. This is the nanotube.

Then we would first find the periodic potential of these two shapes and then construct the

Hamiltonian matrix. Then we upload this new matrix to our code and it will automatically

generate the energy levels and the state. So the key thing next is to figure out how the boundary

changes and how the curvature affects the symmetry and periodicity.

In terms of coding, the future steps will be to try more different potentials with the integration

code I wrote. Then I will get new Hamiltonian matrices. With a more general potential, I can

diagonalize the Hamiltonian matrix and find the eigenvalues and eigenvectors using the linear

algebra package. Then I can upload the eigenvalues and eigenvectors to my old code and it will

automatically generated plots for eigenstates and energy levels. I would also like to make my

code for plotting the energy levels more efficient, that is to loop through the list of all eigenvalues

and make a single plot. So no matter what is the size of the eigenvalue list, I can always plot

the energy levels as a single graph.

At the end, if future physics students are interested in graphene, I hope this project is helpful

to you. And please consider at least 10 times before you decide to continue doing this project. It

is going to be a really hard project, but with many joy when you are learning new things about

condensed-matter physics. Good Luck!
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