
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2019 Bard Undergraduate Senior Projects

Spring 2019

Programming Proletarian Literature: Kobayashi Takiji’s "Kani Programming Proletarian Literature: Kobayashi Takiji’s "Kani

Kôsen" and Gaming as Reading Kôsen" and Gaming as Reading

Jacob Philip Fisher
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2019

 Part of the Digital Humanities Commons, Game Design Commons, Interactive Arts Commons,

Interdisciplinary Arts and Media Commons, Japanese Studies Commons, Other Computer Sciences

Commons, and the Software Engineering Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Fisher, Jacob Philip, "Programming Proletarian Literature: Kobayashi Takiji’s "Kani Kôsen" and Gaming as
Reading" (2019). Senior Projects Spring 2019. 102.
https://digitalcommons.bard.edu/senproj_s2019/102

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2019
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2019?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1286?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1133?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1136?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1137?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1287?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2019/102?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Programming Proletarian Literature:

Kobayashi Takiji’s Kani Kôsen and Gaming as Reading

 Senior Project Submitted to

 The Divisions of Science and Languages and Literature

 of Bard College

 by

 Jacob Fisher

 Annandale-on-Hudson, New York

 May 2019

 Acknowledgements

Many thanks to Nathan Shockey, Keith O’Hara, Mika Endo, and Scott Mehl for your

encouragement and much more. Thanks to my family and friends for your love and support.

Pages of thanks could be written, but if I’m thankful for you, you know who you are. <3

Table of Contents

Introduction…………………………………………………………………….…………………1

Historical Context of the Novel, The Crab Cannery Ship (Kani Kôsen)…………….…...……....4

Literary Analysis of the Novel – Reading The Crab Cannery Ship…..…………….…………….8

Making the Game – Adaptation as Reading.…………………………………………………….15

Historical Context of the Game Boy……………………………………………………..............20

Literary Analysis of the Game – Code as Prose…………………………………………………22

Improvements for the Future…………………………………………………………………….34

Conclusion……………………………………………………………………………………….35

The Crab Cannery Ship Game Code…………………………………………………………….48

Fisher

1

Abstract

This project translates a novel, Kobayashi Takiji’s, Kani Kôsen (The Crab Cannery Ship,

1929) into a video game. As a joint project between Computer Science and Japanese, its focus is

to develop a game for the original Game Boy (1989) narratively based on a work of Japanese

proletarian literature. Specific tools used in development were the Game Boy emulator: bgb, the

Game Boy Developers Kit (gbdk), the Game Boy CPU manual, as well as a foundation in the C

programming language, and some lower level systems experience. Being based on a novel, the

play style utilizes text heavily, and is a nod to earlier Role-Playing Games (RPG’s), such as

Final Fantasy and Dragon Quest. Through the changing of medium from text-based novel, to

interactive role-playing game, or more distinctly, from book to gaming console, several acts of

translation are undergone. Many of the theoretical questions with which this project revolves

involve the ways in which the changing of medium effects a piece of media. In particular, the

transition from a work of literature to a work of electronic media has been theorized as

transforming a work’s fundamental message.

Introduction

 A quick riddle: It weighs about 400 grams and is about 15 centimeters in length. It is a

displayer of text, a conveyor of images, and a teller of stories. What could it be? Is it a video

tape? A pocket-sized book? A couple more hints may help: it is existing within a plastic shell,

has an 8-bit processor running at 4.19 MHz with 8 kilobytes (kB) of internal RAM and 8 kB of

dedicated video RAM. Its controls consist of an 8-direction joypad, A-button, B-button, as well

as a start and select button. It displays visuals via an LCD screen with a 160 by 144-pixel

resolution with a refresh rate of about 60 frames per second, and emits audio via a mono audio

Fisher

2

speaker or stereo headphone jack. Certainly not a video tape, or a book, it is the Game Boy.

Although these physical descriptors may have been the hints necessary to derive the riddle’s

answer, they merely describe the Game Boy’s physical representation in space. To describe what

the Game Boy actually is would be to stay closer to the original definition: a displayer of text, a

conveyor of images, and a teller of stories. The Game Boy is not just a collection of hardware,

but is a medium by which stories can be told in the 20th and 21st centuries and beyond.

 In 1929, the Japanese author of proletarian literature Kobayashi Takiji published his

masterpiece The Crab Cannery Ship (Kani Kôsen, 1929) in the era’s popular proletariat

magazine, The Battleflag (Senki). The novel, based on actual events that had taken place in 1926,

tells the collective story of the workers aboard a factory ship on the Sea of Okhotsk at the height

of Russian-Japanese conflict in 1929. The cruel conditions endured by the workers are a product

of the ambiguity of the setting. As neither a ship nor a factory, this place of work was exempt

from maritime law. The novel outlines the steps taken towards organization, and successful

revolution within the insular factory ship community. As literature, The Crab Cannery Ship

represents the possibility and hope of the working classes that they too could be liberated from

the oppression of the bourgeoisie. With the fall of this hope and the rise of right-wing fascism the

story of The Crab Cannery Ship was nearly forgotten. It was not until 1991, with the bursting of

the economic bubble and congruently worsening work conditions that unrest created an

environment in which Kobayashi Takiji’s The Crab Cannery Ship would appear relevant once

again resulting in its republication. The resurgence in the novel’s popularity reached its peak in

2008. Several manga adaptations, as well as two film adaptations have come from Kobayashi’s

The Crab Cannery Ship. It is through the recreation and translation of the novel to a new and

more modern form of medium that one hopes to keep its original message alive.

Fisher

3

 Even with the many adaptations already made of The Crab Cannery Ship there remained

the sense that more could be done to convey Kobayashi’s original message. It is hypothesized by

the media theorist Marshall McLuhan that through the changing of a medium the entire message

is altered. His conjecture is not concerned with content, but rather with the differences between

the messages of the medium itself. Six decades after The Crab Cannery Ship’s publicatoin

Nintendo released the Game Boy. The project that is the focus of this essay synthesizes a work of

Japanese Proletarian Literature with the world of Computer Science, or more precisely,

programming for the Game Boy. On the surface, the task is to retell the original story of The

Crab Cannery Ship through the medium of the videogame. From a general literary angle, this

task is cause for inquiry as to what occurs in the translation of a story across mediums. Further, it

concerns itself with the implications of translating a piece of literature into a videogame.

Specifically, it asks what is gained and what is lost in the transference from the novel The Crab

Cannery Ship to the videogame. From a more technical, or Computer Science, point of view the

primary question is raised as to the practical use of revisiting an outdated technology from 1989.

To someone with little or no programming experience, it may seem that to single

handedly design and build a functioning game is a large enough feat on its own, but what is

learned from this experience is much less objective than the game’s functionality. Rather, what is

truly taken from the project as a whole is the cultivation of the skill to rethink and re approach

solutions to questions that may very well be unanswerable. In full, through the making of a game

based on Kobayashi Takiji’s, The Crab Cannery Ship, a reworking of the material is undergoing,

in which the quality of the final product is subjectively dependent on one’s understanding of the

original work: The Crab Cannery Ship; and understanding of the medium into which it is being

adapted: a videogame for the Game Boy. This essay consists of the following sections:

Fisher

4

“Historical Context of the Novel, The Crab Cannery Ship (Kani Kôsen),” which supplies the

reader with the necessary backdrop with which to frame the novel itself. The novel is then

explored in the following section titled “Literary Analysis – Reading The Crab Cannery Ship.” It

is at that point that a theoretical case is made underlying the videogame, and Game Boy as a

medium. The following two sections are concerned with the more technical aspects of this work.

Consisting of a “Historical Context of the GameBoy,” and an “Literary Analysis of the Game –

Code as Prose.”

Historical Context of the Novel, The Crab Cannery Ship (Kani Kôsen)

 The content of this novel exists within the context of Kobayashi Takiji’s life, and it is

from this angle that we can understand the origins of his novel The Crab Cannery Ship (Kani

Kôsen, 1929). Takiji was born on October 13, 1903, to a small landowning family of

independent farmers the year before the start of the Russo-Japanese War. Due to his uncle

Keigi’s failing investment in his baking business, at the age of four Takiji moved to Otaru,

Hokkaido. It was there that his family earned their living working for Keigi. It was due to

Takiji’s income from working at his uncle’s bakery that he was able to get his education at the

Hokkaido Otaru Commercial High School, and later, at the Otaru Commercial School of Higher

Learning. While in school, Takiji gained his interest in literature and the arts, and graduated fifth

in his class. This placed him in the interesting position of living both within the worlds of the

proletariat and the educated elite. Soon after his graduation he took a position at the Hokkaido

Colonial Bank. His interests in literature and the arts maintained though, and he continued to

publish.

Fisher

5

 Noteworthy is the influence of the earlier proletarian fiction author Hayama Yoshiki on

Kobayashi Takiji. Many parallels can be drawn between the motifs, themes, and settings between

the two authors’ work. Takiji’s appreciation of Hayama’s work has been said to stem from when

he read Hayama’s collection of short stories, “The Prostitute” (Inbaifu, 1925). Regarding this

text, Takiji wrote in his journal, “The meaning of ‘The Prostitute’ came to me suddenly with a

bang. Literally with a bang.” Not long after the publication of Hayama’s text, Kobayashi Takiji

published what came to be known as “The Takiko Stories.” These were informed by his falling

in love with a young sex worker, Taguchi Takiko. Komori Yôichi writes in his introduction to

the 2013 translation of The Crab Cannery Ship:

The experience of falling in love with a woman from the lowest stratum of capitalist

society’s class system – a woman who had been driven to commodifying her own

sexuality – while working in a bank at the center of that system, imposed manifold

disjunctions on Takiji. It also provided the germ of what would grow to become the

core of his literature.

At this time (1927) there were many strikes held by tenancy farmers over low wages and rent

with which Kobayashi Takiji was involved, helping to write publicity leaflets on his way home

from work at the bank. The same year Takiji became executive secretary of the Otaru branch of

the Worker and Farmer Artist Federation. The strikes that ensued were victorious, and resulted in

an arbitration exceeding the tenant farmers’ original demands for “reduction or exemption from

tenancy rents.” These experiences informed his novella, “The Absentee Landlord” (Fuzai

Jinushi, 1930), published in the Central Review (Chûô Kôron), as Takiji became renowned as a

writer of proletarian literature.

In the February General Election of 1928, the proletarian parties won 8 seats out of 466

in the National Diet. Mass arrests were carried out on March 15th of those affiliated with the

Worker and Farmer Artist Federation in response. More than 1,600 arrests were made in Tokyo,

Fisher

6

Osaka, and Hokkaido. Kobayashi Takiji’s experience of this event led to his publication of the

short story “The March 15th Incident.” Regardless of the attempted banning of this publication

in the proletariat magazine, The Battle Flag (Senki), it managed to circulate, and brought Takiji

acclaim and notoriety.

Kobayashi Takiji followed this novella with his masterpiece, The Crab Cannery Ship, in

the May and June issues of The Battle Flag. It was 1929, and Takiji had just been elected as a

member of the central committee of the Japanese Proletarian Writers League. The Crab Cannery

ship was based on actual events that took place in 1926, but what stands out most prominently is

the novel’s relation to a work with a similar setting written three years before by Hayama

Yoshiki titled Life on the Sea (Umi ni Ikiru Hitobito, 1926). It is not simply that Kobayashi

Takiji was inspired by Hayama Yoshiki – in the two novels there are clear similarities in theme,

and plot development.

Heather Bowen-Struyk’s, “Rethinking Japanese Proletarian Literature” describes

Japanese works taking place on ships as “the boat book genre.” The importance of Kobayashi’s

use of this genre, and its thematic parallels to Hayama’s work, Life on the Sea, is significant in

its ability to “establish a lineage of great proletarian boat books in Japan.” Takiji makes a

dialogue between himself and the pre-existing proletarian literature in Japan like Hayama’s. In

particular, “It is significant that Kobayashi posits Hayama as his literary progenitor because this

affects Kobayashi’s ability to position himself in the history of proletarian literature.”

The Crab Cannery Ship was quickly followed up by the publication of “The Absentee

Landlord.” In this story, Takiji criticizes the system of landlord-tenant farming in Hokkaido, and

references his bank of employment by name, and as a result he was fired in 1929. At this point

Kobayashi Takiji moved to Tokyo, joined the Communist Party, and became immersed in his

Fisher

7

work in the world of proletarian literature and activism. Only a few years later he was captured,

and tortured to death on February 20, 1933. To this day, the name Kobayashi Takiji is perhaps

the most recognizable name in a large list of great Japanese writers by most of the Japanese

population. In Norma Field’s research on Japanese proletarian literature, and Kobayashi Takiji,

she states that though she “ha[s] stayed at length in Otaru, the port city in Hokkaido, [...] where

this writer grew up. Even there, where most people had at least heard his name,” upon mention

of her research she “was greeted with surprise.” This lack of interest in Takiji makes it all the

more surprising that this novel, written in 1929, regained notoriety in Japan in 2008. It is,

however, as relevant to the working classes in Japan and abroad today, as it was in the 1920’s. In

brief, the rise of the “precariat” (a word consisting combining the italian graffito, “precario,” and

“proletariat”), and the threat of repeal of Article 9, which renounces the right to war, of Japan’s

constitution, it is no wonder that the phrase “kani kôsen” became an expression that drew

together terms like “working poor,” “lost generation,” and “income gap society.” Kobayashi

Takiji’s work demonstrates that the fight against imperialism is a fight done in solidarity, as well

as the notion that this fight is not against their immediate managers and bosses, but the

imperialistic structure that imposes itself on them in the first place. Establishing the relevant

content of Kobayashi Takiji’s life provides context of his novel, The Crab Cannery Ship, both at

the time of its writing, and at the present. Next, we turn to the parallels within the boat book

genre, as well as the unique and powerful differences that Takiji utilizes that make The Crab

Cannery Ship the masterpiece of Japanese proletarian literature.

Fisher

8

Literary Analysis of the Novel – Reading The Crab Cannery Ship

 Komori Yôichi reminds us about a letter to proletarian literary critic Kurahara Korehito,

in which Takiji elucidates seven points concerning the novel’s “intent.” These can be

paraphrased as follows: First, there is no singular protagonist, but rather the novel centers around

a group. This group being the workers on the ship. Second, there is “no depiction of individual

personality or psychology.” Third, many efforts were made towards popularizing proletarian

literature. It was the case at this time that proletarian literature prior to this point was

“superficial[ly] intellectual.” On the other hand, The Crab Cannery Ship was said to be

“overwhelmingly worker like.” Fourth, its setting upon a crab cannery ship is meant to be a

“unique form of labor.” Fifth, the workers with which the novel dealt with were “unorganized.”

Sixth, it portrayed the ways in which capitalism, while “seeking to keep the workers

unorganized,” was (ironically) simultaneously “causing the workers to organize.” Seventh,

despite the emphasis on “the proletariat [...] unconditionally oppos[ing] imperialist wars,”

numerous workers aboard the ship did not understand the basis for this.

 What stands out are the implications of these themes for a novel. Given these themes,

what is Kobayashi Takiji trying to say? These core seven notions are founded on Marxist, or

Communist philosophy. Bowen-Struyk points out two main meanings of Communism in the

1920s and 1930s in Japan: first, Communism could be understood as “a political philosophy

envisioning a utopian communistic organization of society,” and second, it was thought of as

“referr[ing] to the policies and directives of the Soviet Union’s Communist International, or

Comintern, and to the policies and directives of the individual national incarnations of the

Communist Party.” Marxist ideology shines through in the use of a group protagonist as opposed

Fisher

9

to an individual. This is then emphasized in the way that the role of “leader” is fulfilled by a

group personality, rather than any singular psychology taking center stage.

To return to Takiji’s first point, the lack of a singular protagonist and use of a group as

the central figure is shown in two ways: the complete lack of formal names, and the non-human

descriptions of the fishermen and other members of the crew. It is clear at first that there is an

immediate contradiction. There are only two main characters referred to by their proper names:

Asakawa, the manager, and Miyaguchi, the weakest and most tormented by Asakawa. In this

case, proper names are given only to the strongest and the weakest, in which the strongest

commits brutal acts of violence on the weak. The other recurring characters are only titled by

their actions, such as the “Stuttering Fisherman,” or the “‘Better not act so big,’ Fisherman.” The

dehumanizing conditions, and treatment of the workers is highlighted early on in the novel when

an S.O.S. is picked up by another ship. Not wanting to waste the resources of going off track and

aiding them, Asakawa made the executive decision to let the ship sink. When the fishermen hear

of this, one asks “‘What the hell does he think human lives are, anyhow?’” to which the reply is,

“‘But Asakawa does not think of you fellows as human beings.” The fisherman is said to have

“tried to respond but could only stutter.” Komori Yôichi pronounces that this moment of having

been stripped of all dignity physically manifests itself in the fisherman as a disorder that strips

him of his human ability to speak.

This point is then followed by Takiji’s attempt to popularize proletarian literature through

The Crab Cannery Ship, which raises questions as to how the novel relates to the Communist

ideologies behind it. Through the history of proletarian literature up to the publication of The

Crab Cannery Ship the legitimacy of these works as pieces of literature rather than propaganda

was a heated debate. It is evident through the rough, “worker-like,” language of the book that

Fisher

10

Takiji is trying to make the novel more approachable to the community it was about. There were

instances where works of proletarian literature were given the recognition they deserved, in

Kurahara Korehito’s commentary, “Kaisetsu,” he points out in regards to Hayama’s works that,

“[e]ven the bundan (literary world), who had thus far rejected proletarian literature as inartistic,

could not ignore these works.” Of course, it is with Kobayashi Takiji’s predecessor, Hayama

Yoshiki, that these works began to be seen as artistic.

 It follows then that one of the foundational pieces of the novel is its setting, a crab

canning ship – this being the fourth point of Kobayashi Takiji’s “intent.” With this, Kobayashi

points out the uniqueness of the labor as well. On the surface the author, Nakano Shigeharu

points out the importance of utilizing workers on a boat as unique, in that ships feature

“intellectual” workers – intellectual because as sailors, they know math well and their world is as

large as the world, in contrast to industrial laborers whose world is the size of the lunchroom.

Beyond the workers, Bowen-Struyk breaks the significance of this setting into three parts: the

labor of the workers aboard the ship is essential to the growth of capital; the lives of the subject

matter (the workers) are harsh, and akin to that of a prisoner’s; and finally, the insular

environment of a ship in which a strike takes place is recognizable as a small-scale version of a

class revolution. In other words, the setting of a crab cannery ship acts as a simulation of a larger

scale revolution by the working class. Kobayashi Takiji’s use of the crab cannery ship is notable

in its exploitative setting. These crab cannery ships are considered “factory ships,” which as such

are not governed by maritime law. Specifically, “no other site offered such an accommodating

setting for management’s freedom to act with total impunity.” It is this fact that made the crab

cannery ship the perfect setting to display the cruel and ruthless working environment in Japan at

that time.

Fisher

11

 We then look to the fifth basis of “intent” in the novel: the ways in which the workers

were “unorganized” aboard the ship. This is shown in several ways, but the most apparent is the

way in which the manager, Asakawa, attempts to pin the workers against each other. The tactic

that Asakawa deploys most is a kind of twisted gamification of the worker’s labor. The first

incident of this is when the fisherman, Miyaguchi (as mentioned earlier), goes missing. In

response Asakawa leaves a note to the workers:

To all hands: anyone who finds Miyaguchi wins two packs of Golden Bat smokes

and a hand towel.

 – Manager Asakawa

This offering of prizes and rewards to the workers in exchange for turning against their

coworkers escalates into a more blatant act of competition, where “[w]henever the fishermen and

workers ‘lost’ to the seamen by killing fewer crabs, they were made to feel that they had failed –

although the work brought them no benefits at all,” and when the workers grew tired “[t]he

manager [...] began to hand out ‘prizes’ to the winning side,” and when the workers grew tired of

that “the manager put up a poster announcing that whoever accomplished the least amount of

work would be branded with a red hot iron rod.” It was this exact treatment that Kobayashi

Takiji is talking about that “caused the workers to organize.”

 This is to say that by “organizing” the workers against each other in order to increase

product output, management concurrently organized the workers together. This leads us to

Takiji’s sixth point of intention: that the novel portrayed the ways in which capitalism, while

“seeking to keep the workers unorganized,” was (ironically) simultaneously, “causing the

workers to organize.” This is to say that in the incidents mentioned above, in which Asakawa

attempts to motivate and turn the workers against each other through competition, the true result

was not a separation, but rather a growing solidarity, or uprising, against their overseer, and

Fisher

12

eventually, against the structure that put their overseer into power. This arises for the first time as

a side effect to the harsh labor conditions Asakawa had made, and out of exhaustion one morning

a character titled, “the miner,” exclaims “‘I’m going to slow down [...] I just can’t keep this up.’”

After being questioned the miner makes perfectly clear that his slowing down was not out of

laziness, but out of physical necessity. It is because of this rationality that soon “it wasn’t just

one or two workers who were working slowly – nearly all of them were – [Asakawa] could do

nothing but storm about and fume. [...] [T]he manager’s club was of no use at all!” Through the

unified use of these “slowdown tactics,” the workers were able to gain control over their

environment. The evidence of the effectiveness of this kind of group disobedience being the

driving force to incite and encourage more organization on their behalf.

The seventh point, and perhaps the idea most distinct to Kobayashi Takiji’s The Crab

Cannery Ship is that despite the emphasis on “the proletariat [...] unconditionally oppos[ing]

imperialist wars,” numerous workers aboard the ship did not understand the basis for said

opposition. In the midst of the workers’ strikes and disobedience towards their immediate

manager, there was still a great pride amongst the workers towards Japan as a nation, and

consequently, Japan’s acts of imperialism in Manchuria at that time. It is no coincidence that the

crab canning ship is located precariously between Japanese and Russian waters, all the while

guarded by an Imperial naval ship. Kobayashi employs this setting as a tactic for opening a

dialogue, and raising questions about the validity (and ethics) of government intentions at this

time. This mental disconnect on the workers behalf is most heavily displayed at the time of the

first strike. During which the imperial destroyer approaches the ship. In excitement the striking

workers shout “‘Imperial navy, hurrah!’” The question is raised “‘How the hell can a warship

that belongs to the empire not be on the side of the people who belong to the same empire!?’”

Fisher

13

This question reaches to the heart of the issue in the way it backhandedly points out the

analogous nature of capitalism, imperialism and nationalism. Kobayashi Takiji is displaying the

state of the world, in which the rich are able to fund the military, which is dependent on the

nationalism of the working classes to fuel their agenda. This raises the question as to why

Kobayashi Takiji found it important to display the workers’ lack of understanding towards

imperialist opposition.

 As both Komori Yôichi and Heather Bowen-Struyk point out, what separates Kobayashi

Takiji’s, The Crab Cannery Ship from other works of Japanese proletarian literature is “its

assessment of the interrelated nature of the systems of capitalism, imperialism and nationalism.”

Given the setting as a factory ship on the Sea of Okhotsk, crossing over into Russian waters at

the peak of the Russo-Japanese war, while being protected (or monitored) by a naval warship,

Takiji develops a clear backdrop to have a dialogue about “international, military, and economic

relations.” The significance of this dialogue is most clearly rooted in its conversation with

Marx’s, Wage Labour and Capital, in which Marx states that “[a]s long as the wage-worker is a

wage-worker his lot depends upon capital,” this being “the much-vaunted community of interest

between worker and capitalist.” This references a core ideology of the essay, which is that “the

existence of a class which possesses nothing but its capacity to labor is a necessary prerequisite

of capital.” In essence, Marx points out the use of nationalism in maintaining the lower class as

subservient to the bourgeoisie. In the scene previously mentioned in which many of the workers

misunderstand the intention of the Imperial naval ship, Takiji illustrates the alignment of the

bourgeoisie and imperial navy’s interests. In this instance, nationalism is used in such a way that

it maintains the worker’s obedience to their masters and suppliers of capital.

Fisher

14

At the time of The Crab Cannery Ship’s publication, there was a great risk in publishing

this kind of content. Heather Bowen-Struyk spells out that “The Factory Ship [...] implicates the

emperor and imperialism as well as nationalism in its critique of capitalism. To a Japan already

gearing up for potential war in Manchuria, such accusations were undeniably dangerous.” The

level of censorship the novel faced at this time communicates the dangerous nature of its ideas.

Once again, the novel is most clearly investigated in the ways in which it is comparable to its

predecessor, Hayama Yoshiki’s Life on the Sea, in which relatively minimal lines are obfuscated

by fuseji (censorship marks) – X’s, O’s or ellipses in place of objectionable material. The Crab

Cannery Ship, on the other hand, was heavily censored. The time of its publication 1929, a mere

year after the mass arrests of March 15, 1928, the Japanese government was making clear its

willingness to suppress radical opposition. What could be seen as somewhat surprising is that it

was exactly this censorship that aided in the sales of The Crab Cannery Ship, and more so The

Battle Flag. In Nathan Shockey’s, The Typographic Imagination: Reading and Writing in

Japan's Age of Modern Print Media, a “balance between censorship and commercialism” within

publication of the magazine in the late twenties to the early thirties is pointed out. This can be

seen in the ability of the “editors [...] to successfully commodify the very notion of suppression

in order to increase media attention and circulation.” In fact, it could be debated that the attention

gained through the banning of eight issues resulted in “the tripling print runs to over 22,000

copies per month.” In effect, the timing of The Crab Cannery Ship was historically with the rise

of a proletarian popular culture. The Crab Cannery Ship lost its popularity with the de-

popularization of proletarian culture and the rise of right-wing fascism, but miraculously, the

novel rose back into the public gaze in the year 2008.

Fisher

15

The years following the bursting of the economic bubble in Japan (1991) marked a time

of uncertainty in economic growth. This uncertainty resulted in the rise of the concept of the

“precariat,” a term deriving from “precarious” and “proletariat.” Amamiya Karin, a writer and

well-known spokesperson for the precariat movement, talks about her personal experience as a

“freeter” (furītā), and describes the era as a “warped picture: poorly paid freeter or regular full-

time employee fated to die from overwork.” Her younger brother, she says, “got a job at Yamada

Denki, where he was forced to work eighteen hours a day.” The parallels between the proletariat

work conditions of 2008 and 1929 are overt. These parallels are cause for the rerelease and re-

publish of The Crab Cannery Ship, for which Amamiya wrote the introduction. With the

rerelease of the novel came a number of adaptations as well. At least five manga based on the

novel have been published in the interest of attracting a younger audience, in addition to a

documentary film, “Strike the Hour, Takiji,” as well as a remake of the 1953 film. These works

were necessary pieces of raising awareness and building new communities and circles for

conversation over matters involving the modern oppressive work environment. Of all these

adaptations there lacked a medium that, perhaps, could be fruitful: a videogame. As a medium,

the videogame has its own unique immersive qualities that are worth being explored. So, for this

project, one was made.

Making the Game – Adaptation as Reading

 While developing a personal interpretation of The Crab Cannery Ship, reading and

watching the manga and movies based on the novel was just as valuable as reading the novel

itself. In particular, the distinct differences in the way that the three manga read is especially

informative. It is apparent that each manga clearly has a unique audience in mind. This first

Fisher

16

manga, published in 2007 by East Press, was most directed towards a younger audience. This

was most evident in its use of a central character, Morimoto, and his “sidekick,” Akiyuki. This

clearly breaks Kobayashi’s motif of lacking a singular protagonist. The choice to follow a single

character rather than putting the emphasis on a group was a creative liberty, and having done so,

the manga stays more concretely in the genre of manga known as shônen manga. Shônen manga

being targeted towards a young audience (specifically male), generally between the ages of 12

and 18. What is most skillful about this manga is its ability to maintain the expected tone of a

piece of shônen manga, while still delivering the hard hits of the novel, yet sparing the details

that may be considered inappropriate to a younger audience.

 The version published by the Kobayashi Takiji Literature Museum and illustrated by

Fujio Gô packed the most punch. Directly more towards an adult audience, this manga would be

likely considered to be within the genre of seinen manga. The opening and closing scenes of this

work depict a dead Kobayashi Takiji surrounded by those appearing to be allies and supporters

of his work. They commemorate his memory with the telling of The Crab Cannery Ship, which

then closes with the iconic lines, “Takiji! Won’t you rise up one more time!? For all of us…”

(Takiji! Mô ichi do tatte misene ka! Minna no tame ni–). Though this manga also lacked some

specific detail from the novel, it stays very close to Kobayashi Takiji’s original ideals behind the

novel laid out above. The general goal of this work was unquestionably targeted towards

educating a more adult audience of the history of The Crab Cannery Ship as well as the

substance of the novel.

 The 2008 manga by published by Shinchôsha and illustrated by Hara Kēichirô was the

last manga adaptation that I read. Having took very few liberties, and staying true to almost all

details of the original, it was surely the version that most followed the original story set forth by

Fisher

17

the novel. Interestingly enough, this does not necessarily mean that it best delivered the message

best. When reading these adaptations, it becomes apparent how in many ways changing the

medium of a work becomes an act of translation. Though these share them same fundamental

narrative, the medium through which The Crab Cannery Ship’s content is delivered changes the

intake of the material, and often the experience and emotions it is capable of evoking.

 This brings into question if the medium has an impact on the message of the media? The

media theorist Marshall McLuhan conjectures that the medium does not simply affect our

understanding of the message, but rather, that “the medium is the message.” This is the approach

that has been considered most heavily throughout the making of the videogame adaptation of The

Crab Cannery Ship, and it is through this inquiry regarding what it means to change mediums

that has derived the most insightful progress in the midst of the project’s development. To

perhaps over simplify, when Marshall McLuhan states that “the medium is the message,” he is

not pointing to the aspects of the work being delivered via the medium, but the message being

told by the actual medium itself. For example, the message given by print is different from the

message given by a medium such as film. Through text one cannot simply make an entire

landscape or setting appear instantaneously to the reader. In print, setting must always be

developed meticulously in order to make the reader feel that they are truly immersed in the

author’s world. On the other hand, film can put its viewer into the setting in the blink of an eye.

The message is less about the content in these examples, but about how the content is received. It

is because of the unnecessary nature of content in the deliverance of this message that Marshall

McLuhan goes so far as to say that light itself is a medium. He states:

“[E]lectric light and power are separate from their uses, yet they eliminate time and

space factors in human association exactly as do radio, telegraph, telephone, and

TV, creating involvement in depth.”

Fisher

18

It is in this passage that McLuhan states that the change from a linear building of our

involvement in a novel to the instantaneous involvement of electronic media creates an entirely

new meaning for all works with which this distinction is made. Here, the juxtaposition of

linearity and instantaneousness is made in relation to time. This is to say that the message

delivered by media is altered depending on the time required for it to be consumed.

 What then can be said of the videogame console as a medium? It too is electronic, and

therefore capable of creating involvement, or immersion, in depth. It follows then that these

separate mediums have separate ways of fostering such immersion. It can be seen that a film is to

a novel what a videogame is to a “choose your own adventure” book. Much like in Wolfgang

Petersen’s film, The NeverEnding Story, the content (or media) with which the consumer is

interacting becomes personal by way of the strength of the interaction. This of course being the

case most often in the genre of game known as “Role Playing Games” (RPGs). Most commonly

associated with the Live Action Role Playing Game, Dungeons and Dragons, and in

videogames, Final Fantasy. Much like in The NeverEnding Story, these games rely on the

players’ personal investment in them. In Final Fantasy Tactics A2: Grimoire of the Rift, the

opening tells the story of a boy staying after school on the last day before summer vacation. He

notices a book on his teacher’s desk, and upon opening it, enters a new universe. This analogy is

somewhat self-referential quality, in that the player in the real world is transported into a new

world within the console where they are a character being transported into a new world within

the game.

 What are the distinct immersive elements of a game that separate it from other forms of

media, and how do these differences change our consumption of the material? As a game, there

is a play-element in the absorption of the media in that we play the game. It follows that what is

Fisher

19

inherently embedded in the act of play, will also be embedded in using, or playing on, the Game

Boy as an electronic medium. To look deeper into this element of play, one can look to Johan

Huizinga’s work Homo Ludens: A Study of the Play Element in Culture (1938), which centers

itself around studying play’s many facets. Most commonly, play is understood as a learning tool.

Johan Huizinga points out two aspects of play that are most applicable to the transformation of

The Crab Cannery Ship into a game. These two aspects being the voluntary nature of play, as

well as its aspect of being representative of something. The basis of play as voluntary action

gives play a quality of freedom. This is striking in that this freedom can be understood in the way

that it “leaves untouched the philosophical problem of determinism.” In other words, the player

is not being forced into play. One plays because they want to, not because they must.

This hardly seems important until play’s representative quality is addressed. That is, in

representation, we as players attempt to represent, or display ourselves as new characters in new

roles under new contexts. These two points in conjunction are recognizably persuasive in that it

puts the player in a position in which a role or situation is being “‘staked out,’ and moreover [...]

in mirth and freedom.” What this means is that through the act of play, one allows oneself to

voluntarily take on the role of a character, and since it is play, it is done with free will. When

partaking in an act of play these two aspects outlined above suggest that through the enactment

of a character there is a certain investment in the game that takes place in which the player truly

is, for a moment, that character or part. It is through this uniquely immersive aspect of play,

which is embedded in games, that perhaps the user of said medium can voluntarily escape their

own ideologies and beliefs in order to enter another’s with enough open mindedness to

empathize with the characters with which they are personating. The Crab Cannery Ship is a

Fisher

20

novel that calls upon the empathy of its readers, and it is because of videogame’s potential to

build empathy that the medium lends itself perfectly to the narrative.

Historical Context of the Game Boy

 Developing a relatively simple game for the Game Boy turns out to be extraordinarily not

simple. After a quick glance at the Game Boy CPU Manual it can be seen that for the speediest

progress one would be best off writing the code in the C programming language through the use

of the “Game Boy Developers Kit” (gbdk). Although the abstraction caused through the use of

gbdk may enable a lot of progress, this progress can result in poor code that is hardly

understandable as to how it is functioning. In order to gain a deeper understanding of the inner

workings of gbdk, it was imperative to take a slight detour to try and rewrite some programs in

the Game Boy’s CPU assembly language, “z80.” Though the final product is not written in z80

assembly it is worth noting that oftentimes in both the practice of programming and generally in

the nature of programming languages layers of abstraction are made for the ease of

understanding the function of the code. In essence, gbdk comes with nicely packaged pre-built

functions like joypad which have a name that nicely describes their purpose, or what they are

doing. Unfortunately, in doing so often times the how they are doing it can be lost. In this portion

of the essay I’m going to attempt to create a layer of abstraction that delivers the message of

what I’ve done in an approachable and relatively non-technical manner, while still maintaining a

sense of how I’ve done it. Before delving right into the analysis of the mechanics of the game

itself, it will be best to contextualize the Game Boy and its hardware historically, just as has

already been established with the novel.

Fisher

21

 Following its predecessor, the Game & Watch, the Game Boy was released by Nintendo

in 1989. The Game Boy differs in its ability to take cartridges of read only memory (ROM),

which would allow the user to play a variety of games with a single console, much like

Nintendo’s earlier Nintendo Entertainment System (NES), except on the go. The Game Boy was

not the first handheld console ever manufactured, but it was one of the most (if not the most)

influential. This is seen clearly through its high sales: “[s]ince its introduction in 1989, Game

Boy has sold well over 150 million systems worldwide.” At the time of its release its competitors

were Sega’s Game Gear, Atari’s Lynx, and NEC’s TurboExpress. What distinguished the Game

Boy was its durability and battery life, not to mention its choice of games (often sold with Tetris

or Super Mario Land to name a few). The Game Boy line had many offspring, consisting of the

Game Boy Color, Game Boy Pocket/Game Boy Light, and the Super Game Boy. The line was

eventually discontinued with the advent of the Game Boy Advance in 2001.

 When talking about the foundational ideology behind the Game Boy’s technical design,

Daniel Reynold’s quotes Yokoi Gunpei, its lead developer, who describes it as “using ‘withered

technology’ in new and novel articulations.” In Japanese these is written, “kareta gijutsu no

suiheishikô,” which can be translated as “lateral thinking of withered technology.” This design

philosophy is apparent in many aspects of not only the Game Boy’s aesthetic, but its actual

hardware as well. It is evident that at the time of the Game Boy’s release higher quality LCD

screens were available as well as faster and generally higher quality central processing units

(CPUs). These were not the things that Nintendo was going to use to gain people’s interests

though. Rather, Yokoi’s approach was much more focused on the affordability of the console,

and the fun games that it could run despite the hardware’s limitations. Yokoi’s mentality when it

Fisher

22

came to the limitations of the hardware was to face them head on, and to find creative solutions

around them or to rework them advantageously.

Literary Analysis of the Game – Code as Prose

It is through this context that the element of programming for the Game Boy can be more

clearly observed. At the very least, the temperament and mentality necessary for doing so has

been established. The specific limitations of working with the Game Boy CPU is of the most

relevance. The CPU is described as an Intel 8080 and Zilog z80 hybrid. Its instruction set is

almost identical to the 8080 despite the exclusion of exchange instructions, and when compared

to z80 there are some instructions that have been added and some have been removed. The

specific differences on these limitations in relation to the z80 are outside the scope of this essay,

and can be found in more depth online in the Game Boy CPU manual. This manual is not

proprietary to Nintendo. Rather it is a compilation of research done by a number of programmers

interested in writing games for the Game Boy. The Game Boy itself is most easily understood by

looking at the memory map as shown below in Figure 1. Memory begins at address 0000 (which

is actually in the cartridge) and ends at FFFF. For those unfamiliar with the hexadecimal system

of counting, that’s from 0 to 65,535. Each one of these four character or integer strings is

representative of two bytes. This means that two hexadecimal characters or integers are

representative of a byte, and one hexadecimal characters or integers represent a nibble (four bits).

In the case of the Game Boy’s memory going up to 65,535, this is translatable to approximately

65 kilobytes (henceforth denoted kB).

Fisher

23

Figure 1:

It follows then that the first 32 kB, from 0000 to 8000, actually consist of the cartridge’s

memory. When programming for the Game Boy this is the memory that the developer is limited

to. There are in fact variant cartridges that have been developed for the Game Boy. All cartridges

have 32 kB of ROM (read only memory), but more advanced cartridges were later designed to

have RAM (random access memory) as well as several switchable banks of extra memory in

both ROM and RAM. That is why there is a section in the Game Boy’s physical memory for 8kB

of switchable RAM from A000 to C000. The Crab Cannery Ship game is limited to a 32 kB

cartridge such as the one mapped out above. Specifically, 32 kB of ROM, nothing more and

nothing less. Tetris is an example of a game that fits into one of these cartridges. If one was to

download this paragraph as a pdf, it would take up more room than 32 kB. This is very little

Fisher

24

memory, and this is one of the many things that Yokoi referred to when he spoke of the Game

Boy’s technology as “withered.”

Like an author, the programmer tells stories, the primary difference being a

programmer’s audience is a computer. Two authors can tell the same story, and though these two

stories will share the same meaning, the journey of getting there will be different, and therefore

the human experience of reading them will be different as well. For a human these differences

generally manifest themselves as changes in emotional response. Two programmers can write

the same program, and though these two programs will do the same things, the journey of getting

there can also be different, and therefore the computer experience of reading them will be

different as well. To the computer these differences can manifest themselves as changes in

program speed or space used in memory. To the human this can also be a matter of aesthetics. If

Faulkner was a programmer, he would write long drawn out and recursive obfuscated lines of

JavaScript. Whereas Hemingway would write in the plainest of assembly. Taking each step

towards a final product, one line at a time. Both of these styles are capable of being beautiful and

creative and efficient or concise in their own ways, but the Game Boy tends to prefer

Hemingway. That is, concise and efficient, or minimalist code. When dealing with only 32 kB of

memory it’s imperative that the code is as resourceful as possible. This is where the “lateral

solutions” that Yokoi proposed come into play.

 Depending on the genre of the game being developed, the problem sets confronted while

programming can differ, and therefore the solutions end up differing as well. Given that The

Crab Cannery Ship game is an RPG, or role-playing game, it requires many more functions for

printing and displaying text. Whereas a less text heavy game such as Mario, which is more

centered on the character’s (or sprite’s) interaction within its world, would require more

Fisher

25

functions to handle physics and movement within the game. There are also parallel issues of

memory between all games, in that they all must deal with the limitations on Visual Memory.

Visual Memory in the Game Boy is split between 8 kB of Video RAM (VRAM), and 160 B of

Sprite attribute memory (OAM). The VRAM primarily consists of what is called “tiles” in

Game Boy language. Each tile typically consists of 8 by 8 pixels (px). These tiles are the basis of

all display on the LCD, which is 160 px wide by 144 px tall. Within memory, the Game Boy is

limited to a total of 256 total tiles. The Game Boy splits VRAM into two halves, one half for

static background images, and the other half for dynamic sprites. This can be perfectly split into

128 tiles for sprites, and 128 tiles for background memory, or however else one pleases. This can

be visualized in memory as shown in Figure 2.

￼

Figure 2: All the way down through to the question mark consist of

sprite tiles. Then there is a row of blank tiles (leftover sprite tile

space), after which are the background tiles. The Crab Cannery Ship

game uses exactly 256 tiles.

Fortunately, the issue of tile number is scalable. There are many solutions, but the one which The

Crab Cannery Ship game employs is reliance on the 160 B of OAM mentioned above. In plain

Fisher

26

English, these 160 bytes consist of “sprite attributes.” Without describing the exact mechanics,

this partition of memory delineated as OAM is responsible for telling the Game Boy the

direction a sprite is facing, as well as its color palette. Through manipulations of these attributes

a game developer for the Game Boy can easily half the amount of sprite tiles previously thought

to be necessary.

The primary example of where the palette comes in handy is when dealing with text on

different colored backgrounds. Without the use of the palette one would need two sets of tiles

utilizing two separate palettes. The tile set that handles alphanumeric characters as well as a

small selection of punctuation marks consists of 46 total tiles. Doubling this would end up taking

almost half of tile memory alone. The directional sprite attributes are also large assets. Given any

symmetrical sprite the number of tiles required for said sprite can at least be halved. In this

project the sprites could be made up of four tiles, taking up an entirety of 16 px by 16 px tiles.

Given that a forward-facing character’s left side is identical to its write, a simple method of

conserving space would be to only store the left or right side in memory. The Game Boy allows

for up to 40 sprites on the screen at a time. Each sprite is a copy of a given tile. In order to

display an entire sprite with only half its tiles in memory one would make a copy of the half

unaltered, and another copy flipped over the x-axis. By placing these two copies next to each

other a complete sprite is formed. Not only do sprites have static symmetry, but they can also

have dynamic symmetry. That is, sprites can have symmetry in their animations. This is great

news for the Game Boy programmer, given that animations can be much costlier than a static

sprite. Without the use of sprite attributes, animating a 16 px by 16 px sprite walking to the

bottom of the screen would take at least eight tiles. This can again be halved through the use of

attributes. Given one half of a sprite depicted with its foot up, and another half with its foot down

Fisher

27

(as depicted in Figure 3.a) these two sprites can be flipped over the x-axis and swap positions

iteratively. Typically, in modern programming the use of the modulo operator is a viable means

of doing some actions on odd iterations and others on even iterations. The Game Boy’s hardware

can be much less forgiving, and because of this, it is much more efficient to use bitwise

operations to check for the even or oddness of a number. Figure 3.b displays an example snippet

of some code for animating a sprite in this manner.

Figure 3.a: Here is a depiction of a walking sprite split in two eight

by sixteen pixel sets. They can be animated by flipping and

swapping their positions.

if((hero_posx+hero_posy)&0x1)

{

 set_sprite_prop(0, S_FLIPX);

 set_sprite_prop(1, S_FLIPX);

 move_sprite(0, hero_posx+SPRITE_WIDTH, hero_posy);

 move_sprite(1, hero_posx, hero_posy);

}

else

{

 set_sprite_prop(0, S_FLIPX&0x0);

 set_sprite_prop(1, S_FLIPX&0x0);

 move_sprite(0, hero_posx, hero_posy);

 move_sprite(1, hero_posx+SPRITE_WIDTH, hero_posy);

}

Figure 3.b: This code is simply saying that if the sprite (called

“hero” in this case) is at an odd numbered pixel location on the

screen then flip the left half of the sprite (sprite 0 and 1), and swap

their positions, otherwise do the reverse.

Fisher

28

 As mentioned earlier, the method most integral to The Crab Cannery Ship game would

inevitably end up being the manner in which it printed text to the LCD screen. An understanding

of this projects print method only requires knowledge of the American Standard Code for

Information Interchange (ASCII). ASCII is simply the equivalence between characters, and

integers. In essence, it is the notion that to a computer the decimal value 65 is equivalent to the

uppercase ‘A’ character. In C the following program: printf("%d", 'A'-23); will print the

decimal value of ‘A’-23, which is 42. Whenever the sprite tiles for characters, integers, and

punctuation are loaded into memory, they essentially exist in tile memory from OAM address 0

to 2D (or 45 in decimal). Other than punctuation and number values, the tiles exist in the same

order they appear in the ASCII chart. This means via the constant subtraction of 65 from the

value of a uppercase letter will always derive the tile number in OAM which depicts that letter.

The way this looks in C is displayed in Figure 5.b. Due to the difference in offset for numbers

and punctuation tiles, a change in input can result in the desired output. This is to say that

although the character ‘1’ does not correspond to the tile with a ‘1’ on it in OAM, a ‘\’ does.

Therefore, whenever we wish to print a ‘1’ we type ‘\’. This logic is repeated for all those tile

numbers that do not match up with their ASCII value minus 65. An example print method call is

displayed in Figure 5.a.

Fisher

29

a. print("HELLO\nWORLD\0", 24, 32);

b. void print(char *arr, UINT8 x, UINT8 y)

{

 SPRITES_8x8;

 cushion = letter_count;

 set_sprite_data(0, 46, font);

 start_x = x;

 for(i = 0; arr[i] != '\0'; ++i)

 {

 if(arr[i] == '\n')

 {

 y+=16;

 x = start_x;

 continue;

 }

 set_sprite_tile((i+cushion), (arr[i]-65));

 move_sprite((i+cushion), x, y);

 ++letter_count;

 x+=8;

 }

}

(c)

Figure 5: (a) A single calling of the print function. (b) The contents

of the function can be recognized to be a single passing over the

input string. (c) The resulting display on the Game Boy.

As can be seen in Figure 5.a there is also the addition of special characters such as ‘\n’. This

character is used to automate the formatting. The technique of automating the format of text is

integral in saving space in ROM. The automation allows for a major decrease in the amount of

Fisher

30

times the print function needs to be called, in that without this automation whenever a new line is

to be printed the print function would have to be called again. In this way entire pages of text can

be printed with a single function call. Saving memory in this way allows for more thematic and

narrative expansion, or perhaps more items or enemies during battle.

 Another element particular to the RPG genre is the manner in which one battles enemies.

Unlike a first-person shooter, the player is presented with a selection of moves or items to

perform in the coming round, and after the choice is made these actions are executed with the

added chance of missing or hitting. The computational element of these functions is less

inherently interesting or clever, but as a core element of the game they deserve a brief going into.

What is important about the formation of this collection of commands is that they be dynamic

enough to apply to multiple battles with different enemies. The central control function of all

battles, called “fight,” relies on a number of outside procedures to keep this part of the game

running smoothly. The code, in plain English, begins by generating four random numbers. Three

of these random numbers are chosen between 0 and 5, and are respectively responsible for

determining the non-player character’s (npc’s) choice in action, accuracy, and the character to go

first (either the player or the computer). The last random number generated is between 0 and 10,

and is responsible for the player’s accuracy. After these numbers are configured, the battle can

be played out. The game is skewed towards letting the npc get the first hit, that is, if the random

number chosen between 0 and 5 is greater than 0, the npc will go first. After the npc makes their

chosen move (based on the random numbers generated) damage will be dealt to the player. In the

event that the player is not dead, their chosen action will then be executed and landed depending

on the accuracy determined by its chosen random number. The exact reverse operation is then

Fisher

31

performed in the event that the player gets to act first. The generalized process is displayed in a

snippet of code from the fight method below:

void fight(UINT8 *fighter_hp, UINT8 *enemy_hp)

{

 fight_config();

 if(first_fighter >= 1)

 {

 npc_fight();

 damage(fighter_hp);

 if(state != DEAD)

 {

 hero_fight();

 enemy_damage(enemy_hp);

 }

 }

 else

 {

 hero_fight();

 enemy_damage(enemy_hp);

 if(state != BATTLE_WIN)

 {

 npc_fight();

 damage(fighter_hp);

 }

 }

}

The most interesting aspect of programming the battles is determining the best way to

check for a character’s death. Again, in modern computation this would be trivial. One could

simply check if the character’s health points are less than or equal to zero. However, an issue

arises when deciding between using signed or unsigned integers. The relevant difference

between these two integers is the representation of their bits. For a signed integer, the final bit on

either the left or right of the bit string (depending on the system) stands in as the negative sign if

it is on (is set to one). Unsigned integers allow the programmer to count to higher numbers with

the same number of bits because rather than utilizing that final bit as a negative sign, it is used

for its decimal value. This means that the unsigned integer is capable of counting higher than the

Fisher

32

signed integer, but it is incapable of counting negatively. This can be problematic when looking

for events that result in a character’s health points dropping to or below zero. In the event that a

character is dealt damage greater than its health points the code will be incapable of recognizing

its death due to the subtraction being below zero, and therefore being positive. The only time at

which this code would recognize a character’s death is when it gets to zero exactly. Therefore, a

reliable means of monitoring a character’s health points is to deal damage incrementally.

Specifically, whenever a character has damage dealt to their health, rather than simply

subtracting the amount of damage from their health points all in one go, it is best to

incrementally subtract one from their health in a loop until the number of increments is equal to

the amount of damage dealt. During this incrementation there can be a check to see if the

character’s health is at zero, in the event that it is they will be deemed dead, and the battle will

end.

After having established the elements that enabled the game to even exist in memory, it is

important to recognize the logic, or flow of the game. Figure 6 should give a general idea of the

interrelation of the different levels and primary functions of the game.

Fisher

33

Figure 6:

Fisher

34

To be clear, the file titled “main” can be thought of as the main control, or heart of the game. It

does the job of calling the other primary control methods of the starting screen, and the rest of

the levels. The remaining two files at the top of Figure 6 consist of functions generalized enough

to be useful throughout the entirety of the game. It follows that the one titled “battle” is used for

handling important events during battle scenes, and the file titled “text” is used for displaying

text on the screen in different ways. As mentioned earlier, “text” is the most heavily used file

throughout the entirety of the game, whereas the “battle” file acts as a group of helper functions

for “crab catch,” and “asakawa battle.” Each of which rely almost solely on “battle,” to deal with

the loss of character health, and sprite animations, and general event handling during battle.

What is unique to both “crab catch” and “asakawa battle” are there respective sprites and

therefore changes in a character’s attack accuracy, health points, and ability to deal damage. As

for the rest of the files, the layout is intuitive: “main” prompts the player to play, choosing to

play (the only choice), begins level 1, finishing level 1 triggers the beginning of level 2, which

when finished starts level 3, and then it all comes to a close in “end.”

Retrospective Comments

 Despite the current functional state of the game, as is often the case with any body of

work, improvements are worth being made. The Crab Cannery Ship game would benefit most

from further optimization of the “print” function throughout the game. Ideally, an entire file

would be allotted towards holding all the text within the game. Each particular dialogue would

be given a name, which when entered into print could be automatically displayed, and anticipate

the pressing of buttons to trigger moving onto the next passage. Not only would this improve

gameplay in its ability to enhance physical interactivity, it would also lower the amount of

Fisher

35

memory. Further, if the game was to be rewritten in assembly, through the added use of memory

banking extra tiles could be added to enhance the currently opaque background. As mentioned

above, the addition of more detailed scenes, characters, and enemies would be preferable, but as

it is, the use of C as a programming language for hardware with already such limited capacity

would be unlikely to allow these kinds of expansions. In full, when programming larger scale

games with deadlines far in the future, one is best off doing it in the Game Boy’s z80 assembly

language. For the purposes of this project C has served very well though, and is a pragmatic and

approachable tool for relatively quick game development for the Game Boy console.

Conclusion

 With the closure of this project, only one question remains: “Why?” Why use the Game

Boy? Why use it as a technology? Why use it as a medium? Or generally, why use it at all?

Finding some form of answer to any single one of these questions is often a validating exercise.

Fortunately, there can be several well-founded responses. Starting with the first, “why use the

Game Boy as a technology?” is truly a question of why one would readdress an outdated piece of

hardware. At first glance it seems that one would be hard pressed to learn or do anything with the

Game Boy that has not already been done. On the contrary, despite the Game Boy’s “withered

technology” at the time of its creation, Yokoi Gunpei persisted in “lateral thinking.” This is a

mentality that connects the act of programming to the arts. The striving to break the mold and try

one’s hand at creation in a new way. Just as the individual who produces a work of art is distilled

in that work, so too is a programmer distilled in their code and their program. So, when asked,

“why use the Game Boy as a technology?” the answer lies within the fact that to readdress an old

and withered technology is to exercise the core practice of being a programmer and artist. That

Fisher

36

is, to work with the Game Boy, is to try at recreating, and coming up with new ideas and

solutions to old questions or problems.

 The answers do not end there. This withered technology is a stand in for all handheld

gaming platforms and what is unique to them. As the progenitor to the handheld consoles

produced by Nintendo today, what better means of investigating the handheld console as a

modern medium? It was previously established in “Making the Game – Adaptation as Reading”

that videogames, as a medium, have their own unique means of developing immersion, and

empathy towards the characters being played. In brief, as established in John Huizinga’s Homo

Ludens, through the immersive qualities of play that are inherent in the action of “gaming” with

videogames one allows themselves to voluntarily take on the role of a character, and since it is

play, it is done with free will, and open mindedness. Though this clearly states the unique

capabilities of videogames, it says nothing for the Game Boy as a platform through which the

videogame is received. In Daniel Reynold’s, “The Vitruvian Thumb: Embodied Branding and

Lateral Thinking with the Nintendo Game Boy,” he looks to the materiality of the Game Boy to

affirm his assertion that it is “the intimate relationship between bodies and technologies that

characterize videogame play.” In other words, it is by the haptic qualities of play that are

particular to the handheld console which enhance, and arguably, enable one’s personal

investment in a game and its narrative in the first place. What separates the Game Boy from

other mediums is not the visuals it shares with film, or the text it shares with literature, but the

physical interaction with narrative. It is because of the “transmedia properties” of the Game Boy

that not only can a player enter mentally into the narrative proposed within a game, but they can

enter physically through the enablement of the joypad and buttons supplied via the console, and

because it is handheld, they can do it anywhere.

Fisher

37

 Despite the haptic qualities of all consoles, unless they are handheld, the experience of

the narrative within the game is limited to the space in which the console is played. That is,

before the portability of the handheld console, consumption of the media was defined by the

minute amount of spaces in which it could be consumed. The territories in which our intake of

media takes place is relevant, but how? Before mass reproduction of media was made possible

via the printing press or tapes of film those that could intake the media were very few, and the

experience of that intake was circumscribed and defined by the rare spaces in which said intake

could take place. Through mass production this experience is altered, less rarified, and in

exchange, personalized. The chronological movement of the videogame from the arcade, to the

television, to the pocket is significant in its ability to gradually personalize the meaning of the

narrative by allowing the consumer to choose when and where they partake in its experience.

Through the portability of the Game Boy it achieves a level of personalization unique to

other portable media such as the novel. It was in 1929 that Kobayashi Takiji published The Crab

Cannery Ship, and brought hope of liberation from the bourgeoisie to the proletariat. Through the

passage of time this hope has remained alive, and has persisted within the evolution of mediums.

With the evolution of mediums this message will always be heard: “The proletarians have

nothing to lose but their chains. They have a world to win.”

Fisher

38

1. /**
2. * text.c
3. *
4. * All print functions and methods
5. * concerned with text formatting.
6. */
7.
8. #include "text.h"
9. #include <stdio.h>
10. #include <stdlib.h>
11.
12. UINT8 i;
13. UINT8 j;
14. UINT8 cushion;
15. UINT8 LETTER_COUNT = 0;
16. /* MAX number of sprites that can be on screen at once */
17. UINT8 MAX_SPRITES = 40;
18.
19. UINT8 START_X = 0;
20.
21. /* hide arrow off screen */
22. UINT8 arrow_x = 200;
23. UINT8 arrow_y = 200;
24.
25. /**
26. * 0 = [. = e
27. * 1 = \ , = f
28. * 2 =] : = g
29. * 3 = ^ / = h
30. * 4 = _ ' '= i
31. * 5 = ` > = j
32. * 6 = a ' = k
33. * 7 = b ! = l
34. * 8 = c " = m
35. * 9 = d ? = n
36. *
37. * {A...Z} = {A...Z}
38. */
39. void print(char *arr, UINT8 x, UINT8 y)
40. {
41. SPRITES_8x8;
42. cushion = LETTER_COUNT;
43. set_sprite_data(0, 46, font);
44. START_X = x;
45. for(i = 0; arr[i] != '\0'; i++)
46. {
47. if(arr[i] == '\n')
48. {
49. y+=16;
50. x=START_X;
51. continue;
52. }
53. else
54. {
55. set_sprite_tile((i+cushion), (arr[i]-65));
56. move_sprite((i+cushion), x, y);
57. ++LETTER_COUNT;
58. x+=8;
59. }
60. }
61. }

Fisher

39

62.
63. void bkg_clean(void)
64. {
65. set_bkg_data(0, 10, chain_border_tiles);
66. set_bkg_tiles(0,0,20,18,chain_border);
67. }
68.
69. void sprite_clean(UINT8 start)
70. {
71. /**
72. * could also try making this letter
73. * count instead of MAX SPRITES
74. */
75. for(i = start; i < MAX_SPRITES; ++i)
76. {
77. set_sprite_tile(i, 40);
78. set_sprite_prop(i, S_FLIPX&0x0);
79. }
80. }
81.
82. void hide_sprites(void)
83. {
84. for(i = 0; i < MAX_SPRITES; ++i)
85. {
86. move_sprite(i, 250, 250);
87. }
88. }
89.
90. /* special text settings for battles */
91. void battle_print(char *arr, UINT8 x, UINT8 y)
92. {
93. SPRITES_8x8;
94.
95. set_sprite_data(0, 46, font);
96. set_bkg_data(0, 10, chain_border_tiles);
97. set_bkg_tiles(0,0,20,18, small_chain_border);
98.
99. cushion = LETTER_COUNT;
100.
101. for(i = 0; arr[i] != '\0'; ++i)
102. {
103. set_sprite_tile((i+cushion), (arr[i]-65));
104. move_sprite((i+cushion), x, y);
105. ++LETTER_COUNT;
106. x+=8;
107. }
108. }
109.
110. void damn_that_asakawa(void)
111. {
112. sprite_clean(8);
113. LETTER_COUNT = 8;
114. print("DAMNiTHAT\nASAKAWA\0", 24, 48);
115. }
116.
117. void you_hear(void)
118. {
119. print("YOUiHEARln\0", 24, 48);
120. }
121.
122. /**

Fisher

40

123. * labels for the different
124. * characters when they talk
125. */
126. void asakawa(void)
127. {
128. print("ASAKAWAg\0", 24, 32);
129. }
130.
131. void fisherman(void)
132. {
133. print("FISHERMANg\0", 24, 32);
134. }
135.
136. void student(void)
137. {
138. print("STUDENTg\0", 24, 32);
139. }
140.
141. void miner(void)
142. {
143. print("MINERg\0", 24, 32);
144. }
145.
146. void workers(void)
147. {
148. print("WORKERSg\0", 24, 32);
149. }
150.
151. void battle_bkg_clean(void)
152. {
153. set_bkg_data(0, 10, chain_border_tiles);
154. set_bkg_tiles(0,0,20,18,small_chain_border);
155. }

1. /**
2. * battle.c
3. *
4. * All functions necessary for
5. * controlling battles.
6. */
7.
8. #include <rand.h>
9. #include <gb/drawing.h>
10. #include <stdlib.h>
11. #include <stdio.h>
12. #include <rand.h>
13. #include "../level_1/asakawa_battle.h"
14. #include "battle.h"
15. #include "../text/text.h"
16. #include "../start_up/start_up.h"
17. #include "../level_2/crab_catch.h"
18. #include "../assets/level_assets/level_assets.h"
19. #include "../assets/sprites/soldier.h"
20. #include "../assets/sprites/asakawa_front_idle.h"
21. #include "../assets/sprites/hero_back_idle.h"
22. #include "../assets/sprites/fisherman_idle_back.h"
23. #include "../assets/sprites/student_idle_back.h"
24. #include "../assets/sprites/asakawa_air_shot.h"
25.
26. /**
27. * 0 = asakawa;

Fisher

41

28. * 1 = crab
29. * 2 = king crab
30. * 3 = beriberi
31. * 4 = lice
32. */
33.
34. UINT8 PUNCH = 1;
35. UINT8 DEFEND = 2;
36. UINT8 ITEM = 3;
37.
38. UINT8 NET = 2;
39. UINT8 CLUB = 5;
40.
41. UINT8 SHOOT = 10;
42. UINT8 CLAW = 2;
43. UINT8 KING_CLAW = 3;
44.
45. UINT8 PUNCH_LOC = 32;
46.
47. /** change above to define **/
48. UINT8 BATTLE_CHOICE = 0;
49. UINT8 FIGHT_CHOICE = 1;
50. UINT8 RUN_CHOICE = 2;
51. UINT8 ITEM_CHOICE = 3;
52. UINT8 FIGHTING = 4;
53. UINT8 DEAD = 5;
54. UINT8 BATTLE_WIN = 6;
55.
56. UINT8 enemy = 0;
57. UINT8 battle_num = 0;
58.
59. UBYTE items = 0;
60. UINT8 chosen_item = 0;
61. UINT8 choosing = 0;
62.
63. UINT8 enemy_choice;
64.
65. UWORD seed;
66.
67. UBYTE npc_act, npc_acc, hero_acc, first_fighter = 0; //UBYTE
68.
69. /* a stepping variable for character animations */
70. UINT8 y = 72;
71. UINT8 enemy_y = 40;
72. /* another animation counter */
73. UINT8 a = 0;
74.
75. UWORD h_hp[4];
76. UWORD e_hp[4];
77.
78. void battle_nav(void)
79. {
80. if(arrow_y == 32)
81. {
82. state = FIGHT_CHOICE;
83. fight_opt();
84. }
85. if(arrow_y == 48)
86. {
87. choice = DEFEND;
88. state = FIGHTING;

Fisher

42

89. }
90. if(arrow_y == 64)
91. {
92. state = RUN_CHOICE;
93. run();
94. }
95. if(arrow_y == 80)
96. {
97. state = ITEM_CHOICE;
98. item_opt();
99. }
100. }
101.
102. void run(void)
103. {
104. sprite_clean(0);
105. LETTER_COUNT = 0;
106. battle_print("YOU\0", 18, 32);
107. battle_print("CANkT\0", 18, 48);
108. battle_print("ESCAPEl\0", 18, 64);
109. show_fighter_stats();
110. delay(1000);
111. back();
112. }
113.
114. void back(void)
115. {
116. if(state < FIGHTING)
117. {
118. battle_menu();
119. state = BATTLE_CHOICE;
120. choice = 0;
121. }
122. }
123.
124. void fight_opt(void)
125. {
126. sprite_clean(0);
127. LETTER_COUNT = 0;
128. battle_bkg_clean();
129. battle_print("j\0", 18, 32);
130. battle_print("iPUNCH\0", 18, 32);
131. battle_print("AiSELECT\0", 16, 130);
132. battle_print("BiBACK\0", 16, 142);
133. show_fighter_stats();
134. }
135.
136. void item_opt(void)
137. {
138. sprite_clean(0);
139. LETTER_COUNT = 0;
140. battle_bkg_clean();
141. if(items == 0)
142. {
143. battle_print("iEMPTY\0", 18, 32);
144. battle_print("AiSELECT\0", 16, 130);
145. battle_print("BiBACK\0", 16, 142);
146. }
147. if(items == 2)
148. {
149. choosing = 1;

Fisher

43

150. arrow_x = 24;
151. arrow_y = 32;
152. battle_print("j\0", arrow_x, arrow_y);
153. battle_print("iCLUB\0", 24, 32);
154. battle_print("iNET\0", 24, 48);
155. battle_print("AiSELECT\0", 16, 130);
156. battle_print("BiBACK\0", 16, 142);
157. show_fighter_stats();
158. arrow_y = 32;
159. while(choosing)
160. choose_item_toggle();
161. }
162. }
163.
164. void choose_item_toggle(void)
165. {
166. if(joypad() & J_UP)
167. {
168. if(arrow_y <= 32)
169. arrow_y = 64;
170. delay(100);
171. move_sprite(0, arrow_x, arrow_y-=16);
172. }
173. if(joypad() & J_DOWN)
174. {
175. if(arrow_y >= 48)
176. arrow_y = 16;
177. delay(100);
178. move_sprite(0, arrow_x, arrow_y+=16);
179. }
180. if(joypad() & J_A)
181. {
182. if(arrow_y == 32)
183. {
184. chosen_item = CLUB;
185. state = FIGHTING;
186. }
187. if(arrow_y == 48)
188. {
189. chosen_item = NET;
190. state = FIGHTING;
191. }
192. choosing = 0;
193. }
194. if(joypad() & J_B)
195. {
196. choosing = 0;
197. back();
198. }
199. }
200.
201. void battle_menu(void)
202. {
203.
204. sprite_clean(0);
205. LETTER_COUNT = 0;
206.
207. arrow_x = 20;
208. arrow_y = 32;
209. /* setup the bkg */
210. set_bkg_data(0,10, chain_border_tiles);

Fisher

44

211. set_bkg_tiles(0,0,20,18,small_chain_border);
212.
213. hide_sprites();
214. /* selection menu */
215. battle_print("j\0", arrow_x, arrow_y);
216. battle_print("iFIGHT\0", 18, 32);
217. battle_print("iDEFEND\0", 18, 48);
218. battle_print("iRUN\0", 18, 64);
219. battle_print("iITEM\0", 18, 80);
220. show_fighter_stats();
221. }
222.
223. void battle_toggle_up(void)
224. {
225. /* if at top && up */
226. if(arrow_y == 32)
227. {
228. arrow_y = 96;
229. delay(100);
230. move_sprite(0, arrow_x, arrow_y-=16);
231. delay(100);
232. }
233. else
234. {
235. delay(100);
236. move_sprite(0, arrow_x, arrow_y-=16);
237. delay(100);
238. }
239. }
240.
241. void battle_toggle_down(void)
242. {
243. /* if at bottom && down */
244. if(arrow_y == 80)
245. {
246. arrow_y = 32;
247. delay(100);
248. move_sprite(0, arrow_x, arrow_y);
249. delay(100);
250. }
251. else
252. {
253. delay(100);
254. move_sprite(0, arrow_x, arrow_y+=16);
255. delay(100);
256. }
257. }
258.
259. void battle_toggle_ctrl(void)
260. {
261. SPRITES_8x8;
262.
263. if(joypad() & J_A)
264. {
265. if(state == FIGHT_CHOICE)
266. state = FIGHTING;
267. else
268. battle_nav();
269. }
270.
271. if(joypad() & J_B)

Fisher

45

272. back();
273.
274. /* toggle down options */
275. if(joypad() & J_DOWN && state == BATTLE_CHOICE)
276. battle_toggle_down();
277.
278. /* toggle up options */
279. if(joypad() & J_UP && state == BATTLE_CHOICE)
280. battle_toggle_up();
281. }
282.
283. void choice_handler(UINT8 arrow_y)
284. {
285. if(arrow_y == PUNCH_LOC && choice != ITEM)
286. choice = PUNCH;
287. if(chosen_item == CLUB)
288. choice = ITEM;
289. if(chosen_item == NET)
290. choice = ITEM;
291. }
292.
293. /**
294. * need to refine this logic
295. */
296. void hero_fight(void)
297. {
298.
299. if(choice == PUNCH || choice == ITEM)
300. {
301. /* figher chooses punch and hits */
302. hero_fight_anim();
303. for(a = 0; a < 6; ++a)
304. {
305. delay(100);
306. DISPLAY_OFF;
307. delay(100);
308. DISPLAY_ON;
309. }
310. sprite_clean(0);
311. LETTER_COUNT = 0;
312. if((choice == ITEM) && (chosen_item == CLUB) &&
313. (enemy > 0) && (!CRAB_CAUGHT))
314. print("YOUiNEED\nTOiCATCH\nTHEiCRABl\0", 72, 64);
315. else if((choice == ITEM) && (chosen_item == NET) &&
316. (hero_acc > 0))
317. {
318. print("CAUGHTl\0", 72, 80);
319. CRAB_CAUGHT = 1;
320. }
321. else if(((choice == PUNCH) && (hero_acc >= 3)) ||
322. ((choice == ITEM) && hero_acc > 0))
323. {
324. print("YOUiHIT\0", 56, 72);
325. if(enemy == 0)
326. print("ASAKAWA\0", 56, 88);
327. if(enemy == 1)
328. print("AiCRAB\0", 56, 88);
329. if(enemy == 2)
330. print("KINGiCRAB\0", 56, 88);
331. delay(500);
332. }

Fisher

46

333. /* fighter chooses punch and misses */
334. else if(((choice == PUNCH) && (hero_acc < 3)) ||
335. ((choice == ITEM) && (hero_acc == 0)))
336. {
337. sprite_clean(0);
338. LETTER_COUNT = 0;
339. print("YOUiMISSl\0", 64, 80);
340. delay(500);
341. clear_screen();
342. }
343. }
344. /* fighter defends */
345. if(choice == DEFEND)
346. hero_defend_anim();
347. }
348.
349. void hero_defend_anim(void)
350. {
351. if(enemy == 0)
352. sprite_setup(8, hero_back_idle, 8, asakawa_front_idle);
353. if(enemy == 1)
354. sprite_setup(8, hero_back_idle, 8, norm_crab);
355. if(enemy == 2)
356. sprite_setup(8, hero_back_idle, 8, king_crab);
357. for(a = 0; a < 21; a+=3)
358. {
359. delay(100);
360. set_sprite_tile(4, (8+(a&0x4)));
361. move_sprite(4, 77, y);
362. set_sprite_tile(5, (9+(a&0x4)));
363. move_sprite(5, 77, y+8);
364. set_sprite_tile(6, (10+(a&0x4)));
365. move_sprite(6, 84, y);
366. set_sprite_tile(7, (11+(a&0x4)));
367. move_sprite(7, 84, y+8);
368. delay(100);
369. }
370. y = 72;
371. }
372.
373. void enemy_defend_anim(void)
374. {
375. /* enemy */
376. set_sprite_tile(0, 0);
377. set_sprite_tile(1, 1);
378. set_sprite_tile(2, 2);
379. set_sprite_tile(3, 3);
380.
381. move_sprite(0, 77, 40); // top left of the head
382. move_sprite(1, 77, 48); // bottom left of body
383. move_sprite(2, 84, 40); // top right of head
384. move_sprite(3, 84, 48); // bottom right of body
385. sprite_setup(8, hero_back_idle, 8, asakawa_front_idle);
386. for(a = 0; a < 21; a+=3)
387. {
388. delay(100);
389. set_sprite_tile(0, (0+(a&0x4)));
390. move_sprite(0, 77, y);
391. set_sprite_tile(1, (1+(a&0x4)));
392. move_sprite(1, 77, y+8);
393. set_sprite_tile(2, (2+(a&0x4)));

Fisher

47

394. move_sprite(2, 84, y);
395. set_sprite_tile(3, (3+(a&0x4)));
396. move_sprite(3, 84, y+8);
397. delay(100);
398. }
399. enemy_y = 40;
400. }
401.
402. void hero_fight_anim(void)
403. {
404. if(enemy == 0)
405. sprite_setup(8, hero_back_idle, 8, asakawa_front_idle);
406. if(enemy == 1)
407. sprite_setup(8, hero_back_idle, 8, norm_crab);
408. if(enemy == 2)
409. sprite_setup(8, hero_back_idle, 8, king_crab);
410. delay(300);
411. /* essentially hiding one sprite */
412. for(i = 4; i < 8; ++i)
413. move_sprite(i, 200, 200);
414.
415. delay(300);
416. move_sprite(4, 77, 58);
417. move_sprite(5, 77, 66);
418. move_sprite(6, 84, 58);
419. move_sprite(7, 84, 66);
420. for(a = 0; a < 21; a+=3)
421. {
422. delay(100);
423. set_sprite_tile(4, (8+(a&0x4)));
424. set_sprite_tile(5, (9+(a&0x4)));
425. set_sprite_tile(6, (10+(a&0x4)));
426. set_sprite_tile(7, (11+(a&0x4)));
427. }
428. }
429.
430. void enemy_fight_anim(void)
431. {
432. if(enemy == 0)
433. sprite_setup(8, hero_back_idle, 8, asakawa_front_idle);
434. if(enemy == 1)
435. sprite_setup(8, hero_back_idle, 8, norm_crab);
436. if(enemy == 2)
437. sprite_setup(8, hero_back_idle, 8, king_crab);
438. delay(300);
439. /* essentially hiding one sprite */
440. for(i = 0; i < 4; ++i)
441. move_sprite(i, 200, 200);
442.
443. delay(300);
444. move_sprite(0, 77, 52);
445. move_sprite(1, 77, 60);
446. move_sprite(2, 84, 52);
447. move_sprite(3, 84, 60);
448. for(a = 0; a < 21; a+=3)
449. {
450. delay(100);
451. set_sprite_tile(0, (0+(a&0x4)));
452. set_sprite_tile(1, (1+(a&0x4)));
453. set_sprite_tile(2, (2+(a&0x4)));
454. set_sprite_tile(3, (3+(a&0x4)));

Fisher

48

455. }
456. }
457.
458. void clear_screen(void)
459. {
460. /* clear the bkg */
461. set_bkg_data(0,4, blank_screen_tiles);
462. set_bkg_tiles(0,0,20,18,blank_screen);
463. }
464.
465. /**
466. * hnb -- hero number of tiles
467. * enb -- enemy number of tiles
468. * x_data -- sprite sheet
469. */
470. void sprite_setup(UINT8 hnb, unsigned char *hero_data,
471. UINT8 enb, unsigned char *enemy_data)
472. {
473. sprite_clean(0);
474. LETTER_COUNT = 0;
475. clear_screen();
476.
477. /* setup sprites */
478. set_sprite_data(0, 8, enemy_data);
479. set_sprite_data(hnb, enb, hero_data);
480.
481. /* enemy */
482. set_sprite_tile(0, 0);
483. set_sprite_tile(1, 1);
484. set_sprite_tile(2, 2);
485. set_sprite_tile(3, 3);
486.
487. move_sprite(0, 77, 40); // top left of the head
488. move_sprite(1, 77, 48); // bottom left of body
489. move_sprite(2, 84, 40); // top right of head
490. move_sprite(3, 84, 48); // bottom right of body
491.
492. /* hero */
493. set_sprite_tile(4, 8);
494. set_sprite_tile(5, 9);
495. set_sprite_tile(6, 10);
496. set_sprite_tile(7, 11);
497.
498. move_sprite(4, 77, 72);
499. move_sprite(5, 77, 80);
500. move_sprite(6, 84, 72);
501. move_sprite(7, 84, 80);
502.
503. if(striking)
504. {
505. if(!REVOLUTION_2)
506. {
507. set_sprite_data(16, 2, soldier);
508. /* soldiers */
509. set_sprite_tile(8, 16); // two on the left
510. set_sprite_tile(9, 17);
511. set_sprite_tile(10, 16); // two on the right
512. set_sprite_tile(11, 17);
513. set_sprite_tile(12, 16);
514. set_sprite_tile(13, 17);
515. set_sprite_tile(14, 16);

Fisher

49

516. set_sprite_tile(15, 17);
517. set_sprite_prop(14, S_FLIPX);
518. set_sprite_prop(15, S_FLIPX);
519. set_sprite_prop(10, S_FLIPX);
520. set_sprite_prop(11, S_FLIPX);
521. move_sprite(8, 51, 40);
522. move_sprite(9, 51, 48);
523. move_sprite(10,51+sprite_width, 40);
524. move_sprite(11,51+sprite_width, 48);
525. move_sprite(12,99, 40);
526. move_sprite(13,99, 48);
527. move_sprite(14,99+sprite_width, 40);
528. move_sprite(15,99+sprite_width, 48);
529. }
530.
531. /* fisherman && student */
532. set_sprite_data(18, 2, fisherman_idle_back);
533. set_sprite_data(20, 2, student_idle_back);
534. set_sprite_tile(16, 18);
535. set_sprite_tile(17, 19);
536. set_sprite_tile(18, 18);
537. set_sprite_tile(19, 19);
538. set_sprite_tile(20, 20);
539. set_sprite_tile(21, 21);
540. set_sprite_tile(22, 20);
541. set_sprite_tile(23, 21);
542. set_sprite_prop(18, S_FLIPX);
543. set_sprite_prop(19, S_FLIPX);
544. set_sprite_prop(22, S_FLIPX);
545. set_sprite_prop(23, S_FLIPX);
546. move_sprite(16, 51, 72);
547. move_sprite(17, 51, 80);
548. move_sprite(18, 51+sprite_width, 72);
549. move_sprite(19, 51+sprite_width, 80);
550. move_sprite(20, 99, 72);
551. move_sprite(21, 99, 80);
552. move_sprite(22, 99+sprite_width, 72);
553. move_sprite(23, 99+sprite_width, 80);
554. }
555. }
556.
557. /**
558. * Note to self: npc_fight does not ever defend...
559. */
560. void npc_fight(void)
561. {
562. /* enemy fights and hits */
563. if(npc_act >= 1 && npc_acc >= 1)
564. {
565. enemy_fight_anim();
566. for(a = 0; a < 6; ++a)
567. {
568. delay(100);
569. DISPLAY_OFF;
570. delay(100);
571. DISPLAY_ON;
572. }
573. DISPLAY_OFF;
574. sprite_clean(0);
575. LETTER_COUNT = 0;
576. print("YOUkREiHITl\0", 60, 80);

Fisher

50

577. clear_screen();
578. DISPLAY_ON;
579. delay(500);
580. }
581. /* enemy fights and misses */
582. if(npc_act >= 1 && npc_acc < 1)
583. {
584. enemy_fight_anim();
585. for(a = 0; a < 6; ++a)
586. {
587. delay(100);
588. DISPLAY_OFF;
589. delay(100);
590. DISPLAY_ON;
591. }
592. DISPLAY_OFF;
593. sprite_clean(0);
594. LETTER_COUNT = 0;
595. clear_screen();
596. print("THEYiMISSl\0", 60, 80);
597. DISPLAY_ON;
598. delay(500);
599. }
600.
601. /* enemy defends */
602. if(npc_act == 0)
603. {
604. DISPLAY_OFF;
605. clear_screen();
606. sprite_clean(0);
607. LETTER_COUNT = 0;
608. if(enemy == 0)
609. print("ASAKAWA\0", 56, 75);
610. if(enemy == 1)
611. print("THEiCRAB\0", 56, 75);
612. if(enemy == 2)
613. print("KINGiCRAB\0", 56, 75);
614.
615. print("DEFENDS\0", 56, 91);
616. DISPLAY_ON;
617. delay(800);
618. }
619. }
620.
621. /**
622. * fight helper function.
623. * makes number decision before appearance.
624. */
625. void fight_config(void)
626. {
627. /**
628. * generate random number to find
629. * out asakawa's action and accuracy
630. */
631. seed = DIV_REG;
632. seed |= (UWORD)DIV_REG << 8;
633. initarand(seed);
634. /* enemies action */
635. npc_act = rand()%5;
636. /* enemies accuracy */
637. npc_acc = rand()%5;

Fisher

51

638. /* hero's accuracy */
639. hero_acc = rand()%10;
640. /* enemies action */
641. first_fighter = rand()%5;
642. }
643.
644.
645. /* checking to see if you're dead */
646. void damage(UINT8 *fighter_hp)
647. {
648. if(start_hp == 50)
649. SHOOT = 30; // going to need to set this back to 10 later.
650. if(start_hp == 100)
651. SHOOT = 10;
652. if(enemy == 0)
653. {
654. if(choice == DEFEND && npc_acc >= 1 && npc_act >= 1)
655. {
656. for(i = (SHOOT-DEFEND); i > 0; --i)
657. {
658. --(*fighter_hp);
659. if((*fighter_hp) == 0)
660. {
661. option = GAME_OVER;
662. state = DEAD;
663. }
664. }
665. }
666. else if(npc_acc >= 1 && npc_act >= 1 && choice == PUNCH ||
667. choice == ITEM)
668. {
669. for(i = SHOOT; i > 0; --i)
670. {
671. --(*fighter_hp);
672. if((*fighter_hp) == 0)
673. {
674. option = GAME_OVER;
675. state = DEAD;
676. }
677. }
678. }
679. }
680. if(enemy == 1)
681. {
682. if(choice == DEFEND && npc_acc >= 1 && npc_act >= 1)
683. {
684. for(i = (CLAW-DEFEND); i > 0; --i)
685. {
686. --(*fighter_hp);
687. if((*fighter_hp) == 0)
688. {
689. option = GAME_OVER;
690. state = DEAD;
691. }
692. }
693. }
694. else if(npc_acc >= 1 && npc_act >= 1 && (choice == PUNCH ||
695. choice == ITEM))
696. {
697. for(i = CLAW; i > 0; --i)
698. {

Fisher

52

699. --(*fighter_hp);
700. if((*fighter_hp) == 0)
701. {
702. option = GAME_OVER;
703. state = DEAD;
704. }
705. }
706. }
707. }
708. if(enemy == 2)
709. {
710. if(choice == DEFEND && npc_acc >= 1 && npc_act >= 1)
711. {
712. for(i = (KING_CLAW-DEFEND); i > 0; --i)
713. {
714. --(*fighter_hp);
715. if((*fighter_hp) == 0)
716. {
717. option = GAME_OVER;
718. state = DEAD;
719. }
720. }
721. }
722. else if(npc_acc >= 1 && npc_act >= 1 && (choice == PUNCH ||
723. choice == ITEM))
724. {
725. for(i = KING_CLAW; i > 0; --i)
726. {
727. --(*fighter_hp);
728. if((*fighter_hp) == 0)
729. {
730. option = GAME_OVER;
731. state = DEAD;
732. }
733. }
734. }
735. }
736. }
737.
738. void lower_hp(UINT8 *hit, UINT8 defended, UINT8 *enemy_hp)
739. {
740. if(start_hp == 50)
741. (*hit) = 3;
742. if(start_hp == 100)
743. (*hit) = 10;
744. if(defended)
745. {
746. for(i = ((*hit)-DEFEND); i > 0; --i)
747. {
748. --(*enemy_hp);
749. if((*enemy_hp) == 0)
750. state = BATTLE_WIN;
751. }
752. }
753. else
754. {
755. if(enemy == 0 || CRAB_CAUGHT)
756. {
757. for(i = (*hit); i > 0; --i)
758. {
759. --(*enemy_hp);

Fisher

53

760. if((*enemy_hp) == 0)
761. state = BATTLE_WIN;
762. }
763. }
764. }
765. }
766.
767. void enemy_damage(UINT8 *enemy_hp)
768. {
769. if(npc_act == 0)
770. {
771. if(choice == ITEM && chosen_item == NET && hero_acc > 0)
772. return;
773. if(choice == ITEM && chosen_item == CLUB && hero_acc > 0)
774. lower_hp(&CLUB, 1, enemy_hp);
775. if(choice == PUNCH && enemy == 0 && hero_acc >= 3)
776. lower_hp(&PUNCH, 1, enemy_hp);
777. }
778. if(npc_act > 0)
779. {
780. if(choice == ITEM && chosen_item == NET && hero_acc > 0)
781. lower_hp(&NET, 0, enemy_hp);
782. if(choice == ITEM && chosen_item == CLUB && hero_acc > 0)
783. lower_hp(&CLUB, 0, enemy_hp);
784. if(choice == PUNCH && enemy == 0 && hero_acc >= 3)
785. lower_hp(&PUNCH, 0, enemy_hp);
786. }
787. }
788.
789. /**
790. * make decision on randomly generated numbers.
791. */
792. void fight(UINT8 *fighter_hp, UINT8 *enemy_hp)
793. {
794. fight_config();
795. if(first_fighter >= 1)
796. {
797. npc_fight();
798. damage(fighter_hp);
799. if(state != DEAD)
800. {
801. hero_fight();
802. enemy_damage(enemy_hp);
803. }
804. }
805. else
806. {
807. hero_fight();
808. enemy_damage(enemy_hp);
809. if(state != BATTLE_WIN)
810. {
811. npc_fight();
812. damage(fighter_hp);
813. }
814. }
815. npc_act = 0;
816. npc_acc = 0;
817. hero_acc = 0;
818. choice = 0;
819. chosen_item = 0;
820. first_fighter = 0;

Fisher

54

821. }
822.
823. void show_fighter_stats(void)
824. {
825. battle_print("HP\0", 88, 56);
826. itoa(hero_hp, h_hp);
827.
828. for(i = 0; h_hp[i] != '\0'; ++i)
829. h_hp[i] = (h_hp[i]+43);
830. battle_print(h_hp, 88, 72);
831. /* HP */
832. if(start_hp == 10)
833. {
834. if(hero_hp == start_hp)
835. battle_print("[\0", 96, 72);
836. battle_print("WORKER\0", 88, 40);
837. battle_print("h\\[\0", 122, 72);
838. }
839. if(start_hp == 50)
840. {
841. battle_print("LEADERS\0", 88, 40);
842. battle_print("[\0", 96, 72);
843. battle_print("h`[\0", 122, 72);
844. }
845. if(start_hp == 100)
846. {
847. battle_print("EVRY\\\0", 88, 40);
848. if(hero_hp == start_hp)
849. battle_print("[[\0", 96, 72);
850. else
851. battle_print("[\0", 96, 72);
852. battle_print("h\\[[\0", 122, 72);
853. }
854. }

1. /**
2. * level_assets.c
3. *
4. * Initializes variables needed
5. * for all levels {1..3}
6. */
7.
8. #include "level_assets.h"
9. #include "../../level_2/level_2.h"
10. #include "../../text/text.h"
11.
12. UINT8 sprite_width = 8;
13.
14. UINT8 talking = 1;
15. UINT8 slept = 0;
16. UINT8 talked = 0;
17. UINT8 revolt = 0;
18. UINT8 REVOLUTION_1 = 0;
19. UINT8 REVOLUTION_2 = 0;
20. UINT8 striking = 0;
21. UINT8 appeared = 0;
22. UINT8 crabs_to_catch = 1;
23. UINT8 health_loss = 0;
24.
25. UINT8 anim_1 = 32;
26. UINT8 anim_2 = 34;

Fisher

55

27.
28. UINT8 hero_posx = 200;
29. UINT8 hero_posy = 200;
30. UINT8 fisherman_posx = 200;
31. UINT8 fisherman_posy = 200;
32. UINT8 fisherman2_posx = 200;
33. UINT8 fisherman2_posy = 200;
34. UINT8 miner_posx = 200;
35. UINT8 miner_posy = 200;
36. UINT8 student_posx = 200;
37. UINT8 student_posy = 200;
38. UINT8 student2_posx = 200;
39. UINT8 student2_posy = 200;
40. UINT8 asakawa_posx = 200;
41. UINT8 asakawa_posy = 200;
42. UINT8 bed_posx = 200;
43. UINT8 bed_posy = 200;
44.
45. UINT8 hero_hp = 10;
46. UINT16 asakawa_hp = 100;

1. /**
2. * main.c
3. */
4.
5. #include "main.h"
6.
7. void main(void)
8. {
9. /* this poses the OPTIONS: START, NEW GAME, and QUIT. */
10. opening();
11. /* if you've gotten as far as level 1 */
12. if(option == START)
13. level_1_ctrl();
14. /* if you've gotten as far as level 2 */
15. if(option == LEVEL_2)
16. level_2_ctrl();
17. if(option == LEVEL_3)
18. level_3_ctrl();
19. }

1. /**
2. * start_up.c
3. *
4. * opening screen handler
5. */
6.
7. #include "start_up.h"
8. #include "../text/text.h"
9. #include "../battle/battle.h"
10. #include "../assets/sprite_palette.h"
11. #include "../assets/bkg_palette.h"
12. #include "../assets/level_assets/level_assets.h"
13.
14. /* actions that can be taken and returned */
15. UINT8 GAME_OVER = 0;
16. UINT8 START = 1;
17. UINT8 LEVEL_2 = 2;
18. UINT8 LEVEL_3 = 3;
19. UINT8 NEW_GAME = 4;

Fisher

56

20. UINT8 QUIT = 5;
21.
22. /* option chosen */
23. UINT8 option;
24.
25. /* chosen decision */
26. UINT8 choice = 0;
27.
28. void opening(void)
29. {
30. DISPLAY_OFF;
31. // set bkg property
32. set_bkg_palette(0, 1, bkg_palette);
33. // set sprite properties
34. set_sprite_palette(0, 2, sprite_palette);
35.
36. sprite_clean(0);
37. LETTER_COUNT = 0;
38. clear_screen();
39. print("PRESSiA\nTOiSTART\0", 56, 54);
40. for(i = 0; i < LETTER_COUNT; ++i)
41. set_sprite_prop(i, 0);
42. SHOW_BKG;
43. SHOW_SPRITES;
44. DISPLAY_ON;
45. delay(2000);
46. while(1)
47. {
48. if(joypad() & J_A)
49. {
50. option = START;
51. break;
52. }
53. }
54. }

Fisher

57

1. /**
2. * level_1.c
3. */
4.
5. #include "level_1.h"
6. #include "../assets/level_assets/level_assets.h"
7. #include "../battle/battle.h"
8. #include "asakawa_battle.h"
9. #include "../text/text.h"
10. #include "../start_up/start_up.h"
11. #include "../assets/sprite_palette.h"
12. #include "../assets/bkg_palette.h"
13. #include "../assets/sprite_palette.h"
14.
15. /* scene 3 variables */
16. UINT8 l1_scene_3_anim = 0;
17. UINT16 dt = 1500;
18.
19. /* The big control function */
20. void level_1_ctrl(void)
21. { /** this is a test **/
22. set_bkg_palette(0, 1, bkg_palette);
23. // set sprite properties
24. set_sprite_palette(0, 2, sprite_palette);
25. /** the test ends here **/
26.
27. wait_vbl_done();
28. level_1_bkg_start();
29. l1_scene_1();
30. i = 0; // helping with animation
31. while(enter_miner() == 0)
32. {
33. enter_miner();
34. wait_vbl_done();
35. }
36. sprite_clean(0);
37. LETTER_COUNT = 0;
38. miner_intro_setup();
39. miner_intro();
40. l1_scene_3_anim = 0;
41. l1_scene_3_setup();

Fisher

58

42. while(l1_scene_3_anim < 3)
43. {
44. l1_scene_3_animate();
45. wait_vbl_done();
46. }
47. l1_scene_3_text_setup();
48. l1_scene_3();
49. enemy = 0;
50. asakawa_battle_ctrl();
51. }
52.
53. /**
54. * SCENE 1
55. */
56. /* setup the background for the opening screen. */
57. void level_1_bkg_start(void)
58. {
59. DISPLAY_OFF;
60. HIDE_WIN;
61. HIDE_BKG;
62. HIDE_SPRITES;
63. sprite_clean(0);
64. LETTER_COUNT = 0;
65. SHOW_BKG;
66. SHOW_SPRITES;
67. DISPLAY_ON;
68. /* opening screen */
69. print("CHAPTERi\\\nWELCOME\nTOiHELL\0", 48, 64);
70. delay(dt);
71. sprite_clean(0);
72. LETTER_COUNT = 0;
73.
74. DISPLAY_OFF;
75. HIDE_WIN;
76. HIDE_BKG;
77. HIDE_SPRITES;
78.
79. SHOW_BKG;
80. SHOW_SPRITES;
81. DISPLAY_ON;
82.
83. /* setting up first set of text */
84. bkg_clean();
85. fisherman();
86. print("WEkREiALL\nGOINkiTO\nHELLl\0", 24, 48);
87. delay(dt);
88. sprite_clean(10);
89. LETTER_COUNT = 10;
90. you_hear();
91. delay(dt);
92. }
93.
94. void l1_scene_1(void)
95. {
96. while(talking)
97. {
98. if(joypad() & J_A)
99. {
100. ++talking;
101. delay(200);
102. if(talking == 2)

Fisher

59

103. {
104. sprite_clean(10);
105. LETTER_COUNT = 10;
106. print("_iMONTHS\nON\0", 24, 48);
107. }
108. if(talking == 3)
109. {
110. sprite_clean(10);
111. LETTER_COUNT = 10;
112. print("KAMCHATKAS\nNORTHERN\nWATERSe\0", 24, 48);
113. }
114. if(talking == 4)
115. {
116. sprite_clean(10);
117. LETTER_COUNT = 10;
118. print("ITiWOULD\nBEiAiCOLD\nDEATH\neee\0", 24, 48);
119. }
120. if(talking == 5)
121. {
122. sprite_clean(10);
123. LETTER_COUNT = 10;
124. print("IiSEEiWE\nHAVEiA\nQUIETiONEe\0", 24, 48);
125. }
126. if(talking == 6)
127. {
128. sprite_clean(10);
129. LETTER_COUNT = 10;
130. print("CkMON\nIkLLiTAKE\nYOUiDOWN\0", 24, 48);
131. }
132. if(talking == 7)
133. {
134. sprite_clean(10);
135. LETTER_COUNT = 10;
136. print("TOiTHE\nSHITiPOTe\0", 24, 48);
137. }
138. if(talking == 8)
139. {
140. DISPLAY_OFF;
141. // center on the door
142. set_bkg_data(0,4,blank_screen_tiles);
143. set_bkg_tiles(0,0,20,18,shit_pot);
144. DISPLAY_ON;
145. HIDE_SPRITES;// this turns sprites off
146. sprite_clean(0);
147. hide_sprites();
148. LETTER_COUNT = 0;
149. level_1_sprite_setup();
150. break;
151. }
152. }
153. }
154. }
155.
156. int level_1_sprite_setup(void)
157. {
158. /* hero on screen at door */
159. hero_posx = 70;
160. hero_posy = 65;
161.
162. /* fisherman on screen at door */
163. fisherman_posx = 86;

Fisher

60

164. fisherman_posy = 65;
165.
166. /* miner positioning for the coming scene */
167. miner_posx = 150;
168. miner_posy = 100;
169.
170. SPRITES_8x16;
171. /* hero */
172. set_sprite_data(0, 8, hero_front_idle);
173. set_sprite_tile(0, 0);
174. set_sprite_tile(1, 2);
175. /* fisherman */
176. set_sprite_data(8, 8, fisherman_front_idle);
177. set_sprite_tile(2, 8);
178. set_sprite_tile(3, 8);
179. set_sprite_prop(3, S_FLIPX);
180.
181. /* miner */
182. set_sprite_data(16, 8, miner_walk_left);
183.
184. /* display the hero */
185. move_sprite(0, hero_posx, hero_posy);
186. move_sprite(1, hero_posx+sprite_width, hero_posy);
187. /* display the fisherman */
188. move_sprite(2, fisherman_posx, fisherman_posy);
189. move_sprite(3, fisherman_posx+sprite_width, fisherman_posy);
190.
191. delay(400); /* a pause before appearing at door */
192. SHOW_SPRITES;
193. }
194.
195. /**
196. * SCENE 2
197. */
198. int enter_miner(void)
199. {
200. UINT8 step_x = 4;
201. UINT8 step_y = 0;
202.
203. if(miner_posx <= 80) /* if we are far enough to the left */
204. {
205. step_y = 4;
206. step_x = 0;
207. set_sprite_data(16, 8, miner_walk_up);
208. if(miner_posy <= 90)
209. {
210. step_y = 0;
211. set_sprite_data(16, 8, miner_idle_back);
212. delay(100);
213.
214. return 1; /* we're done */
215. }
216.
217. miner_posx -= step_x;
218. miner_posy -= step_y;
219.
220. set_sprite_tile(4, 16+((i&0x1)*4));
221. set_sprite_tile(5, 18+((i&0x1)*4));
222.
223. move_sprite(4, miner_posx, miner_posy);
224. move_sprite(5, miner_posx+sprite_width, miner_posy);

Fisher

61

225. delay(80);
226. }
227.
228. /* start by walking left */
229. miner_posx -= step_x;
230. miner_posy -= step_y;
231.
232. set_sprite_tile(4, 16+((i&0x1)*4));
233. set_sprite_tile(5, 18+((i&0x1)*4));
234. move_sprite(4, miner_posx, miner_posy);
235. move_sprite(5, miner_posx+sprite_width, miner_posy);
236. delay(80);
237.
238. ++i;
239.
240. return 0;
241. }
242.
243. /* setting up the miners dialogue / introduction */
244. void miner_intro_setup(void)
245. {
246. DISPLAY_OFF;
247. HIDE_SPRITES;
248. HIDE_WIN;
249. HIDE_BKG;
250.
251. bkg_clean();
252.
253. SHOW_BKG;
254. SHOW_SPRITES;
255. DISPLAY_ON;
256.
257. miner();
258. print("IiCOME\nFROMiTHE\nYUBARI\nCOAL\nMINESe\0", 24, 48);
259.
260. }
261.
262. /* setting up the miners dialogue / introduction */
263. int miner_intro(void)
264. {
265. DISPLAY_ON;
266. talking = 1;
267. while(talking)
268. {
269. if(joypad() & J_A)
270. {
271. ++talking;
272. delay(200);
273. if(talking == 2)
274. {
275. sprite_clean(6);
276. LETTER_COUNT = 6;
277. print("WORKED\nTHEREiFOR\nSEVEN\nYEARSe\0", 24, 48);
278. }
279. if(talking == 3)
280. {
281. sprite_clean(0);
282. LETTER_COUNT = 0;
283. fisherman();
284. print("AiMINERf\nHUHn\0", 24, 48);
285. }

Fisher

62

286. if(talking == 4)
287. {
288. sprite_clean(10);
289. LETTER_COUNT = 10;
290. print("MUSTkVE\nBEENiNO\nMONEYiIN\nMININGn", 24, 48);
291. }
292. if(talking == 5)
293. {
294. sprite_clean(0);
295. LETTER_COUNT = 0;
296. miner();
297. print("eeeTHERE\nWASiAN\nEXPLOSION\0", 24, 48);
298. }
299. if(talking == 6)
300. {
301. sprite_clean(6);
302. LETTER_COUNT = 6;
303. print("eee\nFROMiTHE\nGASeee\0", 24, 48);
304. }
305. if(talking == 7)
306. {
307. sprite_clean(6);
308. LETTER_COUNT= 6;
309. print("GOODiLIVES\nWEREiLOST\0", 24, 48);
310. }
311. if(talking == 8)
312. {
313. sprite_clean(6);
314. LETTER_COUNT = 6;
315. print("THATiCANkT\nBE\nRETURNED\neee\0", 24, 48);
316. }
317. if(talking == 9)
318. {
319. sprite_clean(0);
320. LETTER_COUNT = 0;
321. fisherman();
322. print("WEiBETTER\nGOl\0", 24, 48);
323. }
324. if(talking == 10)
325. {
326. sprite_clean(10);
327. LETTER_COUNT = 10;
328. print("IiTHINK\nIiHEAR\nASAKAWA\nCOMINGl\0", 24, 48);
329. }
330. if(talking == 11)
331. {
332. sprite_clean(0);
333. LETTER_COUNT = 0;
334. miner();
335. print("WHOkSiTHAT\nn\0", 24, 48);
336. }
337. if(talking == 12)
338. print("FISHERMANg\nTHE\nMANAGERl\0", 24, 80);
339. if(talking == 13)
340. break;
341. }
342. }
343. }
344.
345. /**
346. * SCENE 3

Fisher

63

347. */
348. /**
349. * first make a line of workers
350. * with backs to the door
351. */
352. void l1_scene_3_setup(void)
353. {
354. HIDE_WIN;
355. HIDE_BKG;
356. HIDE_SPRITES;
357. DISPLAY_OFF;
358.
359. /* set bkg up */
360. set_bkg_data(0,4,blank_screen_tiles);
361. set_bkg_tiles(0,0,20,18,shit_pot);
362.
363. /* hide unused sprites first */
364. hide_sprites();
365.
366. /* hero back faced to the screen */
367. hero_posx = 100;
368. hero_posy = 100;
369.
370. /* fisherman back faced to the screen */
371. fisherman_posx = 120;
372. fisherman_posy = 100;
373.
374. /* miner back faced to the screen */
375. miner_posx = 80;
376. miner_posy = 100;
377.
378. /* student back faced to the screen */
379. student_posx = 60;
380. student_posy = 100;
381.
382. /* asakawa front in doorway */
383. asakawa_posx = 75;
384. asakawa_posy = 65;
385.
386. SPRITES_8x16;
387. /* hero */
388. set_sprite_data(0, 8, hero_back_idle);
389. set_sprite_tile(0, 0);
390. set_sprite_tile(1, 2);
391. /* fisherman */
392. set_sprite_data(8, 8, fisherman_idle_back);
393. set_sprite_tile(2, 8);
394. set_sprite_tile(3, 10);
395. /* miner */
396. set_sprite_data(16, 8, miner_idle_back);
397. set_sprite_tile(4, 16);
398. set_sprite_tile(5, 18);
399. /* student */
400. set_sprite_data(24, 8, student_idle_back);
401. set_sprite_tile(6, 24);
402. set_sprite_tile(7, 26);
403. /* asakawa */
404. set_sprite_data(32, 8, asakawa_front_idle);
405. set_sprite_tile(8, 32);
406. set_sprite_tile(9, 34);
407.

Fisher

64

408. /* display the hero */
409. move_sprite(0, hero_posx, hero_posy);
410. move_sprite(1, hero_posx+sprite_width, hero_posy);
411. /* display the fisherman */
412. move_sprite(2, fisherman_posx, fisherman_posy);
413. move_sprite(3, fisherman_posx+sprite_width, fisherman_posy);
414. /* display the miner */
415. move_sprite(4, miner_posx, miner_posy);
416. move_sprite(5, miner_posx+sprite_width, miner_posy);
417. /* display the student */
418. move_sprite(6, student_posx, student_posy);
419. move_sprite(7, student_posx+sprite_width, student_posy);
420.
421. delay(400); /* a pause before appearing at door */
422. SHOW_SPRITES;
423. SHOW_BKG;
424. DISPLAY_ON;
425.
426. /* after a little wait, asakawa appears in door way */
427. delay(400);
428. move_sprite(8, asakawa_posx, asakawa_posy);
429. move_sprite(9, asakawa_posx+sprite_width, asakawa_posy);
430. }
431.
432. /* brief animation for scene 3 */
433. void l1_scene_3_animate(void)
434. {
435. ++l1_scene_3_anim;
436. /* hero */
437. set_sprite_tile(0, 0);
438. set_sprite_tile(1, 2);
439. move_sprite(0, hero_posx, hero_posy);
440. move_sprite(1, hero_posx+sprite_width, hero_posy);
441. /* fisherman */
442. set_sprite_tile(2, 8);
443. set_sprite_tile(3, 10);
444. move_sprite(0, hero_posx, hero_posy);
445. move_sprite(1, hero_posx+sprite_width, hero_posy);
446. /* miner */
447. set_sprite_tile(4, 16);
448. set_sprite_tile(5, 18);
449. move_sprite(0, hero_posx, hero_posy);
450. move_sprite(1, hero_posx+sprite_width, hero_posy);
451. /* student */
452. set_sprite_tile(6, 24);
453. set_sprite_tile(7, 26);
454. move_sprite(0, hero_posx, hero_posy);
455. move_sprite(1, hero_posx+sprite_width, hero_posy);
456. /* asakawa */
457. set_sprite_tile(8, 36-((l1_scene_3_anim&0x1)*4));
458. set_sprite_tile(9, 38-((l1_scene_3_anim&0x1)*4));
459. move_sprite(0, hero_posx, hero_posy);
460. move_sprite(1, hero_posx+sprite_width, hero_posy);
461. delay(500);
462. }
463. /* scene_3 dialogue setup first */
464. void l1_scene_3_text_setup(void)
465. {
466. DISPLAY_OFF;
467. hide_sprites();
468. bkg_clean();

Fisher

65

469. DISPLAY_ON;
470. sprite_clean(0);
471. LETTER_COUNT = 0;
472. asakawa();
473. print("LISTENiUP\nYOU\nMAGGOTSl\0", 24, 48);
474. }
475.
476. /* asakawa's message */
477. void l1_scene_3(void)
478. {
479. talking = 1;
480. while(talking)
481. {
482. if(joypad() & J_A)
483. {
484. ++talking;
485. delay(200);
486. if(talking == 2)
487. {
488. sprite_clean(8);
489. LETTER_COUNT = 8;
490. print("NEEDLESS\nTOiSAYf\0", 24, 48);
491. }
492. if(talking == 3)
493. {
494. sprite_clean(8);
495. LETTER_COUNT = 8;
496. print("THISiSHIP\nISiOFiTHE", 24, 48);
497. }
498. if(talking == 4)
499. {
500. sprite_clean(8);
501. LETTER_COUNT = 8;
502. print("UTMOST\nCONCERN\0", 24, 48);
503. }
504. if(talking == 5)
505. {
506. sprite_clean(8);
507. LETTER_COUNT = 8;
508. print("AS\nPEOPLES\nOF\nIMPERIAL\nJAPANf\0", 24, 48);
509. }
510. if(talking == 6)
511. {
512. sprite_clean(8);
513. LETTER_COUNT = 8;
514. print("WEiARE\nPROUD\nRIVALS\nOFiRUSSIAl\0",24, 48);
515. }
516. if(talking == 7)
517. {
518. sprite_clean(8);
519. LETTER_COUNT = 8;
520. print("THEREkSiAN\nIMPERIAL\nSHIP\0", 24, 48);
521. }
522. if(talking == 8)
523. {
524. sprite_clean(8);
525. LETTER_COUNT = 8;
526. print("TO\nPROTECTiUS\0", 24, 48);
527. }
528. if(talking == 9)
529. {

Fisher

66

530. sprite_clean(8);
531. LETTER_COUNT = 8;
532. print("ASiA\nNATIONiOF\nEXCELLENCE\0", 24, 48);
533. }
534. if(talking == 10)
535. {
536. sprite_clean(8);
537. LETTER_COUNT = 8;
538. print("WEiARE\nUNMATCHED\0", 24, 48);
539. }
540. if(talking == 11)
541. {
542. sprite_clean(8);
543. LETTER_COUNT = 8;
544. print("WHEN\nCOMPARED\nTOiOTHERSl\0", 24, 48);
545. }
546. if(talking == 12)
547. {
548. sprite_clean(0);
549. LETTER_COUNT = 0;
550. print("FROMiTHE\nCROWD\nSOMEONE\nMURMURSf\0", 24, 32);
551. }
552. if(talking == 13)
553. {
554. sprite_clean(0);
555. LETTER_COUNT = 0;
556. print("THATkS\nEXAGERATED\neee\0", 24, 32);
557. }
558. if(talking == 14)
559. {
560. sprite_clean(0);
561. LETTER_COUNT = 0;
562. l1_scene_3_setup();
563. asakawa_shoots_anim();
564. DISPLAY_OFF;
565. bkg_clean();
566. hide_sprites();
567. DISPLAY_ON;
568. asakawa();
569. print("THISiKIND\nOFiTALKiIS\0", 24, 48);
570. }
571. if(talking == 15)
572. {
573. sprite_clean(8);
574. LETTER_COUNT = 8;
575. print("NOT\nTOLERABLE\0", 24, 48);
576. }
577. if(talking == 16)
578. {
579. sprite_clean(8);
580. LETTER_COUNT = 8;
581. print("THIS\nATTITUDE\nIS\nMUTINOUSf\0", 24, 48);
582. }
583. if(talking == 17)
584. {
585. sprite_clean(8);
586. LETTER_COUNT = 8;
587. print("ANDiWILL\nBE\nCONSIDERED\nTREASONl\0", 24, 48);
588. }
589. if(talking == 18)
590. {

Fisher

67

591. sprite_clean(0);
592. LETTER_COUNT = 0;
593. // Battle prompt
594. DISPLAY_OFF;
595. clear_screen();
596. print("FIGHT\0", 64, 32);
597. print("ASAKAWA\0", 56, 48);
598. DISPLAY_ON;
599. delay(100);
600. DISPLAY_OFF;
601. delay(100);
602. DISPLAY_ON;
603. delay(100);
604. DISPLAY_OFF;
605. delay(100);
606. DISPLAY_ON;
607. delay(300);
608. break;
609. }
610. }
611. }
612. }
613.
614. void asakawa_shoots_anim(void)
615. {
616. set_sprite_data(32, 32, asakawa_air_shot);
617. anim_1 = 32;
618. anim_2 = 34;
619. /* asakawa shooting setup */
620. for(i = 0; i < 7; ++i)
621. {
622. set_sprite_tile(8, anim_1+=4);
623. set_sprite_tile(9, anim_2+=4);
624. delay(500);
625. }
626. delay(500);
627. }

1. /**
2. * asakawa_battle.c
3. *
4. * methods for handling battles with asakawa
5. */
6.
7. #include <stdio.h>
8. #include <stdlib.h>
9. #include "../text/text.h"
10. #include "../battle/battle.h"
11. #include "asakawa_battle.h"
12. #include "../assets/level_assets/level_assets.h"
13. #include "../start_up/start_up.h"
14.
15. UINT8 state = BATTLE_CHOICE;
16.
17. /* hp settings for this level */
18. UINT8 start_hp = 10;
19.
20. /**
21. * If level is:
22. * 0) run first battle
23. * 1) run second battle

Fisher

68

24. * 2) run third battle
25. */
26. void asakawa_battle_ctrl(void)
27. {
28. state = BATTLE_CHOICE;
29. choice = 0;
30. battle_menu();
31. while(state != DEAD || option != GAME_OVER)
32. {
33. wait_vbl_done();
34. battle_toggle_ctrl();
35. while(state == FIGHTING)
36. {
37. choice_handler(arrow_y);
38. fight(&hero_hp, &asakawa_hp);
39. delay(400);
40. // basically does back but only when everything is done
41. if(state == BATTLE_WIN && REVOLUTION_2)
42. break;
43. if(state != DEAD)
44. {
45. DISPLAY_OFF;
46. battle_menu();
47. state = BATTLE_CHOICE;
48. choice = 0;
49. DISPLAY_ON;
50. battle_menu();
51. }
52. }
53. if((state == BATTLE_WIN) && REVOLUTION_2)
54. break;
55. }
56. /* the battle that leads to level 2 */
57. if(!revolt && !REVOLUTION_2)
58. option = LEVEL_2;
59. }

Fisher

69

1. /**
2. * level_2.c
3. */
4.
5. #include "level_2.h"
6. #include <stdio.h>
7. #include <stdlib.h>
8. #include "crab_catch.h"
9. #include "../assets/level_assets/level_assets.h"
10. #include "../text/text.h"
11. #include "../battle/battle.h"
12. #include "../start_up/start_up.h"
13. #include "../level_3/level_3.h"
14. #include "crab_catch.h"
15.
16. /* save this for later when checking collisions with sprites */
17. UINT8 arr_size = 9;
18. UINT8 sprite_positions[] = {
19. 48, 64,
20. 64, 64,
21. 148,124,
22. 132, 64,
23. 16, 132,
24. 80,112 /* fisherman2_posx & fisherman2_posy */
25. };
26.
27. UINT8 GOT_INFO = 0;
28. UINT8 moving = 1;
29. UINT8 left = 0;
30. UINT8 screen_x = 95;
31.
32. void level_2_ctrl(void)
33. {
34. wait_vbl_done();
35. level_2_bkg_start();
36. l2_scene_1();
37. talking = 1;
38. wait_vbl_done();
39. l2_scene_1_fisherman_enter();
40. fisherman_walk_away();

Fisher

70

41. while(moving)
42. {
43. option = LEVEL_2;
44. wait_vbl_done();
45. hero_walk();
46. pos_check_shit_pot();
47. }
48. while(option != LEVEL_3)
49. {
50. GOT_INFO = 0;
51. asakawa_enters_deck();
52. asakawa_before_work();
53. crab_catch_ctrl();
54. asakawa_enters_deck();
55. asakawa_after_work();
56. delay(500);
57. DISPLAY_OFF;
58. shit_pot_setup();
59. shit_pot_sprites();
60. delay(500);
61. DISPLAY_ON;
62. moving = 1;
63. if(option != LEVEL_3)
64. {
65. while(moving && option != LEVEL_3)
66. {
67. option = LEVEL_2;
68. hero_walk();
69. pos_check_shit_pot();
70. if(conv_check())
71. break;
72. }
73. }
74. caught_crabs = 0;
75. }
76. option = LEVEL_3;
77. }
78.
79. void level_2_bkg_start(void)
80. {
81. sprite_clean(0);
82. LETTER_COUNT = 0;
83. HIDE_SPRITES;
84. HIDE_BKG;
85.
86. set_sprite_palette(0, 3, sprite_palette);
87. /* load the black clear screen */
88. set_bkg_tiles(0,0,20,18, black_screen);
89.
90. SHOW_SPRITES;
91. SHOW_BKG;
92. delay(2000);
93. print("CHAPTERi]\0", 48, 64);
94. print("LOST\0", 48, 80);
95. print("ATiSEA\0", 48, 96);
96. for(i = 0; i < LETTER_COUNT; ++i)
97. set_sprite_prop(i,1);
98. delay(2000);
99. }
100.
101. void shit_pot_setup(void)

Fisher

71

102. {
103. sprite_clean(0);
104. LETTER_COUNT = 0;
105. hide_sprites();
106. set_bkg_data(0, 4, blank_screen_tiles);
107. set_bkg_tiles(0,0,20,18,shit_pot);
108. }
109.
110. void shit_pot_sprites(void)
111. {
112. hero_posx = 80;
113. hero_posy = 80;
114. student_posx = 48;
115. student_posy = 64;
116. fisherman_posx = 64;
117. fisherman_posy = 64;
118. fisherman2_posx = 80;
119. fisherman2_posy = 112;
120. student2_posx = 148;
121. student2_posy = 124;
122. miner_posx = 132;
123. miner_posy = 64;
124. bed_posx = 16;
125. bed_posy = 132;
126.
127. SPRITES_8x16;
128. set_sprite_data(0, 8, hero_front_idle);
129. set_sprite_data(8, 4, student_front_idle);
130. set_sprite_data(12, 4, fisherman_front_idle);
131. set_sprite_data(16, 4, miner_front_idle);
132. set_sprite_data(20, 4, bed);
133. // hero
134. set_sprite_tile(0, 0);
135. set_sprite_tile(1, 2);
136. move_sprite(0, hero_posx, hero_posy);
137. move_sprite(1, hero_posx+sprite_width, hero_posy);
138. // student
139. set_sprite_tile(2, 8);
140. set_sprite_tile(3, 8);
141. set_sprite_prop(3, S_FLIPX);
142. move_sprite(2, student_posx, student_posy);
143. move_sprite(3, student_posx+sprite_width, student_posy);
144. // student2
145. set_sprite_tile(4, 8);
146. set_sprite_tile(5, 8);
147. set_sprite_prop(5, S_FLIPX);
148. move_sprite(4, student2_posx, student2_posy);
149. move_sprite(5, student2_posx+sprite_width, student2_posy);
150. // fisherman
151. set_sprite_tile(6, 12);
152. set_sprite_tile(7, 12);
153. set_sprite_prop(7, S_FLIPX);
154. move_sprite(6, fisherman_posx, fisherman_posy);
155. move_sprite(7, fisherman_posx+sprite_width, fisherman_posy);
156. // miner
157. set_sprite_tile(8, 16);
158. set_sprite_tile(9, 16);
159. set_sprite_prop(9, S_FLIPX);
160. move_sprite(8, miner_posx, miner_posy);
161. move_sprite(9, miner_posx+sprite_width, miner_posy);
162. // bed

Fisher

72

163. set_sprite_tile(10, 20);
164. set_sprite_tile(11, 22);
165. move_sprite(10, bed_posx, bed_posy);
166. move_sprite(11, bed_posx+sprite_width, bed_posy);
167.
168. if(((option == LEVEL_3) && (GOT_INFO) && (slept)) || appeared)
169. {
170. // fisherman2
171. set_sprite_tile(12, 12);
172. set_sprite_tile(13, 12);
173. set_sprite_prop(13, S_FLIPX);
174. move_sprite(12, fisherman2_posx, fisherman2_posy);
175. move_sprite(13, fisherman2_posx+sprite_width, fisherman2_posy);
176. appeared = 1;
177. arr_size += 2;
178. }
179.
180. }
181.
182. UINT8 sprite_collide_shit_pot(UINT8 *sprite_pos)
183. {
184. for(i = 0; i < arr_size; i+=2)
185. {
186. if((hero_posx < (sprite_pos[i]+sprite_width)) &&
187. ((hero_posx+sprite_width) > sprite_pos[i]) &&
188. (hero_posy < (sprite_pos[i+1]+sprite_width)) &&
189. ((hero_posy+sprite_width) > sprite_pos[i+1]))
190. {
191. hero_posx = sprite_pos[i]-8;
192. hero_posy = sprite_pos[i+1]+8;
193. move_sprite(0, hero_posx, hero_posy);
194. move_sprite(1, hero_posx+sprite_width, hero_posy);
195. return sprite_pos[i];
196. }
197. }
198. return 0;
199. }
200.
201. UINT8 conv_check(void)
202. {
203. UINT8 sprite;
204. UINT8 old_hero_posx;
205. UINT8 old_hero_posy;
206. if((sprite=sprite_collide_shit_pot(sprite_positions)) > 0)
207. {
208.
209. // student in top left corner
210. if(sprite == student_posx || sprite == fisherman_posx)
211. {
212. bkg_clean();
213. old_hero_posx = hero_posx;
214. old_hero_posy = hero_posy;
215. if(!revolt)
216. {
217. sprite_clean(0);
218. LETTER_COUNT = 0;
219. hide_sprites();
220. workers();
221. you_hear();
222. delay(1000);
223. if(option == LEVEL_2)

Fisher

73

224. {
225. sprite_clean(8);
226. LETTER_COUNT = 8;
227. print("AiFISHING\0", 24, 48);
228. print("BOATiWAS\0", 24, 64);
229. print("LOSTl\0", 24, 80);
230. delay(1000);
231. damn_that_asakawa();
232. GOT_INFO = 1;
233. }
234. }
235. if(revolt)
236. {
237. sprite_clean(0);
238. LETTER_COUNT = 0;
239. hide_sprites();
240. workers();
241. print("KEEPiUS\0",24, 48);
242. print("OUTiOFiITl\0", 24, 64);
243. }
244. }
245. // student in bottom right corner
246. else if(sprite == student2_posx)
247. {
248. bkg_clean();
249. old_hero_posx = hero_posx;
250. old_hero_posy = hero_posy;
251. sprite_clean(0);
252. LETTER_COUNT = 0;
253. hide_sprites();
254. student();
255. print("IiDONkT\0", 24, 48);
256. print("WANTiTO\0", 24, 64);
257. print("DIEiIN\0", 24, 80);
258. print("KAMCHATKA\0", 24, 96);
259. print("...\0",24,112);
260. }
261. else if(sprite == miner_posx)
262. {
263. bkg_clean();
264. old_hero_posx = hero_posx;
265. old_hero_posy = hero_posy;
266. if(option == LEVEL_2)
267. {
268. sprite_clean(0);
269. LETTER_COUNT = 0;
270. hide_sprites();
271. miner();
272. print("ITiWASiTHE\0", 24, 48);
273. print("SAMEiAT\0", 24, 64);
274. print("THEiMINESl\0", 24, 80);
275. }
276. if(option == LEVEL_3 && !revolt)
277. {
278. sprite_clean(0);
279. LETTER_COUNT = 0;
280. hide_sprites();
281. miner();
282. print("YOUiHEARln\0", 24, 48);
283. delay(500);
284. sprite_clean(6);

Fisher

74

285. LETTER_COUNT = 6;
286. print("THEiBOATkS\0", 24, 48);
287. print("BACKl\0", 24, 64);
288. GOT_INFO = 1;
289. }
290. else if(option == LEVEL_3 && revolt)
291. {
292. sprite_clean(0);
293. LETTER_COUNT = 0;
294. miner();
295. print("OFiCOURSE\0", 24, 48);
296. print("IkLLiJOIN\0", 24, 64);
297. print("THEiFIGHTl\0", 24, 80);
298. talked = 1;
299. }
300. }
301. else if(sprite == bed_posx)
302. {
303. sprite_clean(0);
304. LETTER_COUNT = 0;
305. hide_sprites();
306. set_bkg_data(0, 4, blank_screen_tiles);
307. set_bkg_tiles(0, 0, 20, 18, black_screen);
308. print("SLEEPING\0", 56, 56);
309. for(i = 0; i < LETTER_COUNT+3; ++i)
310. set_sprite_prop(i, 1);
311. delay(500);
312. print("e\0", 75, 72);
313. delay(500);
314. print("e\0", 84, 72);
315. delay(500);
316. print("e\0", 92, 72);
317. delay(800);
318. sprite_clean(0);
319. LETTER_COUNT = 0;
320. print("PRESSiA\0", 56, 88);
321. print("TOiWAKE\0", 56, 104);
322. for(i = 0; i < LETTER_COUNT; ++i)
323. set_sprite_prop(i, 1);
324. slept = 1;
325. if(option == LEVEL_2 && (!GOT_INFO));
326. else if((option == LEVEL_2) && (GOT_INFO))
327. {
328. clear_screen();
329. sprite_clean(0);
330. LETTER_COUNT = 0;
331. print("\0", 24, 32);
332. option = LEVEL_3;
333. return 1;
334. }
335. }
336. else if((sprite == fisherman2_posx) && (appeared))
337. {
338. bkg_clean();
339. old_hero_posx = hero_posx;
340. old_hero_posy = hero_posy;
341. if(!revolt)
342. {
343. talking = 1;
344. sprite_clean(0);
345. LETTER_COUNT = 0;

Fisher

75

346. fisherman();
347. print("WEiWERE\nLOSTiAT\nSEAf\0", 24, 48);
348. while(talking)
349. {
350. if(joypad() & J_A)
351. {
352. ++talking;
353. delay(200);
354. if(talking == 2)
355. {
356. sprite_clean(10);
357. LETTER_COUNT = 10;
358. print("ANDiWASHED\nASHOREiIN\nRUSSIAl\0", 24, 48);
359. }
360. if(talking == 3)
361. {
362. sprite_clean(10);
363. LETTER_COUNT = 10;
364. print("THOSE\nRUSSKIES\0", 24, 48);
365. }
366. if(talking == 4)
367. {
368. sprite_clean(10);
369. LETTER_COUNT = 10;
370. print("AREiONiTO\nSOMETHINGe\0", 24, 48);
371. }
372. if(talking == 5)
373. {
374. sprite_clean(10);
375. LETTER_COUNT = 10;
376. print("WITHiTHEIR\nTALK\0", 24, 48);
377. }
378. if(talking == 6)
379. {
380. sprite_clean(10);
381. LETTER_COUNT = 10;
382. print("ABOUT\nREVOLUTION\0", 24, 48);
383. }
384. if(talking == 7)
385. {
386. sprite_clean(10);
387. LETTER_COUNT = 10;
388. print("WEiCAN\nORGANIZE\nTOOl\0", 24, 48);
389. }
390. if(talking == 8)
391. {
392. sprite_clean(10);
393. LETTER_COUNT = 10;
394. print("YOUfiIf\nANDiA\nCOUPLE\nOTHERSl\0", 24, 48);
395. }
396. if(talking == 9)
397. {
398. sprite_clean(10);
399. LETTER_COUNT = 10;
400. print("WEiCOULD\nORGANIZE\nTHEiCREWl\0", 24, 48);
401. }
402. if(talking == 10)
403. {
404. sprite_clean(10);
405. LETTER_COUNT = 10;
406. print("WHATiDkYOU\nTHINKn\0", 24, 48);

Fisher

76

407.
408. print("AiYESl\nBiNOeee\0", 24, 88);
409. REVOLUTION_1 = 1;
410. break;
411. }
412. }
413. }
414. }
415. if(revolt && !talked)
416. {
417. sprite_clean(0);
418. LETTER_COUNT = 0;
419. fisherman();
420. print("THEREkS\0", 24, 48);
421. print("NOTiENOUGH\0", 24, 64);
422. print("TALKiYETl\0", 24, 80);
423. }
424. if(revolt && talked)
425. REVOLUTION_1 = 1;
426.
427. if(talked)
428. {
429. talking = 1;
430. sprite_clean(0);
431. LETTER_COUNT = 0;
432. fisherman();
433. print("WEkVEiGOT\nTHE\nNUMBERSl\0", 24, 48);
434. while(talking)
435. {
436. if(joypad() & J_A)
437. {
438. ++talking;
439. delay(200);
440. if(talking == 2)
441. {
442. sprite_clean(10);
443. LETTER_COUNT = 10;
444. print("WITHOUT\nUS\0", 24, 48);
445. }
446. if(talking == 3)
447. {
448. sprite_clean(10);
449. LETTER_COUNT = 10;
450. print("SHIPS\nWOULDNkT\nBUDGEe\0", 24, 48);
451. }
452. if(talking == 4)
453. {
454. sprite_clean(10);
455. LETTER_COUNT = 10;
456. print("WITHOUT\nUSf\0", 24, 48);
457. }
458. if(talking == 5)
459. {
460. sprite_clean(10);
461. LETTER_COUNT = 10;
462. print("THEiRICH\nWOULDNkT\nMAKEiA\nDIMEl\0", 24, 48);
463. }
464. if(talking == 6)
465. {
466. sprite_clean(10);
467. LETTER_COUNT = 10;

Fisher

77

468. print("LETkSiGIVE\nkEMiHELL\nTOGETHERl\0", 24, 48);
469. striking = 1;
470. REVOLUTION_1 = 1;
471. break;
472. }
473. }
474. }
475. }
476. }
477. // double check that we didn't mistakenly collide
478. for(i = 0; i < 12; i+=2)
479. {
480. if(sprite_positions[i] == sprite)
481. {
482. talking = 1;
483. break;
484. }
485. else
486. talking = 0;
487. }
488. while(talking)
489. {
490. if(!REVOLUTION_1)
491. {
492. if(joypad() & J_A)
493. {
494. shit_pot_setup();
495. shit_pot_sprites();
496. hero_posx = old_hero_posx;
497. hero_posy = old_hero_posy;
498. move_sprite(0, hero_posx, hero_posy);
499. move_sprite(1, hero_posx+sprite_width, hero_posy);
500. talking = 0;
501. }
502. }
503. if(REVOLUTION_1) // prompt for revolution 1
504. {
505. if(joypad() & J_A)
506. {
507. REVOLUTION_1 = 0;
508. health_loss = 0;
509. crabs_to_catch = 1;
510. if(revolt && talked)
511. return 1;
512. if(!revolt)
513. {
514. sprite_clean(0);
515. LETTER_COUNT = 0;
516. fisherman();
517. print("GOODl\0", 24, 48);
518. delay(500);
519. sprite_clean(10);
520. LETTER_COUNT = 10;
521. print("GOiSEEiWHO\0", 24, 48);
522. print("CANiHELPl\0", 24, 64);
523. delay(1000);
524. revolt = 1;
525. }
526. }
527. if(joypad() & J_B)
528. {

Fisher

78

529. sprite_clean(0);
530. LETTER_COUNT = 0;
531. fisherman();
532. print("THATkSiTOO\0", 24, 48);
533. print("BADeee\0", 24, 64);
534. revolt = 0;
535. option = LEVEL_3;
536. REVOLUTION_1 = 0;
537. ++health_loss;
538. crabs_to_catch+=2;
539. delay(500);
540. REVOLUTION_1 = 0;
541. }
542. }
543. }
544. }
545. return 0;
546. }
547.
548. /**
549. * Should probably make hero_pos and fisherman_pos
550. * global at some point.
551. */
552. void l2_scene_1(void)
553. {
554. // waking up the hero
555. sprite_clean(0);
556. LETTER_COUNT = 0;
557. delay(500);
558. print("WAKEiUPl\0", 56, 75);
559. for(i = 0; i < LETTER_COUNT; ++i)
560. set_sprite_prop(i,1);
561. delay(800);
562. // reset sprite properties
563. for(i = 0; i < LETTER_COUNT; ++i)
564. set_sprite_prop(i, 1);
565. // start the next part
566. delay(1000);
567. sprite_clean(0);
568. LETTER_COUNT = 0;
569. hide_sprites();
570.
571. hero_posx = 80;
572. hero_posy = 75;
573. fisherman_posx = 160;
574. fisherman_posy = 75;
575.
576. // reset sprite properties back to normal
577. for(i = 0; i < MAX_SPRITES; ++i)
578. set_sprite_prop(i, 0);
579. // hero lying down in shit pot
580. shit_pot_setup();
581. SPRITES_8x16;
582. set_sprite_data(0, 4, hero_lie_down);
583. set_sprite_data(4, 4, hero_front_idle);
584. set_sprite_tile(0, 0);
585. set_sprite_tile(1, 2);
586. move_sprite(0, hero_posx, hero_posy);
587. move_sprite(1, hero_posx+sprite_width, hero_posy);
588. // hero stands up
589. delay(500);

Fisher

79

590. set_sprite_tile(0, 4);
591. set_sprite_tile(1, 6);
592. // setting up fisherman data for his walk in
593. set_sprite_data(8, 8, fisherman_walk_side);
594. set_sprite_tile(2, 8);
595. set_sprite_tile(3, 10);
596. /**
597. * enter fisherman (the -5 adds a little extra distance)
598. * i = 160 is the right side of the screen.
599. */
600. for(i = 0; fisherman_posx > 95; ++i)
601. {
602. delay(50);
603. move_sprite(2, fisherman_posx, fisherman_posy);
604. move_sprite(3, fisherman_posx+sprite_width, fisherman_posy);
605. set_sprite_tile(2, (8+(4*(0x1&i))));
606. set_sprite_tile(3, (10+(4*(0x1&i))));
607. --fisherman_posx;
608. }
609. set_sprite_data(0, 4, hero_walk_sideways);
610. set_sprite_tile(0, 0);
611. set_sprite_tile(1, 2);
612.
613. delay(500);
614. DISPLAY_OFF;
615. bkg_clean();
616. DISPLAY_ON;
617. sprite_clean(0);
618. LETTER_COUNT = 0;
619. fisherman();
620. print("LETkSiGET\0", 24, 48);
621. print("TOiWORKl\0", 24, 64);
622. }
623.
624. void l2_scene_1_fisherman_enter(void)
625. {
626. delay(1000);
627. sprite_clean(10);
628. LETTER_COUNT = 10;
629. print("YOUkLL\0", 24, 48);
630. print("NEEDiTHESE\0", 24, 64);
631. delay(1000);
632. sprite_clean(0);
633. LETTER_COUNT = 0;
634. DISPLAY_OFF;
635. set_bkg_tiles(0,0,20,18,blank_screen);
636. DISPLAY_ON;
637. print("YOU\0", 72, 32);
638. print("ACQUIREiA\0", 48, 48);
639. print("CLUBiAND\0", 52, 64);
640. print("FISHING\0", 56, 80);
641. print("NET\0", 72, 96);
642. items += 2;
643. delay(1000);
644. sprite_clean(0);
645. LETTER_COUNT = 0;
646. DISPLAY_OFF;
647. bkg_clean();
648. DISPLAY_ON;
649. fisherman();
650. print("NOWiLETkS\0", 24, 48);

Fisher

80

651. print("GETiGOINGl\0", 24, 64);
652. while(talking)
653. {
654. if(joypad() & J_A)
655. talking = 0;
656. }
657. }
658.
659. void fisherman_walk_away(void)
660. {
661. sprite_clean(0);
662. LETTER_COUNT = 0;
663. hide_sprites();
664. set_bkg_data(0, 4, blank_screen_tiles);
665. set_bkg_tiles(0,0,20,18,shit_pot);
666.
667. // setting up fisherman data for his walk in
668. SPRITES_8x16;
669. set_sprite_data(0, 4, hero_walk_sideways);
670. set_sprite_data(4, 4, fisherman_walk_up);
671.
672. set_sprite_tile(0, 0);
673. set_sprite_tile(1, 2);
674. set_sprite_tile(2, 4);
675. set_sprite_tile(3, 6);
676.
677. move_sprite(0, hero_posx, hero_posy);
678. move_sprite(1, hero_posx+sprite_width, hero_posy);
679. move_sprite(2, fisherman_posx, fisherman_posy);
680. move_sprite(3, fisherman_posx+sprite_width, fisherman_posy);
681.
682. /**
683. * enter fisherman (the -5 adds a little extra distance)
684. * i = 160 is the right side of the screen.
685. */
686. for(i = 0; fisherman_posy > 50; ++i)
687. {
688. delay(50);
689. if(i&0x1)
690. {
691. set_sprite_prop(2, S_FLIPX);
692. set_sprite_prop(3, S_FLIPX);
693. move_sprite(2, fisherman_posx+sprite_width, fisherman_posy);
694. move_sprite(3, fisherman_posx, fisherman_posy);
695. }
696. else
697. {
698. set_sprite_prop(2, S_FLIPX&0x0);
699. set_sprite_prop(3, S_FLIPX&0x0);
700. move_sprite(2, fisherman_posx, fisherman_posy);
701. move_sprite(3, fisherman_posx+sprite_width, fisherman_posy);
702. }
703. --fisherman_posy;
704. }
705. // fisherman disappears
706. fisherman_posx = 200;
707. fisherman_posy = 200;
708. move_sprite(2, fisherman_posx, fisherman_posy);
709. move_sprite(3, fisherman_posx, fisherman_posy);
710. }
711.

Fisher

81

712. void hero_walk(void)
713. {
714. if(joypad() & J_UP)
715. {
716. set_sprite_data(0, 4, hero_walk_up);
717. set_sprite_tile(0, 0);
718. set_sprite_tile(1, 2);
719. // make sure sprites aren't flipped
720. set_sprite_prop(0, S_FLIPX&0x0);
721. set_sprite_prop(1, S_FLIPX&0x0);
722. move_sprite(0, hero_posx, hero_posy);
723. move_sprite(1, hero_posx+sprite_width, hero_posy);
724. if((hero_posy+hero_posx)&0x1)
725. {
726. set_sprite_prop(0, S_FLIPX);
727. set_sprite_prop(1, S_FLIPX);
728. move_sprite(0, hero_posx+sprite_width, hero_posy);
729. move_sprite(1, hero_posx, hero_posy);
730. }
731. else
732. {
733. set_sprite_prop(0, S_FLIPX&0x0);
734. set_sprite_prop(1, S_FLIPX&0x0);
735. move_sprite(0, hero_posx, hero_posy);
736. move_sprite(1, hero_posx+sprite_width, hero_posy);
737. }
738. left = 0;
739. delay(50);
740. hero_posy-=3;
741. }
742. if(joypad() & J_DOWN)
743. {
744. set_sprite_data(0, 4, hero_walk_down);
745. set_sprite_tile(0, 0);
746. set_sprite_tile(1, 2);
747. // make sure sprites aren't flipped
748. set_sprite_prop(0, S_FLIPX&0x0);
749. set_sprite_prop(1, S_FLIPX&0x0);
750. move_sprite(0, hero_posx, hero_posy);
751. move_sprite(1, hero_posx+sprite_width, hero_posy);
752. if((hero_posx+hero_posy)&0x1)
753. {
754. set_sprite_prop(0, S_FLIPX);
755. set_sprite_prop(1, S_FLIPX);
756. move_sprite(0, hero_posx+sprite_width, hero_posy);
757. move_sprite(1, hero_posx, hero_posy);
758. }
759. else
760. {
761. set_sprite_prop(0, S_FLIPX&0x0);
762. set_sprite_prop(1, S_FLIPY&0x0);
763. move_sprite(0, hero_posx, hero_posy);
764. move_sprite(1, hero_posx+sprite_width, hero_posy);
765. }
766. left = 0;
767. delay(50);
768. hero_posy+=3;
769. }
770. if(joypad() & J_LEFT)
771. {
772. set_sprite_data(0, 8, hero_walk_sideways);

Fisher

82

773. if(!left)
774. {
775. set_sprite_prop(0, S_FLIPX);
776. set_sprite_prop(1, S_FLIPX);
777. }
778. if((hero_posx+hero_posy)&0x1)
779. {
780. set_sprite_tile(0, 4);
781. set_sprite_tile(1, 6);
782. }
783. else
784. {
785. set_sprite_tile(0, 0);
786. set_sprite_tile(1, 2);
787. }
788. move_sprite(0, hero_posx+sprite_width, hero_posy);
789. move_sprite(1, hero_posx, hero_posy);
790. left = 1;
791. delay(50);
792. hero_posx-=3;
793. }
794. if(joypad() & J_RIGHT)
795. {
796. set_sprite_data(0, 8, hero_walk_sideways);
797. // make sure the sprites aren't flipped
798. set_sprite_prop(0, S_FLIPX&0x0);
799. set_sprite_prop(1, S_FLIPX&0x0);
800. if((hero_posx+hero_posy)&0x1)
801. {
802. set_sprite_tile(0, 4);
803. set_sprite_tile(1, 6);
804. }
805. else
806. {
807. set_sprite_tile(0, 0);
808. set_sprite_tile(1, 2);
809. }
810. move_sprite(0, hero_posx, hero_posy);
811. move_sprite(1, hero_posx+sprite_width, hero_posy);
812. left = 0;
813. delay(50);
814. hero_posx+=3;
815. }
816. }
817.
818. void asakawa_enters_deck(void)
819. {
820. hero_posx = 80;
821. hero_posy = 116;
822. sprite_clean(0);
823. LETTER_COUNT = 0;
824. hide_sprites();
825. set_bkg_data(0,4,blank_screen_tiles);
826. set_bkg_tiles(0,0,32,18,deck);
827. SPRITES_8x16;
828. set_sprite_data(0, 8, hero_walk_sideways);
829. set_sprite_tile(0, 0);
830. set_sprite_tile(1, 2);
831. set_sprite_prop(0, S_FLIPX&0x0);
832. set_sprite_prop(1, S_FLIPX&0x0);
833. move_sprite(0, hero_posx, hero_posy);

Fisher

83

834. move_sprite(1, hero_posx+sprite_width, hero_posy);
835.
836. fisherman_posx = 48;
837. fisherman_posy = 128;
838.
839. set_sprite_data(8, 8, fisherman_walk_side);
840. for(i = 2; i < 7; i+=2)
841. {
842. set_sprite_tile(i, 10);
843. set_sprite_tile(i+1, 8);
844. set_sprite_prop(i, S_FLIPX);
845. set_sprite_prop(i+1, S_FLIPX);
846. }
847. move_sprite(2, fisherman_posx, fisherman_posy);
848. move_sprite(3, fisherman_posx+sprite_width, fisherman_posy);
849. move_sprite(4, fisherman_posx-20, fisherman_posy);
850. move_sprite(5, fisherman_posx-20+sprite_width, fisherman_posy);
851. move_sprite(6, fisherman_posx-40, fisherman_posy);
852. move_sprite(7, fisherman_posx-40+sprite_width, fisherman_posy);
853.
854. // asakawa
855. asakawa_posx = 156;
856. asakawa_posy = 116;
857. set_sprite_data(16, 8, asakawa_walk_side);
858. set_sprite_tile(8, 16);
859. set_sprite_tile(9, 18);
860. move_sprite(8, asakawa_posx, asakawa_posy);
861. move_sprite(9, asakawa_posx+sprite_width, asakawa_posy);
862. while(asakawa_posx > 120)
863. {
864. delay(50);
865. --asakawa_posx;
866. set_sprite_tile(8, 16+(4*(asakawa_posx&0x1)));
867. set_sprite_tile(9, 18+(4*(asakawa_posx&0x1)));
868. move_sprite(8, asakawa_posx, asakawa_posy);
869. move_sprite(9, asakawa_posx+sprite_width, asakawa_posy);
870. }
871. delay(500);
872. }
873.
874. void asakawa_before_work(void)
875. {
876. DISPLAY_OFF;
877. bkg_clean();
878. sprite_clean(0);
879. LETTER_COUNT = 0;
880. DISPLAY_ON;
881. talking = 1;
882. asakawa();
883. print("GETiTHESE\0", 24, 48);
884. print("CRABS\0", 24, 64);
885. print("READYiTO\0", 24, 80);
886. print("CANl\0", 24, 96);
887. // asakawa's instructions on how to play
888. while(talking)
889. {
890. if(joypad() & J_A)
891. {
892. ++talking;
893. delay(200);
894. if(talking == 2)

Fisher

84

895. {
896. sprite_clean(8);
897. LETTER_COUNT = 8;
898. print("CATCHiWITH\0", 24, 48);
899. print("YOURiNETl\0", 24, 64);
900. }
901. if(talking == 3)
902. {
903. sprite_clean(8);
904. LETTER_COUNT = 8;
905. print("ANDiCRUSH\0", 24, 48);
906. print("SHELLS\0", 24, 64);
907. print("WITHiTHE\0", 24, 80);
908. print("CLUBl\0", 24, 96);
909. }
910. if(talking == 4)
911. talking = 0;
912. }
913. }
914. }
915.
916. void asakawa_after_work(void)
917. {
918. DISPLAY_OFF;
919. bkg_clean();
920. sprite_clean(0);
921. LETTER_COUNT = 0;
922. DISPLAY_ON;
923. asakawa();
924. print("BACKiDOWN\0", 24, 48);
925. print("TOiTHE\0", 24, 64);
926. print("SHITiPOTl\0", 24, 80);
927. delay(1000);
928. }
929.
930. void pos_check_shit_pot(void)
931. {
932. if(hero_posy <= 56)
933. {
934. hero_posy = 56;
935. if(hero_posx >= 48 && hero_posx <= 108)
936. {
937. if(revolt)
938. {
939. hero_posy = 56;
940. hero_posx = hero_posx;
941. }
942. else
943. moving = 0;
944. }
945. }
946. if(hero_posx <= 8)
947. hero_posx = 8;
948. if(hero_posy >= 144)
949. hero_posy = 144;
950. if(hero_posx >= 152)
951. hero_posx = 152;
952. }

1. /**
2. * crab_catch.c

Fisher

85

3. *
4. * methods for handling
5. * crab battles
6. */
7.
8. #include <rand.h>
9. #include <stdlib.h>
10. #include "crab_catch.h"
11. #include "../level_1/asakawa_battle.h"
12. #include "../assets/level_assets/level_assets.h"
13. #include "../text/text.h"
14. #include "../assets/sprites/hero_back_idle.h"
15. #include "../start_up/start_up.h"
16. #include "../battle/battle.h"
17.
18. UINT8 crab = 0;
19. UINT8 caught_crabs = 0;
20. UINT8 CRAB_CAUGHT = 0;
21. UINT8 CRAB_HP = 5;
22.
23. /**
24. * master method for a work day
25. */
26. void crab_catch_ctrl(void)
27. {
28. items = 2;
29. battle_num = 1;
30. state = BATTLE_CHOICE;
31. /**
32. * 1. opening screen chooses between two types of crabs & anounces
33. * their coming
34. * * king crab
35. * * normal crab
36. * 2. then battle with that crab
37. * * battle relies on your ability to first catch,
38. * * then batter the crab.
39. * * if that sequence is not followed, it's a miss
40. * 3. repeat crabs_to_catch many times.
41. */
42. while(caught_crabs < crabs_to_catch && state != DEAD &&
43. option != GAME_OVER)
44. {
45. hero_hp=(10-health_loss);
46. crab_catch_setup();
47. delay(500);
48. battle_menu();
49. while(state != DEAD && state != BATTLE_WIN &&
50. option != GAME_OVER)
51. {
52. wait_vbl_done();
53. battle_toggle_ctrl();
54. while(state == FIGHTING && option != GAME_OVER)
55. {
56. choice_handler(arrow_y);
57. fight(&hero_hp, &CRAB_HP);
58. delay(400);
59. if(option == GAME_OVER || state == DEAD)
60. break;
61. if(state != DEAD && state != BATTLE_WIN)
62. {
63. DISPLAY_OFF;

Fisher

86

64. battle_menu();
65. state = BATTLE_CHOICE;
66. choice = 0;
67. DISPLAY_ON;
68. battle_menu();
69. }
70.
71. }
72. if(option == GAME_OVER || state == DEAD)
73. break;
74. }
75. if(state == BATTLE_WIN && option != GAME_OVER)
76. {
77. clear_screen();
78. sprite_clean(0);
79. LETTER_COUNT = 0;
80. print("YOUiWINl", 56, 80);
81. delay(500);
82. CRAB_CAUGHT = 0;
83. ++caught_crabs;
84. state = BATTLE_CHOICE;
85. }
86. }
87. delay(1000);
88. }
89.
90. void crab_catch_setup(void)
91. {
92. seed = DIV_REG;
93. seed |= (UWORD)DIV_REG << 8;
94. initarand(seed);
95.
96. /* which crab are we going to use? */
97. crab = rand()&0x1;
98.
99. /* normal crab is chosen */
100. if(crab == 0)
101. {
102. sprite_clean(0);
103. LETTER_COUNT = 0;
104. clear_screen();
105. print("AiCRABl\0", 56, 80);
106. delay(1000);
107. sprite_setup(8, hero_back_idle, 8, norm_crab);
108. CRAB_HP = 5;
109. enemy = 1;
110. }
111. /* king crab is chosen */
112. if(crab == 1)
113. {
114. sprite_clean(0);
115. LETTER_COUNT = 0;
116. clear_screen();
117. print("AiKING\0", 56, 80);
118. print("CRABl\0", 60, 96);
119. delay(1000);
120. sprite_setup(8, hero_back_idle, 8, king_crab);
121. CRAB_HP = 10;
122. enemy = 2;
123. }
124. }

Fisher

87

1. /**
2. * level_3.c
3. */
4.
5. #include "level_3.h"
6. #include "../text/text.h"
7. #include "../level_1/asakawa_battle.h"
8. #include "../battle/battle.h"
9. #include "../level_1/level_1.h"
10. #include "../level_2/level_2.h"
11. #include "../level_2/crab_catch.h"
12. #include "../assets/level_assets/level_assets.h"
13. #include "../start_up/start_up.h"
14. #include "../assets/sprites/student_lie_down.h"
15. #include "../end/end.h"
16.
17. void level_3_ctrl(void)
18. {
19. option = LEVEL_3;
20. GOT_INFO = 0;
21. DISPLAY_OFF;
22. clear_screen();
23. delay(500);
24. sprite_clean(0);
25. LETTER_COUNT = 0;
26. print("CHAPTERi^\nREVOLUTION\0", 48, 56);
27. DISPLAY_ON;
28. delay(2000);
29. DISPLAY_OFF;
30. shit_pot_setup();
31. shit_pot_sprites();
32. DISPLAY_ON;
33. moving = 1;
34. while(!striking)
35. {
36. option = LEVEL_3;
37. while(moving)
38. {
39. option = LEVEL_3;
40. hero_walk();
41. pos_check_shit_pot();

Fisher

88

42. if(conv_check())
43. break;
44. }
45. if(!striking)
46. leaves_shit_pot();
47. }
48. delay(1000);
49. DISPLAY_OFF;
50. sprite_clean(0);
51. LETTER_COUNT = 0;
52. shit_pot_setup();
53. shit_pot_sprites();
54. DISPLAY_ON;
55.
56. /* asakawa shooting */
57. anim_1 = 32;
58. anim_2 = 34;
59. asakawa_posx = 75;
60. asakawa_posy = 65;
61. set_sprite_data(32, 32, asakawa_air_shot);
62. set_sprite_tile(14, anim_1);
63. set_sprite_tile(15, anim_2);
64. move_sprite(14, asakawa_posx, asakawa_posy);
65. move_sprite(15, asakawa_posx+sprite_width, asakawa_posy);
66. for(i = 0; i < 7; ++i)
67. {
68. set_sprite_tile(14, anim_1+=4);
69. set_sprite_tile(15, anim_2+=4);
70. delay(500);
71. }
72. state = BATTLE_CHOICE; // this is for tests
73. delay(500);
74. DISPLAY_OFF;
75. bkg_clean();
76. sprite_clean(0);
77. LETTER_COUNT = 0;
78. DISPLAY_ON;
79. asakawa();
80. print("IkVEiHEARD\0", 24, 48);
81. print("TALKiOFiA\0", 24, 64);
82. print("STRIKEl\0", 24, 80);
83. delay(1000);
84. sprite_clean(8);
85. LETTER_COUNT = 8;
86. asakawa();
87. print("SHOWiME\0", 24, 48);
88. print("YOUR\0", 24, 64);
89. print("LEADERSl\0", 24, 80);
90. delay(1000);
91. DISPLAY_OFF;
92. /* happens in level 1 too */
93. clear_screen();
94. sprite_clean(0);
95. LETTER_COUNT = 0;
96. print("FIGHT\0", 64, 32);
97. print("ASAKAWA\0", 56, 48);
98. DISPLAY_ON;
99. enemy = 0;
100. items = 2;
101. hero_hp = 50;
102. asakawa_hp = 200; /* this will later go back down to 100 */

Fisher

89

103. start_hp = 50;
104. sprite_clean(0);
105. LETTER_COUNT = 0;
106. state = BATTLE_CHOICE;
107. option = LEVEL_3;
108. asakawa_battle_ctrl();
109. state = BATTLE_CHOICE;
110. option = LEVEL_3;
111. bkg_clean();
112. sprite_clean(0);
113. LETTER_COUNT = 0;
114. asakawa();
115. print("NOWiTAKE\0", 24, 48);
116. print("THEMiAWAYl\0", 24, 64);
117. delay(1000);
118. DISPLAY_OFF;
119. set_bkg_data(0, 4, blank_screen_tiles);
120. set_bkg_tiles(0, 0, 20, 18, black_screen);
121. DISPLAY_ON;
122. delay(2000);
123. DISPLAY_OFF;
124. SPRITES_8x16;
125. shit_pot_setup();
126. shit_pot_sprites();
127.
128. team_battle_show();
129.
130. set_sprite_data(24, 4, student_lie_down);
131. set_sprite_tile(4, 24);
132. set_sprite_tile(5, 26);
133. move_sprite(4, student2_posx, student2_posy);
134. move_sprite(5, student2_posx+sprite_width, student2_posy);
135. DISPLAY_ON;
136.
137. delay(2000);
138. bkg_clean();
139. sprite_clean(0);
140. LETTER_COUNT = 0;
141. workers();
142. print("ITkSi\nBERIBERIe\0", 24, 48);
143. talking = 1;
144. while(talking)
145. {
146. if(joypad() & J_A)
147. {
148. ++talking;
149. delay(200);
150. if(talking == 2)
151. {
152. sprite_clean(8);
153. LETTER_COUNT = 8;
154. damn_that_asakawa();
155. }
156. if(talking == 3)
157. {
158. sprite_clean(8);
159. LETTER_COUNT = 8;
160. print("NOBODYkS\nONiOUR\nSIDEf\0", 24, 48);
161. }
162. if(talking == 4)
163. {

Fisher

90

164. sprite_clean(8);
165. LETTER_COUNT = 8;
166. print("EXCEPTiOUR\nSELVESe\0", 24, 48);
167. }
168. if(talking == 5)
169. {
170. sprite_clean(8);
171. LETTER_COUNT = 8;
172. print("WEiALL\nSHOULDkVE\nACTED\nTOGETHERl\0", 24, 48);
173. }
174. if(talking == 6)
175. {
176. sprite_clean(8);
177. LETTER_COUNT = 8;
178. print("THEREkDiBE\nNOiONEiTO\nWORK\0", 24, 48);
179. }
180. if(talking == 7)
181. {
182. sprite_clean(8);
183. LETTER_COUNT= 8;
184. print("IF\nTHEYiTOOK\nUSiALLl\0", 24, 48);
185. }
186. if(talking == 8)
187. {
188. sprite_clean(8);
189. LETTER_COUNT = 8;
190. print("LETS\nDOiIT\nAGAINf\0", 24, 48);
191. }
192. if(talking == 9)
193. {
194. sprite_clean(8);
195. LETTER_COUNT = 8;
196. print("ONEiMORE\nTIMEl\0", 24, 48);
197. }
198. if(talking == 10)
199. {
200. REVOLUTION_2 = 1;
201. enemy = 0;
202. items = 2;
203. hero_hp = 100;
204. /* this will later go back down to 100 */
205. asakawa_hp = 100;
206. start_hp = 100;
207. option = LEVEL_3;
208. state = BATTLE_CHOICE;
209. break;
210. }
211. }
212. }
213. while(1)
214. {
215. asakawa_battle_ctrl();
216. if(state == BATTLE_WIN)
217. break;
218. if(option == GAME_OVER || state == DEAD)
219. {
220. option = LEVEL_3;
221. state = BATTLE_CHOICE;
222. hero_hp = 100;
223. }
224.

Fisher

91

225. }
226. ending();
227. }
228.
229. void team_battle_show(void)
230. {
231. hero_posx = 200;
232. hero_posy = 200;
233. fisherman2_posx = 200;
234. fisherman2_posy = 200;
235. miner_posx = 200;
236. miner_posy = 200;
237. move_sprite(0, hero_posx, hero_posy);
238. move_sprite(1, hero_posx+sprite_width, hero_posy);
239. move_sprite(8, miner_posx, miner_posy);
240. move_sprite(9, miner_posx+sprite_width, miner_posy);
241. move_sprite(12, fisherman2_posx, fisherman2_posy);
242. move_sprite(13, fisherman2_posx+sprite_width, fisherman2_posy);
243. fisherman_posy = student2_posy-20;
244. student_posy = fisherman_posy;
245. fisherman_posx = student2_posx;
246. student_posx = student2_posx-20;
247. move_sprite(2, student_posx, student_posy);
248. move_sprite(3, student_posx+sprite_width, student_posy);
249. move_sprite(6, fisherman_posx, fisherman_posy);
250. move_sprite(7, fisherman_posx+sprite_width, fisherman_posy);
251. }
252.
253. void leaves_shit_pot(void)
254. {
255. sprite_clean(0);
256. LETTER_COUNT = 0;
257. asakawa_enters_deck();
258. asakawa_before_work();
259. crab_catch_ctrl();
260. if(state == DEAD)
261. return;
262. asakawa_enters_deck();
263. asakawa_after_work();
264. delay(500);
265. DISPLAY_OFF;
266. shit_pot_setup();
267. shit_pot_sprites();
268. delay(500);
269. DISPLAY_ON;
270.
271. moving = 1;
272. GOT_INFO = 0;
273. slept = 0;
274. caught_crabs = 0;
275. }

1. /**
2. * end.c
3. *
4. * THE END
5. */
6.
7. #include <gb/gb.h>
8. #include "../text/text.h"

Fisher

92

9. #include "../assets/level_assets/level_assets.h"
10. #include "../battle/battle.h"
11. #include "../assets/sh_tiles.h"
12. #include "../assets/sickle_hammer.h"
13.
14. void ending(void)
15. {
16. sprite_clean(0);
17. LETTER_COUNT = 0;
18. bkg_clean();
19. delay(500);
20. talking = 1;
21. print("THE\nPROLETARO\nHAVE\nNOTHING\nTOiLOSE", 24, 32);
22. while(talking)
23. {
24. if(joypad() & J_A)
25. {
26. ++talking;
27. delay(200);
28. if(talking == 2)
29. {
30. sprite_clean(0);
31. LETTER_COUNT = 0;
32. print("BUTiTHEIR\nCHAINSe", 24, 32);
33. }
34. delay(1000);
35. clear_screen();
36. delay(100);
37. bkg_clean();
38. delay(100);
39. clear_screen();
40. delay(100);
41. bkg_clean();
42. delay(100);
43. clear_screen();
44. delay(2000);
45. sprite_clean(0);
46. LETTER_COUNT = 0;
47. print("KANI\nKOUSEN", 60, 96);
48. set_bkg_data(0, 18, sh_tiles);
49. set_bkg_tiles(0, 0, 20, 18, sickle_hammer);
50. break;
51. }
52. }
53. }

Fisher

93

Bibliography

Bowen-Struyk, Heather. Rethinking Japanese Proletarian Literature. Ann Arbor: The University

of Michigan, 2001.

DP. “GameBoy CPU Manual.” Accessed April 28, 2019.

http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf.

Field, Norma. “Commercial Appetite and Human Need: The Accidental and Fated Revival of

Kobayashi Takiji’s Cannery Ship.” The Asia-Pacific Journal, vol. 8-8-09 (February 22,

2009).

Hope, Michael. “GameBoy Developers Kit.” Last modified 2001/02/28.

http://gbdk.sourceforge.net/.

Huizinga, John. Homo Ludens: A Study of the Play Element in Culture. London: Roy Publishers,

1950.

Kain, Amamiya. Suffering Forces Us to Think beyond the Right-Left Barrier. Edited by Frency

Lunning. Translated by Jodie Beck. Minneapolis: University of Minnesota Press, 2010.

Marx, Karl. The Marx-Engels Reader. Edited by Robert C. Tucker. New York: Norton &

Company, 1978.

McLuhan, Marshall. Understanding Media: The Extensions of Man. New York: McGraw-Hill

Book Company, 1964.

Nintendo. “Company History.” Nintendo - Corporate Information | Company History. 2019.

Accessed April 29, 2019. https://www.nintendo.com/corp/history.jsp.

Reynolds, Daniel. “The Vitruvian Thumb: Embodied Branding and Lateral Thinking with the

Nintendo Game Boy.” Game Studies volume 16, Issue 1 (October 2016).

 Shockey, Nathan. The Typographic Imagination: Reading and Writing in Japan's Age of

Modern Print Media. New York: Columbia University Press, 2019.

Takiji, Kobayashi. The Crab Cannery Ship. Translated by. Zeljko Cipris. Honolulu: University

of Hawai’i Press, 2013.

Takiji, Kobayashi. “Kani Kôsen” Kobayashi Takiji no Sekai. Tôkyô: Shirakaba Bungaku-kan

Takiji Raiburarī, 2008.

Yôichi, Komori. “Introduction.” The Crab Cannery Ship. Translated by Željko Cipriŝ. Honolulu:

University of Hawai’i Press, 2013.

Ludography

Square Enix. (2007). Final Fantasy Tactics A2: Grimoire of the Rift [Nintendo DS], Kyoto:

Nintendo.

http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf
http://gbdk.sourceforge.net/
https://www.nintendo.com/corp/history.jsp

	Programming Proletarian Literature: Kobayashi Takiji’s "Kani Kôsen" and Gaming as Reading
	Recommended Citation

	tmp.1556678720.pdf.8H8CD

