
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2021 Bard Undergraduate Senior Projects

Spring 2021

A Deductive Database for Knot Colourings A Deductive Database for Knot Colourings

Dong Hyun Han
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2021

 Part of the Databases and Information Systems Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Han, Dong Hyun, "A Deductive Database for Knot Colourings" (2021). Senior Projects Spring 2021. 164.
https://digitalcommons.bard.edu/senproj_s2021/164

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for
inclusion in Senior Projects Spring 2021 by an
authorized administrator of Bard Digital Commons. For
more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2021
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2021?utm_source=digitalcommons.bard.edu%2Fsenproj_s2021%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.bard.edu%2Fsenproj_s2021%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2021/164?utm_source=digitalcommons.bard.edu%2Fsenproj_s2021%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

A Deductive Database for Knot Colourings

A Senior Project submitted to

The Division of Science, Mathematics, and Computing

of

Bard College

by

Dong Hyun Han

Annandale-on-Hudson, New York

May, 2021

ii

Abstract

This work constitutes progress toward the development of a knowledge base for braids,
knots, and their colourings. The main result of this development is the creation of a
logical model for storing data pertaining to braids, two-dimensional projections of three
dimensional knots, finite quandles, and colorings of braids and knots by quandles. It uses
the Entity Relationship data reference model as its starting point and makes the original
design there. In addition, it includes a conversion of the Entity Relationship Diagram
(ERD) to SQL queries that define tables corresponding to the ERD entity sets. Finally
this work demonstrates how to populate the database on a given set of data in the input
format for the Color My Knot (CMK) application by McGrail, Nguyen, and Granda.

iv

Contents

Abstract iii

Dedication vii

Acknowledgments ix

1 Introduction 1

2 Knots 3
2.1 Knot Presentation . 3
2.2 Braid Presentation . 4
2.3 Reidemeister Moves . 5

3 Quandles and Colouring 7
3.1 Quandles . 7
3.2 Colourings . 8

4 Standard Input Format 9
4.1 Standard Input Format for Knots . 9
4.2 Standard Input Format for Braids . 10
4.3 Standard Input Format for Quandles . 11

5 Relational Database Management System 13
5.1 Independent Entity Sets . 13
5.2 Crossings . 14
5.3 Quandles and Triples . 16
5.4 Braid Colourings . 18
5.5 Knot Colourings . 21

vi

6 Code Translations 25
6.1 Braids . 25
6.2 Knots . 28
6.3 Quandles and Triples . 31

7 Conclusion 35
7.1 Future Works . 35

Dedication

To my dad, my mum, my sister, and most importantly, my dog Momo.
I love you guys so much.

viii

Acknowledgments

I would like to thank my senior project advisor Professor Robert McGrail for his constant
support.

I would also like to thank all my friends back in Korea, especially the Dream church
community, for their belief in me.

Being on the Bard Men’s Volleyball team in the past four years has been phenomenal
and will be one of the best decisions I made at Bard.

Finally, I would like to thank all of my friends who supported me throughout my four
years at Bard.

x

1
Introduction

Databases are great tools for managing a great deal of information over time [6]. Ullman

[6] describes their primary goals as to storing large amount of data and serving informa-

tion the users want. In our case, we use a relational model to look specifically at stored

information about knots, braids, and quandles to see which entities are relevant in certain

cases and how each entity and attributes are related to each other. There is a collection of

knots on the web called the Knot Atlas [1]. The information on the Knot Atlas [1] stores

all of the knots with their properties and how they look like. The Knot Atlas, however,

is not a relational model in a sense which the information given is discrete from each

other. The Knot Atlas [1] is the biggest and the only collection of data about knots that

is public. This paper aims to take a step forward and to describe how each property of a

knot, braid, and quandle, is ultimately associated with each other.

In Chapter 2, we provide background information on knots and braids on what they are

and their properties, such as crossings, specifically all Reidemeister moves, and how they

are important when describing ambient isotopy [3] in knots and braids. In Chapter 3, we

describe what quandles [3] are and its properties along with their relationship to knots.

In Chapter 4, we talk about our different standard input formats [2] for braids, knots,

and quandles. The sections in this chapter try to describe how our inputs will look like

2 INTRODUCTION

and what they mean. The fifth Chapter deals with relational databases. First, we give

background information on what a relational database [6] is and how we use it to our

advantage in finding what information is directly and indirectly related to each other. In

Chapter 6, we describe how the given SQL DMLs [6] are used in the database and its

eventual representation in the database.

2
Knots

2.1 Knot Presentation

A knot is a continuous embedding of circles in three-dimensional space R3 [4]. In this pa-

per, we will describe knots in three-dimensional Euclidean space and their two-dimensional

projections [4]. In order for two knots to be the same, it must be proven that they must

be projections of each other in some way in the provided space, which is known as home-

omorphism. [4]. Suppose we have two knots that are almost identical to each other in the

three-dimensional Euclidean space, and they are also a function of x. For two or more

given knots to be the same, one knot must be a continuous deformation into the other

knot. This is called ambient isotopy [3]. For example, the figure below is a projection of the

trefoil knot. Notice that, this knot has three crossings. Crossings occur when two strands

of a knot overlap each other, making an intersection at a specific location, and crossings

are denoted with either the star(*) operator or the div(/) operator [4]. An apparently

broken part of of a strand is called an arc. Here, we introduce the Alexander-Briggs nota-

tion of this knot, which is trefoil (31) [4]. For each knot presented in the Alexander-Briggs

notation in nk, n denotes the total number of crossings of the knot, and k denotes the

variant of the knot of n crossings.

4 2. KNOTS

Figure 2.1.1. figure

The Trefoil Knot 31

2.2 Braid Presentation

Braids are another way to present knots. Braids are different from knots, in that they

are presented with horizontal strands with crossings that happen vertically between two

adjacent strands. The strands of the braids are implicitly aligned from left to right, and

once the strand reaches the end, each of endings from the left side and the right side of

the strands can be joined to form a continuous strand. This is called a link [3], and a link,

ultimately, can represent a knot. Each crossing in the braid presentation is identified with

a lower case sigma with a subscript and a superscript. The subscript of sigma denotes

where the crossing happens on a strand. For example, σ1 tells us that the crossing happens

between the first and the second strand. The superscript of sigma can tell us two things

[3]. First, the superscript of sigma tells us if the crossing σi at the ith index is inverse or

not. Second, the superscript of sigma can tell us if there are multiple consecutive crossing

at the same ith position. For example, in the braid presentation of the figure eight knot

below, the first crossing, σ1
1 identifies one non-inverse crossings that happens between the

first strand and the second strand [3].

2.3. REIDEMEISTER MOVES 5

Figure 2.2.1. figure

Figure Eight Knot in Braid Presentation

2.3 Reidemeister Moves

Crossings in knots are what makes each individual knots unique. Ambient isotopy [3] and

Reidemeister moves are related to each other, because we can prove that two similar knots

in the same three-dimensional Euclidean space are the same by using the Reidemeister

moves. There are three different types of Reidemeister moves we can perform on a given

knot, which are Reidemeister move type I (idempotence), Reidemeister move type II

(right-cancellation), and Reidemeister move type III (right self-distributivity). These move

sets are defined visually in the figure below [5].

Figure 2.3.1. figure

Reidemeister Moves Types I, II, and III

6 2. KNOTS

3
Quandles and Colouring

3.1 Quandles

Quandles are sets of binary operations, star(*) and div(/), that satisfy axioms analogous

to the Reidemeister moves utilised to handle knots. Let us define each of the quandle

axioms below:

Reidemeister move type I: X * X = Y = X

Reidemeister move type II: (X * Y) / Y = X and (X / Y) * Y = X

Reidemeister move type III: (X * Y) * Z = (X * Z) * (Y * Z)

Using the Reidemeister moves defined above as quandle axioms, we are able to convert

the information of a knot diagrams onto a finite quandle, and a finite quandle is a n x n

quandle that is used to of knots in the three-dimensional Euclidean space and generalised

them in such ways, we can generalise them for all knots.

The labels on figure 3.1.1 constitute a colouring of the Trefoil knot (31) by the quandle of

table 3.1.1. There are in total three crossings in the figure, and the crossing arithmetic we

can derive from the knot quandle match the three crossings in the figure, such as 0∗1 = 2,

8 3. QUANDLES AND COLOURING

1 ∗ 2 = 0, and 2 ∗ 0 = 1.

Figure 3.1.1. figure

The Trefoil Knot 31

* 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Table 3.1.1. quandle of trefoil (31) knot

3.2 Colourings

Each colouring is labelled with a number in the row and column indices as noted in the

quandle. Using this notion, we are able to label the colour of each arc and determine where

the crossing happens in a given knot. Colouring of a knot is very important because they

act as solutions to the quandle axioms, done by Reidemeister moves [3], which assign

elements to appropriate crossovers within the quandle table. The colouring of a knot

could be trivial, which means that there is only one colour due to the quandle axiom of

idempotence, which is Reidemeister move type I [3]. This is reflected on the quandle as

the diagonal values as seen in table 3.1.1. For knots with non-trivial colourings, we can

determine that if a knot in a three-dimensional Euclidean space has a non-trivial colouring

and another knot does not, these two knots are not the same. An example of a non-trivial

colouring is the Trefoil knot (31) of figure 3.1.1.

4
Standard Input Format

In this chapter, we provide information about the standard input format for the necessary

files for scanning and parsing for braids, knots, and quandles. The standard input format

files are allknots.pres for knot presentations and CMK extension files for braid presenta-

tion files (braids tr 7.cmk), and quandles (dihedrals.cmk) [3].

4.1 Standard Input Format for Knots

In this section, we provide what the standard input format for knots are and what each

item means. The file that we will scan and parse for knots is called allknots.pres. This

is a file of the standard input format that contains all of the existing knots, which looks

like: The figure above is a sample line from allknots.pres, and this is the sequence for the

Trefoil (31) knot. In order to scan and parse the necessary information, we need to be

able to determine what each token means. The first word, presentation, is what denotes

the start of a new knot sequence. The numbers 3 and 1 after the parenthesis is important,

presentation(3, 1, [-3, -1, -2]).

Figure 4.1.1. line of input from allknots.pres

10 4. STANDARD INPUT FORMAT

because the first number after the parenthesis denotes the number of crossings within a

given knot sequence, and the second number after the parenthesis denotes its variant. For

knots with 3 crossings, there exists only one variant, but for knots with 10 crossings, there

are more than 100 variants [1], so this is important when keeping track of each variation

of knots with the same number of crossings. The numbers in square braces are the actual

crossings. These numbers determine how the knot is formed. The important part about

these numbers is whether they are positive or negative. The sign of the numbers denote

the direction of the strand that crosses over another. The numbers in square braces are

the last thing that the scanner parses, and the file will start with another knot sequence

afterwards.

4.2 Standard Input Format for Braids

In this section, we provide what the standard input format for braids are and what each

item means. Files that we will scan and parse for braids are CMK files [3]. These are files

of the standard input format that contains all of the existing braids, which look like:

braid(tr(7,3),[sigma(1, 2), sigma(2, 1), sigma(1, -1), sigma(2, 4)]).

Figure 4.2.1. input from braids tr 7.cmk

The figure above is a sample line from braids tr 7.cmk and is the braid sequence for the

third variant knot with 7 crossings. Every item in this line has significant meaning. The

braid id in this line is denoted as tr(7,3). Tait-Rolfsen, which is denoted as tr, is the type

of quandle that the braid uses. The number 7 is the total number of crossings that are

in the knot, and 2 is the variant of the knot with 7 crossings. The sigma notation is used

here to denote a crossing or multiple consecutive crossings. In the sigma notation, there

are two numbers. The first number denotes a crossing between the ith and the i + 1th

position of the braid [3]. In this case, there are total 6 crossings because 1 + 2 + 1 + 2 = 6,

which is the sum of all the first numbers of the sigma notation. The second number of

4.3. STANDARD INPUT FORMAT FOR QUANDLES 11

the parenthesis tells us two things: whether if there are multiple consecutive crossings in

the same position and if the crossing is inverse or not. For example, if we look at the first

sigma notation, it is sigma(1, 2). This means that there are two consecutive, non-inverse

crossings between the first strand and the second strand.

4.3 Standard Input Format for Quandles

In this section, we provide what the standard input format for quandles are and what each

item means. Files that we will scan and parse for quandles are CMK files [3]. These are

files of the standard input format that contains all of the existing quandles, which look like:

quandles.

quandle(tait,

interpretation(3, [number = 5,seconds = 0], [

function(*(_,_), [

0,2,1,

2,1,0,

1,0,2]),

function(/(_,_), [

0,2,1,

2,1,1,

1,0,2])])).

end_of_list.

knots.

torus(2,3).

torus(2,5).

end_of_list.

12 4. STANDARD INPUT FORMAT

The figure above is the standard input format for the quandle for the Trefoil (31) knot. The

first information we can get from this input file above is the quandle id. The quandle id is

denoted after the word quandle, so the quandle id in this case is tait. For the algorithm,

we need to find out what the dimensions of the given quandle file is, and that is given to

us after the token interpretation. In this case, it is 3. This makes sense because the Trefoil

(31) knot only has 3 crossings. The last item we need from this file is the quandle itself.

The star(*) table determines the div(/) table, so we only need to represent one of them.

5
Relational Database Management System

In this section, we describe what Relational Database Management System is, and how it

is used in our case. Relational Database Management System, or RDBMS, is a common

type of database that stores data in tables, so it can be used in relation to other stored

datasets. Each table has a unique primary key, which is used to navigate and search items

within a table. Other tables can use primary keys of other tables, otherwise known as

foreign keys. More detail on the relational model can be found in [6]

5.1 Independent Entity Sets

In the Entity Relationship Diagram, or ERD, there are two connected independent en-

tity sets: Braid Presentation and Knot Presentation. Each entity has a primary key: the

Braid Presentation entity has braid id, and Knot Presentation entity has knot id. For

each presentation table, it has dependent entity sets. There are arc colours, crossings,

and colouring entity sets. When we translate over to MySQL, we know the presentation

tables are independent, and arc colours, crossings, and colouring entity sets are depen-

dent, because the dependent tables have foreign keys from where their dependency comes

from.

14 5. RELATIONAL DATABASE MANAGEMENT SYSTEM

third

first

second TRIPLES QUANDLE

KNOT

PRESENTATION
KNOT COLOURINGS

Colour

KNOT CROSSING ARC COLOURS KNOT

b

a

Arc Number

knotColouringIDknotID

BRAID

PRESENTATION

braidID

BRAID COLOURINGS

Colour

BRAID CROSSING ARC COLOURS BRAIDstrand_pos

crossing_number

Arc Number

braidColouringID

strand_inv

quandleID

NP completeness

Tractability

direction of b

strand

Colour

Figure 5.1.1. Entity Relationship Diagram

The figure above is the entity relationship diagram of the database, and this diagram

provides foundational structure for the database, which carry numerous relationships. For

example, the quandle entity is one of three entities that is independent, meaning, it can

exist on its own. The triples entity, on the other hand, is a weak entity. Weak entities are

denoted by two rectangles and their existence depends on other non-weak entities, and

the triples entity depends on the quandle entity in this case because it is connected to the

quandle entity and is not weak.

5.2 Crossings

There are two types of crossing entity sets in the ERD, each that depend on either

presentation entity set. In the crossing entity that is dependent on braid presentation

5.2. CROSSINGS 15

entity, the attributes are crossing number, strand pos, and strand inv. Since this entity

depends on the braid presentation entity, the attribute of braid presentation can be used as

well. As a result, the primary keys for this entity set are barid id and crossing number, and

the braid id is a foreign key. On the MySQL perspective, this translates very directly. Users

will be able to tell braid crossing table has dependency on braid presentation table because

braid crossing table has a foreign key braid id which references the braid presentation

table.

CREATE TABLE braid_crossing (

strand_pos int not null,

strand_inv int not null,

crossing_number int not null,

braid_id varchar(255) not null,

PRIMARY KEY (crossing_number, braid_id),

FOREIGN KEY (braid_id) REFERENCES braid_presentation(braid_id)

);

For the knot presentation entity, on the ERD, its relationship is same as that between

braid presentation and braid crossing. Knot presentation entity only has one attribute,

which is its primary key called knot id. The attributes that knot crossing entity has

are a strand, b strand, and b direction, and the knot id attribute can be passed down

to knot crossing due to its dependency. On the MySQL perspective, when users look

at knot crossing table and knot presentation table, they will know that knot crossing

has dependency on knot presentation, because knot crossing table has two primary keys,

knot id and a strand, where knot id references the knot presentation table.

CREATE TABLE knot_crossing (-- originally crossing

a_strand int not null, -- presented by the colour of the strand

b_strand int not null,

16 5. RELATIONAL DATABASE MANAGEMENT SYSTEM

b_direction int not null,

knot_id varchar(255) not null,

PRIMARY KEY (a_strand, knot_id),

FOREIGN KEY (knot_id) REFERENCES knot_presentation(knot_id)

);

5.3 Quandles and Triples

The quandle entity set is essential in this database because it acts like a bridge between

knots and braids. the quandle entity set has three attributes: quandle id, np completeness,

and tractability. The quandle id is the primary key and will act as the most important

attribute, because this attribute tells us what the shape of the knot is.

QUANDLE

quandleID

NP completeness TRIPLES

Tractability
third

first

second

Figure 5.3.1. Quandle Entity Set

This is what the quandle table looks like in MySQL perspective:

CREATE TABLE quandle (

quandle_id varchar(255) not null,

np_completeness boolean,

tractability boolean,

PRIMARY KEY (quandle_id)

);

5.3. QUANDLES AND TRIPLES 17

Notice that there is no indication of not null for the attributes np completeness and

tractability. That is because this is unknown for certain knots. This, however, is not true

for quandle id because quandle id is the primary key of the quandle entity, therefore, it

cannot be null.

Quandles are 2 dimensional tables that contain information about the knots. Its pri-

mary purpose is to show the users how the knot is formed. Quandles have two operations

star(*) and div(/), and make two tables. However, the star(*) table determines the div

table, so we only need to represent 1. The rows and columns of quandle represent the arc

number. Here is an example quandle:

* 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Table 5.3.1. quandle of trefoil (31) knot

The triples entity set is a weak entity set that branches out from the quandle entity set.

We determined the triples entity set to be weak because triples are determined by quan-

dles and cannot exist without quandles. The triples entity set contains three attributes

first, second, and third. Notice that, first and second attributes are both primary keys.

This is because each attribute in the triples entity set represent an arc colour, and one

arc colour does not create a crossing. There needs to be two arcs in order for there to

exist a crossing. The attribute first comes from the rows, the attribute second comes from

the columns, and the attribute third comes as a result of first and second, these numbers

determine where each crossing occurs in a knot. This is what the triples entity set looks

like in the MySQL perspective:

CREATE TABLE triples (

first int not null,

18 5. RELATIONAL DATABASE MANAGEMENT SYSTEM

second int not null,

third int not null,

quandle_id varchar(255) not null,

PRIMARY KEY (first, second, quandle_id),

FOREIGN KEY (quandle_id) REFERENCES quandle(quandle_id)

);

Notice that, the quandle id is part of the triples entity set as a result of it being a weak

entity set of the quandle entity set. We can verify this by looking at the last line of code,

where quandle id is identified as a foreign key that references the quandle table. The

quandle previously mentioned will output 6 triples:

Tait, (0,1,2)

Tait, (0,2,1)

Tait, (1,0,2)

Tait, (1,2,0)

Tait, (2,0,1)

Tait, (2,1,0)

Tait denotes its quandle id. Notice that, for an n x n quandle, there are n2 − n triples.

There are total n2 − n triples in a because n x n quandle because we do not include the

diagonal values, (0,0,0), (1,1,1), and (2,2,2). These are not triples because it just denotes

idempotence, which is Reidemeister move Type I [5]. In this example, in a 3 x 3 quandle,

there are 32 − 3 = 6 triples.

5.4 Braid Colourings

Braid colourings have multiple dependencies within the ERD, and they are ultimately

all related to each other, and these entities are arc colours braid, braid crossing, and

braid presentation [6]. The arc colours braid entity has two attributes, arc number and

5.4. BRAID COLOURINGS 19

colour. Arc number is the primary key because each braid has a unique arc number, and

the colour attribute defines what colour the arc number is. This entity set will be under

braid colourings entity set. Notice that, the relationship between braid colourings and

arc colours braid is a one-to-many relationship, and that is because there will be many

arcs within a braid presentation, and the braid presentation entity, and there will be more

than one arc within a braid presentation.

BRAID

PRESENTATION

braidID

BRAID COLOURINGS

Colour

BRAID CROSSING ARC COLOURS BRAIDstrand_pos

crossing_number

Arc Number

braidColouringID

strand_inv

Figure 5.4.1. figure

Braid Entity Set

Here is the MySQL perspective of the all the braid entities:

CREATE TABLE braid_presentation (

braid_id varchar(255) not null,

PRIMARY KEY (braid_id)

);

CREATE TABLE braid_colouring (

quandle_id varchar(255) not null,

braid_colouring_id int not null,

braid_id varchar(255) not null,

PRIMARY KEY (braid_colouring_id, quandle_id, braid_id),

FOREIGN KEY (quandle_id) REFERENCES quandle(quandle_id),

20 5. RELATIONAL DATABASE MANAGEMENT SYSTEM

FOREIGN KEY (braid_id) REFERENCES braid_presentation(braid_id)

);

CREATE TABLE arc_colours_braid (

arc_number int not null,

colour int not null, -- from the quandle

quandle_id varchar(255) not null,

braid_id varchar(255) not null,

PRIMARY KEY (arc_number),

FOREIGN KEY (quandle_id) REFERENCES quandle(quandle_id),

FOREIGN KEY (braid_id) REFERENCES braid_presentation(braid_id)

);

CREATE TABLE braid_crossing (

strand_pos int not null, -- subscript of sigma

strand_inv int not null, -- superscript of sigma

crossing_number int not null,

braid_id varchar(255) not null,

PRIMARY KEY (crossing_number, braid_id),

FOREIGN KEY (braid_id) REFERENCES braid_presentation(braid_id)

);

The braid presentation table acts as the core of all braid entities since it has the braid id

as its primary key, and the braid id will be a foreign key in every other braid entity. The

braid crossing table has a one-to-one relationship [6]. The primary key here is the cross-

ing number and the braid id, which is obtained from the braid presentation table. The

crossing number attribute is the primary key in this table because each braid has multiple

crossings, and each crossing needs to be kept track of. The braid colouring table has a

5.5. KNOT COLOURINGS 21

one-to-one relationship with the braid presentation table. The braid colouring table acts

as a bridge between the braid presentation table and the arc colours braid table because

different colours of braids will have to be identified differently. There will be many arcs

within a braid, which makes the arc colours braid have a one-to-many relationship with

the braid colouring table, and these will be shown in the entity relationship diagram as

arc number as the primary key with their colours accordingly.

5.5 Knot Colourings

Knot colourings, like braid colourings, have multiple dependencies within the ERD [6]. The

entities that are interrelated are arc colour knot, knot crossing, and knot presentation.

The arc colours knot entity has two attributes, which are arc number and colour. Arc

number is the primary key of this entity because each knot has a unique arc number, and

the colour attribute decides the colour of the arc number. This entity set will be dependent

on knot colourings entity set. Notice that, the relationship between knot colouring and

arc colours knot is a one-to-many relationship, and that is because there will always be

more arcs within a knot presentation, and the knot presentation entity, and there will be

more than one arc within a knot presentation [6].

KNOT

PRESENTATION

knotID

KNOT COLOURINGS

Colour

KNOT CROSSING

direction of b

strand

ARC COLOURS KNOT

b

a

Arc Number

knotColouringID

Colour

Figure 5.5.1. figure

Knot Entity Set

Here is the MySQL perspective of the all the knot entities:

22 5. RELATIONAL DATABASE MANAGEMENT SYSTEM

CREATE TABLE knot_presentation (

knot_id varchar(255) not null,

PRIMARY KEY (knot_id)

);

CREATE TABLE knot_colourings (

quandle_id varchar(255) not null,

knot_id varchar(255) not null,

knot_colouring_id int not null,

PRIMARY KEY (knot_colouring_id, quandle_id, knot_id),

FOREIGN KEY (quandle_id) REFERENCES quandle(quandle_id),

FOREIGN KEY (knot_id) REFERENCES knot_presentation(knot_id)

);

CREATE TABLE arc_colours_knot (

arc_number int not null,

colour int not null, -- from the quandle

quandle_id varchar(255) not null,

knot_id varchar(255) not null,

knot_colouring_id int not null,

PRIMARY KEY (arc_number, knot_colouring_id, quandle_id, knot_id),

FOREIGN KEY (knot_colouring_id) REFERENCES knot_colourings(knot_colouring_id),

FOREIGN KEY (quandle_id) REFERENCES quandle(quandle_id),

FOREIGN KEY (knot_id) REFERENCES knot_presentation(knot_id)

);

CREATE TABLE knot_crossing (

5.5. KNOT COLOURINGS 23

a_strand int not null, -- presented by the colour of the strand

b_strand int not null,

b_direction int not null,

knot_id varchar(255) not null,

PRIMARY KEY (a_strand, knot_id),

FOREIGN KEY (knot_id) REFERENCES knot_presentation(knot_id)

);

Just as the braid entities, the knot presentation table acts as a basis for the other weak

entities. We know this because the primary key of knot presentation table is a foreign key

of other tables. The braid crossing table has a one-to-one relationship. The primary key

here is the a strand because all a strands of the knot crossing table will have different

b strands that crossovers, making it a unique property. The b strand and the direction of

the b strand is important because it is the arc that crosses over the a strand, and we need

to know how it crosses over the a strand. The knot colouring table acts as a bridge between

the knot presentation table and the arc colours knot table because different colours of

knots will have to be distinct. There will be many arcs within a knot, which makes the

arc colours knot table have a one-to-many relationship with the knot colouring table, and

these will be noted in the entity relationship diagram as arc number as the primary key

with their colours accordingly [6].

24 5. RELATIONAL DATABASE MANAGEMENT SYSTEM

6
Code Translations

6.1 Braids

In this section, we describe an algorithm for storing braids in the database. First, we parse

and get the necessary information for the braid presentation table and braid crossing

table. In order to obtain information about braid id, we start at the beginning of a new

line and look for the word braid in a given token, because this denotes the start of a braid

sequence. An example of a line of input from braid tr 7.cmk is:

braid(tr(7,3),[sigma(1, 2), sigma(2, 1), sigma(1, -1), sigma(2, 4)]).

Figure 6.1.1. input from braids tr 7.cmk

The braid id in this line is tr(7,3). Tait-Rolfsen, which is denoted as tr, which is the type

of quandle that the braid uses. The number 7 is the total number of crossings that are in

the knot, and 2 is the variant of the knot with 7 crossings. The sigma notation is used here

to denote a single crossing. In this case, there are total 6 crossings in the input above. For

each sigma, the first number in the parenthesis denotes the position of the crossing between

the ith and the i + 1th index. The second number of the parenthesis tells us two things:

whether if there are multiple consecutive crossings in the same positions and if it is inverse

26 6. CODE TRANSLATIONS

or not. The next step is to individualise each crossing into single individual crossings. For

example, the crossing sigma(2, 1) should be translated into sigma(1, 1), sigma(1, 1), so

that it is easier to parse and keep track of the total crossing number and the crossing

number of the location of individual crossings. The code below is a simple algorithm to

individualise each crossing.

numCross += Math.abs(inv);

if (inv > 1) {

for (int i = 1; i <= inv; i++) {

posandinv = posandinv.concat("sigma("+pos+",1) ");

}

} else if (inv < -1) {

for (int i = 1; i <= Math.abs(inv); i++) {

posandinv = posandinv.concat("sigma("+pos+",-1) ");

}

} else if (inv == 1 || inv == -1) {

posandinv = posandinv.concat("sigma("+pos+","+inv+") ");

}

Here, numCross keeps track of the total number of crossing, so we can use it to set a limit

on the amount of iterations to perform for a given braid sequence. We go through three

conditionals, where the first two conditionals determine if the inv variable is greater one

or less than -1. We iterate on the number quantity of inv there is saved in the variable,

and appending it to a string. We do the same thing in the second conditional, but we take

the absolute value of the inv variable, since inv will be less than -1, and appending it to a

string. The third conditional is taking the inv value, which is 1 or -1, and appending it to

a string. This string of newly created sigma notations and the total number of crossings

is outputted onto a text file using the FileWriter class.

6.1. BRAIDS 27

Using the outputted file, we scan and parse through this text file using a second scanner

file for this outputted text file. This text file contains only contains information about the

braid id and their corresponding crossings that have been individualised crossings from

the original input file. The following figure shows what the input line looks like after it

has been scanned once:

braid(tr(7,3),[sigma(1,1), sigma(1,1), sigma(2,1), sigma(1,-1), sigma(2,1), sigma(2,1),
sigma(2,1), sigma(2,1)]).

Figure 6.1.2. example input line after scanning braids tr 7.cmk

At this point, there is no algorithm that needs to parse through this text file, so we pro-

ceed onto concatenating the information we need onto a string. We save the braid id, pos,

which is the first value of sigma, and inv, which is the second value of sigma, to a variable

and concatenate this to a string, which is shown in the code below, and the resulting

string will be written into a MySQL file as a series of DMLs using the FileWriter class.

int pos = Integer.parseInt(crossing.substring(0, crossing.indexOf(" ")).trim());

int inv = Integer.parseInt(crossing.substring(crossing.indexOf(" ")).trim());

output = output.concat("INSERT INTO braid_crossing(braid_id, crossing_number,

strand_pos, strand_inv) VALUES(\""+braid_id+"\","+numCross+","+pos+","+inv+");\n");

FileWriter writer = new FileWriter("braid_crossings_UPDATED.sql");

writer.write(output);

writer.close();

scan.close();

This will lead to one record in the braid presentation table, which is highlighted in bold-

face:

28 6. CODE TRANSLATIONS

braid id
tr(7,1)
tr(7,2)
tr(7,3)
tr(7,4)
tr(7,5)
tr(7,6)
tr(7,7)

Table 6.1.1. braid presentation table showing knots with 7 crossings

It will also create eight records in the braid crossing table:

braid id crossing number strand pos strand inv
tr(7,3) 1 1 1
tr(7,3) 2 1 1
tr(7,3) 3 2 1
tr(7,3) 4 1 -1
tr(7,3) 5 2 1
tr(7,3) 6 2 1
tr(7,3) 7 2 1
tr(7,3) 8 2 1

Table 6.1.2. braid crossing table showing crossings for (73) knot

Each record in the braid crossing table corresponds to one of the crossing terms in the

input braid. Notice that, for a given crossing, the braid id, strand pos and strand inv are

simply taken directly from the braid expression. The crossing number is the index of the

crossings in the list.

6.2 Knots

Similar to how we parsed and got information for the braid presentation and braid crossing

tables, we parse and get information for the knot presentation table and knot crossing

table. Let us consider an example knot and describe its eventual representation from all-

knots.pres file in the database:

6.2. KNOTS 29

presentation(3, 1, [-3, -1, -2]).

Figure 6.2.1. input from allknots.pres file for the trefoil 31

This is a line from the input file that represents the Trefoil (31) knot. The line starts off

with the token presentation, which tells us that we are starting a new knot sequence. The

number after, which is three in this case, represents the number of crossings in a knot,

and the following number represents the invariant of the knot. The numbers in the square

bracket tells us two things: b strand that crosses over the a strand, which is in numerical

order, and the direction of the b strand, which is also whether if the crossing is inverse or

not.

if (num > 0) {

if (inv == 1) {

inv *= 1;

} else {

inv *= -1;

}

} else {

if (inv == 1) {

inv *= -1;

} else {

inv *= 1;

}

}

The code above parse through numbers in the input file, converting each token from a

string value to an integer value and allowing the algorithm to determine whether the value

of b strand, which denotes the direction of the b strand, is positive or negative. We only

change the direction of the b strand if the preceding direction of the b strand is in the

30 6. CODE TRANSLATIONS

opposite direction. Once all tokens of the line have been parsed, we tell the algorithm to

reset and start parsing the next line of input.

Once we have the information about the knot id, a strand, b strand, the direction of

b strand, we proceed to concatenating this to an empty string with MySQL data manipu-

lation language (DML) [6], and we use the FileWriter class in Java to output all the DMLs

onto a MySQL file for knot presentation table and knot crossing table, respectively:

output = output.concat("INSERT INTO knot_presentation(knot_id) VALUES(\""+knot_id

+ "\");\n");

output = output.concat("INSERT INTO knot_crossing(knot_id, a_strand, b_strand,

b_direction) VALUES(\"" + knot_id + "\","+numCross+","+Math.abs(num)+","+inv+");

\n");

FileWriter writer = new FileWriter("knot_crossings.sql");

writer.write(output);

writer.close();

scan.close();

This will lead to one record in the knot presentation table, which is highlighted in bold-

face:

knot id
presentation(0,1)

presentation(3,1)
presentation(4,1)
presentation(5,1)

...
presentation(10,162)
presentation(10,163)
presentation(10,164)
presentation(10,165)

Table 6.2.1. knot presentation table showing all knots from the Tait-Rolfsen Knot Table

6.3. QUANDLES AND TRIPLES 31

It will also produce three records in the knot crossing table:

knot id a strand b strand b direction
presentation(3,1) 1 3 -1
presentation(3,1) 2 1 -1
presentation(3,1) 3 2 -1

Table 6.2.2. knot crossing table for trefoil(31)

Each record in the knot crossing table corresponds to one of the list in the input. For a

given crossing, the knot id, b strand, and b direction are simply taken directly from the

knot expression. In addition, notice that, the a strand is the index of the b strand in the

presentation.

6.3 Quandles and Triples

In order to obtain everything we need to create proper DMLs [6] for quandles, we must

have a few things. We need to first have the quandle id. Just like how we scanned for the

knot id from allknots.pres and braid id from braids tr 7.cmkfiles, we need to scan and

parse the file that contains information about an arbitrary quandle. In this example, we

will use the knot quandle from tait.cmk file. In order to properly scan and parse, we need

to know what how the standard input format for the quandle file is:

quandles.

quandle(tait,

interpretation(3, [number = 5,seconds = 0], [

function(*(_,_), [

0,2,1,

2,1,0,

1,0,2]),

function(/(_,_), [

0,2,1,

32 6. CODE TRANSLATIONS

2,1,1,

1,0,2])])).

end_of_list.

knots.

torus(2,3).

torus(2,5).

end_of_list.

Above is the standard input format for the quandle. The first information we need to

obtain is the quandle id, which we can see by looking at the first opening parenthesis,

where it says ”tait” after the parenthesis. That will be the quandle id of this quandle. We

then concatenate this information to a variable, which is used in creating SQL DML [6]

for the quandle table:

sqldml = sqldml.concat("INSERT INTO quandle(quandle_id) VALUES(\""+quandle_id+"\");

\n");

The next essential information is the dimension of the quandle. We can obtain the infor-

mation about the dimension of the quandle with the number, which is 3 in this case, after

where it says interpretation. We look for a token that contains ”interpretation,” scan the

proceeding token, and initialise the size of the quandle. The most important part about

this algorithm is contained here, where we scan the quandle itself. Here, we only need to

scan the first quandle, since both quandles output the same results. Since this information

is contained in n different lines for n x n quandle, we have to put this is in one dimensional

array and move it into a two dimensional array.

int[][] quandle = new int[dimension][dimension];

int[] tmpInt = new int[dimension * dimension];

int a = 0;

6.3. QUANDLES AND TRIPLES 33

for (int r = 0; r < quandle.length; r++){

for (int c = 0; c < quandle[r].length; c++){

quandle[r][c] = tmpInt[a++];

if (r == c) {

continue;

} else {

sqldml = sqldml.concat("INSERT INTO

triples(quandle_id, first, second, third)

VALUES(\""+quandle_id+"\","+r+","+c+","+quandle[r][c]+");

\n");

}

}

}

The algorithm above allocates each different by iterating through the dimensions of the

quandle row by row and column by column. Notice that, the dimension of tmpInt is

dimesion ∗ dimension. This is because tmpInt is a one dimensional array that needs to

be able to contain the output value of the crossing arithmetic of the row and column

indices. As a result, we iterate through the quandle and allocate the values of tmpInt,

which contain the output of the crossing arithmetic, in the correct order. Notice that there

is a conditional in the inner for loop. The purpose of the quandle scanner is to obtain

triples. From the code above, we would have total 6 triples:

Tait, (0,1,2)

Tait, (0,2,1)

Tait, (1,0,2)

Tait, (1,2,0)

Tait, (2,0,1)

Tait, (2,1,0)

34 6. CODE TRANSLATIONS

These triples will form a part of the triples table in MySQL:

knot id first second third
0 0 2 1
1 2 1 0
2 1 0 2

Table 6.3.1. Tait-Rolfsen quandle for the trefoil(31) knot

7
Conclusion

In conclusion, we were able to successfully create a logical model for a knot-colouring

database that can be transformed into a relational database. We were also successful in

scanning and parsing the input files for the database and using the parsed information

to create queries to populate the database. Note that, the standard input format for the

input files will stay consistent, so the scanning and parsing program will work if the input

format is not changed.

7.1 Future Works

For future research and work, it would be valuable to create an online system to store the

database. In addition, the website could contain some interactive elements into it with the

users. For example, one is where users are able to see all features about a specific knot,

where the website displays the braid presentation of the knot, other knot variants of the

same number of crossings, quandles, and the colourings. Another possible future work is

coming up with a system to draw the braids on the fly with the given syntax. This will

give drawings of braids in two dimensional projections and allow people to easily visualise

them.

36 7. CONCLUSION

Bibliography

[1] D. Bar-Natan and S. Morrison, The Knot Atlas.

[2] W. McCune, Mace4 reference manual and guide, Technical Report ANL/MCS-TM-264, Mathematics and Computer

Science Division, Argonne National Laboratory, Argonne, IL, 2003.

[3] R. W. McGrail and T. T. Nguyen, Knot coloring as verification, Synasc 2020, 2020, pp. 24–31.

[4] R. W. McGrail, T. T. Nguyen, T. T. Trang Tran, and A. J. Tripathi, A terminating and confluent term rewriting system

for the pure equational theory of quandles, Synasc 2018, 2020, pp. 157–163.

[5] J. H. Przytycki, 3-coloring and other elementary invariants of knots, Knot theory, 1998, pp. 275–295.

[6] J. D. Ullman and J. Widom, A first course in database systems, Vol. 3, 2008.

	A Deductive Database for Knot Colourings
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Knots
	Knot Presentation
	Braid Presentation
	Reidemeister Moves

	Quandles and Colouring
	Quandles
	Colourings

	Standard Input Format
	Standard Input Format for Knots
	Standard Input Format for Braids
	Standard Input Format for Quandles

	Relational Database Management System
	Independent Entity Sets
	Crossings
	Quandles and Triples
	Braid Colourings
	Knot Colourings

	Code Translations
	Braids
	Knots
	Quandles and Triples

	Conclusion
	Future Works

