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Abstract

The classical Gibbs phenomenon is a peculiarity that arises when approximating functions near
a jump discontinuity with the Fourier series. Namely, the Fourier series “overshoots” (and “un-
dershoots”) the discontinuity by approximately 9% of the total jump. This same phenomenon,
with the same value of the overshoot, has been shown to occur when approximating jump-
discontinuous functions using specific families of orthogonal polynomials. In this paper, we
extend these results and prove that the Gibbs phenomenon exists for approximations of func-
tions with interior jump discontinuities with the two-parameter family of Jacobi polynomials

P
(α,β)
n (x). In particular we show that for all α, β the approximation overshoots and undershoots

the function by the same value as in the classical case – approximately 9% of the jump.
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1
Introduction

Function approximations are at the heart of mathematics and in broad terms is the process by

which we translate certain functions into other functions that closely match our original func-

tion. This procedure proves particularly useful in areas of applied mathematics, physics, and

engineering. The Gibbs phenomenon is a peculiarity of this process that occurs when approxi-

mating a function with a simple jump discontinuity with a family of continuous functions. Recall

that a function with a jump discontinuity is a function, f on an interval [a, b] such that for some

x0 ∈ [a, b] we have

lim
x→x+0

f(x) 6= lim
x→x−0

f(x).

Definition 1.0.1. Let f be a function defined on [a, b]. If f is discontinuous at x0 and if

limx→x−0
f(x0) and limx→x+0

f(x0) exist, then f is said to have a discontinuity of the first kind

or a simple discontinuity at x0.

There are many functions that satisfy this condition, but the classic example that we use in this

paper is the square wave on the interval [−π, π] defined by

f(x) =


1 0 < x < π

−1 −π < x < 0.

0 x = 0

.
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−1

1

•

Figure 1.0.1. Square wave on the interval [−π, π] with amplitude 1.

Notice that at x = 0, limx→x+0
f(0) = 1 6= limx→x−0

f(0) because, limx→x+0
f(0) = 1, whereas

limx→x+0
f(0) = −1.

1.1 Fourier Series

Classically, square waves are approximated by the Fourier series. A Fourier series is a weighted

combination of sines and cosines used to represent or expand functions. A Fourier series approx-

imation of the square wave is a linear combination of frequencies and amplitudes that sound or

look like a square wave, an example of this is available here. In general, they are useful when

solving partial differential equations and ordinary differential equations with periodic boundary

conditions [6].

Recall, a function f is said to be integrable if and only if it is bounded and continuous almost

everywhere, that is continuous except at a finite number of points. A proof of this can be found

in [7, (7.6.5)].

Definition 1.1.1. The Fourier series representation of a function f(x) that is integrable on an

interval [a, b] is:

F (x) =
a0

2
+

∞∑
n=0

an cos(nx) +

∞∑
n=1

bn sin(nx) (1.1.1)

where

a0 =
1

b− a

∫ b

a
f(x)dx (1.1.2)

an =
2

b− a

∫ b

a
f(x) cos(nx)dx (1.1.3)

bn =
2

b− a

∫ b

a
f(x) sin(nx)dx (1.1.4)

for n = 0, 1, 2, . . ..

https://www.youtube.com/watch?v=1W_uV-p-7_k&ab_channel=ResolaQQ
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F (x)

f(x)

sin(x)

cos(x)

T

Figure 1.1.1. The orthogonal projection of a function, f(x), in the vector space of integrable functions
onto the subspace T spanned by {sin(nx), cos(nx)}∞n=1.

A more intuitive approach to approximations by the Fourier series is to view it as an orthogonal

projection of a function in the vector space of integrable functions onto the subspace T spanned

by the functions {sin(nx), cos(nx)}∞n=1 shown in Figure 1.1.1. The coefficients in the definition

above are analogous for function spaces of the usual projection coefficients in linear algebra using

dot products.

It is unclear whether or not the square wave defined above belongs to the space T , thus we use

the Fourier series representation to project it onto the subspace, represented by F (x) in Figure

1.1.1 and check whether F (x) = f(x). In the same vein, we can choose other similar families of

functions to project our square wave onto that need not be spanned by sines and cosines.

When working with continuous functions, Fourier series approximations are incredibly accurate

in matching the original function (it gives a least-squares approximation); however, when working

with jump-discontinuous functions, the Fourier series compensates by having an overshoot or

undershoot at the point of discontinuity. This shows immediately that F (x) 6= f(x) and so

f(x) 6∈ T . Interestingly however, the overshoot and undershoot for functions with simple jump

discontinuities is proportional to the size of the jump, and is approximately 9% of the jump and

this is known as the Gibbs phenomenon shown in Figure 2.1.1. The exact value of the Gibbs

constant is expressed as the following integral

γ = h
2

π

∫ π

0

sinx

x
dx ∼ 1.18h (1.1.5)

where h is the amplitude of the “jump”.

One can then ask whether this happens for different, non-trigonometric approximations of the

square wave (and similar functions with simple discontinuities). There has been recent work that
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explores the Gibbs phenomenon for various families of orthogonal polynomials, such as Legendre,

Laguerre, Chebyshev, Hermite [15] as well as for more general families such as the Gegenbauer

polynomials [14]. In every case, the authors found that the Gibbs constant overshoot that arises

for each class of polynomials appears to be the same as that for Fourier series expansions, that

is roughly 9% of the jump. In this paper, we attempt to encompass all these results by showing

that the Gibbs constant arises for the Jacobi polynomials, which subsume the polynomials

mentioned above. More specifically, we show both computationally and theoretically, that the

Gibbs constant for the Jacobi polynomials is, in fact, exactly the same as in the case of Fourier

series.

We begin by introducing the classical Gibbs phenomenon and the corresponding computations to

show the exact value of the Gibbs constant at a jump discontinuity for the square wave. Chapter

3 reviews mathematical preliminaries needed to work with and generate orthogonal polynomi-

als. Chapter 4 introduces the concept of orthogonal polynomials and provides an overview of

their universal properties. It also provides a semi-detailed description of common polynomials

for which the Gibbs phenomenon has been proved. Finally, in Chapter 5 we first find the Jacobi

expansion of the sgn function and then focus on calculating the critical points closest to the

jump discontinuity. We then use the critical points to discuss the behavior of the overshoot and

undershoot around the jump-discontinuity as we consider higher order Jacobi expansions. We ul-

timately express the Gibbs constant associated with the Jacobi expansion in the integral formula

(1.1.5). Finally, we show that the Gibbs phenomenon not only exists for Jacobi approximations,

but is the same for every value of α and β.

1.2 Computations and Links

Note we used PARI [16] to perform computations for this paper. Additionally, all of the figures

in this paper were made in Desmos [3]. We include interactive graphs for polynomials, which are

hyperlinked within the text and identified in bold. For the convenience of readers we provide

the direct links to all interactive materials below:
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• square wave sound (https://www.youtube.com/watch?v=1W uV-p-7 kab channel=ResolaQQ)

• Gegenbauer polynomials (https://www.desmos.com/calculator/9twtoi1aeg)

• Jacobi polynomial (https://www.desmos.com/calculator/jc1q0zqvty)

• Jacobi Sgn approximation (https://www.desmos.com/calculator/ds0deufq0c).
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2
Classical Gibbs Phenomenon

We begin by showing the theoretical approach to proving the classical Gibbs phenomenon,

approximating a square wave with the Fourier Series. The Gibbs phenomenon was first discovered

by Henry Wilbraham in 1848 and rediscovered by J. Willard Gibbs in 1899 [12]. The Gibbs

phenomenon highlights the difficulty of approximating a discontinuous function by continuous

functions and similarly, the difficulty of approximating continuous functions by discontinuous

functions such as wavelets. The Gibbs phenomenon is common to any approximation of jump

discontinuous functions to smooth functions, including trigonometric functions or polynomials.

Its discovery has resulted in the creation of smoother methods of approximating discontinuous

functions such as wavelet approximations [10].

2.1 Fourier Series Approximation of the Square Wave

In this section, we use notation from [6] to find the Fourier series approximation of the Square

Wave. We use a square wave on [−π, π] defined as follows:

f(x) =


h
2 0 < x < π

−h
2 −π < x < 0

0 x = 0.
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Then, the corresponding Fourier series F (x) is found using the relations defined by Definition

1.1.1.

a0 =
2

2π

∫ π

−π
f(x)dx =

1

π

∫ 0

−π
−h

2
dx+

1

π

∫ π

0

h

2
dx

= −hx
2π

∣∣∣∣0
−π

+
hx

2π

∣∣∣∣π
0

= 0

an =
1

π

∫ b

a
f(x) cos(nx)dx =

1

π

∫ 0

−π
−h

2
cos(nx)dx+

1

π

∫ π

0

h

2
cos(nx)dx

= − h

2π

sin(nx)

n

∣∣∣∣0
−π

+
h

2π

sin(nx)

n

∣∣∣∣π
0

= 0

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

1

π

∫ 0

−π
−h

2
sin(nx)dx+

1

π

∫ π

0

h

2
sin(nx)dx

=
h

2π

cos(nx)

n

∣∣∣∣0
−π
− h

2π

cos(nx)

n

∣∣∣∣π
0

=
h

π

[
1

n
− (−1)n

n

]
For bn, we have the following two solutions depending on n.

bn =

{
2h
nπ n is odd

0 n is even
.

It follows that the Fourier series is:

F (x) =
2h

π

(
sinx+

sin 3x

3
+

sin 5x

5
+ . . .

)
. (2.1.1)

At this point, we can plot the Fourier series approximation with the original square wave. For

simplicity, we assume h = 1, to retrieve the square wave defined in the Introduction, however

any nonzero h ∈ R results in a similar plot.

(a) (b)

Figure 2.1.1. Fourier Series Approximation of the square wave for (a) n = 10 and (b) n = 100.

Notice that as we approximate for larger n, we get closer to f(x); however, the overshoot

and undershoot remains and gets shifted closer to the point of discontinuity. Moreover, we
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notice pictorially that the overshoot and undershoot are the maximum and minimum of Fn(x)

respectively. It suffices then, to verify the Gibbs Phenomenon, to calculate the value of the

maximum and minimum for Fn(x).

2.2 Calculation of the Gibbs Phenomenon

2.2.1 Summation of the Series

We begin by fixing a positive integer r and considering the rth approximation:

Fr(x) =
2h

π

(
sinx+

sin 3x

3
+

sin 5x

5
+ . . .+

sin(rx)

r

)
.

Ideally, to calculate the Gibbs Phenomenon, we would want to find the maximum value, M , for

Fr(x) by finding the first critical point, x0 such that Fr(x0) = M , and d
dxFr(x) = 0. However,

if we were to consider the classical approach for finding when d
dxFr(x) = 0 on [−π, π] we would

have to take the derivative of a sum and set equal to 0, which would be incredibly difficult.

Instead, we represent the sum of the finite series by a single function.

Substituting (1.1.2), (1.1.3) and (1.1.4) into (1.1.1) we get:

Fr(x) = a0 +

r∑
n=0

an cos(nx) +

r∑
n=0

bn sin(nx)

=
2

b− a

∫ b

a
f(t)dt+

r∑
n=0

2

b− a

∫ b

a
f(t) cos(nt)dt cos(nx)

+
r∑

n=0

2

b− a

∫ b

a
f(t) sin(nt)dt sin(nx)

Since a = −π and b = π, our expression becomes:

Fr(x) =
1

2π

∫ π

−π
f(t)dt+

r∑
n=0

(
1

π

∫ π

−π
f(t) cos(nt)dt

)
cos(nx)

+

r∑
n=0

(
1

π

∫ π

−π
f(t) sin(nt)dt

)
sin(nx)

=
1

2π

∫ π

−π
f(t)dt+

1

π

r∑
n=0

∫ π

−π
(cos(nt) cos(nx) + sin(nt) sin(nx)) dt.

Note, cos(A±B) = cosA cosB ∓ sinA sinB. It follows:
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Fr(x) =
1

2π

∫ π

−π
f(t)dt+

1

π

r∑
n=0

∫ π

−π
f(t) cosn(t− x)dt. (2.2.1)

If we set F (x) = a0
2 +

∑∞
n=0 an cos(nx) + bn sin(nx), then

F (x) =
a0

2
+

1

π

∞∑
n=0

∫ π

−π
f(t) cosn(t− x)dt (2.2.2)

and Fr(x) is the rth partial sum. Combining all of this into one expression

Fr(x) =
1

2π

∫ π

−π
f(t)dt+

r∑
n=0

1

π

∫ π

−π
f(t) cosn(t− x)dt

=
1

π

∫ π

−π
f(t)

[
1

2
+

r∑
n=0

cosn(t− x)

]
dt.

We will now sum this series by passing to complex numbers. Recall that the sum of a finite

geometric series is given by the following:

1 + s+ s2 + . . .+ sn =
1− sn+1

1− s
,

which is valid for all s ∈ C− {1}.

Let s = eiθ = cos θ + i sin θ. It follows that,

1 + eiθ + ei2θ + . . .+ einθ =
1− ei(n+1)θ

1− eiθ
.

where <(1 + eiθ + ei2θ + . . .+ einθ) = 1 + cos(θ) + cos(2θ) + . . .+ cos(nθ) and,

Im(1 + eiθ + ei2θ + . . .+ einθ) = sin(θ) + sin(2θ) + . . .+ sin(nθ). We have,

1

2
+

r∑
n=0

cosn(t− x) = <

[
1

2
+

r∑
n=0

ein(t−x)

]
(2.2.3)

and our equation for Fr(x) becomes:

Fr(x) = <

[
1

π

∫ π

−π
f(t)

[
1

2
+

r∑
n=0

ein(t−x)

]
dt

]
. (2.2.4)

Notice, the finite sum of exponentials is a geometric series and thus we have

<

[
1

2
+

r∑
n=0

ein(t−x)

]
= <

[
1

2
+ ei(t−x) 1− ei(r+1)(t−x)

1− ei(t−x)

]

= <

[
1

2
+ ei(t−x) e

i(r+1)(t−x) − 1

ei(t−x) − 1

]
.
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Since sin
(
θ
2

)
= eiθ/2−e−iθ/2

2i , 2ieiθ/2 sin
(
θ
2

)
= eiθ − 1. Setting θ = t− x, we have:

<

[
1

2
+

r∑
n=0

ein(t−x)

]
= <

1

2
+ ei(t−x)

2iei(r+1)(t−x)/2 sin
(

(t−x)(r+1)
2

)
2iei(t−x)/2 sin

(
t−x

2

)


= <

1

2
+

sin
(

(r+1)(t−x)
2

)
sin
(
t−x

2

) eir(t−x)/2+i(t−x)


=

1

2
+

sin
(

(r+1)(t−x)
2

)
sin
(
t−x

2

) cos

(
(r + 1)(t− x)

2

)
.

Exploiting the identity sin(a+ b) = sin(a) cos(b) + sin(b) cos(a) in the above equation gives the

desired result

Fr(x) =
1

2π

∫ π

−π
f(t)

sin[(r + 1
2)(t− x)]

sin 1
2(t− x)

dt. (2.2.5)

In order for this integral to make sense, we need to show it converges for all t, in particular

where t = x. We can show this by letting θ = t− x and considering the following limit:

lim
θ→0

sin[(r + 1
2)(θ)]

sin(1
2θ)

= lim
θ→0

[
(r + 1

2) sin[(r + 1
2)(θ)]

(r + 1
2)(θ)

·
1
2θ

1
2 sin(1

2θ)

]

= lim
θ→0

[
(r + 1

2) sin[(r + 1
2)(θ)]

(r + 1
2)(θ)

]
·

[
lim
θ→0

1
2θ

1
2 sin(1

2θ)

]

= 2

(
r +

1

2

)
by L’Hopital’s rule.

2.2.2 Inputting the Square Wave

Returning to our square wave described in Section 2.1, we substitute directly for f(t). We break

the integral into two integrals corresponding to the different values of f(x). Then,

Fr(x) =
1

2π

∫ 0

−π

(
−h
2

)
sin[(r + 1

2)(t− x)]

sin 1
2(t− x)

dt+
1

2π

∫ π

0

(
h

2

)
sin[(r + 1

2)(t− x)]

sin 1
2(t− x)

dt (2.2.6)

=
−h
4π

∫ 0

−π

sin[(r + 1
2)(t− x)]

sin 1
2(t− x)

dt+
h

4π

∫ π

0

sin[(r + 1
2)(t− x)]

sin 1
2(t− x)

dt

=
h

4π

∫ π

0

sin[(r + 1
2)(t− x)]

sin 1
2(t− x)

dt− h

4π

∫ π

0

sin[(r + 1
2)(t+ x)]

sin 1
2(t+ x)

dt.

The second integral is a product of doing a u-substitution where u = −t and since it is merely a

dummy variable, we can substitute t again. We substitute once again and this time let s = t−x
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and s = t+ x, respectively. It follows:

Fr(x) =
h

4π

∫ π−x

−x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds− h

4π

∫ π+x

x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds.

The two integrals have integrands of the same mathematical form for values between x and π−x

but of opposite signs and thus cancel out. In particular,

h

4π

∫ π−x

−x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds =
h

4π

∫ x

−x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds+
h

4π

∫ π

x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds

and

h

4π

∫ π+x

x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds =
h

4π

∫ π

x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds+
h

4π

∫ π+x

π

sin[(r + 1
2)(s)]

sin 1
2(s)

ds.

We can visualize this using the following figure:

−x
x π + xπ

Figure 2.2.1. Cancelling out integrands of the same form over the same interval.

It follows that we have the following integrals:

Fr(x) =
h

4π

∫ x

−x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds− h

4π

∫ π+x

π−x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds. (2.2.7)

2.2.3 Calculation of the overshoot

We now have a formula for Fr : [−π, π] → R, given by 2.2.7. We want to now explore how Fr

behaves around our discontinuity, that is around x = 0. Let us begin by looking at the second

integral. Notice, as x→ 0:

lim
x→0

h

4π

∫ π+x

π−x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds = 0

because the integrand is continuous and centered around π. Then, our function becomes:

Fr(x) =
h

4π

∫ x

−x

sin[(r + 1
2)(s)]

sin 1
2(s)

ds.
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We cannot conclude this integral is 0 because the integrand is discontinuous at x = 0, so we

proceed with our calculations. Since the integrand is an even function, we have:

Fr(x) = 2 · h
4π

∫ x

0

sin[(r + 1
2)(s)]

sin 1
2(s)

ds

=
h

2π

∫ x

0

sin[(r + 1
2)(s)]

sin 1
2(s)

ds.

Now we perform two substitutions. First, we consider (r + 1
2) = p. Then,

Fr(x) = 2 · h
4π

∫ x

0

sin(ps)

sin 1
2(s)

ds.

Next let ξ = ps. Then, ds = dξ
p and s

2 = ξ
2p . For the lower bound we have when s = 0, ξ = 0 and

for the upper bound we have when s = x, ξ = px. On substituting we have,

Fr(x) =
h

2π

∫ px

0

sin(ξ)

sin( ξ2p)

dξ

p
.

Recall, we were looking for an analytic formula for Fr so that we could conveniently find the the

maximum, M , on the interval [−π, π]. Now that we have the analytical formula, we can proceed

by taking the derivative and finding the first positive critical point.

d

dx
Fr(x) =

d

dx

h

2π

∫ px

0

sin(ξ)

sin( ξ2p)

dξ

p
.

By the Fundamental Theorem of Calculus, d
dx

∫ x
a f(t)dt = f(x). Our upper bound is px, so we

can use the chain rule in the following manner. Let h(x) =
∫ x
a f(t)dt. Then,

∫ p
a xf(t)dt = h(px).

By the Fundamental Theorem of Calculus we also have h′(x) = f(x) and thus the chain rule

gives us h′(px) = pf(px). Returning to the formula for the derivative of Fr(x), we have:

d

dx
Fr(x) =

sin(px)

sin(x2 )
. (2.2.8)

We want to know for what value of x on [−π, π] does (2.2.8) equal 0. In order for that to be

true, we would require sin(px) = 0, which is true when px = mπ for m ∈ Z. Then x = mπ
p . Here,

m = 1. This is because our overshoot happens near the point of discontinuity, where x = 0,

apparent in Figure 2.1.1. While all m > 1 are critical points, m = 1, is the point at which we

will get our maximum, M , since it is our first positive critical point.
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Now we can return to our to function Fr and substitute for x = π
p . It follows:

Fr

(
π

p

)
=

h

2π

∫ p(π
p

)

0

sin(ξ)

p sin( ξ2p)
dξ (2.2.9)

=
h

2π

∫ π

0

sin(ξ)

p sin( ξ2p)
dξ. (2.2.10)

Recall that p =
(
r + 1

2

)
. This implies that as r approaches infinity (that is, we consider more and

more terms in (2.2.2)) p also approaches infinity by construction. By the Taylor series expansion

of sin(x), p sin( ξ2p) behaves in the following manner:

p sin

(
ξ

2p

)
= p

 ξ

2p
−

(
ξ
2p

)3

3!
+

(
ξ
2p

)5

5!
− . . .


=
ξ

2
− ξ3

4p2 · 3!
+

ξ

32p4 · 5!
− . . . .

Then, as p→∞, p sin( ξ2p)→ ξ
2 . It follows that as r →∞

Fr

(
π

p

)
=

h

2π

∫ π

0

sin(ξ)
ξ
2

dξ

= h · 1

π

∫ π

0

sin(ξ)

ξ
dξ.

The exact calculation of this integral requires Complex Analysis since sinx
x has no elementary

derivative. The calculation is done in [8]. However, we can represent this integral as a Riemann

sum

2h

π

∫ π

0

sinx

x
dx = 2h

∞∑
j=0

(−1)jπ2j

(2j + 1)(2j + 1)!
∼ 1.18h.

Pictorially, this is the area underneath the curve between [0, π] in Figure 2.2.2.



2.2. CALCULATION OF THE GIBBS PHENOMENON 15

−3π −2π −π π 2π 3π

−0.5

0.5

1

1.5

◦

x

Figure 2.2.2. Pictorial representation of γ defined in the Introduction.
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3
Background

In this chapter we review definitions and theorems needed in the subsequent chapters. We

discuss definitions surrounding abstract vector spaces, which allows us to work with functions

(and consequently polynomials) using the same set up as the traditional vectors in Rn. Further

details regarding the definitions and proofs can be found in [6].

3.1 Inner Product

The inner product is a generalization of the dot product of vectors in Rn. That is, in a vector

space, the inner product is a way of multiplying two vectors and outputting a scalar.

Definition 3.1.1. For a real vector space V, an inner product is a function

〈 , 〉 : V × V → R

with the following properties.

• For all u, v, w ∈ V and a, b ∈ R it holds 〈au + bv,w〉 = a〈u,w〉 + b〈v,w〉,

• For all u,v ∈ V it holds 〈u,v〉 = 〈v,u〉,

• For all u ∈ V , 〈u,u〉 ≥ 0 and,
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• 〈u,u〉 = 0 if and only if u = 0.

V together with 〈·, ·〉 is called an inner product space.

Examples of inner product spaces include the real numbers, R where the inner product is given

by multiplication. That is, 〈x, y〉 = xy for all x, y ∈ R. Another common example of an inner

product space is the Euclidean space Rn where the inner product is given by the dot product.

That is, 〈x,y〉 =
∑n

i=1 xiyi where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn).

The inner product space we focus on in this paper is the vector space of real-valued integrable

functions whose domain is a closed interval [a, b] with inner product defined as follows:∫ b

a
f(x)g(x)dx

where f(x) and g(x) are real functions.

First we prove that real-valued integrable functions form a vector space and then we show that

the integral of the product of two real-valued integrable functions over an interval [a, b] satisfies

the inner product axioms.

Let C be the set of all real-valued integrable functions, let c, d ∈ R and let f(x), g(x), h(x) ∈ C.

It is easy to check that

〈f, g〉 =

∫ b

a
f(x)g(x)dx

satisfies the properties of inner product spaces for all elements ∈ C. Namely,

1. 〈cf + dg, h〉 =

∫ b

a
(cf(x) + dg(x))h(x)dx

=

∫ b

a
[cf(x)h(x) + df(x)h(x)]dx

= c

∫ b

a
f(x)h(x)dx+ d

∫ b

a
g(x)h(x)dx

= c〈f, h〉+ d〈g, h〉.

2. 〈f, g〉 =

∫ b

a
f(x)g(x)dx =

∫ b

a
g(x)f(x)dx = 〈g, f〉.

3. 〈f, f〉 =

∫ b

a
f(x)f(x)dx =

∫ b

a
|f(x)|2dx ≥ 0 since f is real-valued.
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4. Suppose 〈f, f〉 =
∫ b
a f(x)f(x)dx =

∫ b
a |f(x)|2dx = 0. Since f is real valued, this is true if

and only if f = 0.

When talking about an inner product space, we often discuss a norm, that is, the length of a

vector.

Definition 3.1.2. Let V be a vector space and 〈·, ·〉 be a inner product on V . The norm

function, or length, is a function

‖ ‖ : V → R

and defined as

‖u‖ =
√
〈u, u〉

for u ∈ V .

It follows that a norm in the space of continuous functions is given by:

‖f‖ =
√
〈f, f〉 =

√∫ b

a
[f(x)]2dx.

3.2 Orthogonality

In elementary geometry, we often think of orthogonality as perpendicularity. However, a more

general definition of orthogonality takes into consideration an inner product.

Definition 3.2.1. Let V be a vector space and 〈·, ·〉 be an inner product on V . Two vectors

u,v ∈ V are orthogonal, or perpendicular, if and only if

〈u,v〉 = 0.

For vectors in Rn, the inner product is the same as the dot product (w·v = |w||v| cos θ), and thus

it is straight forward that two vectors that are perpendicular are orthogonal. We can extend this

to integrable functions on [a, b] with inner product 〈f, g〉 =
∫ b
a f(x)g(x)dx, that is, two integrable

functions are orthogonal over an interval [a, b] if

〈f, g〉 =

∫ b

a
f(x)g(x)dx = 0 (3.2.1)
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Example 3.2.2. The functions cosx and sin(x) are orthogonal on the interval [0, 2π] because

〈cos(x), sin(x)〉 =

∫ 2π

0
sin(x) cos(x)dx

=
1

2

∫ 2π

0
sin(2x)dx

= −1

4
cos(2x)

]2π

0

= 0.

3.2.1 Gram-Schmidt Orthogonalization

Orthogonal bases, like cosines and sines, are incredibly convenient to carry out computations.

In 1900, Jorgen Gram and Erhard Schmidt made a standard process to construct an orthogonal

set of vectors or functions over any interval and with respect to an arbitrary weight from a

nonorthogonal set of linearly independent vectors or functions [6]. The Gram-Schmidt procedure

is often used to generate orthogonal polynomials as we will see in the future chapters.

Theorem 3.2.3. Let V, 〈·, ·〉 be an inner product space and let {u1, . . . , un} be a basis of V .

Then an orthogonal basis of V is given by the vectors {v1, . . . , vn} where

v1 = u1

v2 = u2 −
〈u1, v1〉
‖v1‖

v1

v3 = u3 −
〈u3, v1〉
‖v1‖

v1 −
〈u3, v2〉
‖v2‖

v2

... =
...

vn = un −
n−1∑
i=1

〈un, vi〉
‖vi‖

vi

Proof. A proof of this theorem can be found in [5].

3.3 The Gamma Function

Suppose that s > 0 and define

Γ(s) =

∫ ∞
0

e−tts−1dt.
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Γ(s) is known as the Gamma function and is a generalization of the factorial function for non-

integer values developed by Leonhard Euler in the 18th century. The function is particularly

useful in the field of special functions. We use two key propositions associated with the Gamma

function in this paper.

Proposition 3.3.1. If s > 0, then Γ(s+ 1) = sΓ(s).

Proof. We prove this using integration by parts. We have

Γ(s+ 1) =

∫ ∞
0

e−tts+1−1dt =

∫ ∞
0

e−ttsdt = e−t − ts
∣∣∣∣∞
0

+

∫ ∞
0

se−tts−1dt = 0 + sΓ(s).

To do integration by parts we let u = ts, dw = sts−1, dv = e−t, v = −e−t and recall that∫
udv = uv −

∫
vdu.

Corollary 3.3.2. If n is a positive integer, then Γ(n) = (n− 1)!.

Proof. Using the previous proposition, we have that

Γ(n) = (n− 1)Γ(n− 1) = (n− 2)(n− 1)Γ(n− 2) = . . . = (n− 1)(n− 2) · . . . · Γ(1).

However by the definition of the Gamma function, we know that

Γ(1) =

∫ ∞
0

e−tt0dt = −e−t
∣∣∣∣∞
0

= 1.

Thus,

Γ(n) = (n− 1)Γ(n− 1) = (n− 2)(n− 1)Γ(n− 2) = . . . = (n− 1)(n− 2) · . . . · 1 = (n− 1)!.

3.4 Pochhammer Symbol

The Pochhammer symbol or rising factorial, defined by

(x)n =
Γ(x+ n)

Γ(x)
(3.4.1)

= x(x+ 1) . . . (x+ n− 1) (3.4.2)
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is notation often used in the theory of special functions and was introduced by Leo August

Pochhammer (1841-1920) [11]. There are many forms of the Pochhammer symbol used through-

out the different fields of mathematics, but in this paper we focus strictly on the Pochhammer

symbol associated with the Gamma function.



4
Orthogonal Polynomials

Orthogonal polynomials were studied intensively in the 19th-century through the study of con-

tinued fractions and the moment problem. [17] They have been widely used in mathematics,

science and engineering often times as basis functions to help understand more complicated

functions. Moreover, since they are polynomials, they are often nicer to work with. This section

introduces the basic properties of orthogonal polynomials, which are later used in our analysis

of the Gibbs phenomenon for Jacobi polynomials.

Definition 4.0.1. A sequence of polynomials {pn(x)}∞n=0 where pn(x) is of exact degree n, is

orthogonal on the interval [a, b] with respect to a weight function w(x) > 0, which is continuous

and positive on [a, b] if ∫ b

a
w(x)pn(x)pm(x)dx = cnδnm,

where

δnm =

{
0 n 6= m

1 n = m.

A “weight function” is often used when performing a sum, integral, or average to give some

elements more weight or influence on the final result than other elements found in the set. [11]

Classically, the weight function is equal to 1 in which case we recover the formula for 〈f, g〉.
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The above definition relies on the fact that R together with
∫ b
a w(x)f(x)g(x)dx form an inner

product space, hence we proceed by checking this is true.

Proof. We check that

〈f, g〉w :=

∫ b

a
w(x)f(x)g(x)dx

satisfies the axioms of inner product.

1. Let x, y ∈ R. 〈xf + yg, h〉w =

∫ b

a
w(x)(xf(x) + yg(x))h(x)dx

=

∫ b

a
[xw(x)f(x)h(x) + yw(x)g(x)h(x)]dx

= x

∫ b

a
w(x)f(x)h(x)dx+ y

∫ b

a
w(x)g(x)h(x)dx

= x〈f, h〉w + y〈g, h〉w.

2. 〈f, g〉w =

∫ b

a
w(x)f(x)g(x)dx =

∫ b

a
w(x)g(x)f(x)dx = 〈g, f〉w.

3. 〈f, f〉w =

∫ b

a
w(x)f(x)f(x)dx =

∫ b

a
w(x)|f(x)|2dx ≥ 0 since w(x) > 0 .

4. Suppose 〈f, f〉w =
∫ b
a w(x)f(x)f(x)dx =

∫ b
a w(x)|f(x)|2dx = 0. Since w(x)|f(x)|2 is a

continuous positive function of x, w(x)|f(x)|2 = 0 for all x ∈ [a, b] and so |f(t)|2 = 0 and

f(t) = 0 for all x ∈ [a, b].

Remark 4.0.2. Note, we distinguish between 〈f, g〉 and 〈f, g〉w to identify the difference between

a weighted inner product and unweighted inner product (w(x) = 1) introduced in Chapter 2.

However, going forward, we drop the subscript and assume weighted inner products.

Before proceeding to the properties of orthogonal polynomials, we explore an example of gener-

ating them using the Gram-Schmidt.

Example 4.0.3. We wish to obtain a set of orthogonal polynomials with respect to the scalar

product

〈f, g〉 =

∫ 1

−1
w(x)f(x)g(x)dx
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with w(x) = 1. To do this, we apply Gram-Schmidt orthogonalization to the set {1, x, x2, x3, . . .}.

Then, by Definition 3.2.3 the nthe element of our orthogonal basis {vk} can be represented by

vn = un −
n−1∑
i=0

〈un, vi〉
‖vi‖

vi.

Setting un(x) = xn for n = 0, 1, 2, . . . and setting v0(x) = 1 our orthogonal set {vk}, k = 1, 2, . . .

is obtained as follows:

v0(x) = 1.

v1(x) = u1 −
〈u1, v0〉
‖v0‖

v0

= x−
∫ 1
−1 xdx∫ 1
−1 dx

= x−
1
2x

2|1−1

x|1−1

= x−
1
2(1− 1)

2
= x.

v2(x) = u2 −
〈u2, v1〉
‖v1‖

v1 −
〈u2, v0〉
‖v0‖

v0

= x2 −
∫ 1
−1 x

3dx∫ 1
−1 x

2dx
x−

∫ 1
−1 x

2dx∫ 1
−1 dx

= x2 −
1
4x

4|1−1
1
3x

3|1−1

x−
1
3x

3|1−1

x|1−1

= x2 − 1

3
.

v3(x) = u3 −
〈u3, v2〉
‖v2‖

v2 −
〈u3, v1〉
‖v1‖

v1 −
〈u3, v0〉
‖v0‖

v0

= x3 −
∫ 1
−1 x

3(x2 − 1
3)dx∫ 1

−1(x2 − 1
3)2dx

(
x2 − 1

3

)
−
∫ 1
−1 x

3(x)dx∫ 1
−1 x

2dx
x−

∫ 1
−1 x

3dx∫ 1
−1 dx

= x3 −
1
6x

6 − 1
12x

4|1−1
1
5x

5 − 2
9x

3 + x
9 |

1
−1

(
x2 − 1

3

)
−

1
5x

5|1−1
1
3x

3|1−1

x−
1
4x

4|1−1

x|1−1

= x3 −
2
5
2
3

x = x3 − 3

5
x.

Continuing this process and normalizing so that vn(1) = 1 gives us the Legendre polynomials,

shown in Figure 4.2.1. Different values of w(x) yields different families of orthogonal polynomials.

4.1 Properties of Orthogonal Polynomials

In this section, we introduce three key properties of orthogonal polynomials that hold across

different families. These properties prove important in the computations associated with orthogo-

nal polynomial approximations. We begin by introducing the three term recurrence relationship,

which provides the necessary set up for the Christoffel-Darboux sum and finally introduce the
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Rodrigues formula. Both the Christoffel-Darboux sum and the Rodrigues formula are used in the

calculation of the derivative of the Jacobi expansion of the sgn function. Proofs and consequences

of the following theorems can also be found in [11] and [5].

Theorem 4.1.1. A sequence of orthogonal polynomials {pn(x)}∞n=0 on [a, b] satisfies a three-

term recurrence relation

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x)

for n = 1, 2, 3, . . . where An, Bn and Cn are real constants and

An =
kn+1

kn
,

Cn+1 =
An+1

An

cn+1

cn

where kn > 0 is the leading coefficient of pn and cn is found using Definition 4.0.1.

Proof. Since both pn+1 and xpn(x) have degree (n+ 1), we can determine An such that

pn+1(x)−Anxpn(x)

is a polynomial of at most degree n by choosing An to cancel out leading coefficients. It follows

that there exist constants bk, k = 0, . . . , n, such that

pn+1(x)−Anxpn(x) =

n∑
k=0

bkpk(x). (4.1.1)

IfQ(x) is any polynomial of degreem < n, we know by Definition 4.0.1 that
∫ b
a Pn(x)Q(x)w(x)dx =

0 since m 6= n.

Multiplying both sides of (4.1.1) by pm(x)w(x) where m ∈ {0, 1, . . . , n− 2} we get

pn+1(x)pm(x)w(x)−Anxpn(x)pm(x)w(x) =

n∑
k=0

bkpk(x)pm(x)w(x).

Integrating both sides on the interval [a, b], we get

∫ b

a
pn+1(x)pm(x)w(x)−

∫ b

a
Anxpn(x)pm(x)w(x) =

n∑
k=0

∫ b

a
bkpk(x)pm(x)w(x).
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By Definition 4.0.1, the first integral on the left side is zero for every m ∈ {0, 1, . . . , n− 2} and

since xpm(x) is a polynomial of degree (m + 1) ≤ (n − 1) by definition of m, we conclude the

entire left hand side of the equation is zero.

Similarly, the right hand side of the equation is only non-zero for k = m, once again by Definition

4.0.1. Hence, bmcm = 0 for all m ∈ {0, 1, . . . , n− 2}, and since cm 6= 0, we have that bm = 0.

Hence, pn+1(x) − Anxpn(x) = bn−1pn−1(x) + bnpn(x) and rearranging this gives us pn+1(x) =

(Anx+ bn)pn(x) + bn−1pn−1(x). Let bn = Bn and bn−1 = −Cn. It follows:

pn+1(x) = (Anx+Bn)pn(x) + Cnpn−1(x) (4.1.2)

which is the required three-term recurrence relation.

From (4.1.2), it is clear that An = kn+1

kn
. To prove the Cn+1 relation, we begin by multiplying

pn−1(x)w(x) and integrate both sides. It follows:

0 = An

∫ b

a
xpn(x)pn−1(x)w(x)dx− Cn

∫ b

a
p2
n−1(x)w(x)dx. (4.1.3)

Now, pn−1 = kn−1x
n−1 + a polynomial of degree ≤ n− 2.

Consequently, pn = knx
n + a polynomial of degree ≤ n− 1. Then,

xpn−1(x) =
kn−1

kn
pn(x) +

n−1∑
k=0

dkpk(x). (4.1.4)

We see that from (2.2.3),

0 = An
kn−1

kn
cn − Cncn.

Since An = kn+1

kn
, we have

Cn+1 =
An+1

An

cn + 1

cn

which concludes our proof. This recurrence relation is particularly useful when calculating pn+1,

given you already have pn and pn−1.

A consequence of the three-term recurrence relation is the Christoffel-Darboux sum, which is

the polynomial analog of the sum in (2.2.3). The Christoffel-Darboux sum allows us to change
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the expression for π
(α,β)
n in Chapter 6 from a finite sum to a single function, which is easier to

analyze.

Theorem 4.1.2. Suppose {pn}∞n=0 is a sequence of orthogonal polynomials with respect to some

weight function, w(x) on an interval [a, b] for a, b ∈ R. Then, given kn is the leading coefficient

of pn(x) and that ∫ b

a
p2
n(x)w(x)dx = cn 6= 0

then {pn}∞n=0 satisfies

n∑
m=0

pm(x)pm(y)

cm
=

kn
kn+1

pn+1(x)pn(y)− pn+1(y)pn(x)

(x− y)cn
. (4.1.5)

Proof. From 4.0.1, we have

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x),

where An = kn+1

kn
and Cn = An+1

An

cn+1

cn
.

Multiplying through by pn(y) gives us

pn+1(x)pn(y) = (Anx+Bn)pn(x)pn(y)− Cnpn−1(x)pn(y). (4.1.6)

Similarly, we can consider pn+1(y) and multiply through by pn(x) to get

pn+1(y)pn(x) = (Anx+Bn)pn(y)pn(x)− Cnpn−1(y)pn(x). (4.1.7)

Subtracting (4.1.7) from (4.1.6) we get

pn+1(x)pn(y)− pn+1(y)pn(x) = An(x− y)pn(x)pn(y)− Cn[pn−1(x)pn(y)− pn−1(y)pn(x)].

Diving both sides by Ancn(x− y) we get

1

An

pn+1(x)pn(y)− pn+1(y)pn(x)

cn(x− y)
=
pn(x)pn(y)

cn
− 1

An−1

[
pn−1(x)pn(y)− pn−1(y)pn(x)

cn−1(x− y)

]

Recall, An = kn+1

kn
and consequently, 1

An
= kn

kn+1
. Then, repeated application of this gives us

(4.1.5).
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In general, any orthogonal polynomial can be represented by the Rodrigues formula given in the

next definition, which provides information on the interval of orthogonality, the weight function

for that family of orthogonal polynomials and the range of parameters for which the polynomials

are orthogonal.

Definition 4.1.3. Let pn(x) denote the nth degree orthogonal polynomial. Then

pn(x) =
1

anw(x)

dn

dxn
(w(x)[Q(x)]n) (4.1.8)

where w(x) is a positive weight function and Q(x) is a polynomial in x with coefficients that do

not depend on n. There exists a constant an, n ∈ N associated with the weight function, w(x),

which retrieves various families of classical orthogonal polynomials.

4.2 Families of Orthogonal Polynomials

In this section, we introduce some families of orthogonal polynomials which have been shown to

have a Gibbs phenomenon when approximating functions with a simple discontinuity, with the

same value as that of the classical Gibbs phenomenon.

4.2.1 Legendre Polynomials

Legendre polynomials appear when solving the ordinary differential equation referred to as Leg-

endre’s differential equation which comes up when solving Laplace’s equation in spherical coor-

dinates. More specifically, when performing a separation of variables in spherical coordinates to

solve the Laplace’s equation (and assuming additional physical symmetry) the angular equation

is the Legendre equation and the solutions to the angular equation are the Legendre polynomials

[2]. Adrien-Marie Legendre began using, what are now referred to as Legendre polynomials in

1784 while studying the attraction of spheroids and ellipsoids [9].

Legendre Polynomials are orthogonal with respect to the weight function w(x) = 1 over the

interval [−1, 1], which is the content of the following theorem whose proof can be found in [13].
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Theorem 4.2.1. The orthogonality property of the Legendre polynomials is given below

∫ 1

−1
Pn(x)Pm(x)dx =

2

2n+ 1
δmn

where m and n are non-negative integers and and δmn is the Kronecker function.

Theorem 4.2.2. The Rodrigues formula for Legendre polynomials is given by

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

Definition 4.2.3. The general form of a Legendre polynomial of order n is given by the sum:

Pn(x) =

M∑
m=0

(−1)m
(2n− 2m)!

2nm!(n−m)!(n− 2m)!
xn−2m

where M = n
2 if n is even and n−1

2 if n is odd.

The first few Legendre polynomials are:

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

P5(x) =
1

8
(63x5 − 70x3 + 15x)

Figure 4.2.1. First five Legendre polynomials.
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4.2.2 Hermite Polynomials

Hermite polynomials were first discovered by Pierre-Simon Laplace in 1810 and later studied

by Pafnuty Chebyshev in 1859, but ultimately credited by Charles Hermite, who wrote on

the polynomials in 1864, describing them as new [11]. Hermite polynomials have applications

in signal processing, probability in connection with Brownian motion and in physics, when

describing the eigenstates of the quantum harmonic oscillator [11]. There are two commonly

discussed Hermite polynomials, the “physicist’s Hermite polynomials” and the “probabilist’s

Hermite polynomials.” Here we only discuss the physicist’s Hermite polynomials.

The physicist’s Hermite polynomials are orthogonal with respect to the weight function w(x) =

e−x
2

on [−∞,∞].

Theorem 4.2.4. The orthogonality property of the Hermite polynomials is given below

∫ ∞
−∞

Hn(x)Hm(x)e−x
2
dx = 2nn!

√
πδmn

where m and n are non-negative, e−x
2

is a positive function, and δmn is the Kronecker function.

Theorem 4.2.5. The Rodrigues formula for Hermite Polynomials is given by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
.

Definition 4.2.6. The general form of a Hermite polynomial of order n is given by the sum:

Hn(x) =


n!

n
2∑
l=0

(−1)
n
2−l

(2l)!
(
n
2 − l

)
!
(2x)2l for even n,

n!

n−1
2∑
l=0

(−1)
n−1
2
−l

(2l + 1)!
(
n−1

2 − l
)
!
(2x)2l+1 for odd n.
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The first few Hermite polynomials are:

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 + 120x

Figure 4.2.2. First five Hermite polynomials. Note, we use Gnuplot with original code by [1] as Desmos
does not allow for independent axis increments, and for Hermite polynomials, the range is more variant
than the domain.

4.2.3 Gegenbauer Polynomials

The Gegenbauer polynomials, also known as Ultraspherical polynomials, were discovered by

Leopold Bernhard Gegenbauer in 1874 and were solutions to the Gegenbauer differential equa-

tion and are generalizations of the associated Legendre polynomials [4]. They appear naturally

as extensions of Legendre polynomials in the context of potential theory and harmonic analy-

sis. [14] provides an explicit framework for the proof of the Gibbs phenomenon for Gegenbauer

polynomials, which we extend to the Jacobi polynomials in the subsequent chapters. The Gegen-

bauer polynomials are a one-parameter family of orthogonal polynomials that are orthogonal

with respect to the weight function w(x) = (1− x2)α−1/2 on [−1, 1].
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Theorem 4.2.7. The orthogonality property of the Gegenbauer polynomials is given below for

a fixed α

∫ 1

−1
C(α)
m (x)C(α)

n (x)(1− x2)α−
1
2 dx =

{
π21−2αΓ(n+2α)
n!(n+α)[Γ(α)]2

δmn for α 6= 0
2π
n2 for α = 0

where m and n are non-negative, (1 − x2)α−
1
2 is a positive function, and δmn is the Kronecker

function.

Note, setting α = 1
2 , we get the Legendre polynomials as w(x) becomes (1− x2)0 = 1.

Theorem 4.2.8. The Rodrigues formula for Gegenbauer Polynomials is given by

C(α)
n (x) =

(−1)n

2nn!

Γ(α+ 1
2)Γ(n+ 2α)

Γ(2α)Γ(α+ n+ 1
2)

(1− x2)−α+1/2 d
n

dxn

[
(1− x2)n+α−1/2

]
.

Definition 4.2.9. The general form of a Gegenbauer polynomial of order n for a fixed α is

given by the sum:

C(α)
n (x) =



n
2∑

k=0

(−1)k
Γ(n− k + α)

Γ(α)k!(
(
n
2 − k

)
!
(2z)2k for even n,

n−1
2∑

k=0

(−1)k
Γ(n− k + α)

Γ(α)k!
(
n−1

2 − k
)
!
(2z)2k+1 for odd n.

Remark 4.2.10. If α is a positive integer, we can write the Γ functions as factorials.

The first few Gegenbauer polynomials are:

C0(x) = 1,

C1(x) = 2αx,

C2(x) = −α+ 2α(1 + α)x2,

C3(x) = −2α(1 + α)x+
4

3
α(1 + α)(2 + α)x3.
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(a) (b)

Figure 4.2.3. First five Gegenbauer polynomials for (a) α = 1 and (b) α = 3. An interactive plot can be
found here.

https://www.desmos.com/calculator/9twtoi1aeg


5
Jacobi Polynomials

Jacobi polynomials were discovered by Gustav Jacob Jacobi, who was influential in many differ-

ent areas of mathematics, particularly in mathematical physics. The Jacobi polynomials possess

all the previously mentioned properties of orthogonal polynomials but are useful because they

subsume other families of orthogonal polynomials including the Gegenbauer polynomials, Leg-

endre polynomials, Hermite polynomials and many others. For example, Legendre polynomials

are equivalent to P
(0,0)
n (x) and Gegenbauer polynomials are equivalent to P

(α,)
n (x). Because it

has been shown that the Gegenbauer, and therefore the Legendre polynomials have a universal

Gibbs constant, the natural next step is to ask if any Jacobi polynomial has a universal Gibbs

constant. In this chapter, we provide definitions and theorems related to the Jacobi Polynomials

that are needed when working with them. Extensive proofs and analysis of all theorems and

definitions can be found in [5]; in particular see Chapter 4.

The Jacobi Polynomials are a two-parameter family that are orthogonal on the interval [−1, 1]

with respect to the weight function, w(α,β) : [−1, 1]→ R defined by

w(α,β)(x) = (1− x)α(1 + x)β. (5.0.1)

In order for w(α,β)(x) to be integrable we require α > −1 and β > −1 [5].
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Recall that any family of orthogonal polynomials can be generated using the Gram-Schmidt

procedure on the set {1, x, x2, . . .} and integrating with respect to a specific weight function [5].

For Jacobi polynomials, we set the weight function to be w(α,β)(x) defined above and define the

inner product by

〈f, g〉α,β =

∫ 1

−1
(1− x)α(1 + x)βf(x)g(x)dx.

5.1 Properties of Jacobi Polynomials

In this section, we introduce theorems necessary to get the binomial form of the nth Jacobi

polynomial, P
(α,β)
n which is easy to work with when expanding the sgn function and also encoding

into computer algebra systems, such as PARI. In particular, without an explicit representation

we are left with a recursive definition such as the Rodrigues formula, which is not as amenable

for computation. We begin by introducing the second-order differential equation that the Jacobi

polynomials satisfy.

Theorem 5.1.1. The Jacobi Polynomials y = P
(α,β)
n (x) are a solution to the linear homogeneous

differential equation of second order:

(1− x)2y′′ + [β − α− (α+ β + 2)x]y′ + n(n+ α+ β + 1)y = 0 (5.1.1)

or

d

dx

(
w(α+1,β+1)y′

)
+ n(n+ α+ β + 1)w(α,β)y = 0. (5.1.2)

Proof. [5, Theorem 4.2.1]

A consequence of this theorem is the useful formula

d

dx
{P (α,β)

n (x)} =
1

2
(n+ α+ β + 1)P

(α,β)
n−1 (x). (5.1.3)

We now move onto the Rodrigues formula for Jacobi polynomials, which proves essential in a

multitude of calculations including getting the binomial form and consequently the orthogonality

condition.
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Theorem 5.1.2. The Jacobi polynomials of degree n are defined by:

(1− x)α(1 + x)βP (α,β)
n =

(−1)n

2nn!

dn

dxn
[(1− x)n+α(1 + x)n+β] (5.1.4)

where α, β > −1 and x ∈ [−1, 1].

Proof. [5, Theorem 4.3.1]

Note, when α = β = 0 we have the Legendre polynomial and when α = β, we have the

Gegenbauer polynomial.

Szego obtains the following explicit formula for P
(α,β)
n by working inductively with the Rodrigues

formula above. This induction step requires the product rule, chain rule, and a combinational

argument to collect everything into one sum. For details, see [5, p. 68].

P (α,β)
n (x) =

n∑
j=0

(
n+ a

n− j

)(
n+ β

j

)(
x− 1

2

)j (x+ 1

2

)n−j
. (5.1.5)

Remark 5.1.3. The binomial form given in (5.1.5) highlights the varied impact of α and β on

Jacobi polynomials. The values of α influence the right-half the interval, whereas the values of

β influence the left-half of the interval. We can show this by computing the explicit expressions

for P
(α,β)
n (1) and P

(α,β)
n (−1):

P (α,β)
n (1) =

n∑
j=0

(
n+ a

n− j

)(
n+ β

j

)(
1− 1

2

)j (1 + 1

2

)n−j
=

n∑
j=0

(
n+ a

n− j

)(
n+ β

j

)
.

P (α,β)
n (−1) =

n∑
j=0

(
n+ a

n− j

)(
n+ β

j

)
(
−1− 1

2
)j
(
−1 + 1

2

)n−j
=

n∑
j=0

(
n+ a

n− j

)(
n+ β

j

)
(−1)j .

It follows then, that if an α 6= β then our polynomial is not symmetric. To visualize this, we

look at the 5th Jacobi Polynomial for (α, β) = (2, 3) and (α, β) = (3, 2) in Figure 5.1.1. An

interactive plot of Jacobi Polynomials can be found here.

https://www.desmos.com/calculator/jc1q0zqvty
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In anticipation of calculations in Chapter 6, we use the binomial form to calculate the leading

coefficient, kn for the nth Jacobi polynomial.

Theorem 5.1.4. Let P
α,β)
n (x) be the nth Jacobi polynomial. Then, the leading coefficient, kn of

P
α,β)
n (x) is defined by

(n+ α+ β + 1)n
2nn!

. (5.1.6)

Proof. Gauss showed that there exists a hypergeometric representation of P
(α,β)
n . In this paper,

we will not go into the detail regarding the hypergeometric equation of Gauss and corresponding

proofs; however, one consequence of the hypergeometric representation is

P (α,β)
n =

1

n!

n∑
v=0

(
n

v

)
(n+ α+ β + 1) . . . (n+ α+ β + v) · (α+ v + 1) . . . (α+ n)

(
x− 1

2

)v
.

and we can replace the general coefficient by (n + α + β + 1)(n + α + β + 2) . . . (2n + α + β)

for v = n. Combining this with
(
x−1

2

)n
= (x−1)n

2n , we have for v = n, the leading coefficient is

defined by

(n+ α+ β + 1)n
2nn!

.

(a) (b)

Figure 5.1.1. Fifth Jacobi Polynomial for (a) (α, β) = (2, 3) and (b) (α, β) = (3, 2).

Recall that a function is called an even function if f(−x) = f(x) and an odd function if f(x) =

−f(x). For Jacobi polynomials, we have that P
(α,β)
n (−x) = −P (β,α)

n (x). It follows that the

Jacobi polynomials are neither odd nor even functions. However, for α = β (which gives us the

Gegenbauer polynomials) we get a function that is symmetric about the origin or about the
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y-axis. In particular, for P
(α,β)
n is an odd function if n is odd and an even function if n is even.

This is shown in Figure 5.1.2. This distinction is important in the calculation of Gibbs constant

for Jacobi approximations, namely in the calculation of the critical points.

(a) (b)

Figure 5.1.2. (a) Fourth and (b) fifth Jacobi Polynomial for (α, β) = (2, 2)

One of the consequences of the binomial form is a simplfied proof of the orthogonality condition

for Jacobi polynomials. [11]’s proof is especially accessible, but a proof can also be found in [5].

Theorem 5.1.5. The orthogonality property of the Jacobi polynomials for a fixed α, β is given

by ∫ 1

−1
w(α,β)(x)P (α,β)

m (x)P (α,β)
n (x)dx =

2α+β+1

2k + α+ β + 1

Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + α+ β + 1)k!
δmn

δmn is Kronecker function and Γ(x) is the gamma function.

Proof. [11, Theorem 3.3.1].

The orthogonality condition is used in the calculation of the norm of Jacobi polynomials. Specif-

ically we have:

‖P (α,β)
n ‖2 =

2α+β+1

2k + α+ β + 1

Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + α+ β + 1)k!
. (5.1.7)

If in addition, α, β ∈ Z≥0, then the Gamma functions can be expressed conveniently using a

factorial:

2α+β+1

2k + α+ β + 1

(α+ k)!(β + k)!

(α+ β + k)!k!
.
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6
Gibbs Phenomenon for Jacobi Polynomials

In this chapter we use the properties described in previous chapters to explore whether the

Gibbs phenomenon exists for the Jacobi polynomials in the approximation of a function with

one interior jump discontinuity. To make our computations easier, we use the sgn function

sgn(x) =

{
−1, −1 < x < 0

1, 0 < x < 1

which is discontinuous at x = 0. Note, the sgn function is defined on all R − {0} but Jacobi

polynomials are orthogonal only on the interval [−1, 1] which is why we restrict the domain of

sgn.

6.1 Jacobi Expansion

In order to approximate the sgn function with Jacobi polynomials, we first define the Jacobi

Series approximation of an arbitrary function u as follows:

π(α,β)(u)(x) =

∞∑
k=0

û
(α,β)
k P

(α,β)
k (x) (6.1.1)

where P
(α,β)
k (x) is the k-th Jacobi polynomial evaluated at x and û

(α,β)
k are the Jacobi coefficients

defined by orthogonal projection
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û
(α,β)
k =

〈
u, P

(α,β)
k

〉
(α,β)

‖P (α,β)
k ‖2

. (6.1.2)

Remark 6.1.1. Going forward we remove the subscript (α, β), but
〈
u, P

(α,β)
k

〉
implies an inner

product with respect to (α, β). Namely,〈
u, P

(α,β)
k

〉
:=

∫ 1

−1
uP

(α,β)
k w(α,β)(x)dx.

Note, once again we can visualize this approximation as an orthogonal projection of a function u

in the vector space of integrable functions onto the subspace spanned by the Jacobi polynomials

{P (α,β)
n (x)}∞n=1 shown in Figure 6.1.1.

π
(α,β)
n (u)(x)

u

P
(α,β)
n

J

Figure 6.1.1. The orthogonal projection of a function, u, in the vector space of integrable functions onto

the subspace J spanned by {P (α,β)
n (x)}∞n=1.

We can approximate the infinite series by an N -truncated one:

π(α,β)
n (u)(x) =

n∑
k=0

û
(α,β)
k P

(α,β)
k (x). (6.1.3)

Now, we can set u = sgn(x) and begin setting up our approximation for the square wave.

π(α,β)
n (sgn)(x) =

n∑
k=0

ŝgnP
(α,β)
k (x). (6.1.4)

By (6.1.2),

ŝgn
(α,β)
k =

〈
sgn(x), P

(α,β)
k

〉
‖P (α,β)

k ‖2
(6.1.5)

We begin by calculating the norm using Definition 3.1.2

‖P (α,β)
k ‖2 =

√〈
P

(α,β)
k , P

(α,β)
k

〉2

=
〈
P

(α,β)
k , P

(α,β)
k

〉
=

∫ 1

−1
w(α,β)(x)(P

(α,β)
k )2dx
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where w(α,β)(x) is the weight function for Jacobi polynomials and thus w(α,β)(x) = (1−x)α(1−

x)β. Substituting we have,

‖P (α,β)
k ‖2 =

∫ 1

−1
(1− x)α(1− x)β(P

(α,β)
k )2dx

Note, this is the same integral in Theorem 5.1.5, and by (5.1.7) we have

‖P (α,β)
k ‖2 =

2α+β+1

2k + α+ β + 1

(k + α)!(k + β)!

(k + α+ β)!k!

where both α, β ∈ Z>−1.

Remark 6.1.2. If a, b 6= Z we replace the factorials with Γ functions defined in Chapter 3, but

we still require α, β ∈ Z>−1.

Then, we calculate the inner product
〈

sgn(x), P
(α,β)
k

〉
:

〈
sgn(x), P

(α,β)
k

〉
=

∫ 1

−1
sgn(x)P

(α,β)
k (x)(1− x)α(1 + x)βdx

=

∫ 0

−1
(−1)P

(α,β)
k (x)(1− x)α(1 + x)βdx+

∫ 1

0
(1)P

(α,β)
k (x)(1− x)α(1 + x)βdx

In order to calculate this integral, we use the differential equation defined in Theorem 5.1.1

which states that:

d

dx

[
w(α+1,β+1)(x)

d

dx

(
P

(α,β)
k (x)

)]
+ k(k + α+ β + 1)w(α,β)P

(α,β)
k = 0. (6.1.6)

It follows, by the Fundamental Theorem of Calculus integrating through gives us:

w(α+1,β+1)(x)
d

dx

(
P

(α,β)
k (x)

)
+ k(k + α+ β + 1)

∫
w(α,β)P

(α,β)
k dx =

∫
0

k(k + α+ β + 1)

∫
w(α,β)P

(α,β)
k dx = −w(α+1,β+1)(x)

d

dx

(
P

(α,β)
k (x)

)
+ C∫

w(α,β)P
(α,β)
k dx = − w(α+1,β+1)(x)

k(k + α+ β + 1)

d

dx

(
P

(α,β)
k (x)

)
+ C.

From (5.1.3) we know

d

dx

(
P

(α,β)
k (x)

)
=
α+ β + k + 1

2
P

(α+1,β+1)
k−1 (x) (6.1.7)
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and thus we have:∫
(1− x)α(1 + x)βP

(α,β)
k (x)dx = − w(α+1,β+1)(x)

k(k + α+ β + 1)

α+ β + k + 1

2
P

(α+1,β+1)
k−1 (x) + C (6.1.8)

= −w
(α+1,β+1)(x)

2k
P

(α+1,β+1)
k−1 (x) + C. (6.1.9)

Returning to our set up for
〈

sgn(x), P
(α,β)
k

〉
we have

〈
sgn(x), P

(α,β)
k

〉
= −

∫ 0

−1
P

(α,β)
k (x)(1− x)α(1 + x)βdx+

∫ 1

0
P

(α,β)
k (x)(1− x)α(1 + x)βdx

Using (6.1.8), we evaluate each integral.∫ 0

−1
P

(α,β)
k (x)(1− x)α(1 + x)βdx = −w

(α+1,β+1)(0)

2k
P

(α+1,β+1)
k−1 (0)−

(
−w

(α+1,β+1)(−1)

2k
P

(α+1,β+1)
k−1 (−1)

)

= − 1

2k
P

(α+1,β+1)
k−1 (0)−

(
− 0

2k
P

(α+1,β+1)
k−1 (−1)

)
= −

P
(α+1,β+1)
k−1 (0)

2k
.

Similarly,

∫ 1

0
P

(α,β)
k (x)(1− x)α(1 + x)βdx = −w

(α+1,β+1)(1)

2k
P

(α+1,β+1)
k−1 (1)−

(
−w

(α+1,β+1)(0)

2k
P

(α+1,β+1)
k−1 (0)

)

= − 0

2k
P

(α+1,β+1)
k−1 (1)−

(
− 1

2k
P

(α+1,β+1)
k−1 (0)

)
=
P

(α+1,β+1)
k−1 (0)

2k
.

Therefore,

〈
sgn(x), P

(α,β)
k

〉
dx = −

(
P

(α+1,β+1)
k−1 (0)

2k

)
+
P

(α+1,β+1)
k−1 (0)

2k

=
P

(α+1,β+1)
k−1 (0)

k
.

Using (6.1.5), we get an explicit expression for the Jacobi Coefficients of our function,

ŝgn
(α,β)
k =

P
(α+1,β+1)
k−1 (0)

k
· (2k + α+ β + 1)(k + α+ β)!k!

2α+β+1(k + α)!(k + β)!

=
(2k + α+ β + 1)(k + α+ β)!(k − 1)!

2α+β+1(k + α)!(k + β)!
P

(α+1,β+1)
k−1 (0). (6.1.10)
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Substituting back into 6.1.4

π(α,β)
n (sgn)(x) =

N∑
k=0

(2k + α+ β + 1)(k + α+ β)!(k − 1)!

2α+β+1(k + α)!(k + β)!
P

(α+1,β+1)
k−1 (0)P

(α,β)
k (x).

Notice when k = 0 we have P0−1(0) = 0 trivially. Thus, our sum begins at k = 1

π(α,β)
n (sgn)(x) =

N∑
k=1

(2k + α+ β + 1)(k + α+ β)!(k − 1)!

2α+β+1(k + α)!(k + β)!
P

(α+1,β+1)
k−1 (0)P

(α,β)
k (x). (6.1.11)

At this point, we can compute this sum for any n and any (α, β). Using Desmos, we show two

plots below.

(a) (b)

Figure 6.1.2. Jacobi polynomial approximation for square wave for (α, β) = (2, 5) and (a) n = 10 and (b)
n = 20.

Notice, when α 6= β (which would yield a Gegenbauer polynomial if α = β), the approximating

function is no longer passes through the origin. However, there is still an overshoot and an

undershoot but since the approximating function is not odd, the x-coordinate of the undershoot

and overshoot are not centered around 0. Also, as n increases, both the overshoot and undershoot

approach the point of discontinuity, which is in line with the classical Gibbs phenomenon. When

looking at the difference between the smallest positive critical point and the biggest negative

critical point from the y-intercept, we find that we do in fact have a Gibbs constant, and in

particular we get closer to γ as n increases. This is shown in Figure 6.1.3.
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Remark 6.1.3. Interestingly enough, when |α − β| = 1 the x-coordinate of the overshoot and

undershoot are the same in magnitude for all n. On the other hand, for |α − β| > 1, where

α, β ∈ Z > −1 the magnitude of x-coordinate of the overshoot and undershoot approaches the

same value as n gets bigger. Both of these phenomena can be visualized using the Desmos graph

here.

(a) (b)

Figure 6.1.3. Difference between the smallest positive critical point and the biggest negative critical point
divided by two for (α, β) = (2, 5) and (a) n = 10 is ≈ 1.209 and (b) n = 20 is ≈ 0.188.

Remark 6.1.4. We also find an interesting result when checking where π
(α,β)
n crosses the y-axis

is for specific α, β. In particular, as neven → ∞, the y-intercepts decrease monotonically, and

as nodd → ∞, the y-intercepts increase monotonically. Since both sequences are bounded and

monotone, we expect they converge to the same value as n→∞. The following PARI code can

be used to observe this behavior up to n = 300:

P(n,a,b,x) = sum(j=0,n,binomial(n+a,n-j)*binomial(n+b,j)*((x-1)/2)^j

*((x+1)/2)^(n-j));

S(k,a,b) = P(k-1,a+1,b+1,0)*(2*k+a+b+1)*(k+a+b)!*(k-1)!/((2^(1+b+a))

*(k+a)!*(k+b)!);

PI(n,a,b,x) = sum(k=1,n,S(k,a,b)*P(k,a,b,x));

https://www.desmos.com/calculator/ds0deufq0c
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yINT(n,a,b) = 1.0*PI(n,a,b,0); #multiplying by 1.0 for decimal notation.

for(n-1,300, print(n, " ", yINT(n,a,b))); #user must input a and b.

6.2 Calculation of the Gibbs Constant

In this section, we work out a more direct formula to calculate the critical points of π
(α,β)
n (sgn)(x);

specifically, the smallest positive critical point and the largest negative. To obtain them, we first

work out an alternative expression for π
(α,β)
n (sgn)(x) that is more amenable to computation,

using the Christoffel-Darboux identity defined by Theorem 4.1.5.

Lemma 6.2.1. With all notation as described in the previous section, we have

d

dx

(
π(α,β)
n (sgn)(x)

)
= d(α,β)

n

(
P

(α+1,β+1)
n (0)P

(α+1,β+1)
n+1 (x)− P (α+1,β+1)

n+1 (0)P
(α+1,β+1)
n (x)

x

)
,

(6.2.1)

where

d(α,β)
n =

4(n+ 1)(n+ α+ β + 3)

(2n+ α+ β + 3)(2n+ α+ β + 4)‖P (α+1,β+1)
n ‖2

.

Proof. Recall that π
(α,β)
n (sgn)(x) =

∑n
k=1 ŝgn

(α,β)
k P

(α,β)
k (x), where

ŝgn
(α,β)
k =

P
(α+1,β+1)
k−1 (0)

‖P (α,β)
k ‖2k

.

We begin the sum at k = 1 because for k = 0, ŝgn
(α,β)
k P

(α,β)
k (x) = 0. Also, by definition we have

π(α,β)
n (sgn)(x) =

n∑
k=0

ŝgn(x)P
(α,β)
k (x)

=
n∑
k=0

1

‖P (α,β)
k (x)‖2

P
(α+1,β+1)
k−1 (0)

k
P

(α,β)
k (x).

Now, taking the derivative term-by-term we get

d

dx
(π(α,β)
n (sgn)(x)) =

d

dx

n∑
k=0

1

‖P (α,β)
k (x)‖2

P
(α+1,β+1)
k−1 (0)

k
P

(α,β)
k (x)

=
n∑
k=0

1

‖P (α,β)
k (x)‖2

P
(α+1,β+1)
k−1 (0)

k

d

dx
P

(α,β)
k (x).
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By (5.1.3),

=
n∑
k=0

1

‖P (α,β)
k (x)‖2

P
(α+1,β+1)
k−1 (0)

k

α+ β + k + 1

2
P

(α+1,β+1)
k−1 (x)

=
n∑
k=0

α+ β + k + 1

2k‖P (α,β)
k (x)‖2

P
(α+1,β+1)
k−1 (0)P

(α+1,β+1)
k−1 (x).

Recall that

‖P (α,β)
k (x)‖2 =

2α+β+1

2k + α+ β + 1

(k + α)!(k + β)!

(k + α+ β)!k!

and thus

1

‖P (α,β)
k (x)‖2

1

k

α+ β + k + 1

2
=

2k + α+ β + 1

2α+β+1

(k + α+ β)!k!

(k + α)!(k + β)!

1

k

α+ β + k + 1

2

=
(2k + α+ β + 1)(α+ β + k + 1)!(k − 1)!

(2α+β+2)(k + α)!(k + β)!
.

We notice that this expression is almost equivalent to the norm of the k − 1st polynomial.

1

‖P (α+1,β+1)
k−1 (x)‖2

=
(2(k − 1) + α+ 1 + β + 1 + 1)(k − 1 + α+ 1 + β + 1)!(k − 1)!

(2α+1+β+1+1)(k − 1 + α+ 1)!(k − 1 + β + 1)!

=
(2k − 2 + α+ β + 3)(k + α+ β + 1)!(k − 1)!

(2α+β+3)(k + α)!(k + β)!

=
(2k + α+ β + 1)(k + α+ β + 1)!(k − 1)!

(2α+β+3)(k + α)!(k + β)!
.

In particular, we establish

1

‖P (α+1,β+1)
k−1 (x)‖2

=

(
α+ β + k + 1

4k

)
1

‖P (α,β)
k (x)‖2

. (6.2.2)

Then substituting back into our derivative equation we have

d

dx
(π(α,β)
n (sgn)(x)) =

n∑
k=1

P
(α+1,β+1)
k−1 (0)

1
2‖P

(α+1,β+1)
k−1 ‖2k

P
(α+1,β+1)
k−1 (x)

= 2
n∑
k=1

P
(α+1,β+1)
k−1 (x)P

(α+1,β+1)
k−1 (0)

‖P (α+1,β+1)
k−1 ‖2

At this point, we can use the Christoffel-Darboux dentity defined by Theorem 4.1.5. Then, our

sum becomes

n∑
k=0

2
P

(α+1,β+1)
k−1 (x)P

(α+1,β+1)
k−1 (0)

‖P (α+1,β+1)
k−1 ‖P (α+1,β+1)

k−1 ‖
= 2

kn
cnkn+1

P
(α+1,β+1)
N (x)P

(α+1,β+1)
N−1 (0)− P (α+1,β+1)

N (0)P
(α+1,β+1)
N−1 (x)

x
.

(6.2.3)
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Recall that kn is the leading coefficient of pn(x) defined by Theorem 5.1.4:

kn =
(n+ α+ β + 1)n

2nn!

thus kn’s associated with Qn(x) are

kn =
(n+ α+ 1 + β + 1 + 1)n

2nn!
(6.2.4)

kn+1 =
(n+ 1 + α+ 1 + β + 1 + 1)n+1

2n+1(n+ 1)!
. (6.2.5)

For ease of computation we drop the norms and introduce them at the end again. Then 2kn
kn+1

becomes

2kn
kn+1

=
(n+ α+ β + 3)n

2nn!
· 2n+1(n+ 1)!

(n+ α+ β + 4)n+1

=
4(n+ α+ β + 3)n(n+ 1)

(n+ α+ β + 4)n+1
.

By definition of the Pochhamer symbol,

(n+ α+ β + 3)n
(n+ α+ β + 4)n+1

=
(n+ α+ β + 3)(n+ α+ β + 4) . . . (n+ α+ β + 3 + n− 1)

(n+ α+ β + 4)(n+ α+ β + 5) . . . (n+ α+ β + 4 + n)

=
(n+ α+ β + 3)

(2n+ α+ β + 3)(2n+ α+ β + 4)
.

cn is the orthogonality constant defined by (5.1.7):

cn = ‖P (α+1,β+1)
n ‖2

and consequently,

1

‖P (α+1,β+1)
n ‖2

=
(2 + n+ α+ 1 + β + 1 + 1)

2α+1+β+1+1

(n+ α+ 1 + β + 1)!

(n+ α+ 1)!(n+ β + 1)!

=
(2n+ α+ β + 3)

2α+β+3
· (n+ α+ β + 2)!

(n+ α+ 1)!(n+ β + 1)!
.

However, for the purposes of our calculations we leave cn = ‖P (α+1,β+1)
n ‖2 and thus we have

2kn
cnkn+1

=
4(n+ 1)(n+ α+ β + 3)

(2n+ α+ β + 3)(2n+ α+ β + 4)
· 1

‖P (α+1,β+1)
n ‖2

.

Returning to our sum in (6.2.3) we have

2

n∑
k=0

P
(α+1,β+1)
k−1 (x)P

(α+1,β+1)
k−1 (0)

‖P (α+1,β+1)
k−1 ‖P (α+1,β+1)

k−1 ‖
=

2kN
cNkN+1

(
P

(α+1,β+1)
N (x)P

(α+1,β+1)
N−1 (0)− P (α+1,β+1)

N (0)P
(α+1,β+1)
N−1 (x)

x

)
.
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We conclude that

d

dx
(π(α,β)
n (sgn)(x)) = d(α,β)

n

(
P

(α+1,β+1)
n (0)P

(α+1,β+1)
n+1 (x)− P (α+1,β+1)

n+1 (0)P
(α+1,β+1)
n (x)

x

)
,

(6.2.6)

where

d(α,β)
n =

4(n+ 1)(n+ α+ β + 3)

(2n+ α+ β + 3)(2n+ α+ β + 4)‖P (α+1,β+1)
n ‖2

. (6.2.7)

Remark 6.2.2. Observe that

P (α+1,β+1)
n (0)P

(α+1,β+1)
n+1 (x)− P (α+1,β+1)

n+1 (0)P (α+1,β+1)
n (x)

vanishes when x = 0, hence is divisible by x. We will need this observation when computing an

integral expression for π
(α,β)
N (sgn)(x).

6.2.1 Limit Formula

Because it will be useful to us in our proofs below, we work in this subsection to study the

value of π
(α,β)
n (sgn)(0) and its behavior as n→∞. Since π

(α,β)
n (sgn)(x) is a linear combination

of polynomials, and thus a polynomial itself, it is clearly defined at x = 0.

Let

F (α,β)
n (x) = P (α+1,β+1)

n (0)P
(α+1,β+1)
n+1 (x)− P (α+1,β+1)

n+1 (0)P (α+1,β+1)
n (x). (6.2.8)

Observe that Fn has degree n, so that after division by x and integration, the right hand side is

a polynomial of degree n. (6.2.6) gives us that

π(α,β)
n (sgn)(z) =

∫ z

0
d(α,β)
n

F
(α,β)
n (x)

x
dx, (6.2.9)

where z is the smallest positive zero of d
dx(π

(α,β)
n ).

Lemma 6.2.3. With all notation as above, the limit limn→∞ π
(α,β)
n (sgn)(0) exists. We denote

it by λ(α,β).
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Proof Overview Substituting directly into (6.2.9) we have

π(α,β)
n (sgn)(0) = lim

x→0+

∫ x

0
d(α,β)
n

F
(α,β)
n (x)

x
dx.

However, when α 6= β there exists no simple equation for P
(α,β)
n (0) for the Jacobi polynomials,

and consequently we end up with an integrand we do not understand. However, from Remark

6.1.4 we know that as n → ∞, by the boundedness and monotonicity of even and odd n’s we

have a convergence.

Definition 6.2.4. For a fixed N , we define g
(α,β)
N to be the function that associates to (α, β) to

be the smallest positive zero of d
dx

(
π

(α,β)
N (sgn)(x)

)
and define h

(α,β)
N that associates to (α, β) to

be the biggest negative zero of d
dx

(
π

(α,β)
N (sgn)(x)

)
.

Using this definition, we define

G
(α,β)
N = π

(α,β)
N (sgn)(g

(α,β)
N )− π(α,β)

N (sgn)(h
(α,β)
N ), (6.2.10)

and the Gibbs constant G (α,β) is defined as the limit of G
(α,β)
N as N →∞:

G (α,β) = lim
N→∞

G
(α,β)
N . (6.2.11)

(a) (b)

Figure 6.2.1. The smallest positive zero g
(α,β)
N and biggest negative zero h

(α,β)
N and G

(α,β)
N as defined in

d=Definition 6.2.10.
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Theorem 6.2.5. For all α, β > −1,

G (α,β) = G (0,0) = 2

∫ π

0

sin t

t
dt = γ. (6.2.12)

Theorem 6.2.5 tells us two things. First, that the Gibbs Constant exists for all α, β > −1,

and second that it is the same for all values of α, β. In order to prove this, we require two

lemmas defined in [14] for which the proofs are identical to those provided for the Gegenbauer

polynomials, except every instance of λ is replaced by (α, β).

Lemma 6.2.6. For n even, n→ +∞ and for all (α, β) > −1

lim
n even→+∞

n
(π

2
− θ(α,β)

[n/2],n

)
=
π

2
.

For n odd, n→ +∞ and for all (α, β) > −1

lim
n odd→+∞

n
(π

2
− θ(α,β)

[n/2],n

)
= π.

Note that x
(α,β)
[n/2],n = cos θ

(α,β)
[n/2],n is the smallest positive zero of P

(α,β)
n .

Lemma 6.2.7. For (α, β) > −1 and u ∈ R,

lim
n→+∞

(−1)nn1−(α,β)P
(α,β)
2n+1

(
sin

u

2n

)
=

1

Γ(α, β)
sinu

Remark 6.2.8. Comments on Lemma 6.2.6. The purpose of this lemma is to provide a transla-

tion of the critical points of π
(α,β)
N (sgn)(x) into values in the set {cos(θ

(α,β)
i )}. By [11, Theorem

4.0.1], we know that π
(α,β)
N (sgn)(x) has N real critical points, all between −1 and 1. Define ξ

(α,β)
i

as the ith critical point for a fixed α, β

−1 < ξ
(α,β)
1 , ξ

(α,β)
2 , . . . , ξ

(α,β)
N < 1.

Then, each ξ
(α,β)
i = cos(θ

(α,β)
i ) where θ

(α,β)
i ∈ (0, π). It follows that the smallest positive zero

g
(α,β)
N is associated with the value of cos(θ

(α,β)
i ) less than π

2 that corresponds to a critical point.

Likewise, the largest negative zero, h
(α,β)
N is associated with the value of cos(θ

(α,β)
i ) greater than

π
2 that corresponds to a critical point, as shown in Figure 6.2.2.
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π
2

π

1

g
(α,β)
n

h
(α,β)
n

-1

θ(α,β)

ξ(α,β)

Figure 6.2.2. Translation of critical points, ξ
(α,β)
i into angles, cos(θ

(α,β)
i ), where g

(α,β)
n is the smallest

positive zero and h
(α,β)
n is the largest negative zero.

We now return to the proof of Theorem 6.2.5.

Proof. From (6.2.6) and the fact that g
(α,β)
N is the smallest positive zero we deduce

π(α,β)
n (sgn)(g

(α,β)
N (α, β)) =

∫ g
(α,β)
N (α,β)

0
d(α,β)
n F (α,β)

n (x)dx.

For (α, β) = (0, 0), the Jacobi polynomials collapse into the Legendre Polynomials, which is a

special case worked out in [14, p. 12].

We complete our proof by checking general case, (α, β) ∈ [−1, 1], we define g
(α,β)
N =

cos[θ
(α+1,β+1)
[N/2],N ] and let x = sin θ then

∫ g
(α,β)
N (α,β)

0

F
(α,β)
n (x)

x
dx =

∫ π
2
−θ(α+1,β+1)

[N/2],N

0

F
(α,β)
n (sin θ)

sin θ
cos θdθ.

Note the upper and lower bound change accordingly with the change of variables. In particular

when sin θ = 0 then θ = 0 and when sin θ = g
(α,β)
N , θ = π

2 − θ
(α+1,β+1)
[N/2],N by Lemma 6.2.6. We

perform another change of variables by letting θ = u
2(N+1) . Then, dθ = du

2(N+1) and we have

∫ g
(α,β)
N

0

F
(α,β)
n (x)

x
dx =

∫ φ
(α,β)
N

0

F
(α,β)
n (sin

(
u

2(N+1)

)
)

2(N + 1) sin
(

u
2(N+1)

) cos

(
u

2(N + 1)

)
du. (6.2.13)

The lower bound remains the same by definition. However, by Lemma 6.2.6 the upper bound:

φ
(α,β)
N = 2(N + 1)

(π
2
− θ(α+1,β+1)

[N/2],N

)
(6.2.14)
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goes to π as N →∞. The cosine term goes to 1 as N →∞, since u
2(N+1) → 0. As N →∞, the

term in the denominator goes to u because

2(N + 1) sin

(
u

2(N + 1)

)
=

sin
(

u
2(N+1)

)
1

2(N+1)

=
sin
(

u
2(N+1)

)
u

u2(N+1)

= u

sin
(

u
2(N+1)

)
u

2(N+1)

 .

Recall limx→∞
sinx
x = 1. Thus,

lim
N→∞

u

sin
(

u
2(N+1)

)
u

2(N+1)

 = u lim
N→∞

sin
(

u
2(N+1)

)
u

2(N+1)

= u.

Refer to [5, Section 7.32] for identities of Jacobi polynomials with trigonometric arguments. An

argument analogous to [14] finishes the argument. That is, we combine (6.2.7) and Lemma 6.2.7

and get

lim
n→∞

d(α,β)
n F (α,β)

n

(
sin

(
u

2(N + 1)

))
=

2

π
sinu. (6.2.15)

Substituting this back into (6.2.13) in we have:

lim
n→∞

π(α,β)
n (sgn)(z) =

2

π

∫ π

0

sinu

u
du (6.2.16)

which is precisely our constant γ defined in the Introduction. This concludes our proof.
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We have computationally shown that all Jacobi expansions with interior jump discontinuities

have a Gibbs constant and we have provided a framework for analytically proving this. It remains

to prove the behaviour of the x-coordinate of the overshoot and undershoot as n gets bigger,

described in Remark 6.1.3. It also remains to prove that the limit limn→+∞ π
(α,β)
n (sgn)(0) exists,

described in Lemma 6.2.3. Both of these claims have been shown computationally.

One family of Jacobi polynomials we have yet to fully understand is the Laguerre family which

is a Jacobi polynomial for α = ∞ and β = ∞. In particular, Laguerre polynomials are orthog-

onal over [0,∞) with respect to the weight function, wα(x) = xαe−x. We predict the Gibbs

phenomenon will also hold for these polynomials, but this has yet to be shown analytically.

As we consider other types of approximations, a question that arises is whether similar phe-

nomenon exist for approximating continuous functions with discontinuous functions. An exam-

ple of this would be approximating sine and cosine functions with wavelets. Unlike considering

a Riemann sum under a curve, we would select a specific basis and take linear combinations to

minimize the discrepancies between the two curves. It is possible that the sum of the overshoots

and undershoots in this approximation sum up to γ. Ultimately, our findings and discussions

demonstrate that there are still many questions surrounding the Gibbs phenomenon suitable for

research projects and further investigations.
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