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ABSTRACT

The Language Lion is an Android application that teaches basic Dutch to English speakers. While

mobile language learning has increased exponentially in popularity, course creation is still labor-

intensive. By contrast, the Language Lion uses a map of Dutch to English lexemes, a context-free

grammar, and a modified version of the SimpleNLG sentence realiser to automatically generate

semi-random translation exercises for the student. Each component is evaluated individually to

find and analyze the particular roadblocks in automated exercise generation for mobile language

learning.

Keywords: natural language generation, exercise generation, mobile language learning, student

modeling, NT2, Android, Kotlin
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Chapter 1

Introduction

The aim of this Senior Project is to build an Android application that allows a speaker of English

to learn basic Dutch, through automatically generated translation exercises.

Over the past decade, the rise of smartphones has created the field of Mobile Language Learning

(MLL). Applications like Duolingo, Rosetta Stone, Memrise, and Babbel have millions of users

trying to learn the basics of a new language. While their applications are highly regarded, they are

also very labor-intensive to create, as most courses are built completely manually, either by hired

experts or community volunteers. As such, most applications also rely on aggressive advertising

or expensive subscription fees to maintain themselves.

Meanwhile, research into natural language processing is thriving. Voice assistants are coupled

with all major operating systems, screen readers have become very sophisticated, and a world

without machine translation seems unthinkable. While many are understandably apprehensive

about handing over control of one’s education to algorithms as well, it is a logical next step

for mobile language learning to explore the merits of automation. Education has always been a

balancing act to provide the most personalization with the least resources, and automated exercise

generation allows for the unique possibility to tailor lessons to the individual, rather than forcing

many through a generalized curriculum.

This project offers a unique approach to language learning by generating sentences in two
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languages at the same time, by combining a novel method of encoding semantic concepts with

a custom context-free grammar. This language generation library is used in an application that

teaches Dutch, up to the level of basic ordering in a restaurant. Each component of the app is

thoroughly evaluated, to make specific recommendations for the future of this field of research.



Chapter 2

Background

There are many different moving parts to designing and building a language learning app. This

chapter begins with a survey of modern language learning applications and a general overview of

other resources that teach Dutch, after which it will dive into different approaches to generating

language learning exercises and tracking student progress.

2.1 Mobile language learning

Research into computer-assisted language learning originated during the Cold War, when American

intelligence agencies started to look into efficient ways to teach their agents Russian (Beatty, 2010).

While an area of consistent academic interest, its use amongst the general population only exploded

with the rise of smartphones and big data, during the 2010s, as the mobile form factor allowed

for easy access to casual language learning. Nowadays, searching for Mobile Language Learning

(MLL) applications will return dozens of results, with many different approaches that are worth

taking a look at.

Claiming over 300 million active users, Duolingo is one of the most popular MLL apps (Duolingo,

2020). Duolingo offers a wide variety of languages, including Dutch, and divides its courses into

themed sections such as “Food” or “Animals” that are themselves divided in 1-8 lessons. When

completing all the lessons in a section, the next sections are unlocked, until the student completes

3
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Figure 2.1 An exercise in Duolingo. Figure 2.2 An exercise in Memrise.

the course. Each lesson is built around three types of exercises: translating sentences directly,

building sentences from individual words, and dictation (see Figure 2.1). A few of the most popu-

lar language courses have extra features, such as longer stories to read and answer questions about,

and podcasts aimed at language learners. These features are not available for Dutch, however. All

lessons in Duolingo are completely free to use, but a paid subscription plan gives access to features

such as offline access.

Except for the most popular courses, which are curated by Duolingo employees, all content

on the app is written by volunteers. Volunteers build courses by creating the themed sections,

writing sentences, and adding all their translations. This community-based approach has allowed

Duolingo to quickly scale to support many languages and users, although some languages have

struggled to attract and retain enough volunteers, such as courses for Finnish and Yiddish, which

have been in development for several years.

The MLL application Babbel takes a different approach. Babbel is a paid service that promises

courses built by experts in return (Lesson Nine GmbH, 2020). Compared to Duolingo, it offers a
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much more tailored approach to language learning, including exercises that try to simulate real-

life conversations and detailed explanations of pronunciation. In addition to the linear course,

the application includes a personalized “Review” section, which analyzes the student’s progress

and offers a new list of previously learned words to review each day. Rosetta Stone takes this

approach even further, in that it is relatively expensive, but provides a comprehensive set of

content (promising over 250 hours of curated Dutch lessons alone) and premium features such as

a voice recognition system that distinguishes between masculine, feminine, and child voices for

better accuracy (Rosetta Stone Ltd., 2020).

On the other end of the spectrum is an app like Memrise, which is almost completely based

on community content and focuses on learning words and short phrases (Memrise, 2020). Each

word or phrase goes through a series of seven exercises, becoming progressively harder, each one

visualized as a new stage in planting a seed that grows into a flower (Figure 2.2). While Memrise

therefore offers an impressive set of vocabulary, these words are always single entities, and never

combined into bigger exercises. More curated features, such as listening exercises and videos by

locals, can be accessed through a paid subscription.

Next to these relatively well-known applications, a myriad of other options exists, each with

their own differentiating feature. Busuu relies on its learners to check each other’s work, by having

them check the assignments of people that are learning their native language in-between their

own exercises (Busuu Ltd, 2020). Drops is a vocabulary training application that eschews typing

completely in favor of tapping or swiping the correct answers, and Lingvist has a Course Creator

mode which allows the student to enter what words they want to learn, and then picks relevant

exercises from its database (Drops, 2020; Lingvist, 2020).

As most of these rely on a paid subscription service to sustain themselves, there are very few

open-source MLL applications available. One relatively polished open-source alternative is 10,000

sentences, which has encoded 10,000 sentences in a number of languages and allows the student to

work through them (Krajina, 2020). Other open-source applications often take the form of more

traditional flashcard applications, which allow users to build a deck of cards that others can then
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use to practice. Compared to their closed-source counterparts, however, these applications are

usually more of a vocabulary training companion rather than a full-fledged language course.

While the popularity of the field cannot be denied, it is hard to establish the actual efficacy

of these applications, especially as compared to more traditional language learning settings such

as classroom education. Rosetta Stone, Duolingo, and Babbel have all commissioned researchers

to measure the effectiveness of their applications (Vesselinov, 2009; Vesselinov and Grego, 2012;

Vesselinov and Grego, 2016, respectively). Each of these studies were of the same form. A sample

of beginner-level learners was instructed to use the Spanish course of the app in question for a

set period of time; in the case of Rosetta Stone, they were limited to 55 hours, for the other two

apps, they were instructed to use the application “often” for two weeks. Before and after the study

they took WebCAPE, a placement test commonly used in college language courses, to measure

their performance. In each of the cases, the researchers reported an increase in test scores roughly

equivalent to one semester of an introductory college-level language class, for Rosetta Stone after

55 hours, for Duolingo after 34 hours, and for Babbel after 21 hours of using the application. Both

Duolingo and Babbel prominently feature these numbers on their web pages and in their marketing.

While these studies seem to show success, they are also directly commissioned by the companies

that built the courses and were only focused on one single language. More independent research

is few and far between, and often quickly outdated, as was for example a study by Chinnery,

which surveyed the possibilities of iPods and PDAs (2004). Steel (2012) did not instruct any

group of participants to use a particular MLL application, but rather surveyed close to 600 foreign

language students in general. 56% of her respondents reported using a language learning app

to complement their university courses, and students reported the ability to practice “anywhere

and anytime” as the main benefit of using these applications. “Many” students reported using

a variety of language-related applications at the same time, including dictionaries, translators,

games, conjugation trainers, and flashcard apps. Steel hypothesizes that MLL is mainly beneficial

as a complement to classroom learning, rather than replacing it entirely.

Stockwell and Hubbard (2013) surveyed the entire field of Mobile-Assisted Language Learning
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(MALL; “assisted” indicating that includes not only language courses, but also companion apps

such as dictionaries and flashcard apps), to identify common pitfalls and formulate a comprehensive

set of principles that serve as guidelines for MALL apps to adhere to. Their main principle

is to “both distinguish the affordances and limitations of the mobile device and [those] of the

environment in which the device will be used in light of the learning target”. Their other principles

illustrate what is meant by this. Multi-tasking and environmental distractions should be kept to a

minimum, to allow the student to concentrate on one task at a time. Push notifications, to remind

users of their daily practice, are beneficial, but should respect boundaries1. Developers should

strive to maintain equity and design their applications to still be usable if the user has limited

visual acuity, manual dexterity, internet connectivity, or processing power. The goal of the tasks

should be easy to understand, and users should be provided with proper guidance and training

when using the app. Tasks should be kept as short and succinct as possible, and the application

should properly accommodate other stakeholders in the language learning process as well. For

example, when used in a classroom setting, Duolingo provides tools for teachers to check their

students’ progress.

Each of these recommendations was based on a thorough review of the literature, and together

they form one of the pillars of this project’s evaluation.

2.2 Teaching Dutch as a second language

Before exploring the more technical aspects of automated exercise generation, it is valuable to take

a broader look at how Dutch is taught outside of MLL.

There is a small choice of Dutch textbooks available. The default book for immigrants, Naar

Nederland (“to the Netherlands”), is developed by the Dutch government and available free of

1Duolingo, in particular, is known for using its expressive owl-mascot Duo to pressure its users into resuming

practice, by for example showing a cartoon of the owl crying if the user skips a day. On social media, users tend

to joke that they are scared of the owl, often reacting to Duolingo’s posts with comments such as “please let my

family go, I promise I will return to practice” and similar.
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charge from their website (Ministerie van Sociale Zaken en Werkgelegenheid, 2015). It is designed

to prepare any immigrants for the Basic Civil Integration Examination, which is a required test

for anyone who wants to become a Dutch citizen, and includes versions for almost 40 source

languages, including two ‘cleaned’ versions that omit stories on for example homosexuality and

topless sunbathing, for countries in which possession of books describing these themes is forbidden.

Commercial textbooks are available for a variety of more specific audiences. De Opmaat is

targeted at college students and is used at universities, De Delftse Methode is aimed at learners that

have never finished their secondary education, and DigLin+ is tailored to people that don’t know

the Latin alphabet (Boom Uitgevers, 2020). While differing in audience and teaching strategies,

these books are all maintained by the same publisher, and follow a similar structure of basing their

content around a textbook with additional exercises available on a companion website.

As Dutch is a relatively small language, academic research on teaching Dutch as a second

language (NT2 in Dutch) is rare. In general, Dutch is considered to be a hard language to learn.

In the first large-scale analysis of NT2 learners, Schepens (2015) analyzed the results of 50,000

participants of the Basic Civil Integration Examination between 1995 and 2010, to investigate

the role of linguistic distance between Dutch and the participants’ native and second languages

in their test performances. While his main conclusions might seem intuitive—speakers of other

Germanic languages score higher on Dutch tests than speakers of unrelated languages, such as

Chinese or Arabic—his research surfaced a lot of additional information. Kuikens (2017) uses

this data to look into the notion that Dutch grammar is very difficult, and while he notes that

some aspects of Dutch grammar are relatively simple compared to other languages, such as the

absence of tonality and the erosion of cases, there are many features that NT2 learners struggle

with regardless of their background. Specifically, he singles out four culprits. Definite articles in

Dutch are either “de” or “het” based on the grammatical gender of the following noun, but as

nothing in Dutch morphology signals a noun’s gender, this must be learned by heart. Compound

nouns in Dutch, like German, are not separated by spaces, and can get very complex (look at for

example aansprakelijkheidsverzekeringsuitkering, or “liability insurance payment”). Dutch word
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order is seen as confusing as well, as clause structure will change from subject-verb-object in main

clauses to subject-object-verb in subordinate clauses, and the placement of verbs in the perfect

tense is fluid. Finally, there is er, the Dutch equivalent of “there”, which is inserted in many

idiomatic expressions, often without a clear clause.

Blom, one of the original authors of De Delftse Methode, analyzed his students’ performance

when given different types of grammatical explanations, and concludes that Dutch grammar is

often explained in overly complicated ways, too (1997). While Dutch grammar is full of exceptions

and morphophonological rules, he argues that instead of trying to teach the linguistic underpin-

nings of those rules, students are better served not being taught any explicit rules at all, and

instead inferring them themselves from examples, making this the pedagogical ideology behind his

textbook.

2.3 Natural language generation

Natural Language Generation (NLG) is the study of artificially constructing human language.

Traditionally, NLG has been divided into three distinct parts: content determination, sentence

planning, and realization (Reiter & Dale, 1997). Content determination is the process of deter-

mining what should be communicated to the user and laying out the rhetorical structure of the

document in which the information will be presented. After this, the sentence planning stage

divides the content into individual sentences, and decides how those should be linked together,

using transition phrases and pronouns. Lastly, the realization phase generates each sentence using

correct syntax and interpunction.

In the context of a language learning application, the task of content determination is fulfilled

by the pedagogical module, detailed in the next section, and when generating individual exercises,

it is not necessary to link sentences together. The main challenge in automated language learning

is exercise realization, which needs to happen not just in one language, but in two languages

simultaneously, to generate both the question and the answer of an exercise.



10

While there is an abundance of research into NLG realization for English, the choice for Dutch

is severely limited. Academic research is often outdated (see Degand, 1993; Marsi, 1998) or focused

on a very specific problem, such as generating reports of football matches (Van der Lee, Krahmer,

& Wubben, 2017). The only modern, open-source realization engine that was found to support

both English and Dutch is SimpleNLG-NL (De Jong & Theune, 2018).

SimpleNLG-NL is a fork of SimpleNLG, which only supports English (Gatt & Reiter, 2009).

The library is written in Java, with ports available for C#, and multiple forks adding support

for multiple languages. It allows the user to specify a language and construct sentences in that

language by simply setting the different parts of speech. For example, when creating a clause

p, calling p.setSubject("he") and p.setVerb("walk") will output “He walks.”—complete with

capitalization and interpunction.

Sentences can be complicated by setting a variety of features. SimpleNLG-NL automates tasks

including inflection of verbs based on tense, voice, and their subject; placement of adjectives and

adverbs; handling of Dutch separable complex verbs (cp. “to run away” → “I run away” with

“wegrennen” → “ik ren weg”); placement of any complements; building conjunctions; building

prepositional phrases; and adding modifiers such as “by the way” to the front of the sentence. As

SimpleNLG-NL is itself based on SimpleNLG-EnFr, a fork adding support for French, support for

the French language is available as well.

SimpleNLG-NL currently also has some real limitations. First of all, testing showed that word

order is often incorrect if a passive, interrogative, or subordinate clause has many complements.

Secondly, whereas word order in Dutch is quite flexible, SimpleNLG-NL only ever generates one

sentence, even if more possibilities would be correct. Finally, the realizers for the different languages

are completely unrelated to one another and generating sentences in two languages simultaneously

is therefore not supported.

From here, two approaches can be taken. Either SimpleNLG-NL can be expanded with a

module that allows for simultaneous generation, or exercises are generated in one language and

a machine translation algorithm finds all different possible answers. A translation system could
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go one of two paths: a corpus-statistical approach, which uses a large corpus of data to build

probabilistic models that predict a sentence’s translation, or a strictly rule-based approach, which

defines rules for each exercise that can be given and how to translate it (Russell & Norvig, 2010).

While the corpus-statistical approach is not applicable to this situation, as answers need to be

generated with absolute certainty, a rule-based approach could technically work. However, it

would require a quadruple set of rules: one to generate English, one to generate Dutch, one to

generate English from Dutch, and one to generate Dutch from English. A purely NLG-based

system seems to be more elegant, and was pursued instead.

2.4 Automated exercise generation

While there have been no studies yet that use natural language generation to generate translation

exercises, a few recent projects have come close.

Possibly the most similar research has been by Gilbert and Keet (2018), who aimed to use

a NLG-based exercise generator for isiZulu. As isiZulu is a highly complex but severely under-

resourced language, this was one of the first efforts to build a sentence realizer for it. Their

system included support for a number of exercise types: building sentences from individual words

(akin to Duolingo in Figure 2.1), pluralizing and singularizing nouns, and conjugating verbs.

Each exercise was based around a randomly generated sentence of the pattern <noun><verb> or

<noun><verb><noun>, though the researchers did not achieve full accuracy for the three-word

sentences. Each exercise was completely in isiZulu, and translation to or from other languages was

not involved.

Burstein and Marcu (2005) built an application to help teachers generate translation exercises

from Arabic to English using machine translation. Their application allowed the teacher to specify a

specific grammatical construction they wanted exercises for, after which the system would scour two

large corpora of Arabic sentences for ones that matched the specification. A machine translation

algorithm then automatically generated translations for each sentence, and it was up to the teacher
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to select which ones to use and to manually correct the translation, if needed. The researchers

reported that their tool allowed teachers to generate exercises 2.6 times faster than without it.

Malafeev (2014) built a generator for open cloze exercises, which are fill-in-the-blank exercises

where the learner does not have multiple options, but rather has to come up with the missing

word by themselves. These exercises are popular in advanced language learning tests to examine

a student’s knowledge of idioms and collocations. While the algorithm was concluded to be “quite

effective”, many of these exercises needed curation by hand as well.

2.5 Student modeling

Generating exercises is only one half of the pedagogical process, however, and the other half is

tracking and acting on the student’s strengths, weaknesses, and general progress.

In memory research, it is a well-established fact that learning is more effective when the material

is divided up in smaller chunks over the course of several days, instead of cramming it all in one

long session (Baddeley & Longman, 1978). This type of learning is called spaced repetition practice

and the challenge remains to find out exactly when each item should be reviewed.

Lamenting that teachers left the study of vocabulary too much in the hands of the students,

Pimsleur (1967) jumpstarted research into spaced repetition practice by demonstrating that each

time the memory of a word is reconsolidated, it generally remains in memory for exponentially

longer than the time before. In the decades since, many attempts have been made at taking this

general schedule and making it more personal, taking into account both a learner’s profile and the

words’ individual features. For example, Atkinson (1972) compared four optimization strategies,

and settled on a Markov model to predict what word a learner should review next, and Bloom

and Shuell (1981) were the first to describe this effect in a classroom setting rather than a fully-

controlled study. A meta-analysis of 184 articles on spaced repetition practice by Cepeda et al.

(2006) showed decisively that spaced repetition shows benefits even regardless of the specific time

interval between reconsolidations, and that there seems to be a ceiling to the length of the interval,
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after which further increases have no more positive effect for the learner.

A modern system, named half-life regression, has been published by Duolingo (Settles &

Meeder, 2016). For each item, this algorithm calculates the probability that it will be correctly

recalled as a function of the item’s lag time and its half-life. The lag time is the time since the

item was last practiced, and the half-life is an approximation of the item’s strength in the learner’s

memory. It is assumed that the half-life increases exponentially with every review of the item,

weighed by the perceived complexity of an item. In other words, a difficult word that has not been

practiced much yet will have a much shorter half-life than an easy greeting that has been reviewed

a lot. When the lag time is equal to the half-life, the algorithm flags an item as ready for review.

Other research into student modeling has focused on intelligent error-detection systems that

give personalized feedback, usually grouped under the name of intelligent language tutoring sys-

tems, or ILTS. An early example by Heift (2001) implemented a system that could distinguish

between different types of syntactical errors across a variety of online German grammar exercise

types, and recommend specific exercises to its users based on the types of mistakes that they made.

While these natural language analysis engines have become increasingly complex over the past two

decades (see for example Amaral, Meurers, and Ziai, 2011), no non-commercial, research-based

ILTS for Dutch has been developed as of yet.





Chapter 3

Project Goals and Design

Having studied the different components of mobile language learning, the goal is now to build an

application that blends these together, in an experience that gives the user a highly personalized

set of language learning exercises that are generated automatically, but that are in quality indis-

criminable from those written by humans. This chapter looks at what such a product might aspire

to be: the goals for this project as it was initially conceived, early explorations of features and

visual design, and the pedagogical choices that were made. Chapter 4 will focus on the actual

implementations of these features over the course of this project, while Chapter 5 will evaluate

their implementations and Chapter 6 will evaluate the project as a whole.

3.1 Product specification

The Language Lion is an Android application for learning basic Dutch from English. The lion,

the national animal of the Netherlands, is featured everywhere from the country’s coat of arms

to national sports outfits, and the “Language Lion” name is a nod to the application’s main

inspiration, Duolingo, and its cartoon owl Duo who provides encouragement to its students.

The application’s intended audience is anyone who already speaks English and would like to

casually learn Dutch, without any prior experience with the language. This could be in preparation

for a vacation to the Netherlands or Belgium, before taking a more intensive language course, or

15
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simply for fun, to gain a basic idea of what the language looks like.

Because the main focus of this project is the technical implementation of the algorithms, and

not the design of a complete language course, the end product of this project is not meant to

give the learner anything more than a basic introduction to the language. This includes greetings,

introducing oneself, and basic vocabulary on food, drinks, and family members. The aim for this

project is to bring the learner to a level where they can order simple food and make themselves

understandable in a restaurant-like setting. This goal was chosen for its balance between univer-

sality and attainability and is one of the pillars of level A1 of the Common European Framework

of Reference for Languages (CEFR). Level A1 covers understanding and usage of very basic ex-

pressions to satisfy concrete needs, introducing oneself, and asking others about personal details

(Council of Europe, 2011). This application aims to span most of the first two goals and the third

one to a small extent.

An important requirement is that the app is extensible; that is, after laying these foundations,

it should be easy to add new words and phrases to the lexicon, and relatively easy to add new

grammatical constructions or to repurpose the codebase for different languages. In addition, it is

important that the application’s code is completely open-source and free to reuse.

The application is written for the Android operating system. Android was chosen for its ease of

access, its open-source nature, and its deep integration with the Java programming language, which

allows for easy integration with SimpleNLG. Since this project concerns a proof of technology, and

a not an application that will be brought to market or tested on human subjects, certain elements

that are usually at the forefront of application development carry less weight here. Pixel-perfect

visual design and detailed animations are not a priority, and neither is support for specific assistive

technologies such as screen readers. However, the application should be usable, and with clear and

comprehensible design and interface patterns. The aim is for the experience to be completely

free of bugs, crashes, and freezes, performance needs to be high, and loading needs to either feel

instantaneous or be handled through a proper loading screen that provides the user with feedback

about the system’s status.
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Figure 3.1 Design exploration of the
Home screen.

Figure 3.2 Design exploration of the
Notebook.

3.2 Proposed feature set

Having established the main goal of the application, we can start to describe its proposed features.

Note that the core of this project remains a functioning algorithm for automated exercise genera-

tion; many of the features described in this section did not make it into the final project. What is

described here is the original vision for the project. Figures 3.1 through 3.4 are design mock-ups,

created in Adobe XD, a professional application prototyping tool. They serve as a visual aid to

convey some of the ideas listed here, especially the ones that do not appear in the finished product.

The user of the application starts on the Home screen, where they are greeted with a friendly

welcome message and a slider that allows them to pick a time between 1 and 20 minutes. After

selecting a time, they can tap the practice button to start a language practice (Figure 3.1).

Since every exercise is automatically generated, the Language Lion does not feature themed

lessons, as other MLL applications do. Instead, there is an unending stream of exercises for the

user to do. As the idea of an infinite number of exercises might seem daunting, and to give the
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Figure 3.3 Design exploration of an
exercise.

Figure 3.4 Design exploration of the
Score screen.

student a feeling of accomplishment after finishing a lesson, as well as a moment of reflection, each

practice is constrained to a particular duration. The user can pick how long they want to practice

and when the timer runs out, they are automatically transitioned to the Score screen. Picking

their own practice time is meant to give the user a sense of control when everything else is being

decided by an algorithm and allows them to tailor a practice to their preference. They might feel

very motivated and try a 20-minute session, they might be tired and only want to do a quick,

5-minute session, or they might have a daily 8-minute train ride to which this allows them to tailor

their practice.

During the practice session (Figure 3.3), the user gets a series of translation exercises, starting

with translating Dutch to English and moving to translating English to Dutch when the words in

the exercise have already been practiced multiple times. Pure translation, as opposed to fill-in-

the-gap or sentence building, is chosen for two reasons. First, it is the most interesting technical

challenge, as being able to generate translation exercises requires generation of the other types of
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exercises, but not vice versa. Creation of translation exercises necessitates generating all possible

translations of a given sentence, whereas a fill-in-the-gap exercise only requires generating answers

for the gap, as the rest of the sentence is static. Secondly, it is also the most versatile type of

exercise for the student. While translation is a process that they will encounter regularly during

natural conversation, especially in early stages of learning a language, similar exercise types are

weakly linked to the real world.

To become familiar with the sounds of the language, a text-to-speech engine reads out the Dutch

question or correct answer (depending on the question type). Dictation exercises, in which the

user has to write down what the text-to-speech engine says, can be used in addition to translation

exercises. To practice pronunciation, the student is also able to dictate their answers, rather than

type them—this, however, is not a feature of the application per se, but rather a feature already

built into most modern software keyboards.

Between exercises, the timer will pause on occasion to show a Grammar Tip. Grammar Tips

serve to introduce new grammar in bite-size pieces of text. These tips do not aim to explain an

entire grammatical idea at once, but rather to spread them out as new words are introduced. For

example, one of the first Grammar Tips would be the conjugation of regular verbs in the present

tense, but only for the singular persons. As previous research has advised, tips are kept short to

not take the user out of the flow of practices too long, overwhelm them, or distort their practice

time (see Section 2.2). Grammar Tips can always be re-read in the Notebook, described below.

After answering an exercise, the user receives positive feedback if they were correct, and the

correct answer is displayed if they were not. In addition, the Language Lion features an “I don’t

know” option. When a word is first introduced, it is likely that the user does not know it, but forcing

them to answer the question incorrectly can be demotivating. Therefore, the don’t know button

functions as a non-judgmental option that informs the student of the correct answer. Immediately

after pressing the don’t know button, a new exercise with the introduced word is created, to

reinforce what the student just learned.

When the timer expires, the user is automatically transitioned to the Score screen (Figure 3.4),
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which shows a congratulatory message, the number and ratio of questions answered correctly, and

an overview that cycles through the words that were introduced during the lesson. A button will

then take them back to the Home screen.

Next to the practice sessions, the user also has access to the Notebook (Figure 3.2). The

Notebook is an area of the app which records everything a student has learned. The Notebook is

divided into categories based on themes, such as Food & Drink, Family, etc. for easy traversal,

and new categories are unlocked as the user progresses through the practice sessions. In addition,

there are two user-tailored categories: Starred and Difficult. The Starred section is completely

curated by the user, where they are able to ‘favorite’ items from the other categories that they

want to pay particular attention to, and these will then show up in the Starred category. The

Difficult section is comparable, but curated by the algorithm, which keeps a running list of the

words that the user often makes mistakes in. Both Starred and Difficult items are practiced more

often, and if the user gets them correct several times in a row, Difficult items will be removed from

the section automatically. Several categories for Grammar Tips, such as Nouns, Verbs, or Word

Order, exist as well.

Finally, there is a Settings menu, where the user can manage essential settings such as their

account information. There are options present to switch accounts, reset all progress and start

from the beginning, and to switch the application to a dark theme to use at night.

3.3 Visual design

Orange is used throughout the Language Lion as accent color. Orange is the national color of the

Netherlands, after the Dutch royal family’s surname, Van Oranje (“of Orange”, a city in southern

France). The application’s particular shade of orange, Material Orange 500 or #FF9800, was

chosen from Google’s Material Design guidelines to make the application fit in well with the rest

of the Android operating system (Google Inc., 2020b).

Likewise, all iconography follows the modern Android design standards, and Android’s default
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typeface, Roboto, is used throughout the application. Buttons are either filled with an orange

background, if they are the main action on the screen, or outlined with a white background, if

they are a secondary action, to draw the user’s attention to the main action, such as check

answer over don’t know in a practice.





Chapter 4

Application Architecture and

Implementation

The Language Lion consists of two separate parts: the Generator, a library that takes in semantic

constructs uses them to produce grammatical sentences in Dutch and English simultaneously,

and the application itself, which uses the generator to construct exercises to teach Dutch. These

components were constructed independently from each other and this chapter discusses both in

detail.

4.1 Generating sentences

4.1.1 SimpleNLG-NL

The Generator is a fork of SimpleNLG-NL, as discussed in Section 2.3. SimpleNLG is written

in Java and can be imported into any Android application without modification. It is also fully

modular, and different modules can be inserted and omitted with relative ease.

At the base of SimpleNLG sits the Lexicon. The Lexicon is a language-specific XML-based

database holding every word that SimpleNLG knows, specifying the word’s part of speech and any

irregularities. An example entry in the default English lexicon is shown in Listing 4.1.

23
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1 <word>

2 <id>E0041132</id>

3 <base>mouse</base>

4 <category>noun</category>

5 <plural>mice</plural>

6 </word>

Listing 4.1 An example entry from the default English Lexicon of SimpleNLG.

As Dutch grammar is often less straightforward than English, the Dutch Lexicon includes many

Dutch-specific features such as grammatical gender for nouns and perfect auxiliaries for verbs (as

Dutch perfect tense can be constructed with either a form of “have” or “be”, depending on the

verb). SimpleNLG includes both an option to use your own lexicon and built-in default lexicons

for Dutch and English. These built-in lexicons are very exhaustive, with several thousand entries

each, yet also prone to strange omissions. For example, the Dutch Lexicon did not include the

words “drinken” (to drink) and “zien” (to see), but did include entries such as “farao” (pharaoh)

and “mee-investeren” (to co-invest). Similarly, of the words that the Language Lion teaches, the

English Lexicon did not include “strawberry” or “pasta”, whereas many less commonly used words

were included. Neither lexicon included entries for countries and languages, such as “Dutch” or

“English”. For this project, these default lexicons were used as a starting point, and entries were

manually added as needed.

After selecting a lexicon, the first step in using SimpleNLG is to create a Lexicon object, which

creates hashed indices of all entries by ID, name, and category for fast and easy retrieval. These

Lexicons are then used to create an NLGFactory for each language. An NLGFactory contains the

specifications of several different types of phrases and provides methods to build clauses by pop-

ulating and then stringing together these phrases. To illustrate the process, an example program

in Java is showing in Listing 4.2. We first specify that we are building a clause by creating an

instance of SPhraseSpec. For simple sentences, we can opt to use shorthand methods to directly

set the different parts of speech, such as clause.setSubject("Ada") to set the subject on line

7. For more granular control, we can construct individual noun phrases, verb phrases, adjective
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1 Lexicon lexicon = new XMLLexicon("path-to-lexicon.xml");

2 NLGFactory factory = new NLGFactory(lexicon);

3 Realiser realiser = new Realiser();

4
5 SPhraseSpec clause = factory.createClause();

6
7 clause.setSubject("Ada");

8 clause.setVerb("write");

9
10 NPPhraseSpec complement = factory.createNounPhrase("algorithm");

11 complement.setSpecifier("the");

12 complement.addModifier("first");

13 clause.setComplement(complement);

14
15 clause.setFeature(Feature.TENSE, Tense.PAST);

16
17 String output = realiser.realiseSentence(clause);

Listing 4.2 Creating a simple sentence with SimpleNLG, “Ada wrote the first algorithm”.
The subject and the verb are being set directly to the clause through shorthand methods.
For the object, a dedicated noun phrase is created first, to specify its determiner and
adjective.

phrases, and prepositional phrases, through their individual specifications.

The factory then builds a tree of different kinds of NLGElement. An NLGElement can be

seen as a “level” of language. At the root of the tree, there is the DocumentElement. As its

children, it can have one or more PhraseElements that represent clauses, which in their turn have

several PhraseElements that represent phrases. Finally, a PhraseElement consists of one or more

WordElements. When a phrase is created or a new word is added to an existing phrase, the factory

looks up the string of text that is passed in the Lexicon and creates a WordElement that contains

all of the features of the entry. For example, when calling clause.setVerb("write") on line

8, the factory looks in the Lexicon and finds the entry for “write” with the category of “verb”

and two extra features: a past of “wrote” and a pastParticiple of “written”. All of these are

registered in the WordElement, which is then added to the appropriate place in the sentence tree.

Not just WordElements can have features: for example, on line 15, we set the Tense feature of

the entire clause PhraseElement to Past, to indicate the sentence needs to be written in the past
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tense. Other features include setting negation and passive voice.

As can be seen in the code, when all the elements of a clause have been specified, the next step

in the process is to realize the sentence. The Realiser (using British spelling, as SimpleNLG was

first developed in the UK) takes in the tree and pushes it through five processing modules. Most of

the processing is done in the syntax module, which compares the features of all different elements

in the tree with each other to determine the proper word order and decide on inflection. For

example, in the example in Listing 4.2, the verb “write” receives the features Person set to Third

and Number set to Singular, courtesy of the subject “Ada”, and the feature Tense set to Past

from its parent clause. Meanwhile, in the object of the sentence, the Modifier “first” is placed

in front of the phrase head “algorithm”, by virtue of being of category “adjective”, whereas an

adverb or a prepositional phrase would have been placed after it. When the processing is done,

every PhraseElement has been turned into a ListElement of InflectedWordElements.

Secondly, the tree goes through a morphology module, which applies the features on every

InflectedWordElement and turns each into a StringElement. In our case, since the Lexicon had

specified a specific past tense of “write”, “wrote”, it will retrieve that, and as the English past

does not change based on person or number, that is all the processing that needs to be done.

Then, every StringElement is compared against its direct neighbors in the morphophonology

module. While Dutch has no special morphophonological interactions between words, in English

this module will change “a” to “an” when required. In fourth place is an orthography module,

which provides proper capitalization and interpunction at the end of the sentence and between

clauses. Finally, a formatter traverses the tree and returns a normal String, in this case, “Ada

wrote the first algorithm.”

These modules were mostly left alone during the development of the Language Lion, as they

were already advanced enough for the sentences the app teaches, with one exception. SimpleNLG

allows for adding front modifiers to clauses, such as “By the way” or “Excuse me”. While the

Dutch orthography module properly added a comma between a front modifier and the rest of

the clause, the English orthography module did not, and was therefore adapted to provide this
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functionality as well.

In addition, while the Generator was originally compiled for Java 11, to ensure compatibil-

ity with the Android system and the Android Studio IDE it had to be recompiled into Java 8.

Thankfully, this never caused any major issues to the code base.

4.1.2 The Semanticon

While SimpleNLG does a good job of building sentences, it requires its input to be in the target

language, and we need a common base to be able to generate the same sentence in two languages

at the same time. Enter the idea of the Sememe, a concept original and unique to this project2.

The assertion behind Sememes is that humans that speak similar languages or are part of similar

cultures, also share a conceptual understanding of many things in the world. While this is im-

possible to prove, as the mind remains as inaccessible as ever, it should not be too controversial

to assert that most Dutch and English speakers share the same idea of what milk is, even though

English speakers call it “milk” and Dutch speakers call it “melk”. For our purposes, the concept

of milk, the Platonic ideal, if you will, is called a Sememe, or semantic element.

Of course, this won’t hold for each concept, as each language and culture has concepts that

are unique to itself. For example, a native Dutch speaker would have a hard time translating the

adjective “gezellig” to English, usually resorting to alternatives such as “cozy” or “with a good

atmosphere” that only ever seem to partially cover the meaning of the word. However, this is an

introductory language course, not advanced translation studies, which means that these nuances

can often be disregarded as they are simply not taught. For basic language teaching, it turns out,

the Sememe is a very useful idea.

Sememes can be encoded in a Semanticon just like lexemes are encoded in a Lexicon. An

example is shown in Listing 4.3. Most sememes are named after their English symbol, as more

people speak English. Sememe IDs are strings of eight characters: the first is “S”, to distinguish

2While the study of structural semiotics formalizes the “sememe” as an atomic unit of meaning analogous to

the syntactical morpheme, that is not what is studied or meant here.
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1 <sem>

2 <id>S0041016</id>

3 <name>milk</name>

4 <english>milk</english>

5 <dutch>melk</dutch>

6 <categories>

7 <drink_item />

8 <no_determiner />

9 </categories>

10 </sem>

Listing 4.3 An example entry from the Semanticon that was constructed for this project.

them from lexemes labeled “E” (for entry), the first three numbers define the general part of speech

(noun, verb, adjective, etc.), and the last four numbers form the item ID within their category.

The English and Dutch tags contain all symbols linked to the sememe for either language, and can

contain a list of symbols: for example, the “greeting quick” sememe contains the symbols “hi” and

“hey” for English, and “hoi” for Dutch. Lastly, the sememe can be part of any number of specific

categories, which are used by the application’s Grammar module to create sentences, as will be

outlined in Section 4.2.5. The full contents of the Semanticon are listed in Appendix B.1.

The biggest strengths and limitations of the Semanticon become evident when we consider

homonyms. While many native speakers might never have thought about this, the English word

“live” actually carries two meanings: it could describe a location, as in “I live in New York”,

or it could simply mean that its subject is alive, as in “the boy who lived”. While more or less

related, these are two different concepts, and the Dutch language has two different verbs for these:

“wonen” and “leven”, respectively. As such, the Semanticon contains two different sememes:

“live in” corresponds to “live” and “wonen” while “live alive” corresponds to “live” and “leven”.

A second big strength of the Semanticon lies in its ability to quickly generate multiple correct

sentences. Since the contents of the English and Dutch tags can be a list, it is easy to iterate over

all options. For example, a sentence with “greeting quick” as front modifier, “you” as subject,

“be” as verb, and “good” as complement would generate into “Hi, you are good” and “Hey, you

are good” in English, and “Hoi, jij bent goed”, “Hoi, je bent goed”, “Hoi, u bent goed”, and “Hoi,
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jullie zijn goed” in Dutch, which has both emphasized (“jij”), de-emphasized (“je”), polite (“u”),

and plural (“jullie”) versions of the second-person pronoun.

Implementing the Semanticon mirrors the implementation of the Lexicon in that a Semanticon

object is constructed which indexes all sememes by ID, name, and category. These are all stored

as a SemElement, a new, even lower-level type of NLGElement. Each of the words in the Dutch and

English tags of the sememe then corresponds to an entry in its language’s lexicon, so by iterating

over all of them, a clause for each can be created, and we end up with a few sentences in each

language that correctly translate into each other.

It must be noted, however, that these strengths become weaknesses when it is not possible to

determine from the context of the sentence which concept is meant. For example, if a student is

tasked with translating just “I live”, this could be either “ik woon” or “ik leef”, but since we are

iterating over just one sememe, only one of the options will be generated. Thankfully, this can be

easily remedied by simply not generating sentences that could be ambiguous.

Before moving on, it is worth it to take one more look at how personal pronouns function within

the Semanticon, as some attention needs to be paid in order to make them work correctly. In the

case of the second person, while theoretically the Dutch singular, plural, and polite versions of the

pronoun should constitute different sememes, they are all put together as different options of one

“you”-sememe, in order to allow all correct translations to be generated. This works especially

because in English, there is no difference between the singular and plural second-person form of

a verb: “you are” can be both singular and plural. The opposite is true for the Dutch pronoun

“zij” and its de-emphasized variant “ze”, which translate to both “she” and “they”. In this case,

they are listed as different sememes, because the Dutch verb will change based on number. Here,

it is always clear from context which translation is meant: “zij/ze is” translates to “she is”, and

“zij/ze zijn” translates to “they are”. This just illustrates once more that while it is easy to add

new members of open word classes to the Semanticon, such as nouns or verbs, careful curation and

testing is required to make sure all members of closed classes such as pronouns work properly.
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4.2 Writing for Android

The Generator library is fully written in Java and can therefore be imported into any Android

application as a Java Archive just like it would be in any other JVM-based project. What is left,

then, is making use of the library by building an actual application.

4.2.1 Overview

While Android applications have traditionally been written in Java, support for the more mod-

ern Kotlin language was added in 2017, and only two years later Google announced that Kotlin

would be the preferred language going forward (Cleron, 2017; Haase, 2019). Kotlin runs on the

Java Virtual Machine and is completely interoperable with Java, but includes many quality-of-life

improvements, such as more concise syntax, better support for higher-order functions, named pa-

rameters and default arguments for functions, and better type safety with support for non-nullable

types. For these reasons, the Language Lion has been completely written in Kotlin.

Android apps are built up of Activities, core Android classes that draw the user interface

and handle user input. Activities themselves consist of Fragments, which can be thought of as

representing the different “pages” of an app, each representing a portion of the UI in an activity.

The Language Lion consists of only one activity, given that it only has one “environment” for the

user to be in, and this activity consists of five fragments: Home, Lesson, Score, Notebook, and

Settings.

The Home fragment (Figure 4.1) is the app’s start destination and the simplest fragment.

Staying within the application’s theme of random assignment, it randomly displays one of three

friendly and motivating welcome messages: “A lesson a day keeps the boredom away”, “Welcome

back, Rayo! Keep up the good work :)”, or “Your Dutch lessons won’t take themselves!”. It is not

possible to change the name displayed in the second message, as this was deemed an inessential

feature, and the developer of this project does not mind his name to be displayed in more apps.

Below the greeting, the user can start practice by tapping one of three timer buttons: one minute,
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Figure 4.1 The home screen of the
Language Lion.

Figure 4.2 Positive feedback for a cor-
rect answer.

five minutes, or ten minutes. This is a simpler version of the custom control originally pictured

in the design explorations (see Figure 3.1), as designing a custom UI control was, again, deemed

inessential to the core functionality of the app. The one-minute option is available mainly for

demonstration purposes, but the choice between five and ten minutes should provide at least some

flexibility to testers.

The other two top-level destinations, Notebook and Settings, are available through the bot-

tom navigation bar, which is implemented following Google’s standard Material Design guidelines

(Google Inc., 2020a). The Notebook functions as a basic list of all sememes that have been learned

so far, displaying their corresponding Dutch words on the left and English words on the right side

of the screen. The Settings screen is light on options, as the application is not meant for widespread

use, but it does contain functionality to reset all progress and to switch to a pre-configured profile

where some exercises have already been completed, for easy testing. Both fragments are explored

in further detail in Section 4.2.6.

Most resources have been dedicated to the Lesson fragment, as is to be expected. It displays
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Figure 4.3 The navigation graph of the Language Lion.

a timer, starting at the amount the user specified, in the top, and the exercise below, with two

buttons: check answer and don’t know. check answer will check the answer and provide

feedback. If correct, it colors the application UI green and displays a randomly generated congrat-

ulatory message such as “Excellent!” or “Well done!”. If incorrect, it colors the application UI

red and displays (one of) the correct answer(s) to the question. When the don’t know button

is pressed, the correct answer is also given, but the application UI stays orange to not give the

user the feeling they are being penalized. The entire process is explained in more depth in sections

4.2.4 and 4.2.5. Regardless of the outcome, new questions will be generated until the timer runs

out, and the user is automatically transitioned to the Score screen, which displays the number of

exercises they got correct and displays a button to return to the Home fragment.

While the application targets the newest version of Android, Android 10, it is compatible with

devices starting from Android 6.0 or higher, corresponding to API level 23. Its code is available

on GitHub under the MIT license, which permits all modification and distribution of the code for

any private or commercial use. Appendix A features instructions on how to install the application

from the GitHub page.
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4.2.2 Fragment architecture

Android development encourages following the Model-View-ViewModel (MVVM) architectural

pattern, which was therefore implemented in the Language Lion as well. It means that every

fragment consists of four separate files. The layout, or view, is specified in XML. The ViewModel

is a class that holds the data associated with the fragment, and the methods that act on that data.

For example, in the Lesson fragment, the ViewModel holds the current exercise, the methods

to check the answer, the methods to build a new sentence, et cetera. ViewModel objects are

instantiated through a ViewModelFactory which allows for passing arguments such as the selected

timer coming into the Lesson or the score to be displayed on the Score screen. Lastly, connecting

the View and the ViewModel is the UI controller, a subclass of Fragment that displays views and

handles user input.

When a fragment is navigated to, the UI controller creates a binding object by inflating the

View, or putting all the elements of the view in memory for easy access, and then constructs the

corresponding ViewModel through the ViewModelFactory. After this, we can specify listeners for

each UI element and ViewModel variable, allowing the UI controller to know when the listener’s

subject is changed, for example a button that is pressed, or a timer that runs out. This creates a

constant back-and-forth between the UI controller and the ViewModel. For example, when a user

presses the “check answer” button in the Lesson, several things happen:

1. The UI controller registers that the user presses the button;

2. The UI controller reads the text in the answer text field;

3. The UI controller calls the onCheck() method from the ViewModel and passes the answer

text as an argument;

4. The ViewModel checks whether the answer is correct (through logic described in Section

4.2.5) and, when finished, updates its LessonStatus value from INPROGRESS to either CORRECT

or INCORRECT (all custom enumerated values);

5. The UI controller, which has a listener for LessonStatus, is notified that the variable is

changed;
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6. Depending on the value of LessonStatus, the UI controller makes some changes to the UI:

it disables the answer field so it cannot be changed anymore, it hides the “check answer” and

“don’t know” buttons but makes the continue button visible, and it changes the color of

some of the UI elements to green or red, depending on whether the answer was correct.

Then, when the continue button is pressed, LessonStatus is reverted back to INPROGRESS,

causing the UI elements to change back to orange, et cetera. While it may seem tedious to

constantly move between two classes, this separation of concerns is important, as UI controllers

are recreated during every configuration change, such as screen rotation or changes in keyboard

availability. The ViewModel, however is not. Not following this pattern would for example mean

that in the Lesson fragment, the current question is reset every time the software keyboard is

opened or closed, which would make it impossible to correctly complete an exercise.

4.2.3 Database

Android applications can access a SQLite database through the Room persistence library. The

database of the Language Lion is divided up in three tables: Sememes, Sentences, and Profiles.

Their specifications are listed in Table 4.1.

The Sememes table contains a list of all sememes that are taught in the application. It is

different from the Semanticon as described in Section 4.1.2 in that the Semanticon stores the

semantic data associated with the sememe, such as its associated Dutch and English lexemes,

whereas the database table stores the pedagogic data associated with the sememe. While the

Semanticon is initialized every time a lesson starts, the database persists between app sessions.

The table’s primary key is the sememeID, which is the same eight-character string as specified in

the Semanticon. The learned field starts out as false and is set to true when the student has

gotten at least one exercise with the sememe in question correct. The stage field tracks how many

times the user has gotten an exercise with the sememe correct, up to 8. This value is used in

determining the type of exercise and the spaced repetition, as is explained below.

The Sentences table lists all the sentence templates (see Section 4.2.5) and tracks whether they
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Sememes

sememeID String

learned Int*

stage Int

Sentences

sentenceID String

learned Int*

Profiles

profileID Int

username String

primaryQueue LinkedList<String>

secondaryQueue LinkedList<String>

Table 4.1 The Language Lion database schema. Int* indicates that the type is actually
Boolean; as SQLite does not support Booleans, they are stored as Integers that are either
0 or 1.

have been learned or not in a similar way to the Sememes table. Again, this table only contains

their ID and learned value, while the Lesson fragment contains its own Grammar index with more

detailed template information.

As the application does not support multiple users, but the learner’s progress does need to be

stored, the Profiles table consists of only one entry: a profile with an ID of 0, a username of “Rayo”

(which ended up not being used, but remains present for compatibility) and the full primary and

secondary learning queues stored as a Java LinkedList each (see Section 4.2.4). Because SQLite

does not support storing data as custom Java objects, the database implements a type converter

which translates the LinkedList to a string of JSON and back every time either value is accessed,

using Google’s open-source Gson library.

In Android projects, databases are fully written through Kotlin classes as well. Each table is

specified as a separate data class of which every value represents a column. Java annotations such

as @PrimaryKey and @ColumnInfo are then used to specify the function of each column. Queries

are specified in a separate class, a data access object or DAO, which is an interface where every

abstract function is annotated as a @Query. For example,

@Query("SELECT * FROM sememe_table WHERE sememeId = :key")

fun getSememe(key: String): Sememe?

allows us to query the Sememes table to get a specific sememe by calling the getSememe()

function from a ViewModel as if it were any other method. (The “?” at the end of the return type
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declaration indicates that the type is nullable.) Insertion, updating, and deletion work similarly.

Another Android-specific feature is that by default, database access on the main thread is

not allowed. Therefore, every ViewModel that interacts with the database should include a job

scheduler and calls to the database should only be made from a secondary thread. The Language

Lion adheres to these guidelines for the sake of code quality, though calls to the database are

limited enough that they would not have a noticeable performance impact when run on the main

thread.

4.2.4 Encoding pedagogy and tracking progress

So far, this has been a rather technical look at the application’s architecture and some of the

basic patterns of Android development, but hopefully, examining how the different classes interact

with each other and with the database has given some insight into what it takes for the Language

Lion to function. With that out of the way, the next two sections look exclusively at the Lesson

fragment.

As can be seen in the database, the learner’s profile has two queues associated with it, one

primary and one secondary. Both are implemented using a LinkedList from the java.util

library. When using the application for the first time, the primary queue contains the ID of every

sememe that the app teaches in the order that they will be introduced. The first sememe that is

introduced is “to be”, followed by “to eat”, “to drink”, “apple”, “banana”, and so forth. The full

ordering is listed in Appendix B.3.

Every time a new exercise is created, the head of the queue is popped off, and that sememe is

used to build the exercise, through the process that is described in the next section. If the exercise

is answered incorrectly or the “I don’t know” option is picked, a new exercise is created using the

same sememe, until a correct answer is given. If the exercise is answered correctly, two things

happen: the sememe’s stage is increased by one and it is reinserted at a later point in the queue.

A sememe’s stage starts at 0 and can increased up to and including 8. When a sememe is

popped off the queue to build an exercise, its stage determines what kind of exercise is built: if
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the stage is below 4, the task is to translate a Dutch sentence to English, and if the stage is 4 or

higher, the task is to translate an English sentence to Dutch, which is generally more difficult. In

addition, when an exercise is answered correctly, the sememe is added into the queue at position

(stage + 2). For example, when a sememe has been correctly used in an exercise for the first

time, it will be reinserted in the queue at index 3. The queue uses zero-based indexing, so a new

exercise with the sememe will occur after three others. (Note that the need to insert sememes at

specific indices is also the reason why the queue is not, technically speaking, a Queue, but rather

a LinkedList. Because the list is still first-out-only, however, it is easier to picture it as a queue.)

The maximum of 8 stages was chosen to make the student go through several exercises in both

directions of translation before the maximum is reached, and roughly mirrors word progression

in the Memrise application, described in Section 2.1. When a sememe reaches stage 8, it is

not reinserted into the primary queue, but rather onto the end of the secondary queue. In the

application’s current form, the secondary queue has only very limited functionality, but the idea is

that as the Language Lion grows, it would handle the spacing and reintroduction of sememes that

have been learned in the past. Currently, when a sentence is generated, the sememes that are not

the main sememe are picked randomly; for example, if the generation algorithm needs a personal

pronoun, it will randomly choose from the personal pronouns that have been encountered before,

without much regard for the specifics of those encounters. Future versions of the application could

use the secondary queue to more systematically cycle through different options, in this case finding

the first personal pronoun that occurs in the list to use, and then reinserting it at the end when it

has been used.

It is important to remember, however, that the popped-off-the-queue sememe, while the main

subject of the exercise, will never be the only sememe tested in an exercise. For instance, if the

head of the queue is “coffee”, and the exercise generated is to translate the sentence “We drink

coffee”, then the sememes “We” and “coffee” are also tested. To account for this, when an exercise

has been answered correctly, the stages for every sememe are increased by one, and not just the

main one. What this means in practice, is that words that are repeated often, such as personal
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pronouns and common verbs like “be” and “eat”, reach stage 8 very quickly and are moved to the

secondary queue first. This is useful, since it prevents these sememes from cluttering the primary

queue with ‘useless’ exercises. For example, since different items of food take up a sizable portion

of the sememes that are being taught in the Language Lion, and the verb “to eat” will often be

chosen to accompany them, the student probably does not need separate exercises to go over the

sememe “to eat”.

This is the way pedagogy is encoded and enforced. Re-introducing the sememes at progressively

later stages in the queue ensures that they are still regularly practiced while new sememes can

be introduced gradually, as is evaluated in further detail in Section 5.2. As most of the resources

available for this project were used in building the sentence generation algorithms, the pedagogy

ultimately became somewhat of a secondary priority, and is hardly as advanced as some of the

options explored in Section 2.5. However, given the inability to test on human subjects, detailed

student models were never going to be able to be properly implemented and thoroughly tested on

this initial version, and focusing on language generation instead was probably the wise choice.

4.2.5 Building exercises

That said, it is time to bring all elements together and look at the final piece of the puzzle. On the

one hand, there is the Generator, which realizes a sentence after specifying its different components,

and on the other hand, there is the Queue, which provides a sememe that the exercise needs to be

built around.

As it turns out, the first hurdle to overcome is to simply get the Generator to work in an Android

environment. The archive itself, after being compiled for Java 8, can be imported with ease, but

the Semanticon and English and Dutch lexicon XML file have to be supplied externally. As this is

external, read-only data, they can only be stored in the assets directory of the Android app. The

contents of this folder are then packaged together with the code binaries in the app’s APK files.

This also means that there is no absolute path to these files, however, which becomes problematic,

since SimpleNLG requires the URI of a file in order to use it to initialize the Semanticon and
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1 <sentence>

2 <id>G003</id>

3 <subject>person</subject>

4 <verb>verb_drink</verb>

5 <complement>drink_item</complement>

6 </sentence>

Listing 4.4 An example template from the Grammar that was constructed for this project.

Lexicons.

There is no elegant way to solve this without completely breaking up the Generator code,

which would have given a considerable overhead to the project. Instead, after considering multiple

options, the cleanest solution in terms of code was to copy the XML files from assets to the

application cache upon the start of a lesson, to generate a URI from there. This introduces a

noticeable performance impact when loading a new lesson, but alternatives, such as duplicating

the XML parser in the Android code to create a temporary file, were found to be even more

impactful.

With the Semanticon and Lexicons set up, there is one more asset required to build exercises,

which is the Grammar. The Grammar is a context-free grammar that consists of a series of

sentence templates that are used to construct exercises. It is encoded in XML as well, as can be

seen in Listing 4.4. Each template has a four-character ID, a subject, a verb, and an optional

complement. Each (non-ID) field contains a string that corresponds to one of the categories that

can be given to the sememes in the Semanticon. For example, the person category is given to all

personal pronouns and nouns that can describe a person, such as “man”, “woman”, “child”, et

cetera. The verb drink category is given to all verbs that can link a subject to a drink complement,

such as “be”, “have”, and “drink”, and so forth. The full Grammar is listed in Appendix B.2.

Deciding on what categories to use is to find a compromise between correctly representing a

sememe’s real-world use and not getting lost in the details. The easiest way to build a context-

free grammar would be to simply match a word’s part of speech to a slot in the sentence, with

templates such as <noun><verb><noun> or <pronoun><noun><adverb><adjective>. However,
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this will cause massive overgeneration of nonsensical phrases, such as “the apple speaks a book”

or “we jump fairly delicious”. On the other hand, creating detailed categories for each sememe

individually by hand would require so much labor that any gains from automation are lost. The

templates in the Grammar of the Language Lion aim to strike a balance. Some overgeneration is

still present, mainly since all personal pronouns and nouns describing people are taken together in

the person category. For example, the template in Listing 4.4 will generate not only “it is wine”

but also “I am wine” or “she is wine”. While most will not use these sentences on a regular basis,

they can still be useful as exercises, as taking words slightly out of context will encourage thinking

deeper about their use, and any humorous combinations might even be remembered better than

regular sentences.

At the start of a practice session, all sentence templates are read in and indexed based on

ID and containing categories, for easy retrieval of all templates that feature e.g. a person or

food item. Then, when a new exercise is created, and a sememe is popped off the queue, all

previously-encountered sentence types (stored as learned in the database similarly to sememes)

that feature one of the sememe’s categories are retrieved. One of these is then picked at random; if

there are no templates available, because the student has not encountered a sememe of its specific

categories before, a new sentence template is unlocked and its learned value is set to true.

With a template ready, for each position (subject, verb, or complement), it is tested whether the

category specified in the template matches one of the sememe’s categories. If it does, that sememe

will be used for that position, and random fitting sememes are picked for the other positions.

Now, for each noun phrase with a noun as its head (and not a pronoun), we need to decide

on a determiner, as the Generator does not add these by default. At random, either “the” or “a”

is selected. While both are sememes in the Semanticon, they are never part of the queue, but

rather unlocked from the start. The Dutch definite article distinguishes between common nouns,

which receive “de”, and neuter nouns, which receive “het”. As all nouns already have their gender

encoded in the Lexicon, we can decide on which one to use by simply looking up the gender while

building the sentence, later.



41

However, what is not encoded in the Lexicon is whether the noun is countable or not. Many of

the words that the Language Lion teaches are uncountable, specifically drinks such as “water” and

“milk”. To work around this, mass sememes get the extra category no determiner (as featured

in Listing 4.3). While technically a violation of separating the levels of language—as this is a

syntactical feature, and not a semantic one—for the words that are taught in this course, their

countability is the same between English and Dutch, which makes it easier to build it into the

Semanticon rather than opening up the SimpleNLG code. The result is the same: when a noun

phrase gets assigned the indefinite article, but the sememe is of category no determiner, the

article is omitted.

When the chosen subject happens to be the sememe “they”, this has to be registered as well.

As noted at the end of Section 4.1.2, the Dutch lexeme “zij” means both “she” and “they”. When

“zij” is passed to SimpleNLG, however, it will simply default to assuming it means “she”, singular.

To correct this, if the specific “they” sememe is encountered, this is encoded in a special Boolean

value pluralZij.

Lastly, before moving on, there is one more special category of sememe, which is interjection.

Interjections, such as “Hi”, “Good morning”, “Excuse me”, or “Cheers”, are taught starting in

the second half of the course. As these interjections can conceivably be added to the front of

any sentence, there are no templates that include an interjection field; instead, when the to-

be-practiced sememe is an interjection, it is simply added to the front of a completely random

sentence.

Taking all of these factors into account, there are two calls to buildClauses(). This method

takes in a language (Dutch or English); a subject, verb, optional complement and optional inter-

jection as lists of strings that correspond to the dutch and english fields of their sememes; a

few booleans that describe which determiners should be used for any noun phrases; the boolean

pluralZij, and finally the language’s specific NLGFactory. This method iterates over all possible

options of subject, verb, complement, and interjection, setting specific features where needed, and

returns a set of clauses that will translate correctly into the set of clauses returned by the function
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call for the other language. A full evaluation of this process is detailed in Section 5.1. For now, we

map over every clause to pass it through the Realiser, and then, depending on the main sememe’s

stage, pick one sentence from either the Dutch or English set to be displayed as the exercise. The

other set of clauses forms the set of all possible answers to the question.

When a user answers the question, orthography is not of importance, so before comparing

the input to the set of answers, both are stripped of capitalization, interpunction, and trailing

or double spaces. This is the entire process. More sememes, as well as more variations on the

subject-verb-complement pattern, can be added to the current Semanticon and Grammar without

any need to modify the current code and they would work perfectly, and more difficult grammatical

patterns can be added with relative ease by adding more permutations to the code described so

far.

One more thing of note about the Lesson is that the underlying database is updated every time

an answer is correct, rather than at the end of the lesson. This means that while the Score screen

is only displayed when the timer runs out, a user can close the app or use the back button at any

time during a lesson without losing their progress.

4.2.6 Notebook and Settings

Still left to be discussed briefly are the Notebook and Settings sections of the Language Lion.

As neither section is essential for the application to function, and user testing was, as said, not

possible, they are both more starting points of vision than fully implemented areas. That said,

they are there, and they are functional.

The Notebook section displays every sememe which has been encountered, meaning their

learned value has been set to true. When using the app for the first time, it already includes

entries for “the”, “a”, and “I”, which are needed to make the first few exercises function. All

sememes are grouped by category: first interjections, then articles, then personal pronouns, verbs,

family nouns, food nouns, drink nouns, and finally adjectives. It is implemented using Android’s

RecyclerView, which is optimized for large lists of items, and dynamically adds and removes items
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Figure 4.4 The Notebook screen. Figure 4.5 The Settings screen.

from the list as the user scrolls through it and they enter and remove the screen. To make this

work, a custom-written SememeAdapter adapts every learned sememe in the database to a child

of the RecyclerView.

Since the Notebook lists every Sememe, the different Dutch versions of “you” are all listed

under one entry, as discussed in Section 4.1.2. In a fully worked-out version of the Notebook, these

should be split up, preferably with added tips and notes on grammar.

As the app does not have users with preferences, the only option necessary on the Settings

screen is to reset all progress to the very start of the Queue. For testing purposes, a pre-initialized

profile is included as well, and can be accessed by tapping the profile 1 button. Using this profile

brings the user to a stage in learning after completing the first 125 exercises, or when the sememe

“coffee” has just been introduced. This is equivalent to the developer of this app typing as fast as

possible during one ten-minute learning session from the start of the learning process. The log

button exists for testing purposes as well and will log the entire contents of the database to the

Android Studio console for debugging.
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4.3 Complete pedagogy

Now that we understand how to build exercises, the last question left to answer is which exercises

to build, and how many of them. How and when the Queue reinserts sememes has already been

discussed in Section 4.2.4; instead, this section is focused on the considerations going into what

sememes and sentence templates are taught, and in what order.

The complete Semanticon is listed in Appendix B.1 and the complete Grammar in Appendix

B.2. The course has implemented 78 sememes and 10 sentence templates in total, and 16 se-

meme categories, including the special case no determiner. When accounting for each possible

permutation, including the difference between definite and indefinite articles, the Language Lion

can theoretically generate 3346 different exercises. This means that, on average, there are 43.5

exercises to every sememe—a distorted figure, since based on their part of speech the sememes’

usages vary wildly—but nonetheless a high number.

The order in which new sememes are introduced (listed in Appendix B.3) can be divided up

into several blocks. The first three sememes are “to be”, “to eat”, and “to drink”, since they form

the basis of all food-related conversation. After this, the first block is focused on teaching the 15

food and 7 drink items, selected for their universality and early appearance in the Naar Nederland

textbook. While the course starts with the sememe “I” unlocked, as the student is progressing

through this block, the other nominative personal pronouns are unlocked in order as well. Near

the start of the block, “good” and “bad” are taught as well, and “tasty” is added at the very end

of the block, to teach the student basic comments about food. Block 2 is very short and teaches

the verbs “to have” and “to speak” and the languages “Dutch” and “English”, which are deemed

essential. Then, block 3 alternates between introducing basic terms to describe people, such as

“man”, “woman”, and “child”, with introducing more basic verbs, such as “to go” and “to walk”.

Finally, block 4 alternates between introducing 16 interjections (“Hi”, “Hello”, and so forth) with

first the accusative personal pronouns, and later the verb “to read” and a few readable nouns such

as “menu” and “book”.

These sememes prepare the student for basic ordering in a restaurant; really, the only sememes
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that are missing are some modal verbs such as “can” and “may”, the numbers, and some restaurant-

related sememes like “to pay” and “bill”. Due to the extensibility of the platform, however, these

can all be implemented easily. Grammatical features that would be needed include plural nouns,

interrogative sentences, and negation, but as all of these are already supported by the Generator,

the implementation is just a question of writing and testing the appropriate sentence templates in

the Grammar. Other grammatical features have other restrictions: for example, the course does not

teach gender neutral pronouns such as the singular they, as the Dutch language (disappointingly)

does not have a standardized counterpart (and, as has already been discussed in length, using “zij”

would only cause confusion).





Chapter 5

Evaluation

The project was evaluated on three separate levels. First, the ability of the Generator to generate

all correct sentences using the Semanticon and Grammar of the app; second, the ability of the

Queue to properly introduce and revise all Sememes; and lastly, the application as a whole, its

performance, and its user interface. Here, it was of importance to be able to isolate each component

and find the best way to evaluate each one individually before putting them all together.

5.1 Generating sentences

In order to test the combination of SimpleNLG-NL, the Semanticon, and the Grammar to produce

correct translations, the relevant code was first written in a separate Kotlin project before adding

it to the Android app. Instead of retrieving a sememe from the queue and basing an exercise

on that, for each of the sentence templates in the Grammar, random sememes were picked to fill

its slots and all generated possibilities were printed. Each sentence received a randomly chosen

interjection as well. For example, sentence template G004 (see Listing 4.4) could get the sememes

“you sub” as subject, “drink” as verb, and “milk” as complement, with “a” as the determiner for

the complement, and “greeting quick” as interjection, to generate the following sentences:

47
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• Hi, you drink milk.

• Hey, you drink milk.

• Hoi, jij drinkt melk.

• Hoi, je drinkt melk.

• Hoi, u drinkt melk.

• Hoi, jullie drinken melk.

As there are currently ten templates in the grammar (see Appendix B.2), each run of the code

would generate ten of these sets of sentences, each time with different sememes, and after each run

the grammatical correctness of each generated sentence was evaluated.

Since Android applications usually took roughly a minute to build on the development system,

writing the code in a separate project first allowed for much faster iteration on problems such as

accounting for the countability of nouns and the double meaning of “zij” (see Section 4.2.5). It

also allowed for the quick identification of bugs in SimpleNLG-NL, such as the absence of a comma

after front-modifiers in English sentences (see Section 4.1.1).

In addition, seeing all permutations of a sentence printed out makes clear which grammatical

features are and are not supported. As can be seen in the above example, all possibilities of the

sememes “greeting quick” and “you” are generated, for each version of the Dutch “you” the verb is

inflected correctly, the determiner “a” is omitted as “milk” has is of category no determiner and

the sentence is formatted correctly. What can also be seen, however, is that the Generator does

not include support for continuous verb forms (“you are drinking milk”). While Dutch includes

continuous forms as well (“jij bent aan het drinken”, lit. “you are at the drinking”), in Dutch,

they can be used interchangeably with the simple present, with more flexibility than in English.

“You are drinking milk” would generally be considered a correct translation of the Dutch “jij

drinkt melk”, while “you drink milk” would not be a correct translation of “jij bent melk aan het

drinken”. As the Generator does not distinguish between the source and target languages, these

sentences cannot be properly generated, and the present continuous is not supported, even though

these translations are correct.

Another major grammatical feature that is not supported are contracted forms in English,

i.e. “I’m” and “you’re” are not considered valid translations of “ik ben” and “jij bent”. While

SimpleNLG’s morphophonology module can update words based on their direct neighbors, each
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word is still treated as its own distinct unit, and merging words into contracted forms is not

currently possible.

Thorough testing surfaced one more perplexing bug that has not been fixed yet. When the

accusative personal pronoun “her” is set as the complement of the sentence, the English realizer

will change the word into “hers”, generating sentences such as “I saw hers”. It does not do this for

Dutch, it does not do this for other accusative personal pronouns such as “me” or “his”, and the

lexicon entry for “her” is not any different from those of other pronouns. As accusative personal

pronouns were only added in a relatively late stage of development, this is the only actual bug in

the Generator that is still present in the current version of the Language Lion.

5.2 Sememe introduction and spaced repetition

Since testing on human subjects was not possible, trying to implement and fine-tune a highly

personalized spaced repetition algorithm was not a valid option. That did not mean that the

Queue did not need to be tested, however, as it was still important to verify that 1) all sememes

would get properly introduced over time, 2) all sememes would be repeated a few times before

too many new sememes were introduced, and 3) all sememes that are not common grammatical

sememes such as the personal pronouns would increase their stages at roughly the same pace.

While anecdotal evidence from testing the application during development had already sug-

gested that these requirements were met, for more rigorous testing, data was recorded from taking

four five-minute practices, from the very beginning of the course. After every practice, for every

sememe that had been introduced at that point, its stage was recorded and plotted in Figure

5.1. A sememe’s stage is a value from 0 to 8 that increases every time an exercise containing that

sememe has been answered correctly, as described in Section 4.2.4. These practice sessions were

taken by the developer, who is already a native speaker of Dutch, and are therefore not represen-

tative of the speed at which a new learner would learn new sememes (as they would likely think

longer about each exercise and make more mistakes). It is, however, representative of the relative



50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
0

2

4

6

8

Sememes in order of introduction

S
ta

ge
Sample sememe introduction rate

Practice 1
Practice 2
Practice 3
Practice 4

Figure 5.1 The stages of every introduced sememe after taking one, two, three, and four
five-minute practices, in the order that the sememes were introduced.

position at which new sememes are introduced.

The sememes in the plot are listed in the exact order that they were introduced, i.e. sememe

0 is “to be”, sememe 1 is “to eat”, following the order outlined in Appendix B.3. After the four

practices, 45 sememes had been introduced. As the graph shows, after each consecutive lesson, the

sememes that were new in the previous one have moved up to stage 8 to make way for new ones.

No sememes are missed and each one is properly introduced. Occasionally, sememes make it to

a higher stage than some sememes introduced before them, but that is to be expected, especially

since there is less ‘competition’ for certain categories. For example, there are only three sememes

in the category food descriptor, but there are 15 in the category food item, meaning that if a

random sememe for either category is required, it is more likely for a certain food descriptor to be

chosen than for a certain food item, causing the food descriptors to level up faster.

At the end of each practice, there were always either 7 or 8 sememes in ‘active rotation’, or
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with a stage that is not 0 or 8. From this it can be concluded that there are never more than 7-8

different sememes that are new to a user at a time, which strikes a neat balance between giving

variation in exercises and not being overwhelming.

When disregarding outliers, each graph has roughly the same shape, suggesting that sememes

get introduced at a similar pace as the course goes on. The sole reason for concern would be

sememes 23 (“chicken”) and 33 (“wine”), which seem to get stuck on stage 4. To remedy this, the

queuing algorithm would probably benefit from an occasional quick scan ahead, to check whether

there are sememes that get left behind, and pull them forward.

5.3 Android testing

5.3.1 Database unit testing

Before putting all components together, one more should be tested separately, which is the Room

database. Android development allows for testing databases separate from the application interface

through standard Java unit tests. As Kotlin is fully interoperable with Java, these tests work with

Kotlin as well.

A test was written which constructs the database in the same way as it is constructed during

the app’s initialization, with the exception that for the purposes of the test, database calls on the

main thread are allowed, since there is no other work to be done. The test than makes a call to

the database for every query that is specified in the DAO (see Section 4.2.3), including inserting

entries, updating entries, retrieving entries by ID and learned status, and clearing tables. Each

query was verified to work correctly.

5.3.2 Application experience

The final element to test is the user experience. While the project could not be tested on human

subjects, it was still deemed important to ensure that 1) performance is fast, 2) input is fluid,

with no freezes, 3) the application respects the user’s privacy, and 4) the Language Lion respects
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Stockwell and Hubbard’s principles of mobile language learning as outlined in Section 2.1.

The application was tested on a Google Pixel 2 XL, a flagship-level Android device from late

2017, running the latest version of Android, Android 10. There are currently no known bugs

that lead to crashes. Performance throughout the app was found to be good, with no discernible

waiting time or lag between screens, with the exception of the start of a lesson. As has already

been described in Section 4.2.5, since the data files can only be accessed by copying them to the

application cache, this has a measurable performance impact. As this freezes the UI, to account

for this, a loading spinner was implemented when a lesson is initialized to provide visual feedback

to the user.

The Language Lion does not require any device permissions such as access to the camera,

microphone, or files. It also will never connect to the internet and does not save any personal

details. While it is possible to answer the exercises using voice input, by pressing the microphone

button on the software keyboard, all voice input is handled through the user’s keyboard application

and the Language Lion never receives microphone access directly.

Most of Stockwell and Hubbard’s principles have been followed. Environmental distractions are

kept to a minimum by providing a clean, simple user interface during a lesson. The Language Lion

is designed to be inclusive by using clear and large typography, an accent color that is standardized

in Android and thereby verified to provide sufficient contrast, and clear buttons with wide spacing

between them. In addition, it does not require any internet connection at all. Task goals are

always specified at the top of the lesson screen, and users have control over the duration of their

own practice sessions. Only two pieces of advice are not implemented: the Language Lion does

not feature any push notifications, to motivate learners to come back, nor does it feature any tools

for teachers. Both features should be implemented in future versions of the app.



Chapter 6

Discussion

There is an application—it can be installed, per the instructions in Appendix A, and it will work,

teaching anyone how to say “I am a banana” in Dutch with complete and utter confidence. It

would seem that automated exercise generation in mobile language learning is possible.

The actual question, of course, is how well it functions. This project was not an experiment

designed to prove or reject a hypothesis; instead, it was an exploration, identifying a potential

next step for mobile language learning (Chapter 2), describing a vision for that step (Chapter 3),

and implementing a basic realization of that vision (Chapter 4) in order to identify any roadblocks

(Chapter 5) and formulate advice on how to proceed (right here).

The project’s clearest contribution to the field has been the creation and evaluation of the

Sememe as a useful concept in mobile language learning. While differences in languages and

cultures are too big for each concept to be described as a sememe that maps translations of

lexemes, it has proven a solid base for basic language learning, especially if the languages, like

English and Dutch, are closely related. Coupled with a context-free grammar, even a few sememes

can generate thousands of sentences, and while some of those will always be more relevant in the

real world than others, each sentence provides its own opportunity to practice and think about

language.

Compared to the original vision, many features landed on the cutting room floor: precise
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control over practice time, a categorized notebook with personalized Starred and Difficult sections,

dictation exercises, grammar tips, and most notably an advanced spaced repetition algorithm that

reintroduces sememes based on the student’s performance, rather than a set schedule. All of these

features already existed, however, in existing applications, in one way or another. What did not

exist was a translation exercise generation algorithm. The Language Lion generates sentences with

a subject, verb, optional complement, and optional interjection, with support for all persons of

the present simple and all different combinations of determiners. It is thereby more sophisticated

than any similar project to date.

It has also clearly uncovered the shortcomings of its approach. The biggest flaw in the current

implementation is the absence of support for continuous verb forms, which are grammatically

correct translations of many of the generated sentences. One of the main areas for future research

could therefore be to build a map of Dutch and English sentence structures, similar to the map of

lexemes that the Semanticon provides, instead of the current one-template-fits-all approach of the

Grammar. This would probably need to be paired with upgrades to the SimpleNLG engine that

currently only allows for generating one set word order at a time.

One area that this project has not looked into at all is detailed error feedback. In fact, when

a question in answered incorrectly, a new exercise with the main sememe is created, regardless of

whether that was the sememe that the error was made in. Subsequent versions of the application

should implement an actual answer processor that analyzes the answer and gives the user specific

feedback.

After that, translation exercises are only the tip of the iceberg of the potential of NLG in

language learning. More exercise types and more personalization have already been mentioned,

but there are also the other phases of natural language generation: content determination and

sentence planning (see Section 2.3). Instead of generating exercises that stand independent of each

other, NLG might be used to procedurally generate an entire conversation, such as an interaction

in a restaurant or hotel for the student to take a role in, or a short story, that the student has to

answer questions about. One novel idea certain to ruffle some feathers is—
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A green owl appears in the corner of my screen. Alas, it looks like I need to go and practice.
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Appendix A

Installing the application

The Language Lion is not published on the Google Play Store, but can be downloaded from the

Releases tab of the project’s GitHub page here. Select the language-lion.apk file under “Assets”

and download it to your device.

To install it on an Android phone, the phone needs to have the “install unknown apps” setting

enabled. As many Android manufacturers make their own changes to the Settings app, the location

of this setting will vary per device—a Google search for “install APK files on Android” should pull

up a variety of guides that walk through the entire process for each phone. When this setting is

enabled, simply copy the downloaded APK to your phone (most conveniently to the Downloads

folder) and tap on it there. Remember that the app will only run on devices with Android 6.0

or higher. Ignore any warnings that Google cannot verify the application’s developer and let the

app install anyway. The installation process should not take longer than a minute, and when it is

done, the app will show up in your app drawer, between all other apps.

Enjoy your first Dutch lessons!
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Appendix B

Data sets

All that is taught in the course.

B.1 Complete Semanticon

Table B.1 The complete Semanticon.

ID Name English Dutch Categories

S0010000 greeting quick hi, hey hoi interjection
S0010001 greeting hello hallo interjection
S0010002 bye quick bye dag interjection
S0010003 bye informal see you, see ya doei, tot ziens interjection
S0010004 cheers cheers proost interjection
S0010005 goodmorning good morning goedemorgen interjection
S0010006 goodafternoon good afternoon goedemiddag interjection
S0010007 goodevening good evening goedenavond interjection
S0010008 goodnight good night goedenacht interjection
S0010009 yes yes ja interjection
S0010010 no no nee interjection
S0010011 please please alsjeblieft, alstublieft interjection

S0010012 thanks thanks, thank you
dank je, dank u,

dank je wel, dank u wel
interjection

S0010013 sorry I’m sorry, sorry het spijt me, sorry interjection

S0010014 excuseme
excuse me,
pardon me

pardon interjection

S0010015 okay okay, ok oké, ok interjection

S0020000 the the de, het -

59



60

ID Name English Dutch Categories

S0020001 a a een -
S0021000 i I ik person
S0021001 me me mij, me pers pron obj
S0021002 you sub you jij, je, u, jullie person
S0021003 you obj you jou, u, jullie pers pron obj
S0021004 he he hij person
S0021005 him him hem pers pron obj
S0021006 she she zij, ze person
S0021007 her her haar pers pron obj

S0021008 it it het
person

pers pron obj
S0021009 we we wij, we person
S0021010 us us ons pers pron obj
S0021012 they they zij, ze person
S0021013 them them hen pers pron obj

S0030000 be be zijn

verb intransitive
verb transitive
verb copular

verb food
verb drink

S0030001 have have hebben
verb intransitive

verb food
verb drink

S0031001 eat eat eten
verb intransitive

verb food

S0031002 drink drink drinken
verb intransitive

verb drink

S0031003 speak speak spreken
verb intransitive
verb language

S0031004 go go gaan verb intransitive
S0031005 walk walk lopen verb intransitive
S0031006 run run rennen verb intransitive
S0031007 cycle cycle, bike fietsen verb intransitive

S0031008 help help helpen
verb intransitive
verb transitive

S0031009 read read lezen

verb intransitive
verb transitive
verb readable
verb language

S0031010 live in live wonen
verb intransitive

verb location
S0031011 live alive live leven verb intransitive
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ID Name English Dutch Categories

S0031012 see see zien verb transitive
S0031013 hear hear horen verb transitive

S0040000 man man man person
S0040001 woman woman vrouw person
S0040002 boy boy jongen person
S0040003 girl girl meisje person
S0040004 child child, kid kind person
S0041000 apple apple appel food item
S0041001 banana banana banaan food item
S0041002 strawberry strawberry aardbei food item

S0041003 bread bread brood
food item

no determiner

S0041005 cheese cheese kaas
food item

no determiner

S0041006 soup soup soep
food item

no determiner

S0041007 pasta pasta pasta
food item

no determiner

S0041008 breakfast breakfast ontbijt
food item

no determiner

S0041009 lunch lunch lunch
food item

no determiner

S0041010 dinner dinner avondeten
food item

no determiner
S0041011 chicken chicken kip food item

S0041012 fruit fruit fruit
food item

no determiner
S0041013 vegetable vegetable groente food item
S0041014 egg egg ei food item

S0041015 water water water
drink item

no determiner

S0041016 milk milk melk
drink item

no determiner

S0041017 juice juice sap
drink item

no determiner

S0041018 coffee coffee koffie
drink item

no determiner

S0041019 tea tea thee
drink item

no determiner

S0041020 beer beer bier
drink item

no determiner
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ID Name English Dutch Categories

S0041021 wine wine wijn
drink item

no determiner
S0042000 menu menu menu, kaart readable
S0042001 book book boek readable
S0042002 newspaper newspaper krant readable

S0050000 good good goed
people descriptor
food descriptor
drink descriptor

S0050001 bad bad slecht
people descriptor
food descriptor
drink descriptor

S0050002 tasty tasty lekker
people descriptor
food descriptor
drink descriptor

S0051000 dutch Dutch Nederlands locale
S0051001 english English Engels locale

Note a few absent sememes. S0020011 was the original sememe for the “plural you” or “jullie”,

but was taken out after the consolidation as described in Section 4.1.2. S0031000, “be called”, was

originally going to be used for teaching the student how to introduce themselves, but was taken

out as neither the passive voice nor proper nouns are supported. S0041004, “slice of bread”, was

taken out as the English term here consists of multiple words, which is also not supported.
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B.2 Complete Grammar

Table B.2 The complete Grammar.

ID Subject Verb Complement

G001 person verb intransitive -

G002 person verb food food item

G003 person verb drink drink item

G004 food item verb copular food descriptor

G005 drink item verb copular drink descriptor

G006 person verb readable readable

G007 person verb copular people descriptor

G008 person verb copular locale

G009 person verb language locale

G010 person verb transitive pers pron obj

B.3 Initial queue order

This is the order in which the sememes are introduced. The sememes “the”, “a”, and “I” are

automatically unlocked from the start.

1. be

2. eat

3. drink

4. apple

5. banana

6. water

7. you sub

8. strawberry

9. bread

10. good

11. cheese

12. bad

13. soup

14. he

15. she

16. pasta

17. breakfast

18. milk

19. lunch

20. juice

21. dinner

22. speak

23. chicken

24. coffee
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25. we

26. fruit

27. tea

28. they

29. vegetable

30. beer

31. tasty

32. egg

33. wine

34. have

35. Dutch

36. English

37. go

38. man

39. walk

40. woman

41. run

42. boy

43. cycle

44. girl

45. help

46. child

47. see

48. me

49. you obj

50. hear

51. him

52. greeting quick

53. her

54. greeting

55. it

56. bye quick

57. us

58. bye informal

59. them

60. cheers

61. goodmorning

62. goodafternoon

63. goodevening

64. goodnight

65. read

66. yes

67. no

68. menu

69. please

70. thanks

71. book

72. sorry

73. excuseme

74. newspaper

75. okay
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