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Abstract

This thesis discusses the use of genetic algorithms to tune the parameters of a chess engine,
resulting in a significant increase in playing strength. The design of the genetic algorithms builds
on the 2008-2011 work of David-Tabibi et al. [13] and Vázquez-Fernández et al. [32]. The
overwhelmingly positive result presented in this thesis not only suggests a promising potential
for genetic algorithm use to improve computer chess, but also supports the efficacy and potential
of applying genetic algorithms to a broader set of use cases.
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1
Introduction

1.1 Motivation

I first came across Genetic Algorithms in my sophomore year in an introduction to artificial

intelligence course. I was struck by their mimicry of nature, and how a seemingly simple set of

rules and processes were able to produce extremely fast approximations to difficult problems.

The general premise, that one can achieve astonishingly good results simply by letting the laws of

nature take their course, was enticing, and stuck with me as I was deliberating on a senior thesis

topic. Moreover, I was also deeply troubled by the increasing usage of neural networks and deep

learning. While there have been some remarkable outcomes as a result of these machine learning

methods, they also have some clear downsides. I was dismayed by both the extreme computing

power required of deep learning models, as well as the complete lack of interpretability of their

results. Often described as black boxes [8], it is extremely difficult to visualize or describe why

or how a model settles on an output [30]. The issues of computing power and interpretability

are hardly present in the realm of genetic algorithms, however, and thus a senior thesis idea was

born.

1



2 INTRODUCTION

1.2 Choosing a Problem Space

For the purpose of choosing a suitable problem space to appropriately test the efficacy of

a classic machine learning method, I wanted to explore a classic problem. Many such classic

machine learning problems exist, such as optical character recognition (OCR), the host of NP-

Hard problems such as the travelling salesperson problem or the knapsack problem [2], or one

that I hold a personal affinity towards: the game of chess.

In fact, one of the first tests of a new computing system or intelligence paradigm links back

to the two millennium old game [1]. Whether humanity’s obsession with chess is linked to its

perceived connection to intelligence, or because it so allows for a proxy war between kings,

countries, or important figures, the fact remains that chess has held international attention for

centuries. In fact, chess popularity burgeoned during the pandemic, and continues its popular

trend today, with sites such as Chess.com boasting more than 150 million members [6].

Computer chess was almost synonymous with early AI. Alan Turing, sometimes deemed the

father of modern computing, sought to develop a chess program, Turochamp, as one of his

first attempts at artificial intelligence [10]. Since then, some of the most successful examples of

chess AI breakthroughs have involved specialized chips designed for the game of chess, such as

Carnegie Mellon’s ChipTest in 1987 [4] or IBM’s Deep Blue, which famously defeated Russian

Grandmaster Gary Kasparov in 1997. That match is also widely accepted as the first moment AI

surpassed human ability in the game [1]. Probably the next most important milestone in com-

puter chess was Google’s AlphaZero, in 2017, which learned to play chess at an unprecedented

strength by playing games against itself in an unsupervised deep learning model [27]. Not only

did these breakthroughs advance collective understanding of how computers might master the

game of chess, they also provided an undeniable piece of evidence for the efficacy and power of

artificial intelligence. Chess, a game that involves both sides having access to all available data,

a nearly infinitely deep search tree of possibilities, and a standardized Elo1 rating system to

objectively measure strength, provides the perfect test for a new artificial intelligence approach.

1See Appendix section A.3.4.
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Before incorporating a potentially life-altering system to diagnose a patient, or making a large

financial investment, an artificial intelligence method must first prove itself on the battleground

of 64 squares.

1.3 The General Design of Chess Engines

To understand how exactly a genetic algorithm can be applied to a chess engine, it is first

necessary to have an overview of the components of a chess engine. The first component to

any chess engine is the internal representation for the chess board. A chess engine must know,

at each stage, all the legal moves available, as well as where every piece is at all times. Many

different representations are possible, with approaches such as 2D arrays, 1D arrays, string

representations, or bit representations known as bitboards. Of these, bitboards have emerged as

the fastest, due to the fact that bit operations are among the most efficient operations possible

on modern hardware.2

Figure 1.3.1: Generalized Architecture of a Modern Chess Engine

Since many different implementations are used, and internal representations are just that –

internal, there needs to be a mechanism by which an engine can actually play against an opponent

with a different board-state representation (such as another engine or a human opponent).

The ubiquitous solution is called the Universal Chess Interface (UCI), which operates through

2For more on bitboards and bit operations, see Appendix A.1.
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predefined commands given and received through standard Input/Output [10]. Often an engine

will dedicate a separate thread to handle UCI commands, as seen in Figure 1.3.1.

Once the board is accurately represented, and all legal moves for any position can be checked,

a move selection search is possible. Because most chess games are timed competitions, this

search is limited to a short fraction of a total game clock, thus placing a large emphasis on the

efficiency and speed of this search. The best chess engines dedicate all their time to relevant

branches of the search tree, and aggressively discard the rest. As outlined in Figure 1, the

majority of move selection algorithms consist of two integral parts, a search and an evaluation

function.3 A search function is for examining potential moves and counter-moves within the

unfathomably large search tree that results from most chess positions, whereas the evaluation

function acts as a heuristic that estimates to the search how far away any given position is from

a terminal node such as a checkmate or draw. The two work in tandem to reach a final verdict

on the best move to play next. Keep in mind that the game of chess has approximately 2 ∗ 1040

legal positions, even without accounting for promotions [28]. For context, the number of atoms

in the human body is a much lower 1027. Because of the extremely large search space, the search

is trying to find the path that will result in the best heuristic score for the engine, and thus the

search strength is directly related to the evaluation strength.

The classical architecture uses a highly optimized alpha-beta search, and a heuristic evaluation

function consisting of weighted hand-extracted higher level features added together in a linear

equation. A much deeper and practical analysis of this specific architecture will be explored

in Chapter 3, but the important takeaway is that both the evaluation and search function

are parameterized functions. In other words, their performance relies on having an optimal

set of weights, margins, and constant values that operate together. Optimizing these values is

typically done in a separate tuning process, rather than during a game or match itself, and proves

a difficult challenge as the search space is neither uni-modal nor convex. This sets the stage for

a genetic algorithm to be applied. In fact, a multi-modal search space without a single obvious

3The author is unaware of any highly competitive engine for which this is not the case.
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optimal peak is exactly the kind of search space that genetic algorithms are suitable for [19].

Furthermore, a known weakness of genetic algorithms is their inability to find a truly optimal

solution. In the case of chess, however, there may not even be one singular ‘optimal’ solution,

but rather a number of possible parameter values that can successfully be found, making this

an ideal task for a genetic algorithm.

1.4 The History of Genetic Algorithms and Their Role in Chess

Genetic Algorithms were first formally introduced in 1992 by J.H Holland, and were based

on the Darwinian theory of survival of the fittest in nature [19]. Since then, many variations

and optimizations have been used to increase their power and adapt them to various problems,

including co-evolution or a historical mechanism. They have been employed successfully in many

NP-Hard problems (problems that do not have a known polynomial-time solution), including in

the sub-space of games and puzzles [19]. Ironically, one of their most prominent use-cases has

been in finding better hyperparameters for neural networks, the machine learning method that

has spurred major breakthroughs in chess engines and the field of artificial intelligence [11].

Fortunately, there is already a fair amount of research on the application of genetic algorithms

in the field of chess engine programming. Perhaps the most successful instance of the crossover

between chess and genetically inspired tuning is the chess engine Falcon which was able to place

second in the blitz section of the World Computer Chess Championship after employing a genetic

algorithm to increase its playing strength [13].

More recently, the same authors proposed a pipeline consisting of two genetic algorithms as

well as a co-evolution stage as the basis for tuning a chess engine’s parameters. Other research

has been completed and improvements have been implemented, for example the modified genetic

algorithm architecture of Vázquez-Fernández et al. [32], resulting in a higher rated chess engine.

In both of the above cases, however, the claim of creating a higher rated engine was dubious,

since an accurate baseline was not provided. In the development process of many chess engines,

the programmer or an expert chess player provides a set of manually chosen parameters. In fact,
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automated parameter tuning in chess engines was not very common or successful for many top

engines prior to 2008 [13]. Thus, the value of a machine learning algorithm such as a genetic

algorithm in the domain of chess is found only in its ability to increase the strength of a chess

engine beyond this manually tuned baseline. This thesis aims to provide such a manual baseline

that allows for a more robust discussion of results.

In sum, this thesis will explore the use of genetic algorithms for the tuning of a chess engine’s

parameters in an attempt to more broadly test the efficacy of genetic algorithms as a useful

machine learning model. In Chapter 1, a brief but essential background was given on where

genetic algorithms fit within artificial intelligence as a whole, as well as where they fit within

the chosen problem-space of chess. Chapter 2 describes the chess engine that was built for this

research project. Chapter 3 provides an in-depth analysis of the methodology of the two tuning

algorithms, followed by a complete look at the results in Chapter 4. Chapter 5 describes further

work, followed by an epilogue to fully encapsulate this research on a personal note.



2
The Creation of GERALD

Before delving into the architecture and results of using genetic algorithms for the purpose

of chess engine parameter tuning, it is first necessary to build a chess engine. An extensive

and detailed description of every consideration and feature of a modern chess engine is beyond

the scope of this thesis, but it is still paramount to establish the fundamental architecture and

problem space within which the genetic algorithm research will be conducted. Needless to say,

the building of GERALD was hardly a small task, and three re-writes were necessary to achieve

the final result. An initial Pythonic implementation was discarded due to the infeasibility of

using an interpreted and slow language like Python for the compute-intensive task of a chess

engine. A second re-write in the much more appropriate C++ was also mostly discarded due

to the lack of a robust testing framework as each feature was developed (see Appendix A.3.2).

Finally, a chess engine suitable for research purposes was created, GERALD: A Genetically

Engineered, Researched, And Lovingly Developed chess engine.

2.1 The Mini-Max Search and its Enhancements

At the heart of GERALD, as well as most turn-based, zero-sum games (such as tic-tac-toe,

Connect 4, checkers, chess, etc.) is the mini-max search. The mini-max search takes advantage

of the relationship that a positive score for one side is the same score for the other, with the

sign flipped (since both sides’ scores always sum to zero). In this sense, it is typical in a chess

7
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mini-max search for the side with the White pieces to try to maximize the score, while the side

with the Black pieces tries to minimize the score. For terminal positions such as checkmate, a

score is theoretically considered to be either positive or negative infinity, although in practice

a large number is assigned. Based on this assumption and handling of terminal nodes, one can

construct a tree of all possible moves and responses, and choose the current move that leaves

the other side with the worst possible outcome. The depth of this search tree is defined as the

number of moves and responses searched for each possible branch. For example, the root node

will be searched with a depth of 0, all possible moves from that position a depth of 1, and all

possible responses for each one of those initial responses a depth of 2. The average chess game

is played in about 40 moves from each side, requiring a search depth of 80 to search through

an entire average game (not to mention games that last longer than average, for which a much

larger depth is needed). Since the search tree grows exponentially,1 a naive mini-max search is

impractical.

The quintessential improvement to the mini-max search is commonly referred to as alpha-

beta pruning, which is a completely theoretically correct pruning mechanism to the mini-max

algorithm. In this approach, let alpha represent the best possible score the player can achieve

on their next move, and let beta represent the best possible score for the opponent. One can

forego searching any branch of the search tree that will not improve alpha. In practice, this

means that if the opponent has a strong response to a move, that move and all subsequent

moves below it will be pruned, saving a huge amount of computation. As commonly used across

many engines, including GERALD, a mini-max search with alpha-beta pruning is implemented

using the Negamax function. The Negamax function allows one recursive function to work for

both sides by constantly flipping the sign and values of alpha and beta. One final consideration

of this function is that it is generally more precise to return the score that caused an alpha or

beta cutoff, rather than the value of alpha or beta itself. This is known as fail-soft alpha-beta

pruning. Pseudo-code is as follows:

1See Appendix A.3.3 with an example of this phenomenon.
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Algorithm 1 Fail-Soft Negamax

1: function Negamax(alpha, beta, depth)
2: if depth == 0 or is terminal node then
3: return evaluate(position)
4: end if
5: bestScore = -Inf
6: for each legal move in position do
7: score = -Negamax(-beta, -alpha, depth -1)
8: if score > bestScore then
9: bestScore = score

10: if score > alpha then
11: alpha = score

{Alpha-Beta cutoff has occurred}
12: if score >= beta then
13: return score
14: end if
15: end if
16: end if
17: end for
18: return bestScore

2.2 Enhancements to the Alpha-Beta search

A further improvement to alpha-beta pruning is that the order in which moves are searched

in the search tree is directly correlated to the number of branches that can be pruned. If the

best move is searched first, most other moves can immediately be seen to not improve the result,

since the maximum alpha in the position has already been found. Conversely, if the moves are

searched in worst to best order, alpha-beta pruning does not save any time at all. Given this

factor, chess engines often spend extra computational resources to find the principal variation,

or the sequence of moves that consists of all the likely best moves and replies for both sides.

In GERALD, as with most engines, the process of finding the best moves to search first

is done through a combination of intelligent move-ordering and an iterative deepening loop.

The iterative deepening loop searches the position at depth k, followed by a search to depth

k+1, k+2, ..., k+ i, until depth N . While there is a significant overhead to searching the earlier

depths multiple times, the information gained from these searches allows the overall search to

be much faster, and it is more likely the move-ordering and other speed-ups will be optimal.
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At each depth, the legal moves available are ordered in terms of likelihood to be the principal

variation, and likelihood to speed up search by reducing the distance between alpha and beta.

Typical move-ordering consists of placing the principal variation move first, followed by moves

that represent captures or promotions as they are likely to be important. For the ordering of

these moves, GERALD and many other engines use the Most-Valuable-Victim Least-Valuable-

Aggressor heuristic(MVV-LVA for short) [10]. Lastly, moves that were deemed to be important in

earlier shallower searches in the iterative deepening loop are examined in order of their calculated

importance. GERALD implements a common combination of the killer-move heuristic and a

history heuristic to choose the final order [10].

Positions analyzed in previous searches are stored in a hash table along with meta information

like depth searched and best move found. This memory-time speedup is commonly referred to

as a transposition table, allowing for positions that arise multiple times to not have to be

searched again (a position can occur in multiple different orders of moves, and is known as a

transposition).

The other essential improvements to the alpha-beta search also revolve around reaching an

alpha-beta cutoff as fast as possible. As an overview, methods in this category artificially set

alpha and beta before any cutoffs in the hope that this will cause cutoffs to occur at lower depths

in the search tree. To do this, many chess engines, including GERALD, use a principal variation

search (PVS). In a typical principal variation search, the principal variation move (or move that

was found to be best in depth k − 1) is searched with alpha and beta equal to their normal

initial values of negative infinity and positive infinity. Every subsequent move at the initial root

depth of zero, however, is assumed to not be able to improve alpha, since it was not found to

improve alpha in the previous search of depth k − 1. Because of this assumption, these moves

are searched with what is a known as a zero-window. A zero-window is just when alpha is set to

alpha + 1, and beta is set to alpha. Because all possible scores are integers, there is no actual

ability for this search to return a score that is between alpha and beta. Instead, all scores are

either less than or equal to alpha, or greater than alpha. In the case that they are less than or
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equal to alpha, the assumption has held true, and the move did not improve the current alpha.

If the search instead finds a score greater than alpha, then a full re-search with normal values of

positive and negative infinity is necessary. Although re-searching may appear to be inefficient,

this assumption that all moves after the principal variation will not improve alpha holds true

enough that the principal variation search is an overall improvement in search speed.

Consider a concrete example, where the iterative deepening loop has just completed a search

that reached depth 9 and has found a move that is best at that depth. When a search is initiated

at depth 10, the engine wants to know if that move is still the best move. Any other move,

however, is less likely to be the best move at depth k, since it was found to not be the best move

at depth k − 1. As the iterative deepening loop searches with a larger and larger depth k, the

assumption of the best move at depth k − 1 being the best move at depth k is more and more

likely to be true.

Aspiration windows are sometimes optional but are usually helpful optimizations that sacrifice

no ‘correctness’ in that they never risk returning an alpha value that is not actually the correct

alpha, given the scoring system of the engine. Similar to the zero-window search, tightening the

distance between alpha and beta causes the search to find more-cutoffs at earlier depths. Rather

than do a zero-window search, however, one can do the principal variation search within a much

smaller window, usually [score+constant, score−constant], where score is the best score found

in the previous search. Once again, if a search returns a score outside of these bounds, then a

re-search is necessary. GERALD, for the sake of simplicity, simply defaults to a setting alpha

and beta to the conventional negative and positive infinity if the aspiration window’s bounds

are found to be too narrow.

The last type of optimization, often resulting in a more efficient search, is applying extensions

and reductions to the search process. The most common extension is searching an extra depth

beyond the current depth for all moves that put the opponent in check. The most common

reduction, usually called a late-move reduction, is reducing the depth of searches conducted on

moves late in the move order, as these moves are likely to be bad given that they were sorted
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to the end in the move-ordering scheme of the engine. Once again, these moves are searched in

a zero-window, and only in the case that they return a score greater than alpha is a re-search

necessary.

The most essential extension mechanism is the quiescence search, which extends all searches

once they reach a depth of 0. This search is intended to negate the horizon effect, where an

engine may stop the search at a critical check or capture, leading it to be unaware of the ensuing

danger. The quiescence search uses all the same speedups and optimizations of the main alpha-

beta search, but only considers captures or, in some cases, promotions. GERALD employs more

or less standard implementations of these extensions and reductions [10].

The important takeaway from this section is that using intelligent parameters in setting the

various alpha and beta bounds will drastically increase the speed of a chess engine’s search.

The same can be said about finding optimal conditions on the extensions and reductions, so

the search can quickly converge on a couple of promising branches of the search tree. On the

contrary, bad values will result in many re-searches which is extremely detrimental to the chess

engine’s overall playing strength.

2.3 Pruning the Search Tree

Even with all of these search techniques, the search tree is still immense. As a result, more

pruning of the tree is necessary. While the above methods for optimizing the search function are

able to consider every possible move, these following methods sometimes sacrifice correctness for

the sake of pruning branches of the search tree. However they result in a much stronger engine

with a more powerful search.

Many pruning methods are based on the null-move observation. This observation states that,

for most positions, playing a move is almost always better than passing the turn. Thus, if a

player is to pass the turn without playing any move (the null move), and the other side is still

unable to improve beta, then beta can be returned from the search with no further searching or

calculations. This is the basis of one of the most powerful pruning methods commonly referred
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to as null-move pruning. Of course, in order to pass the turn, it is necessary that the player not

be in check, that null-move pruning was not applied in the previous move, and that the current

static evaluation is already lower than beta. The most common pitfall of fully pruning a move

rather than reducing the depth is that the null-move observation fails to consider a position in

Zugzwang, or when the best move is to not move at all. These positions mostly occur in the

endgame, however, and GERALD disables null-move pruning for all positions that have only

kings and pawns left.

GERALD employs other pruning methods that also take advantage of the null-move obser-

vation such as razoring, reverse-futility pruning, and stand-pat pruning done in the quiescence

search [10].

Further essential pruning methods are based not on the likelihood to decrease beta, but on

the likelihood of a move to improve alpha. One example of this is delta pruning which is done

within the quiescence search. If a capture plus the value of the piece being captured plus an

arbitrary margin is unable to increase the current best score found, then the subsequent move

and its branches are pruned.

By using these additional pruning techniques, GERALD is able to drastically reduce the

effective branching factor of the search tree and, at many low depths, keep it from exponentially

increasing.

2.4 Search Features of GERALD

For full transparency, the specific search techniques of GERALD are listed in Table 2.4.

Because search features can be implemented differently in different chess engines, direct exami-

nation of the code as given in Appendix B will show GERALD’s implementation. Furthermore,

due to time constraints, some implementations were simplified, while other search features that

are common in modern engines were omitted. These features are meant to be representative of

a typical set, but not meant to represent a full state of the art approach.
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Table 2.4.1: Search Techniques Used in GERALD

Fail-soft Alpha-Beta Negamax Search

Principal Variation Search

Aspiration Windows

Iterative Deepening

Transposition Table with Zobrist Hashing

Quiescence Search with Stand-Pat Pruning

Delta-Move Pruning

MVV-LVA Move Ordering

Killer-Move Heuristic and the History Heuristic

Null-Move Pruning

Razoring

Reverse Futility Pruning

Late Move Reductions

Late Move Pruning

Check Extensions

Simplified Time Management Scheme

Before discussing the evaluation function, it is important to credit the following open source

chess engines which inspired or provided a basis for GERALD’s implementation: SmallBrain

[15], Raphael [23], Rice [26], Stormphrax [9], Sunfish [31], and Stockfish [29].

2.5 The Evaluation Function

Once the quiescence search is done sifting through the various potential moves, it returns a

static evaluation of the resulting position. In this sense, an engine is never directly evaluating

the position that one sees, but rather finding the maximum value of the all nodes on the frontier

of the generated search tree. These leaf nodes are unlikely to contain critical captures or checks,

thanks to the quiescence search and check extensions. Because of these qualities, it is easier to

apply an accurate heuristic on a static position, informing the engine of the likelihood a side is

going to win. If an engine searches one million nodes, then one million evaluations will be done,

thus emphasizing the efficiency and speed with which this function must calculate its result.
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As mentioned above, GERALD’s evaluation function is a classical evaluation function done

through a set of weighted handcrafted features. The final evaluation for any given position p for

a color, c, is found with the following summation, where i is the index of the current feature,

wi,c is the weight of the feature for c, xi is the value found for that feature for p given c, and k

is the length of the feature list:

Evaluation(pc) =
k∑

i=0

(wi,c · xi,c − wi,!c · xi,!c) (2.5.1)

A further essential detail is that GERALD uses a tapered evaluation, meaning each weight has

two distinct values, one for a middle game position, and one for an end game position. Rather

than assigning a hard cutoff to decide when to use which weight, the weights are ‘tapered’ in

between the game states to allow for a more nuanced approach. Let g be a combined material

score, and let m be the middle-game weight for feature f , and e be the end-game weight. The

game phase ϕ is calculated from the tapered endgame score by:

ϕ = max(0.0,min(1.0,
g − 24

24.0
)) (2.5.2)

where ϕ is constrained to be between 1 and 0 to ensure a smooth transition between the middle

and end games. The weights for the middle game (m) and end game (e) are then combined

based on the current game phase ϕ to compute the final score s for feature f as follows:

s = m · ϕ+ e · (1− ϕ) (2.5.3)

Here, m · ϕ represents the contribution of the middle-game weight scaled by the game phase,

while e · (1− ϕ) represents the contribution of the end-game weight scaled by the inverse of the

game phase. This tapered evaluation is inspired by the tapered evaluation found in the chess

engine PeSTO [16]. For a full example, two positions are given in Figures 2.5.1 and 2.5.2, with

corresponding values in a table in Figure 2.5.3.
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Figure 2.5.1: Position 1: A famous test po-
sition for chess engines known as kiwipete
[10]

Figure 2.5.2: Position 2: A dynamic and
imbalanced position

Parameter Description Pos. 1 Pos. 2

Game Phase Based on number of pieces left 0 = endgame 1 .833
Pawn Value Value of one pawn 0 0
Knight Value Value of one knight 0 1
Bishop Value Value of one bishop 0 -1
Rook Value Value of one Rook 0 0
Queen Value Value of one Queen 0 0

Passed Pawn Multiplier Pawn with no other pawns in its way 0 -1
Doubled Pawn Penalty Pawns stacked on the same file 0 -1
Isolated Pawn Penalty Pawn with no adjacent pawns 0 -2
Backward Pawn Penalty Pawn with all adjacent pawns advanced 0 1
Weak Square Penalty Square in middle 4 ranks no friendly pawn can reach 5 -7

Passed Pawn Enemy King Square Can King prevent passed pawn promotion 0 -1
Knight Mobility Number of squares a knight can move to 2 5

Knight Outpost Mult. Knight is defended by pawn on opp. weak square 0 0
Bishop Mobility Number of squares a bishop can move to 3 -7
Bishop Pair Possessing both colored bishops 0 0

Rook Attack King File Rook is on same file as enemy king 0 0
Rook Attack King Adj File Rook is on adjacent file to enemy king 0 0

Rook 7th Rank Rook is on second to last rank 0 0
Rook Connected Rooks can guard each other 0 0
Rook Mobility Number of squares a rook has -4 -4

Rook Behind Passed Pawn Rook is behind a passed pawn 0 0
Rook Open File Rook has no pawns in its file 0 0

Rook Semi Open File Rook has no friendly pawns in its file 0 0
Rook Atck Weak Pawn Open Column Rook can directly attack a weak enemy pawn 0 0

Queen Mobility Number of squares a queen can move to 5 5
King Friendly Pawn How many and how close friendly pawns are to king -4 -3

King No Enemy Pawn Near King is far away from enemy pawns 0 0
King Pressure Mult Number of opp. attacks in kings zone -6 20

Figure 2.5.3: Table of Position Features with Descriptions (for only White)
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Since the example values are all from White’s perspective, a negative value corresponds to

Black having an advantage in a category, and a positive value corresponds to a White having

the advantage. Note that, much like search features, handcrafted evaluation features differ from

engine to engine. The source code provides a more complete and definite look into how each

feature is calculated and contributes to a final evaluation.

I have now defined in more granularity the architecture and parameters that make up GER-

ALD. With these definitions, it is now possible to discuss the process of ‘learning’ better sets of

parameters through genetic and co-evolutionary algorithms.
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3
Tuning GERALD

Chapter 2 provided an extensive description of GERALD, describing the kinds of parameters

that can be tuned in the search and evaluation functions. Now we turn to the use of genetic

algorithms to improve the search and evaluation processes. The search function, bounds, con-

ditions, and margins will be tuned via a genetic algorithm to operate together and optimize

GERALD’s search function. In the evaluation function, the set of weights that correspond to

the evaluation features from Table 2.5.3 will make or break the accuracy of GERALD’s ability

to estimate the score of a static position. These weights will also be tuned and optimized with

a genetic algorithm.

Initially, during system development, baseline values were programmed into GERALD for

each one of these parameters. These baseline values were determined mostly from my research

of chess engine programming as well as my own intuition as an experienced chess player. They

were also each tested individually and incrementally to make sure they contributed to the overall

playing strength of the engine.1 In this sense, the baseline values might not be optimal, but they

are all positively contributing to the engine, suggesting they are at least somewhat reasonable.

These baseline values were then subjected to two genetic algorithms, one for the search function,

and one for the evaluation function. The final objective, and main focus of this project, was to

1See Appendix A.3.2 for the testing method used.

19
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find a set of more optimal values that result in a better chess engine, as measured by increases

in Elo rating.

Given the natural separation between the search parameters and the evaluation feature

weights, a separate genetic algorithm was developed for tuning each. Since the parameters

of the search function are dependent on the accuracy of the evaluation function, the evaluation

function was tuned first, followed by the search. In the following section, an overview of genetic

algorithms will be presented, followed by the specifications and differences of the two genetic

algorithms used.

3.1 The Genetic Algorithm Loop

Figure 3.1.1: The Genetic
Algorithm Loop

At the core of the genetic algorithm is the genetic algorithm loop,

which usually runs for a set number of generations. This loop is

presented in Figure 3.1.1. First, an initial population is created.

Typically, a member of this population, which will be referred to as

a chromosome, represents one possible solution to the environment

of the genetic algorithm. The solution is directly encoded in the

chromosome, where unpacking the genes of the chromosome gives a

valid solution to the problem. The larger the population, the larger

the number of possible solutions tested, and the more a genetic

algorithm can maintain ‘genetic diversity.’ The chromosomes are

ranked based on a fitness function, the function that more or less

decides if a chromosome is ‘fit’ for its environment. While the

fitness function of an actual environment might be the subject of

philosophical debate, the fitness function of a genetic algorithm can

be thought of as a scoring mechanism– the higher score, the better.

It is based on this score that the other genetic operators, selection,

crossover, and mutation, can function.
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Over the course of one generation, the current population will

be scored based on the fitness function, and then a criteria will be

applied to select the best organisms. Sometimes this even involves duplicating high scoring

chromosomes to increase their genetic representation in the next generation. Next, a crossover

mechanism is applied to create new offspring that combine the genetic makeup of their parents.

Not all selected chromosomes end up being parents, some pass directly to the next generation,

while others are neglected entirely. Finally, the next generation’s newly founded population is

subjected to a mutation phase, where random bit flips in each chromosome’s genetic makeup

are applied to try to stumble upon random improvements. Every chromosome in the new

generation is evaluated by the fitness function once more, and the loop repeats. In the subsequent

sections, each stage of this process will be covered more extensively, and will refer to the exact

implementation of the genetic algorithms used for GERALD’s parameter tuning.

3.1.1 Chromosomal Encoding

Since both the evaluation feature weights and the search parameters of GERALD are no

more than a set of positive integer values, they can be easily encoded in a binary string of ones

and zeros. To discern which set of ones and zeros correspond to which parameter or weight,

predefined boundaries are used. For example, in one algorithm the first seven bits are used to

represent the value of a pawn in the middle game, while the last four are used to encode the king-

pressure multiplier in the end game. Identical to the genetic algorithm used for the tuning of

Falcon [13], chromosomes were encoded using Gray encoding. Gray encoding is done to attempt

to solve what is know as the ‘Hamming-cliff’ problem in chromosome mutation [5]. Imagine, for

instance, the ideal value for a specific 4-bit subsection of a chromosome is eight, represented in

binary as 1000. Suppose the current value is seven, which has a binary representation of 0111.

Four separate flips are necessary to reach the more optimal encoding of 1000, which is highly

unlikely to occur in one generation in most genetic algorithms. It is also unlikely to occur over

many generations because each intermediate value that results from any single bit-flip might be
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worse for the overall fitness of the chromosome. Gray encoding attempts to alleviate this problem

by ensuring the number of bit mutations between any two numbers one integer value away (i.e

7 and 8) is exactly one. Pseudo code for Gray-to-Binary and Binary-to-Gray conversions are

provided below, and are taken directly from Chakraborty and Janikow’s paper [5].

Algorithm 2 Binary-to-Gray Conversion

1: g1 ← b1
2: for i = 2 to n do
3: gi ← bi−1 ⊕ bi
4: end for

Algorithm 3 Gray-to-Binary Conversion

1: b1 ← bitvalue← g1
2: for i = 2 to n do
3: if gi = 1 then
4: bitvalue← COMPLEMENT(bitvalue)
5: end if
6: bi ← bitvalue
7: end for

3.1.2 Selection

Once each chromosome in a population is evaluated based on a fitness function, a selection

mechanism is performed, an approximation of Darwin’s natural selection. The selection opera-

tion aims to choose the most fit individual chromosomes, while maintaining a reasonable amount

of genetic diversity. Both genetic algorithms used for tuning GERALD employed proportional

selection.2 Proportional selection is done by summing up the total fitness of an entire popula-

tion, and then randomly choosing individuals weighted by their ‘proportion’ to the total fitness.

If one is trying to minimize the fitness function, this process can be inverted.

Elitism

Additionally, it is in the selection stage that elitism is implemented, where the top x individuals

are automatically chosen without going through proportional selection. This is done so that the

best solutions are not lost from generation to generation, and their high scoring chromosomal

2Proportional selection is also known as roulette-wheel selection.



3.1. THE GENETIC ALGORITHM LOOP 23

representations are more likely to impact future populations. Choosing a good value for x is

about finding the delicate balance between keeping good solutions whilst maintaining genetic

diversity.

Historical Mechanism

On top of elitism, the genetic algorithms used for tuning GERALD implemented a historical

mechanism, as inspired by Vázquez-Fernández et al. [32]. The historical mechanism is essentially

just a dynamically-sized array (in C++ it is implemented as a Vector object) that keeps track of

the top k solutions in the entire training process. The difference between a historical mechanism

and elitism is that the historical mechanism maintains solutions between generations. This is

done so that the most promising solutions are preserved, even if they end up being mutated or

combined with less promising solutions later. Similar to elitism, the top y chromosomes from

the historical mechanism are passed on to crossover without undergoing proportional selection.3

Both the historical mechanism and elitism aim to help speed up the genetic algorithms ability

to converge upon a good solution.

3.1.3 Crossover

After selection is finished, pairs of individuals are randomly chosen from the new population

for crossover. A crossover rate is assigned prior to training, and each pair is given a random

chance for crossover, or for directly passing on to the new generation based on this rate. For

example, a crossover rate of .8 signifies that 80 percent of the time two randomly selected

individuals will indeed combine their chromosomes to create two new offspring, while 20% of

the time both parents will directly pass on to the next population. This allows for less genetic

drift between generations, since a certain percentage of the population will stay the same. While

there are many different methods available for crossover, both genetic algorithms employed in

the tuning process use single-point crossover, a fairly common and straight-forward crossover

method. Single-point crossover refers to the process of creating a new chromosome with 0-k

3Both x and y are hyperparameters, are were found to perform best when they were very small compared to
the overall population size.
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genes from parent one, and k-l genes from parent two, where k is a random number, and l is

the length of the encoded chromosome.

3.1.4 Mutation

The final step in the genetic algorithm loop is the mutation step. Mutation tries to simulate

the seemingly random occurrence of genetic mutation that occurs in nature and in the passing

on of genes. Much like in nature, most mutations are neutral or harmful, but some allow novel

or more optimal solutions to be found. Once again, a mutation rate hyperparameter, pm is

defined at the start of training, and each bit in each chromosome that is not elite is flipped with

a pm probability. Typically, the mutation rate is a very small probability to allow for the overall

‘goodness’ of a chromosome to likely remain intact. It is in this step that the aforementioned

Gray encoding is helpful as mutations are less likely to drastically alter a chromosome’s encoded

solution.

3.2 The Evaluation Genetic Algorithm

The first genetic algorithm applied to GERALD is designed to tune the weights of the hand-

crafted features in the evaluation function. The genetic algorithm follows the shell from the pre-

vious section, with proportional selection, elitism, a historical mechanism, single point crossover,

and a constant mutation rate. Table 3.2.1 gives the exact breakdown of the bits in chromosomal

encoding, totalling to chromosomes of 356 bits.

This section will focus on the aspect least covered previously, the fitness function. The issue

with many genetic algorithms is that the fitness function can act as a bottleneck to speed.

Using genetic algorithms in the problem-space of chess presents the same problem, since it is

difficult to properly estimate the fitness of two similar chromosomes without playing thousands

of games. Simulating thousands of games for each chromosome, for each generation, results in

an explosion of necessary computing resources and is quite unrealistic for most researchers. The

chess application of genetic algorithms can benefit from the ways this problem was tackled in
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Feature Bits Feature Bits

Pawn MG (fixed) 0 Knight MG 9
Pawn EG 8 Knight EG 9
Bishop MG 9 Rook MG 10
Bishop EG 9 Rook EG 10
Queen MG 10 Passed Pawn MG 6
Queen EG 10 Passed Pawn EG 6
Doubled Pawn MG 6 Isolated Pawn MG 6
Doubled Pawn EG 6 Isolated Pawn EG 6
Weak Pawn MG 6 Central Pawn MG 6
Weak Pawn EG 6 Central Pawn EG 6
Weak Square MG 6 Passed Pawn Enemy King Sq MG 6
Weak Square EG 6 Passed Pawn Enemy King Sq EG 6
Knight Outposts MG 6 Knight Mobility MG 5
Knight Outposts EG 6 Knight Mobility EG 5
Bishop Mobility MG 5 Bishop Pair MG 6
Bishop Mobility EG 5 Bishop Pair EG 6
Rook Attack King File MG 6 Rook Attack King Adj File MG 6
Rook Attack King File EG 6 Rook Attack King Adj File EG 6
Rook 7th Rank MG 6 Rook Connected MG 6
Rook 7th Rank EG 6 Rook Connected EG 6
Rook Mobility MG 5 Rook Behind Passed Pawn MG 6
Rook Mobility EG 5 Rook Behind Passed Pawn EG 6
Rook Open File MG 6 Rook Semi-Open File MG 6
Rook Open File EG 6 Rook Semi-Open File EG 6
R Attack P Open File MG 6 Queen Mobility MG 3
R Attack P Open File EG 6 Queen Mobility EG 3
King Friendly Pawn MG 6 King No Enemy Pawn Near MG 6
King Friendly Pawn EG 6 King No Enemy Pawn Near EG 6
King Pressure Score MG 4 King Pressure Score EG 4

Table 3.2.1: Number of bits for each evaluation feature weight (MG = middle game, EG = end
game

the tuning of other classical evaluation functions via genetic algorithms, discussed next. Then

a full process of the genetic algorithm that was applied to GERALD will be described, followed

by the final result.

3.2.1 Previous Research

The solution presented in David-Tabibi et al. [13] was to use an “expert” evaluation function

known to be of high caliber, and base the fitness function on the difference between the value
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of the expert and the value of a given chromosome. This value is a ‘centi-pawn’ value, a unit

meant to represent one one-hundredth of a pawn’s value. A set of chess positions were given

to the expert, a score was recorded, and each chromosome’s fitness was simply the average loss

between the expert’s centi-pawn score and the chromosome’s score over a subset of positions.

Since the evaluation step takes milliseconds at most, and the expert can pre-process a set of

chess positions prior to any run, this approach is extremely efficient and fast.

In 2010, David-Tabibi et al. tried a slight variation of their original idea. The researchers

maintained the use of an expert but, instead of finding a difference in centi-pawn value, they

based the fitness function around the number of identical moves found for the same position. A

similar set of positions was given to an expert system, but this time the expert chose the best

move rather than a score. Each chromosome evaluated the possible moves from the root position,

and the move that resulted in the highest evaluation score was compared to the expert’s move. If

they matched, the fitness score of the chromosome was incremented. Vázquez-Fernández et. al

[32] used an identical method in their paper. The advantage of this method was that the expert

did not need to provide an exact score, and thus the choice of moves from human Grandmaster

players or any high level chess game could be used. The disadvantage, however, was that this

was a significantly slower process, since each chromosome needed to iterate through all the

legal moves of each position. Furthermore, the fitness function was able to determine only if a

move was found that was identical to an expert’s choice, rather than have a granular ‘distance’

between centi-pawn scores.

In all of the above research, the set of positions that were used in the fitness function were

taken randomly from a database of human Grandmaster games. While there is an argument for

using naturally occurring positions in human games, this dataset is not necessarily representative

of the set of positions a chess engine’s evaluation function will be applied to. For one, chess

engine’s have a main search and a quiescence search, so they almost never evaluate a position

with relevant captures or tactics. Furthermore, games between chess engines vary from games

played between humans, so the set of positions may not be fully representative.
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The following subsections describe how these concerns were addressed in the evaluation func-

tion of GERALD, as well as provide a full overview of the training process.

3.2.2 Choosing an Expert Fitness Function and Building the Data Set

Similar to the importance of the quiescence search which provides the evaluation with a quiet

position, static evaluation tuning is typically done on quiet positions. As mentioned above,

most research thus far used a set of random positions from a database of Grandmaster games.

As an improvement, a set of quiet positions used for the tuning of a stronger engine, Zurichess

[24], were used. These positions are the leaf nodes of a strong engine’s search, and so are more

representative of the kind of positions GERALD’s evaluation function would be applied to.4

Because a set of quiet positions were used, and because these positions did not occur in natural

play, the more granular comparison of centi-pawn evaluations was deemed to be more suitable.

To acquire this expert evaluation, many experts were tried, including the more modern neural

network based evaluation functions present in Smallbrain [15] and Stockfish 16 [29].5 However,

I found that a neural network evaluation does not act at all like a handcrafted evaluation. In

fact, most modern neural networks are able to detect moves that would otherwise require a deep

search to find, making them not ideal ‘experts’ for a handcrafted evaluation function.

After much trial and error, I chose Stockfish 11 as the expert [29]. The reason for an older

version of Stockfish is that Stockfish 11 was the last version of Stockfish to use a classical hand-

crafted evaluation function. Along with seamless integration with python-chess [25], Stockfish

11 is one of the strongest classical chess engines ever made, and thus serves as a great expert

(and it is open-source). A set of 8,000 quiet positions from Zurichess’ data set were used for

training. Each position was given to Stockfish 11, and Stockfish 11 was limited to just a one

node search (effectively just the evaluation function). The resulting centi-pawn evaluation was

stored in an adjacent column to a character string representing the position in Forsyth-Edward

4These positions were actually used to tune a neural network evaluation function in Zurichess, but were found
to be satisfactory for the purposes of handcrafted evaluation tuning as well.

5Modern Chess Engine’s dwarf even the best human chess players in playing strength, so they were preferred
experts.



28 CHAPTER 3. TUNING GERALD

Notation [7] (See Appendix Section A.1.1 for more on Forsyth-Edward Notation). The fitness

of any single chromosome, ci, in the population is found by first selecting 1,600 random entries,

k, from the 8,000 total, and finding the difference between actual evaluation ea and calculated

evaluation ec for each entry, and then finding the average difference among the given k entries.

A succinct summation captures this:

Fitness ci =

∑k
i=0 |ea − ec|

k
(3.2.1)

3.2.3 Training Results

With the fitness function fully finished, the full genetic algorithm was run. After a great

number of experiments with various hyperparameters and training sizes, the final hyperparam-

eters that resulted in the lowest training loss were as follows: Figure 3.2.1 shows the fitness of

Mutation Rate : 0.002
Crossover Rate : 0.75

Total Generations : 300
Population Size : 1000

Training Size : 1600
Elitism : 0

Historical Mechanism : False

the average and best chromosome over the course of the 300 generations. The exact time for

a parallelized run of the genetic algorithm was only 222 seconds, and even a single core would

likely complete a training run of 300 generations with the above hyperparameters in under an

hour. The baseline fitness was found by having the manually tuned evaluation feature weights

perform on a set of 1,600 positions from the data set. Noticeably, after less than 50 generations

the best individual is 25 centi-pawns better from the baseline, although even the all time best

fitness value is still in the ballpark of 160 centi-pawns average loss from Stockfish 11. This is

still reasonable, since 28 features are unlikely to reproduce the same value consistently as the

hundreds of parameters and features used in Stockfish 11’s evaluation function.
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The set of final tuned evaluation parameters are outlined in Figure 3.2.2. It is interesting to

note that the tuning process learned traditional piece-values from a random initialization, and

also produced many values that vary highly from the original guesses.

Figure 3.2.1: Training Results
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Feature Base
Midgame

Tuned
Midgame

Base
Endgame

Tuned
Endgame

Pawn 100 100 100 89
Knight 305 330 300 226
Bishop 315 359 320 307
Rook 480 506 520 479
Queen 910 1021 910 991
Passed Pawn 40 4 80 42
Doubled Pawn 10 20 20 45
Isolated Pawn 10 20 20 15
Weak Pawn 40 3 40 18
Central Pawn 10 14 10 3
Weak Square 5 1 2 3
Passed P Enemy K Sq. 0 0 50 2
Knight Outposts 40 3 35 28
Knight Mobility 1 12 2 15
Bishop Mobility 3 6 1 5
Bishop Pair 15 39 20 60
Rook Attack K File 15 22 5 1
Rook Attack K Adj File 10 10 5 10
Rook on 7th Rank 25 2 35 27
Connected Rooks 20 22 10 41
Rook Mobility 2 1 1 6
R Behind Passed Pawn 10 1 35 14
Rook Open File 15 45 5 7
Rook Semi-Open File 20 26 10 10
R Attacks Weak P 35 45 30 61
Queen Mobility 1 1 1 4
King Friendly Pawn 4 11 0 4
K No Enemy Pawn 5 4 0 0
King Pressure Score 3 2 1 0

Figure 3.2.2: Comparison of Base and Tuned Values

Based on these values, some observations can be made: 1) the original value of a bishop pair

advantage was grossly underestimated; 2) the queen is worth the value of about ten pawns com-

pared to the conventional wisdom of nine. Still, the true test of whether this tuning process was

successful is if it improves the playing strength of GERALD as a whole. Table 3.2.2 outlines the

results of playing 1,000 games between an instance of GERALD with manually tuned evaluation

feature weights, and an instance with the newly tuned ones: The result of self-play is that the

Category Results

Score of tuned eval vs base 538 - 236 - 226 [0.651]

Tuned eval playing White (500 games) 287 - 108 - 105 [0.679]

Tuned eval playing Black (500 games) 251 - 128 - 121 [0.623]

White vs Black (1000 games) 415 - 359 - 226 [0.528]

Elo difference 108.3 ± 19.6

LOS 100.0

Draw Ratio 22.6%

Table 3.2.2: Comparison of Tuned and Base Evaluations in Chess
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newly-tuned GERALD is undoubtedly better, by a margin of about 108 Elo. In practice, this

means that the new set of values beat the old a staggering 65% of the time. Closer examination

of a couple of the games played between the two instances of GERALD show clearly why such a

dramatic result was achieved. In most positions, the two instances disagree about the centi-pawn

score of the position. And, in most cases, the newly tuned instance is closer to the ‘truth’. The

next task, after a much better set of evaluation feature weights have been found, is to tune the

search parameters of GERALD given this update.

3.3 The Search Genetic Algorithm

While a myriad of learning techniques have proven successful for the task of tuning the pa-

rameters of an evaluation function, it is much more difficult to tune the parameters of a search

function. There are many reasons for this increase in difficulty: First, searches take much longer

than single evaluations, and thus there is an exponential time increase to receive a score or a

result.6 Second, search parameters are a lot more finicky, and bad values can sometimes even

result in infinite or broken searches. Imagine, for example, if a margin of zero was applied

to reverse-futility pruning [10]. The majority of all moves and the branches below them in

the search tree would be immediately pruned, preventing any valid move from being searched.

Lastly, search parameters are extremely co-dependent, and changing one value can have a cas-

cading effect on the entire engine. Still, chromosomes were encoded in an identical Gray-encoded

fashion as the evaluation genetic algorithm, as outlined in Table 3.3.1. The main difference is

that the chromosomal encoding use significantly fewer bits, only 64, since the search parameters

are fewer and smaller overall. In general, the shorter the chromosomal encoding, the better a

genetic algorithm will perform, as there are fewer possible solutions to explore.

6As mentioned previously, millions of evaluations are calculated in one single search.
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Parameter Bits Parameter Bits

Aspiration Window Initial Delta 6 Use Lazy Eval Static 1
Use Aspiration Window Depth 3 Futility Margin 8
Razoring Margin 8 Delta Margin 10
Killer Move Score 10 Initial Depth LMR 3
Initial Move Count LMR 3 LMP Move Count 4
Null Move Pruning Initial
Reduction

3 Null Move Pruning Depth Factor 5

Table 3.3.1: Allocation of bits for each search parameter

3.3.1 Previous Research

The only research that was found where a genetic algorithm was implemented for the purposes

of tuning a chess engine’s search function was done by some of the same authors who pioneered

the method for the evaluation function in 2008. In their following chess engine research, they

proposed a full pipeline for tuning a chess engine’s search and evaluation functions from a random

initialization [12]. The genetic algorithm they proposed was problematic, however, as even less

evidence of its efficacy was given, and the fitness function was based on how many middle

game puzzles the engine solved. Specifically, the fitness made a couple of key assumptions: 1)

that solving more middle game puzzles was directly correlated to a stronger search and, 2) that

solving such problems with fewer nodes examined per search is better than more nodes examined

per search. The first assumption has been disproved, as shown in a Wiki page in RubiChess’

engine GitHub page [21]. Most likely this is because a search is conducted on every imaginable

position, and not just positions where one move is really good and the rest are sub-optimal

as is the case with chess puzzles. The second assumption also fails for a similar reason, since

fewer nodes can sometimes mean good moves are too quickly being pruned away. Thus, for

the creation of the genetic algorithm for tuning the search function of GERALD, only fitness

functions that considered overall play of the engine were considered.
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3.3.2 Adding Co-Evolution

One known mechanism to enhance genetic algorithms is the introduction of co-evolution. In

a typical genetic algorithm scheme, the only ‘evolving’ entities are the individual chromosomes

in the population. A better reflection of nature, as well as a better machine learning algorithm,

is possible when the fitness function is evolved along with the population, resulting in a more

accurate convergence. Co-evolution also allows there to be unsupervised learning in a genetic

algorithm, since perhaps the optimal strategy may not be known before hand.

For the game of chess, as well as any competitive game with a clear outcome in the end, there

is an obvious and theoretically ‘pure’ implementation of co-evolution. For this we use as the

fitness function the performance of each chromosome playing the rest of the population in a giant

round-robin tournament consisting of hundreds of thousands of games. The fitness function will

inevitably evolve as the field produces better players, and the exact fitness that is determined

of each chromosome is inscrutable. Unfortunately, the main downside to this approach is the

immense computing power required. Imagine a population of one hundred chromosomes – each

chromosome would need to play each other chromosome in a deterministic match consisting of

many games. This would require possibly thousands if not millions of games each generation.

To combat this issue, but maintain its theoretical soundness, I designed a modified version

that I call King-of-the-Hill co-evolution. Rather than have each chromosome play every other

chromosome, they all just play the current best chromosome. If any are successful in proving that

they are better, they become the new ‘King-of-the-Hill’ for the next generation. This greatly

reduces the number of games required per generation, while still allowing the fitness function to

consider the overall playing strength of each chromosome.

The question still remains, however, as to how one can know exactly when two very similar

chess engines differ significantly in playing strength. For this, a metric known as likelihood of

superiority (or LOS for short) was used. LOS is used in almost every instance of chess engine

testing. For example, a popular chess engine testing site, CCRL [3] posts a LOS value in-between

every adjacent chess engine in their standings. Luckily, a LOS table can be found at the Chess
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Programming Wiki [10], and so the math did not need to be implemented. LOS works on a net

scoring system and assumes a constant rate of draws (32% draw-rate in this case). A win scores

one point, and loss negative one, a draw zero. The final net-score is meant to represent how

many wins over losses one side achieved. The higher the net-score, the higher the likelihood of

superiority.

After some experimentation, a LOS value of 99.99% for a net score of +43 in 200 games was

found to be the perfect balance between ensuring that a new chromosome was better than the

current King-Of-The-Hill, while still allowing for the difference in playing strength between two

engines to not be large. In fact, the more games played, the more one can be confident that a

small margin of victory is significant with the LOS metric.

Despite the King-of-the-Hill speedup, time and computing power is still a factor. Great care

was taken to fully utilize the computing resources that were available. The research computer

that was used for this thesis had twenty cores, a population size of twenty was assigned, and each

chromosome played the King-of-the-Hill chromosome in a match of 200 games in parallel, each

generation. In the games, a hard limit of 200 total moves was set (before a game is adjudicated

as a draw), and a search time of 50 milliseconds was given to each move for both sides. To

introduce a wider variety of positions and get rid of repeat games, a random eight move opening

was assigned to the starting position of each game from an opening book. The creation of

this testing setup was not trivial, and command-line tools such as Valgrind were invaluable in

ensuring no memory leaks occurred in the running of the algorithm.

The hyper-parameters used are listed in Table 3.3.2. Note, that to cater to the drastically

smaller population size of 20, elitism was decreased to a value of 2 elites per generation, and the

mutation rate was increased to have a larger impact on each chromosome.

From start to finish the genetic algorithm took 227038 seconds, or 2.6 days. The king of the

hill was initially set to be the base manually chosen search parameters, and the king of the hill

was updated twice in the training process, on generation 77 and 97.7 Although colossally slower

7It was ultimately the values from the generation 97 update that were used in final testing. The algorithm
could have stopped in half the generations since no more king of the hill updates were done.
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Mutation Rate : 0.05
Crossover Rate : 0.75

Total Generations : 200
Population Size : 20

Elitism : 2
Historical Mechanism : True

Hist. Individuals Re-introduced per Gen. : 1

Table 3.3.2: The Hyper-Parameters of the Search Function Genetic Algorithm

than the evaluation function, the ability for the algorithm to be parallelized means that the

speed of the algorithm can scale with computing resources. The graph presented in Figure 3.3.1

tracks the best, average, and worst fitness of the population over the 200 training generations.

Unlike the evaluation genetic algorithm, the best and average fitness was sporadic. This is most

likely attributed to the much smaller population of 20 (versus 1,000 previously), as well as the

more drastic effect that bad search parameters have on the playing strength of GERALD. This

effect is better seen in the stochastic nature of the worst fitness graph, where the worst fitness

jumps from -30 to -200 in just one generation. This is also a result of the extreme effect that

bad crossovers or mutations can have on the overall playing strength of any single solution.

A table of the base values compared to the tuned values is also provided below. As with the

evaluation feature weights, the best way to understand what each one pertains to is to see them

in the code (found in Appendix B).

Feature Base Search Tuned Search

Aspiration Window Initial Delta 25 53
Aspiration Window Initial Depth 5 0
Use Lazy Eval for Static Pruning True False
Futility Margin 100 75
Razoring Margin 150 167
Delta Pruning Margin 300 194
Killer Move Score 100 841
Initial Depth for Late-Move Red. 3 3
Initial Move Count for Late-Move Red. 3 5
Move Count for Late-Move Pruning 10 8
Initial Reduction for Null-Move Pruning 2 2
Null-Move Pruning Depth Factor 10 9

Figure 3.3.2: Comparison of Base and Tuned Values

Some notable observations are that the tuned values are by and large more aggressive in

pruning and reducing the depth of most branches in the search tree. For example, the delta
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Figure 3.3.1: Training Results

pruning margin was reduced by more than 100 centi-pawns, the futility margin was reduced

by 25%, and late move-count pruning was applied two moves earlier in. Also, the killer move

score is much larger than initially anticipated, probably resulting in a higher placement of ‘killer

moves’ in the move ordering schema of GERALD. The other huge difference is the tuned values

opt to apply an aspiration window right away, but make that window twice as large. This is not

as typical with other chess engines, but it seems to work well for GERALD. Once again, the true

merit of this tuning process will be found only in actual games, so a round-robin tournament

was conducted of 6,000 total games between instances of GERALD with the original manually-

tuned values, the evaluation tuned values, and both the search and evaluation functioned tuned

values. The results of this tournament are shown in Table 3.3.3. Based on the Elo increase

of approximately 62 points from the evaluation tuned instance, and an increase of 230 points

from the base instance, the genetic algorithm with King-of-the-Hill co-evolution is effective. The
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Rank Name Elo +/- Games Score Draw
1 Tuned Search & Eval 96 14 2000 63.5% 24.2%
2 Tuned Eval 34 13 2000 54.9% 25.7%
3 Base -134 14 2000 31.6% 21.8%

Table 3.3.3: Performance in Self-Play

increase was not as dramatic from the base instance to the evaluation instance as it was for the

first expert-driven genetic algorithm, but it is nonetheless significant.
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4
Results

To further test the full results of both tuning methods on GERALD, a match was played

between a third party chess engine and the three GERALD versions – the base version, the

version with a tuned evaluation function, and the version with both tuned evaluation and search

functions. The third party chess engine used was Stash-bot [18], which proved a perfect opponent

because its 12th release has an official rating in close proximity to GERALD’s estimated rating

(Stash-bot is rated as 1886 Elo on CCRL at the time of writing [3]).

Rank Name Elo +/- Games Score Draw
0 stash-12.0 21 8 6000 53.0% 12.3%
1 Tuned Search & Eval 42 14 2000 56% 10.7%
2 Tuned Eval 2 14 2000 50.2% 14.0%
3 Base -108 15 2000 34.9% 12.4%

Table 4.0.1: Performance against Stash-bot

As seen in Table 4.0.1, the hierarchy of the three GERALD instances holds up well even against

an external opponent. This further indicates that the two tuning processes helped strengthen

GERALD’s playing strength overall, and not just in self-play or testing. From this we can

conclude that the two proposed genetic algorithms provide serious and promising alternatives

to existing methods of chess engine tuning. In the first genetic algorithm, there was tremendous

ease and speed in the training process. In the second, a more complex and lengthy training
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process was required, but was nonetheless effective. The second search parameter tuning genetic

algorithm is also especially relevant amidst the sparse alternatives found in research.

More importantly than chess, however, the results of this thesis provide evidence for the over-

all effectiveness of the two proposed genetic algorithms in similar problem spaces. In fact, many

search spaces might be able to benefit from or apply one or both of the genetic algorithms.

In many applications of artificial intelligence, a computer is meant to recreate human expert

results.1 In fact, any supervised learning model has a built-in ‘expert’ labelling data or judging

results. The evaluation genetic algorithm effectively reverse-engineered an expert’s results with-

out having access to the same architecture as the expert. Furthermore, using a King-of-the-Hill

co-evolutionary algorithm is plausible in any problem where various solutions can be directly

compared against one another. Realistically, if two solutions cannot be directly compared, a

genetic algorithm probably will not be ideal anyways since it is unlikely a good fitness function

exists for that type of problem.

In sum, GERALD, a research engine built in C++, was greatly enhanced in both the evalua-

tion and search components through the tuning of two genetic algorithms applicable to a large

number of use-cases. The Elo rating increase was estimated to be about 150 Elo in both self-play

and in external testing, putting an engine built by an inexperienced chess programmer in less

than four months well above the majority of human play in the world (see Appendix A.3.4).

1Such examples include diagnoses to patients, natural language processing, or recommendation algorithms to
name a few [8].



5
Further Work

While two genetic algorithms were successfully applied to improve GERALD’s playing

strength, it remains to be seen how these techniques would service a much stronger engine.

Further, other state of the art tuning methods were not applied to the base version of GER-

ALD, and thus there is not an accurate analysis of whether the genetic algorithms were an

improvement over existing non-genetic tuning solutions. In future research, testing multiple

tuning techniques on a set of several stronger engines would provide a more definitive view of

the potential of genetic algorithms in the context of chess engine parameter tuning.

More broadly, this work does not explore how expert-driven genetic algorithms or co-evolution

methods compare to other known methods for the broad use cases of artificial intelligence.

Applying genetic algorithms to a variety of similar problems would give much more insight into

their overall power as a machine learning tool.

As for the development of GERALD, the process of developing a chess engine is endless: new

features, tweaks, better tuning, and code optimizations have potential to increase the engine’s

playing strength. As such, There are many optimizations and potential changes for the increase

of GERALD’s baseline playing strength. Essential improvements include the optimization of

extracting position features for a position (known improvements include optimizing code, pawn

hash tables, caching data, and selective updating based on move played), and the addition of
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search techniques such as multi-cut pruning or internal iterative deepening. This was partially

neglected because accuracy was prioritized over speed in the short development period of GER-

ALD. Further, the game of chess is solved for all board states with seven pieces or fewer, and

strong engines use lookup methods to play out known endings. Access to such tables would cer-

tainly increase GERALD’s strength in the endgame. Further, GERALD does not use any piece

square tables whatsoever which are usually a hallmark of effective handcrafted evaluations.1 In-

cluding these, as well as perhaps incorporating them into the existing tuning mechanism, would

likely result in a significant increase in playing strength and positional understanding. Future

readers may see some of these changes implemented, and they may not. Perhaps the lessons

learned from this thesis will aid the development of a new chess engine. Either way, the creation

of GERALD marks the beginning of my foray into computer chess, not the end.

1The main reason for their absence is to keep the chromosomal encoding of the evaluation features minimal.



6
Epilogue

There are many aspects of this project that deserve their own section or chapter. I have tried

to provide resources and references wherever possible so the curious reader can get answers to

burning questions that were not directly addressed here. One of the aspects of this thesis that

did not fit within the traditional thesis framework was a discussion of the challenges faced, and

the lessons that were needed to overcome them. I will break this discussion into three categories:

1) the challenges of writing good bug-free software, 2) the challenges of explaining an immensely

complicated algorithm or process in layman’s terms, and 3) the existential challenge of writing

and coming to terms with artificial intelligence.

Writing code that works has many challenges. It is not an accident that the Appendix has

its own section for chess engine testing.1 The first full version of GERALD had almost no

automated testing. I simply would make a change to the chess engine’s code, and then manually

play against the engine and somewhat subjectively judge if the change was beneficial or harmful.

Not only was this bad practice, but it became increasingly difficult to debug once all the obvious

improvements were made. The most important automated tests are outlined in the Appendix,

but the fundamental lesson of having a foundation of good testing was harshly learned.

The other challenge with writing bug-free code for this project was that both GERALD and

the five tried genetic algorithms utilized multi-threading. Race-conditions needed to be dealt

1See Appendix A.3.
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with correctly, and it was important to make sure the immense amount of memory required

didn’t raise any SEGFAULTs (20 cores running in parallel means a lot of memory being used).

In one instance, I spent a week debugging a memory leak that turned out to just be an unini-

tialized variable. Still, learning to better debug multi-threading or memory issues with tools

such as Valgrind is an essential skill for any low-level programmer, and I am grateful I had the

opportunity to develop my knowledge in this area.

Challenge number two was actually writing this thesis, not because writing a senior thesis is

generally arduous (it is), but because it is difficult to write about highly specific and technical

niches. In many cases, using niche-specific terms can alienate a reader, or prevent general

understanding. Finding a balance between brevity and clarity requires great care, especially

when neither are particularly easy to achieve. Most people do not have an extensive knowledge

of programming, and, of the people who do, very few have a strong foundation in classical chess

engine architecture. An even smaller slice of this population might also be aware of the nuances

of genetic algorithms. As a result, there was a huge emphasis on just trying to explain what was

done in this thesis. A general background of computer science and a basic understanding of the

game of chess was assumed, but I have no doubt that friends and family who do not meet this

assumption and are reading this might be profoundly confused by most sections. Nonetheless, I

take great issue with research papers that hide between esoteric words and verbose descriptions.

A sign of true mastery, is the ability to explain complex subjects with plain and simple language.

The final challenge became apparent to me in the middle of a long road trip to one of my

basketball team’s away games. I was adding a new feature to an early version of GERALD, and

began testing it on the team bus. Thirty-five moves later, I resigned. I felt excited, accomplished,

but mostly... depressed. In just a month of development, the executable file I compiled surpassed

my own ability in a game I take great pride in playing. Of course, this was not the first time

artificial intelligence has forced me to take a hard look in the mirror. It was however, the first

time something I had personally created did. Over the course of writing and programming this

thesis, I have been forced to rethink what it is that makes my intelligence as a human worthwhile.
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Genetic algorithms drastically outperformed my manually tuned baseline, and GERALD is now

much much better than I am at chess. Not to mention, artificial intelligence in the form of

Chat-GPT 4 [22] and GitHub’s Co-Pilot [17] provided massive help in the form of a virtual

assistant. Perhaps this human replacement is an example of the broader existential threat many

people feel with artificial intelligence – what happens when artificial intelligence is just simply

better than us at our jobs, at solving problems, and at making decisions? Isn’t that what we,

as humanity pride ourselves in?

I believe that, along with raising these questions, the process of creating this thesis was

able to point me in a promising direction. The fundamental disadvantage of most genetic

algorithms is that they are very unlikely to converge upon an optimal solution. I believe this is

by design, however. The process of evolution is an inherently imperfect one. It creates organisms

that are ‘good-enough’ to survive their environments and adapt to their surroundings. But

to say that these organisms are perfect would be ludicrous: just look at the average human,

and try to argue that we are examples of perfectly evolved organisms. Our humanity was

created through evolution – and if genetic algorithms have taught me anything, it is that our

strange mutations, our even stranger choice in mates, are not guided towards anything perfect.

Hopefully, artificial intelligence will teach us not to fear our lackluster abilities, but take pride

in our unique ‘humanness’. It is our inefficiencies, our flaws that make us who we are, and what

keeps games like chess so interesting to witness and play.
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Appendix A
The Current State of the Art for Chess Engine

A.1 Board Representation

The fastest method by far for handling the internal logic and representation of chess in a

chess engine is to use bitboards. Bitboards, in essence, use unsigned 64 bit integers to represent

the sixty four squares of a chess board, and the occupancy of those squares by various pieces.

One can, for instance, use a logical AND on the 64 bits representing the squares of each piece,

and get an occupancy bitboard for the entire board. Bitboards can represent possible legal

moves, attacks, or even specific evaluation features, such as passed pawns or knight outposts.

For the purposes of time and efficiency, GERALD uses an extremely fast C++ library for board

representation made by GitHub user Disservin [14].

A.1.1 Forsyth-Edwards Notation (FEN)

Forsyth-Edwards Notation (FEN) is a standard notation for describing a particular board

position of a chess game. The purpose of FEN is to provide all the necessary information to

restart a game from a particular position. It is also used to store databases of chess positions in

a consise way. FEN is also used in the Extended Position Description (EPD) format, which is

often used in the testing of chess engines [10].

A FEN record contains six fields. The fields are:
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1. Piece Placement (from White’s perspective): Each rank is described, starting from

rank 8 and ending with rank 1. Within each rank, pieces are noted from file “a” to file

“h”. Following symbols are used to represent the pieces:

• P – White pawn

• N – White knight

• B – White bishop

• R – White rook

• Q – White queen

• K – White king

• p – Black pawn

• n – Black knight

• b – Black bishop

• r – Black rook

• q – Black queen

• k – Black king

2. Active Color: Indicates whose move it is. It is “w” if White’s move, “b” if Black’s move.

3. Castling Availability: Indicates the castling ability. If neither side can castle, this is ”-”.

Otherwise, this has one or more letters: “K” (White can castle kingside), “Q” (White can

castle queenside), “k” (Black can castle kingside), and “q” (Black can castle queenside).

4. En Passant Target Square: If there is a pawn move that makes it possible for an

opponent to capture this pawn en passant, this field shows the square. If there is no such

square, this is “-”.

5. Halfmove Clock: This is the number of halfmoves since the last capture or pawn advance.

This is used to determine if a draw can be claimed under the fifty-move rule.
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6. Fullmove Number: The number of the full move. It starts at 1, and is incremented after

Black’s move.

Here is an example of a FEN record, which is the FEN of the starting position of every chess

game:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

A.2 Architecture

As mentioned in Chapter 2, GERALD’s architecture follows what is now considered to be

a classical chess engine architecture where the search is conducted with a highly optimized

alpha-beta enhanced mini-max algorithm, and the evaluation (or heuristic function) is done

through a set of ‘handmade’ features. This architecture is now considered ‘classical’ because

it has proved to be less competitive than deep learning or neural network approaches to the

evaluation function. In fact, as is the case with AlphaZero and its predecessors, a Monte-Carlo

tree search is used instead [20]. The most competitive state of the art approach, however, is to

use the enhanced alpha-beta search, but to replace the handcrafted evaluation with a specialized

neural network called an NNUE [20]. Nonetheless, the classical architecture is still quite popular

in the field of chess engine development, and is more than capable of super human results, as

demonstrated by older versions of Stockfish, the world’s leading open-source chess engine [29].

A.3 Chess Engine Testing

A.3.1 Evaluation Function Testing

One of the best ways to test a handcrafted evaluation function is to test its symmetry on

a large set of positions. While this does not guarantee correctness for each field, it does at

least ensure there is consistency for both sides. The easiest way to ensure this symmetry is to

programmatically invert a position (switching the colors of the pieces, and then flipping them

across the fourth rank). Pseudo code to do this transformation given a position in FEN format

is as follows:
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Function mirrorFen(fen: String) -> String

Initialize mirroredFen as empty String

Initialize fenParts by splitting fen using splitFen function

// Step 1: Flip the board and swap colors

Initialize board with fenParts[0]

Reverse the order of characters in board

For each character c in board

If c is lowercase

Convert c to uppercase

Else if c is uppercase

Convert c to lowercase

// Step 2: Swap the side to move

If fenParts[1] is "w"

sideToMove <- "b"

Else

sideToMove <- "w"

// Step 3: Adjust castling rights

Initialize castlingRights as empty String

For each character c in fenParts[2]

If c is lowercase

Append uppercase c to castlingRights

Else if c is uppercase

Append lowercase c to castlingRights
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// Step 4: Adjust the en passant target square

Initialize enPassant with fenParts[3]

If enPassant is not "-"

If the second character of enPassant is ’3’

Replace it with ’6’

Else if the second character of enPassant is ’6’

Replace it with ’3’

// Step 5: Reassemble the FEN string

Combine all parts to form mirroredFen

Return mirroredFen

End Function

This testing was mostly used as an initial check after a feature was implemented or modified.

A.3.2 SPRT

The sequential probability ratio test (or SPRT for short) is by far the most robust test for

determining if minor changes to an engine are indeed significant enough to keep. One advantage

of SPRT testing is that a sample size is not picked in advance [10], but rather games are

continuosly played until it can be determined with a certain confidence level whether one version

is better or wose by a pre-determined Elo margin. SPRT testing was initially formalized by

Abraham Wald, and his initial paper is listed in this thesis’ bibliography [33]

A.3.3 Perft

A ‘perft’ test functions as both a test of both correctness and speed for the move generation

component of a chess engine. Chess engines will generate every legal move and reply up to a

certain depth and record the nodes and nodes per second (NPS) generated. If the total nodes

do not match a pre-determined known value (i.e, from the starting position, there are exactly
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119060324 nodes that must be generated to reach every possible position 6 plies deep), then

there must be a bug in the move generation.

Table A.3.1: Perft Table provided by Disservin’s Chess Library [14]

Depth Time(ms) Nodes NPS FEN

6 539 119M 220M START POS
6 64 11M 169M 8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - -

5 53 15M 293M r3k2r/Pppp1ppp/1b3nbN/nP6/BBP1P3/q4N2/Pp1P2PP/R2Q1RK1 w kq

5 267 89M 335M rnbq1k1r/pp1Pbppp/2p5/8/2B5/8/PPP1NnPP/RNBQK2R w KQ

A.3.4 Elo Rating

Although GERALD’s rating is only an estimate, and is also estimated based on a CCRL

rating, it is still somewhat comparable to the ratings of human rating organizations such as

FIDE or USCF (citations needed). As such, GERALD would most likely be somewhere in the

Class A Player range, marking the engine as close to a very good experienced player, but falling

short of any master or expert titles.

Table A.3.2: Chess Rating Titles and Thresholds

ELO Range Title or Class Description

2500 and above Grandmaster Usually 2500 or higher
2400-2499 International Master Usually between 2400 and 2500
2300-2399 FIDE Master Usually between 2300 and 2400
2200-2299 FIDE Candidate Master / National Master Usually between 2200 and 2300
2000-2199 Expert / National Candidate Master Between 2000 and 2200
1800-1999 Class A Player Advanced club player
1600-1799 Class B Player Intermediate club player
1400-1599 Class C Player Basic club player
1200-1399 Class D Player Casual player
1000-1199 Class E Player Novice



Appendix B
Source Code

All code is available publicly in my personal GitHub repository at https://github.com/

eharris733/Senior-Project-Chess-AI. If for some reason this link stops working in the

future, please email elliotmharris@gmail.com to request access to all code.
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