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ABSTRACT 

 

Renewable portfolio standards (RPS) have emerged as some of the main state-level policy tools 

addressing climate change. The central aim of this thesis is to investigate the costs and benefits 

of these policies in terms of their impacts on the share of non-hydro renewables and electricity 

prices, respectively. To accurately estimate these impacts, this paper argues that it is necessary to 

account for policy heterogeneity (i.e., differences in policy features across states) and 

endogeneity (i.e., the correlation between policy features and unobservable factors that affect the 

dependent variables). In the literature, there has been work addressing the former, and there is a 

modest consensus that RPS is effective when heterogeneity is considered. However, there has 

been little work addressing endogeneity. To address this gap in the literature, this thesis uses the 

instrumental variable (IV) and control function (CF) approaches to account for endogeneity and 

measures of RPS that capture policy heterogeneity. It compares the results from these approaches 

with the results of baseline regressions that account for heterogeneity but not endogeneity. In the 

results for the non-hydro renewable share, RPS is found to have significant impacts in the 

baseline but not in the IV and CF regressions. However, the validity of the results in the IV 

regressions depends on the strength of the instrument, which varies considerably depending on 

whether the instrument is lagged or if year fixed effects are included. For electricity prices, the 

IV approach indicates that RPS has no significant impact, while the CF approach indicates there 

is a significant and positive impact that is higher in magnitude than in baseline and in the 

literature. Due to this inconsistency between the two approaches, as well as other limitations, this 

thesis ends by discussing whether the results are useful for public policy. It argues that the 

literature on RPS has not reached the point where strong conclusions can be made about the 

impact of these policies. 

 

Keywords: State Government; Renewable Portfolio Standards; Renewable Energy; Clean 

Energy Policy; Electricity; Instrumental Variable; Control Function 

 

JEL Classifications: H70, Q42, Q48, Q58 
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1. INTRODUCTION 

 

In 2014, the Intergovernmental Panel on Climate Change (IPCC) released its fifth and most 

comprehensive assessment report to date, replete with numerous findings underscoring the 

urgency of climate change. These findings include unequivocal evidence for the warming of the 

climate system since the late 19th century. For example, the report presents multiple 

independently produced datasets indicating that the linear trend of global average surface 

temperatures has increased by 0.85 °C between 1880 and 2012. Moreover, since the early 1980s, 

each has successively decade has been warmer than any decade since 1850. The most significant 

factor driving these changes is the increasing atmospheric concentrations of greenhouse gases 

due to human activity. According to ice core records, these concentrations are higher than any 

concentration over the past 800,000 years, and over the past 22,000 years, the average rate of 

increase over the past century is unprecedented. The effects of these changes have already begun 

to be visible in both ecological and socio-economic systems.  

 

However, perhaps more concerning than the past is the future. To assess future changes in the 

climate system, the IPCC has developed four “representative concentration pathways” that are 

each representative of a potential range of anthropogenic emissions over the 21st century. Under 

the scenarios with the lowest and highest emissions, by 2100, the global mean surface 

temperature anomalies relative to 1986–2005 are expected to increase by 1 and 3.7 °C, 

respectively. The scenario with the lowest emissions represents the emissions reduction that is 

likely necessary to keep average surface temperatures relative to the preindustrial period from 

surpassing 2 °C, which has become an established target for minimizing the impacts of climate 

change; the scenario with the highest emissions captures the cases where minimal further action 

is taken to mitigate future emissions. To achieve the former pathway, however, unprecedented 

action will be required. The consensus in the modeling literature indicates that substantial net 

negative emissions will be necessary by 2100. Furthermore, since, “in some regions and 

vulnerable ecosystems, high risks are projected even for warming above 1.5 °C” (UNFCCC, 

2015), the notion of a “defense line” where warming is limited to 1.5 °C has been raised among 

climate experts. In 2018, the IPCC released a report focusing on this defense line, which 
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provides modeling results suggesting that limiting warming to 1.5 °C will likely require annual 

emissions to reach net-zero by 2055 (IPCC, 2018).  

 

It not clear whether the world is on track to meet these targets. Despite increasing awareness of 

climate change, global emissions have increased by 60% between 1990 and 2019 and nearly 

10% between 2010 and 2019 (Ritchie and Roser, 2020; Global Carbon Project, 2020). The 

largest share of these emissions has come from the electricity and heat sectors (IEA, 2021); 

between 1990 and 2018 and 2010 and 2018, emissions from these sectors have risen about 83% 

and 12%, respectively. However, these aggregate statistics obscure important regional 

differences, particularly between developing and advanced economies; since 2007, growth in 

emissions from the electricity and heat sectors has come exclusively from developing countries, 

with emissions from these sectors in advanced countries falling by about 15% in large part due to 

increases in efficiency and decreases in the share of fossil fuels (Pavarini and Mattion, 2019).  

 

The United States (US), the largest emitter among advanced countries, has played an important 

role in these trends. Between 2010 and 2019, power plant CO2 emissions in the US have fallen 

38.5% (EIA, 2020). Part of the reason for this decline is that while net generation has been nearly 

flat, the power mix has been changing substantially, with coal being replaced by less carbon-

intensive sources. For example, over the period, net generation from wind power has increased 

by about 212%, bringing its share of total net generation to approximately 7.2%. Solar power, 

beginning from a negligible share of the US power mix in 2014, has since grown 270% and now 

supplies approximately 2.6% of the total load.  

 

These developments have followed numerous policy actions to address climate change at a state 

level – in particular, renewable portfolio standards (RPSs). In general, RPSs require electricity 

providers to supply some percentage of their retail sales with energy from renewable sources. 

However, the details in these policies differ significantly across states. For example, states have 

adopted targets with different levels of stringency and different compliance mechanisms. These 

and other forms of policy heterogeneity are discussed in detail in Chapter 2.  
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The fact that there have been considerable reductions in electricity sector emissions and 

increases in renewable penetration following the implementation of RPSs does not mean there 

has been a causal link. It may be that the same outcomes would have been present if the RPSs 

had never been implemented. To determine whether this is the case, there have been numerous 

econometric studies measuring the effectiveness of RPSs, usually in terms of the effect on 

renewable penetration but also on emissions and renewable capacity. Furthermore, there have 

been studies examining what the costs of these policies are, particularly the impact of electricity 

prices. To measure these effects, a common approach has been to assume that variables capturing 

the RPSs are exogenous – that is, uncorrelated with the error term of the model. In the 

effectiveness literature, the consensus with this approach now appears to be that when the 

heterogeneity of RPSs is considered, the policy coefficients are positive and significant. In the 

cost literature, the policies are generally estimated to have statistically significant positive 

impacts on electricity prices, though there has been less work on accounting for policy 

heterogeneity.  

 

An alternative to the exogeneity assumption is to assume RPSs are endogenous and explicitly 

model policy adoption. As discussed in Chapter 3, there are several theoretical reasons to believe 

that endogeneity is present. This paper argues that there are three channels affecting the 

estimation of the effectiveness of RPSs that stem from the role of special interests that could 

either benefit or be harmed by RPSs. Furthermore, reverse causality could affect the estimation 

of the effects of RPSs on costs. However, while several papers have modeled policy adoption 

alone, there has been little work where this has been done to account for endogeneity.  

 

This paper aims to fill this gap in the literature. It provides estimates of the costs and benefits of 

RPSs, measured by the impacts on electricity prices and the share of non-hydro renewables, 

respectively. This is achieved by using a panel dataset with comprehensive data on policy 

features and two methodologies that account for endogeneity: the instrumental variable and 

control function approaches.  

 

Many relevant questions stem from these estimates. In particular, how should policymakers and 

other stakeholders interpret these costs and benefits? After the results are presented in Chapter 4, 
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Chapter 5 investigates this question. It proposes that to address this question, two additional 

questions must be answered. First, how should the findings in this study be interpreted if they are 

accurate? Second, how strongly should stakeholders weigh the uncertainty regarding the 

accuracy of the findings? Two potential answers to the first question are proposed. To answer the 

second, this paper notes that there are two aspects of the literature on RPSs that undermine the 

strength of its findings. As a result, the empirical research on RPSs is not ready to provide strong 

policy recommendations.  

 

 

2. LITERATURE REVIEW 

 

This section is divided into four subsections. In addition to providing background information on 

RPSs, the first subsection aims to demonstrate the considerable heterogeneity in these policies 

across states. This subsection is followed by three subsections on research on different aspects of 

RPSs. The first of these deals with the factors driving states to adopt these policies; as the 

methodology used in this paper explicitly models policy adoption, this paper draws upon this 

literature in the choice of control variables for the models presented in Chapter 3. The next 

subsections address the effectiveness of the policies and their costs, which is followed by a 

discussion of the limitations of the literature. Since one of the main contributions of this paper is 

methodological, special attention is paid to how the methodologies used in the literature have 

evolved to demonstrate how the methodology of this thesis fits into that evolution. In particular, 

it focuses on how these methodologies have and have not accounted for policy heterogeneity and 

endogeneity.  

 

2.1. Background on Renewable Portfolio Standards 

The first state to implement an RPS was Iowa in 1983, with the Alternative Energy Law. More 

than a decade, however, passed before any other states implemented an RPS, and it was not until 

the mid-2000s that adoption became widespread; as of 2019, 29 states plus DC have 

implemented some kind of RPS, with more than half coming between 2004 and 2009 (Barbose 

2019). Most of these states have also updated their policies at least once over the past two 

decades.  



 10 

 

In addition to the heterogeneity in adoption and revision dates, the details of these policies vary 

across states. One important dimension is the scope of the definition of the load-serving entities 

(LSEs) subject to the policy. For example, under New York State’s Clean Energy Standard, the 

relevant LSEs include any investor-owned utility, municipal utility, electric cooperative, or retail 

supplier (DSIRE, 2020a). Other policies have narrower definitions, such as Missouri’s Clean 

Energy Act, which only applies to investor-owned utilities in the state (DSIRE, 2018).  

 

The policy targets also vary across states. First, the policies can target a share of generation or 

capacity. Most states require the former; only Iowa and Texas exclusively require the latter 

(Shields, 2021), which only indirectly affects the amount of renewable electricity produced. 

Furthermore, some states, such as Michigan, have both types of targets. Second, policies vary in 

the ambitiousness of their targets. Maine, for example, has a target of 84% of retail sales by 

2030, while Connecticut has a target of 44% by 2030 (Barbose, 2019).1 The policies also 

typically create a compliance schedule, which provides a set of annual targets leading up to the 

ultimate target; however, these annual targets may not increase at a constant rate per year.  

 

To demonstrate compliance, states typically require the LSEs subject to the policy to accumulate 

renewable energy credits (RECs) that are equivalent to the relevant policy targets. These credits 

represent one megawatt-hour of renewable energy generated by LSEs. Some states also allow for 

REC trading; the LSEs that generate the RECs can sell them to others, potentially in other states, 

who can present them to authorities to meet the standard. As noted by Davies (2011), this 

mechanism “is directly analogous to other market-based forms of environmental regulation that 

permit one polluting business to achieve compliance not by reducing its own waste, but rather, 

by paying another polluter to trim more than its own share.” This mechanism, therefore, 

introduces market forces into what would otherwise be a command-and-control policy.  

 

In some cases, the pricing of RECs may also be determined in markets. In recent years, there has 

been a significant downward slide in REC prices in many states, particularly in the Northeastern 

US (Barbose, 2019). Other states, such as New York, fix the prices of their RECs. The RECs 

                                                
1 These figures are computed based on the sum of the applicable resource tiers 
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may also have a set lifespan; for example, in Maryland, a REC has a three-year lifespan after 

being generating (DSIRE, 2021). 

 

The eligible technologies in RPSs are typically broad. They include solar, wind, hydro, 

geothermal, tidal, and various forms of waste-to-energy and biomass technologies, and they may 

include distributed generation, energy efficiency, and nuclear technologies. Policies may apply 

differential weights to these various technologies. Part of the reason for this is that to comply 

with the standards mandating a specific amount of generation or capacity, suppliers have often 

opted for the cheapest and most mature technologies, like wind, thereby neglecting technologies 

like solar (Kim and Tang, 2020); these short-term incentives can lead to grid reliability issues by 

locking-in certain technologies.  

 

States have employed two primary mechanisms to combat this lock-in. First, states may have 

different targets – also referred to as carve-outs or set-asides – for each technology. Solar carve-

outs are most common due to the short-term factors mentioned above; as of 2019, 15 states plus 

Washington, DC, have carve-outs for solar or distributed generation (Barbose, 2019). A related 

provision is the creation of tiers, with a primary tier for new resources and a secondary tier for 

resources that predate RPS and other less preferred technologies. The prices of RECs associated 

with these different categories of resources tend to differ systematically; the carve-outs often 

have the highest prices and the secondary tiers the lowest (Barbose et al., 2015). Second, states 

may use credit multipliers, which award more than one REC to each MWh generated by the 

preferred technologies. However, some states, such as Massachusetts and Nevada, have 

attempted to discourage technologies by awarding a fraction of a REC to certain technologies. 

Once again, solar technologies are typically given the greatest weight.  

 

Eligibility rules can also affect the volume of new investment. Existing resources can reduce 

investment in new resources as these existing resources allow the LSEs subject to the policy to 

meet a portion of the requirement without any additional investment (Yin and Powers, 2010). 

Some have argued that granting eligibility to existing hydro resources results in a particularly 

significant reduction in the incentive to invest in new resources (Fischlein and Smith, 2013).  

 



 12 

An LSE that does not meet the compliance requirements through power purchase agreements or 

RECs is typically subject to an alternative compliance payment (ACP) paid to state authorities. 

Wiser et al. (2010) note that this mechanism should not be understood as a financial penalty, as it 

is considered by authorities to be a legitimate channel for compliance with RPS requirements, 

and the costs of ACPs can sometimes be recovered by utilities in their rates. Penalties for non-

compliance also exist. For instance, Washington imposes a penalty of $50/MWh, adjusted for 

inflation annually, for each MWh below the requirements (DSIRE 2020b). Some states also have 

separate ACPs for each resource tier and set-aside; solar ACPs, in particular, exist in numerous 

states as an alternative to meeting the solar set-aside (Wiser et al., 2010). The schedule for ACPs 

also varies; while some states, such as New Jersey and Massachusetts, have declining ACPs, 

states such as Connecticut have a constant ACP. The funds generated by the ACPs are often used 

to finance renewable energy projects. 

 

States may also incorporate cost containment measures into their RPSs. There is a significant 

amount of heterogeneity in these measures (Stockmayer et al., 2012). Some states limit RPS 

compliance expenditures by capping the ratio of incremental costs attributable to the RPSs to 

utilities’ expected annual revenues. Other states limit compliance expenditures based on the 

amount they are expected to impact consumer electricity bills. Others provide provisions for 

regulatory agencies to provide compliance waivers when deemed reasonable.  

 

2.2. Research on the Adoption of Renewable Portfolio Standards 

2.2.1. The Role of Interest Groups 

Some researchers have suggested that interest groups could influence the probability of RPS 

adoption (Vachon and Menz, 2006; Lyon and Yin, 2010; Jenner et al., 2012a, 2012b, 2013). The 

theory in support of these arguments draws from the private interest theory of regulation 

developed by the Chicago School (Stigler, 1971; Peltzman, 1976; Becker, 1983). According to 

this theory, the state is a competitive domain in which various interest groups vie for regulation 

that promotes their interests. Typically, it is argued that these private interests are contrary to the 

interests of the public (e.g., by showing that regulation results in deviations from Pareto 

efficiency).  
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On the one hand, organized renewable energy interest groups in a state could have an incentive 

to advocate for RPSs as a means to strengthen their presence in the state; as argued by Rabe 

(2007), renewable energy developers have become increasingly present state legislative 

processes, and in some states, they have an even stronger impact on RPS debates than 

conventional environmental advocacy groups. On the other hand, fossil fuel interest groups could 

have an incentive to advocate against RPSs, as it could undercut their market share. Rabe and 

Mundo (2007) argue that there is often a reluctance among policymakers to challenge such 

interest groups and that this reluctance may partially explain why states relying heavily on non-

renewable resources (such as Indiana, Michigan, Arkansas, Florida, Georgia, Kentucky, 

Mississippi, and South Carolina) have lagged in other parts of the nation in adopting RPS. As an 

example of this dynamic, in Colorado, RPS legislation was blocked by a coalition led by utilities 

and coal-mining interests in three consecutive sessions of the Colorado state legislature (Rabe, 

2007). Nevertheless, an alternative coalition eventually managed to amass the 100,000 signatures 

required for a ballot proposition on RPS adoption. This was fiercely opposed by the state’s 

predominant utility, the Public Service Company (PSC) of Colorado, which is a subsidiary of 

Xcel Energy, a Minnesota-based utility holding company. The PSC 

 

spent more than $1.5 million in leading the campaign to oppose [the proposition] 

through an organization called Citizens for Sensible Energy Choices. This organization 

emphasized its concerns about potentially high costs that would be transferred to 

customers and the willingness of PSC to expand its own renewable offerings on a 

voluntary basis. The company was also clearly concerned about the impact of the 

proposition on its plans to build a massive coal-burning plant near Pueblo. Rabe and 

Mundo (2007) 

 

However, as Rabe and Mundo (2007) note that even when states decide to adopt an RPS, special 

interests do not abandon efforts to influence the process. These interventions have, in some 

cases, diluted policies that initially targeted renewable energy development by adding traditional 

energy sources to the list of eligible technologies. Thus, special interests not only affect RPS 

adoption but also the stringency of policies and thus heterogeneity across states. As an example, 

Rabe and Mundo discuss the influence of business interests on Pennsylvania legislators during 
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the development of the Alternative Energy Portfolio Standards Act. They state that as “the 

legislation worked its way through the Pennsylvania legislature during 2004, [it] acquired so 

many environmentally suspect provisions that it ultimately became the first state RPS to be 

enacted in the face of active opposition from a large range of environmental groups.” For 

example, the process resulted in a broadening of the definition of “renewable energy” to include 

decades-old waste coal in landfills, a decision linked to plans to build three power plants 

powered by such coal. Other sources that became classified as renewable were coal-mine 

methane and energy produced by incinerating trash and poultry waste.  

 

Some empirical studies have supported the theory that special interests influence the probability 

of RPS adoption. Delmas and Montes-Sancho (2011) and Lyon and Yin (2010) find that the 

presence of organized renewable energy interests in each state has a significant impact on the 

probability that states adopt an RPS, measured as a binary variable. In the latter paper, renewable 

special interests are measured with a binary variable indicating the presence of staffed American 

Solar Energy Society (ASES)2 chapters in each state; this also indicates how well renewable 

energy interests are organized. Furthermore, they use existing renewable capacity as a proxy for 

the foothold of renewables interests, as these generators have an incentive to preserve their 

market share with RPS. Finally, they include the fossil fuel interests that stand to lose from 

RPSs, which are measured by oil, natural gas, and coal industry employment per capita in 2002 

and the (lagged) percentage of natural gas generation. Of these variables, only the presence of 

ASES chapters and the percentage of natural gas generation have significant effects, which are 

positive and negative, respectively. They also run a multinomial model to measure the impact of 

special interests on the adoption of policies with in-state requirements (e.g., REC multipliers for 

energy produced in-state). None of the variables above have significant effects.   

 

However, Jenner et al. (2013) argue that that the measurement of organized renewable interests 

with a binary variable (i.e., the presence of ASES chapters) fails to capture the heterogeneity of 

different interests due to differences in their financial campaign contributions to politicians. That 

is, they argue that "money matters" – the magnitude of a special interest group's financial 

contribution is positively correlated with the likelihood that it will be able to successfully 

                                                
2 The authors indicate that the ASES advocates for all renewables, not just solar.  
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influence policy. Thus, they include in their regressions data on the magnitude of financial 

contributions by both conventional energy interests and renewable energy interests. To account 

for the fact that the magnitude of donations varies due to the timing of elections and the impact 

of inflation, they use the ratio of the contributions of these groups to total contributions. Using a 

proportional hazard model, they find that, consistent with expectations, the conventional energy 

contribution ratio has a statistically significant negative association with the probability of RPS 

adoption while the renewable energy contribution ratio has a statistically significant positive 

association. They also attempt to account for the impact of financial contributions on policy 

heterogeneity. To do so, they use a Tobit model with a measure of stringency from Yin and 

Powers (2010) as the dependent variable. In this case, they find that the renewable energy 

contribution ratio has a statistically significant impact while the convention energy contribution 

ratio does not.  

 

2.2.2. Public Interest Theory (or Sentiment?) 

Unlike the private interest theory, which views the state as a forum in which special interests 

compete to maximize their individual benefits, regardless of whether they maximize social 

benefits, the so-called positive public interest theory states governments adopt regulation in order 

to maximize social welfare. This theory has been explicitly cited by several authors studying 

RPS adoption (Ciocirlan, 2006; Lyon and Yin, 2010; Jenner et al. 2012b; Helwig, 2014).  

 

Following Posner (1974), it has become common to juxtapose the Chicago School private 

interest theory of regulation with the public interest theory. According to this argument, the 

public interest theory is effectively a “normative as positive” theory of regulation (Joskow and 

Noll, 1981). In other words, the theory predicts that the state will adopt the optimal forms of 

regulations prescribed by normative welfare economics. Posner argued that this positive theory 

rests on two assumptions: 1) market failures are pervasive and 2) the transaction costs of 

regulation are non-existent or minimal. It was then argued that these assumptions do not hold in 

practice and many regulations in the real world fail to align with what is predicted by the public 

interest theory.  
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However, it might not be that there has ever been a positive public interest theory. Rather, as 

argued by Hantke-Domas (2003), it may be that there have only been political and legal appeals 

to the public interest, which do not constitute theories per se. Hantke-Domas documents these 

appeals throughout the case law and political discourse of Britain from the 17th century to the 

20th century and in the US during the Progressive and New Deal eras, the latter capturing much 

of the period in which Posner argues the public interest “theory” was dominant. However, 

Hantke-Domas argues that in Posner (1974) and the papers that followed, there have been few 

citations of the alleged progenitors and followers of this theory. He argues that in the process, 

Posner and others have conflated normative welfare theory with a positive theory of regulation.  

 

It is beyond the scope of this thesis to provide an evaluation of the history of economic thought 

surrounding this topic. But the suggestion by Hantke-Domas that the public interest “theory” is 

separate from the political or legal appeals to the public interest has ramifications for research on 

RPS adoption; it is not clear how or whether the “normative as positive” public interest theory 

would be used to explain the adoption of RPSs. For example, welfare economics generally 

advocates in favor of price-based approaches to internalize externalities (Tresch, 2014), not 

quantity-based approaches. If the appeals to the public interest are instead used as an 

explanation, there is no need to align the policy with any particular arguments made by welfare 

economics concerning optimal regulation. While this may be unsatisfying for those looking for a 

theory as such to explain RPS, it provides for greater consistency with real-world political and 

legal discourses.  

 

In the case of RPSs, two aspects of the public interest could influence policymakers’ willingness 

to adopt an RPS: environmental and economic factors. Some have argued that over time, the 

former has taken a back seat to the latter. As Davies (2011) notes,  

 

[i]f RPSs started out as a way to promote environmentally friendly energy, the trend is 

largely a historical one. Listen to any press conference on the signing of an RPS today, 

and it quickly becomes clear that these laws’ goals are increasingly lofty. The 

environmental protection aim remains, but many others have been injected as well…. [In 
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particular,] the theme that has perhaps most clearly emerged from their adoption in the 

last two decades is economics. 

 

Rabe (2007) concurs with this assessment, noting that there is a perception that promoting 

renewable energy via RPSs yields can promote economic development, which partially explains 

the growing diverse coalitions supporting them. Part of the linkage between development and 

renewables he identifies is that labor costs constitute a larger share of the total costs of 

renewables than of fossil fuels; therefore, the argument goes, RPSs can boost employment.3 

Furthermore, he notes that economic development can be spurred by reducing dependence on 

imported fossil fuels.  

 

Empirical studies have found that several economic and environmental factors influence the 

probability of adopting RPS. These include a positive relationship with gross state product per 

capita (Chandler, 2009; Delmas and Montes-Sancho, 2011),4 perhaps because policymakers 

consider the capacity of their constituents to absorb the costs of the programs (Matisoff, 2008). 

However, other studies have found no significant relation with gross state product per capita 

(Huang et al. 2007; Matisoff, 2008; Lyon and Yin, 2010; Carley and Miller, 2012).5 As for 

environmental factors, studies have used variables capturing state-level emissions, with some 

finding a positive effect on adoption (Delmas and Montes-Sancho, 2011) and others finding no 

effect (Lyon and Yin, 2010).  

 

2.2.3. Internal and External Determinants Models 

Another approach that some researchers have used to analyze the determinants of RPS adoption 

is to separate factors internal to states from external factors. Many of the aforementioned factors 

can be classified as internal factors (e.g., economic conditions and pollution). In addition to these 

factors, relevant determinants include political and citizen ideology, since liberal voters tend to 

be more likely to support state action supporting renewables, and resource endowments, since 

                                                
3 Of course, this is not a comprehensive analysis of the employment impacts of renewables. But if this argument is 

widely held by policymakers, then this can explain some of the support for RPSs.  
4 Delmas and Montes-Sancho (2011) also find a significant negative effect with one model.  
5 The results in Huang et al. (2007) and in one model from Carley and Miller (2012) are significant at the 10% level. 

In both cases, the coefficient is positive.   
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states with greater endowments of renewables may be more able to successfully implement these 

policies. Variables capturing ideological factors that have been found to influence RPS adoption 

include the percentage of Democrats in state legislatures (Lyon and Yin, 2010; Delmas and 

Montes-Sancho, 2011) and proxy measures of citizen ideology (Matisoff, 2008; Carley and 

Miller, 2012) – in particular, a measure based on Berry et al. (1998).  

 

As for external factors, there is large longstanding literature on state policy diffusion – 

originating with Walker (1969) – that has been linked to the RPS implementation literature 

(Carley and Miller, 2012; Carley et al., 2017). Researchers have examined whether states are 

more likely to adopt an RPS when a higher percentage of their neighbors also have an RPS in 

place; some papers have found no effect when the RPS adoption decision is a binary variable 

(Matisoff, 2008; Carley and Miller, 2012), while other have found that this variable has a 

significant positive effect with some models (Carley et al., 2017).  

 

2.3. Research on the Effects of Renewable Portfolio Standards 

There is a wide range of potential costs and benefits due to RPSs. On the benefit side, some 

studies have examined the impact of RPSs on green jobs, with some studies finding a positive 

impact (Wiser et al., 2016). Others have examined the impact on carbon intensity; in some of 

these studies, the impact is significant and negative (Yi, 2015), while others fail to find 

significant impacts (Greenstone and Nath, 2019). However, studies on the benefits of RPS have 

tended to focus on the impacts on renewables development.  

 

The costs of RPSs primarily stem from their impacts on renewables development, and as with the 

benefits of RPS, there are several ways to measure these costs (Barbose, 2019). First, in terms of 

the levelized cost of electricity,6 renewables have generally been more expensive than 

conventional sources, though this is changing; thus, increasing renewables can impose direct 

costs to LSEs subject to the policy. Second, since renewables are more intermittent than 

conventional sources, increasing penetrations of renewables result in socialized balancing costs, 

due to the management of increased forecast errors and balancing reserves (Wiser and Bollinger, 

                                                
6 The levelized cost of electricity is the present value of the various costs of generating electricity over the lifetime 

of a plant divided by the present value of the energy generated.  
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2019). Third, increased penetrations of renewables may also require transmission and 

distribution upgrades that are socialized.  

 

This thesis focuses on two aspects of costs and benefits: electricity prices and the non-hydro 

renewable share, respectively. For the remainder of the section, the literature on each of these 

factors will be surveyed, beginning with the impact on the non-hydro renewable share. Since this 

variable is often the primary target of RPSs, the impacts of RPS on this variable will be viewed 

as an indication of policy effectiveness.  

 

To evaluate effectiveness, the outcomes of states that have implemented RPSs can be compared 

to 1) the targets set out by legislation and 2) an estimate of the counterfactual in which the 

policies have not been implemented. The former is necessary at a minimum to determine 

whether the policies satisfied the goals set out by policymakers; furthermore, it can help 

determine whether the ACPs are too low to incentivize investment by LSEs or provide the 

revenue to state governments for investments. However, this form of evaluation does not indicate 

whether the same outcomes would have been achieved in the absence of the policies. Thus, 

econometric studies can be employed to provide the second form of evaluation, though true 

counterfactuals are impossible to determine.  

 

The first form of evaluation is provided by Barbose (2019), who compares, for the period from 

2000 to 2018, the actual growth in non-hydro renewable energy generation to the minimum 

amount of generation necessary for compliance. Between 2000 and 2007, the two grew in step 

by approximately 25 TWh. But after 2007, growth in actual generation exceeded growth in 

required generation, and the difference between the two has been increasing over time. As a 

result, from 2000 to 2018, actual generation has increased by 371 TWh while required generation 

has grown by 168 TWh. Thus, for the country as a whole, the targets for generation have been 

met.  

 

Attempts to provide an econometric evaluation of RPSs, and thus estimates of a counterfactual, 

began in the mid-to-late 2000s following the proliferation of RPSs. Many of the early papers on 

this subject tended to capture the presence of RPSs with a binary variable. The initial results 
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were mixed, with some providing estimates indicating that RPSs were effective in boosting 

either the level or share of renewable generation and others indicating that they were not 

effective in achieving their desired target.  

 

Menz and Vachon (2006) is one of the earliest econometric papers on this topic. It provides a set 

of highly parsimonious cross-sectional models estimating the impact of several renewable energy 

policies, including RPSs, on four indicators of wind development: 1) capacity in 2003, 2) 

capacity growth between 2000 and 2003, 3) capacity growth between 1998 and 2003, and 4) the 

number of large projects. The results of these models estimate that, all else equal, RPSs 

measured with a binary variable have significant (at the 5% level) positive effects on dependent 

variables 1 and 3. With the number of years the RPSs have been in place as the RPS indicator, 

RPSs have a significant (at the 1% level) effect on dependent variables 1, 3, and 4. Carley (2009) 

builds on these results by using a significantly larger panel dataset with a more complete set of 

the controls – many of which appear in studies that followed, including this thesis – accounting 

for state-level economic factors (e.g., gross state product per capita), electricity market 

characteristics (e.g., whether a state has deregulated its electricity markets), renewable potential, 

and demographic factors (e.g., population growth). Furthermore, two models are used (a fixed-

effects linear model and a fixed-effects vector decomposition model), and the (log of the) share 

of renewables is used as a dependent variable, as boosting the share of renewables is often the 

explicit goal of the policies. Interestingly, the results suggest that, with both models, RPSs do not 

have a significant impact on the share of renewables, but they do have a significant impact on 

capacity. That is, while the policies are not achieving their explicit goals in most cases (i.e., the 

share of renewables), the models suggest they are having some impact on the development of 

renewables. 

 

Some early attempts to account for heterogeneity used the generation requirements dictated in 

RPS legislation as the independent variable. Kneifel (2008) and Shrimali and Kniefel (2011) 

include three binary variables that identify whether a state has a mandatory renewable sales 

requirement, a voluntary sales goal, or a renewable capacity requirement. They also differ from 

the previously mentioned papers in that they estimate models with the capacity shares of several 

renewable sources (i.e., wind, biomass, geothermal, and solar) as the dependent variable, in 
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addition to total the renewable capacity share. They find that most RPS variables have either 

significant negative or insignificant impacts on most dependent variables; the exceptions are the 

significant effects of the mandatory renewable sales requirement on geothermal and solar, and a 

modestly significant (i.e., at the 10% level) effect of the capacity requirement on geothermal. 

However, they find that that excluding Maine eliminates the negative coefficient for the impact 

of the sale requirement on the total renewable capacity share. A related approach to account for 

the heterogeneity of nominal requirements is the trend-break difference-in-difference model 

adopted by Greenstone and Nath (2019). With their approach, they find mixed results, with RPS 

only having significant results on generation from some sources in some specifications.   

 

Yin and Powers (2010) is a seminal paper in the literature as it more comprehensively addressed 

heterogeneity than any of the research before it. The paper focuses on four sources of 

heterogeneity, each of which is discussed in Section 2.1: coverage, or the types of LSEs subject 

to the requirements; eligibility of existing capacity, which makes the nominal requirements 

written into law a misleading indicator of stringency; whether in-state and out-of-state RECs are 

treated equivalently; and whether an ACP is included. The first two of these requirements are 

captured in a variable referred to as the incremental percentage requirement (IPR) – that is, the 

required increase in the share of renewables in total generation, which is adapted or replicated 

exactly in much of the subsequent literature. For the remaining two features, binary variables are 

used. The results of the regressions with these variables provide evidence that the heterogeneity 

of policies has a significant impact on measurements of their effectiveness, which they measure 

as the impact on the share of non-hydro renewable capacity. In regressions without the REC free 

trade and ACP binary variables and with either the RPS binary variable or the cumulative years 

the policy in each state has been in place as dependent variables, the predicted impact of RPSs is 

not significant. When the nominal requirement is used to represent RPS, the impact is negative 

and significant, which they note is driven entirely by idiosyncratic factors in Maine, as in 

Shrimali and Kniefel (2011).7 However, when the IPR is used to represent RPS, the result is 

                                                
7 Maine's RPS took effect in 2000, but due to the eligibility of existing resources, they note that was possible to meet 

the nominal requirements without new investment. Immediately after taking effect, two biomass plants were retired 

and several natural gas plants became operational, thereby causing a fall in the share renewable capacity immediately 

after implementation. Yin and Powers note that when the regression is run without Maine, the nominal requirements 

variable no longer significant, but the remaining results in the paper are unaffected by the exclusion of Maine.  
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positive and significant. In other specifications that include the REC free trade and ACP binary 

variables, the positive and significant result for the IPR is unchanged. Furthermore, they find that 

the ACP variable is insignificant, and the REC free trade variable is negative and only significant 

in one of their specifications.  

 

Following Yin and Powers (2010), several papers aimed to account for policy heterogeneity with 

similarly comprehensive methodologies. Shrimali et al. (2015) used the IPR and seven other RPS 

policy features to estimate the impact of RPSs on the renewable capacity share. They find that, in 

the specifications where only IPR is used to measure RPSs, the coefficient of IPR is positive and 

significant when controls are used. However, when they omit Maine, for the reasons mentioned 

in Yin and Powers (2010), they find that the IPR is no longer significant. They argue that this 

could be because the IPR alone does not sufficiently account for heterogeneity. When they 

include the other policy features (including variables representing the size of regional REC 

markets and the number of neighboring states with RPSs), the IPR and many of the policy 

features are significant. Similar results are provided in Carley et al. (2018), who use a similar 

RPS stringency index, which represents the mandated increase in the renewable generation share, 

divided by the number of years before the ultimate target must be met, multiplied by the total 

load subject to the policy. They also use they use a novel set of policy features and dynamic 

factor model estimation algorithm to create an index representing the stringency of RPSs based 

on seven of these features; these variables will be discussed further in Chapter 3, as this paper 

uses these variables as well. Their results show that the RPS stringency index and the dynamic 

factor index have significant positive impacts on the (logged) shares of renewable generation and 

capacity; in specifications with the other policy features, the variables representing cost recovery 

and RPS planning activities prove to have positive and significant effects on the same dependent 

variables.   

 

Upton and Snyder (2017) make a novel contribution to the literature by using the synthetic 

control approach to control for non-random selection of RPS. For each state that has 

implemented RPS, this approach creates “synthetic control states” based on a weighted average 

of the political, economic, and natural resource endowments of the states that each state most 

resembles. The outcome with this approach is compared with the results from a standard 
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difference-in-difference model. Using a binary variable to measure RPSs, their estimates indicate 

that RPSs have no impact on renewable generation. They also attempt to account for 

heterogeneity as a robustness check using the stringency measure from Carley and Miller (2012), 

but they find that this also does not yield significant results.  

 

Similar to the research on effectiveness, research on the electricity price impacts of RPSs has 

taken non-econometric and econometric forms. Barbose (2019) provides "rough" estimates of the 

electricity rate impacts of RPSs by computing the net compliance costs to LSEs as a percentage 

of retail electricity bills. Three limitations of this approach are cited. First, they use a rather 

limited approach to computing compliance costs. For retail choice states, this is computed using 

REC prices plus ACP expenditures, while for vertically integrated states, they use cost estimates 

by utilities and public utility commissions, which are then compared to an estimated 

counterfactual based on market prices or projections. In addition to the lack of a unified 

methodology for vertically integrated states, this definition of compliance costs misses many of 

the potential costs and benefits of RPSs mentioned above. Second, the compliance costs based on 

this definition may not be fully passed through to electricity rates. Third, they note that "ACPs 

may be credited to ratepayers or recycled through incentive programs.” Nevertheless, for RPS 

states taken together (with appropriate weighting), the report estimates that costs as a percentage 

of retail bills have risen from 0.7% in 2012 to 2.6% in 2018, with large variability across states. 

The wide variability is attributed to several RPS design characteristics and state-specific factors, 

such as RPS target levels, resource tiering, and wholesale electricity prices.  

 

Morey and Kirsch (2013) provide the earliest econometric estimates of the electricity rate 

impacts of RPSs in 48 states from 1990 to 2011. Separate impacts are estimated for residential, 

commercial, and industrial rates. The RPS variable is binary, which is also interacted with a 

binary variable indicating whether a state has retail access. According to their results, the RPS 

binary variable alone only had a significant impact on residential rates; the coefficient indicates 

that, all else equal, the average increase in retail rates based on 2011 US average retail prices is 

3.8%. The coefficient for the interaction with the retail access variable is also significant when 

industrial rates are used as a dependent variable; since the coefficient for the RPS variable is not 
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significant, this indicates that there were only significant impacts on industrial rates in retail 

choice states.  

 

This study was followed by Tra (2015), which uses a difference-in-difference framework and 

utility-level data. Unlike Morey and Kirsch (2013), Tra (2015) notes that there may be 

endogeneity due to unobserved factors that impact both electricity prices and RPS adoption. The 

paper argues that the inclusion of state-by-year and utility-type-by-year fixed effects terms will 

be sufficient to control for this. While this may be the case, it is likely not the most efficient 

approach. Nevertheless, the results are similar to those in Morey (2013): RPSs, measured with a 

binary variable, are estimated to increase average residential and commercial rates by about 3%, 

but the commercial rate impact is only significant at the 10% level. Tra (2015) also provides an 

estimate of the impact of changes in the percentage requirements. When variables accounting for 

time-invariant factors are included, increases in requirements are estimated to have significant 

impacts on both residential and commercial rates, but this effect disappears in specifications 

accounting for time-invariant factors. 

 

Wang (2016) is another difference-in-difference study – though using state-level data – that 

acknowledges the heterogeneity of RPSs. To account for this, the regressions include variables 

representing the years the RPSs were enacted and became binding and effective. Wang notes 

that, for example, “[a]lthough electricity producers can be forward looking, they might not 

immediately take any action to meet the RPS requirements when the policies are just enacted.” In 

the models with each of the RPS variables alone, the results indicate that the binding year tends 

to yield a larger percentage increase in residential electricity rates (i.e., around 6.5 to 7.5% for 

models with controls) than the enactment and effective years (approximately 5% for models with 

controls).  

 

Two other studies estimating electricity rate impacts are Greenstone and Nath (2019) and Upton 

and Synder (2017). The former provides some strong critiques of the limitations of the approach 



 25 

to electricity price impacts taken by Barbose (2019) noted above.8  They estimate that seven 

years after initiation, the average retail price increase is around 11.1% over the price prior to 

implementation. Similar results are presented in Upton and Synder (2017), who estimate RPSs 

increase electricity prices by 11.4%, on average.  

 

2.4. Limitations of the Research on Renewable Portfolio Standards 

Many of the early papers on the effectiveness of RPSs employed models that abstracted away 

from much of the policy heterogeneity mentioned in Section 2.1. In the case of Menz and 

Vachon (2006), the model also likely suffers from omitted variable bias, as well as other forms 

of endogeneity, due to its simplicity. It also lacks an explicit time dimension due to the use of 

cross-sectional data. Furthermore, the dependent variables under study are not aligned with most 

states’ RPS targets; that is, most states target the share of renewables, not capacity. While papers 

that followed (e.g., Carley, 2009; Shrimali and Kniefel, 2011; Shrimali and Jenner, 2013) 

rectified some of these limitations, they also have some shortcomings. First, they either treat RPS 

as a binary variable or have a limited treatment of heterogeneity. Second, though their 

comprehensive sets of control variables reduce the potential for omitted variable bias, there are 

still likely other sources of endogeneity; some of these will be discussed in Section 3.1. While 

some papers in the literature address the first limitation (Yin and Power, 2010; Shrimali et al., 

2015; Carley et al., 2018), these papers do not address the second shortcoming.  

 

The econometric literature on the electricity price impacts of RPSs differs from that on adoption 

and effectiveness in two important ways. First, there are fewer studies on electricity price 

impacts. Second, though the initial research on all three topics treated RPSs as a binary variable, 

the cost literature has not treated the heterogeneity of RPSs as meticulously as the effectiveness 

literature has. Thus, these papers may fail to adequately capture the effects of RPSs. The cost 

literature is similar, though, in that it also does not comprehensively address the potential for 

endogeneity.  

 

                                                
8 That being said, many of these limitations are noted by Barbose. Furthermore, the paper seems to argue that there 

had not yet been any econometric studies of electricity price impacts as of 2019, as none of the econometric studies 

in this section are cited.  
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However, in some papers, the potential for endogeneity is acknowledged. Shrimali et al. (2015), 

for example, note that their results may be biased due to two endogeneity channels: 

 

[First,] states with faster growing [renewable energy] deployment also have stronger 

renewable energy political lobbies who can effectively strengthen RPS policies; and 

[second,] states more likely to deploy [renewable energy] technologies in the future 

enact RPS policies in anticipation of deployment, perhaps because anticipated 

[renewable energy] deployment lowers the political cost of enacting an RPS.  

 

That being said, they argue that the first channel is unlikely to be operative because the 

penetration of renewable energy is low and thus, they argue, the renewable energy lobby is likely 

to be weak. Furthermore, they note that “there is little evidence that RPS policies have achieved 

political acceptance due to anticipated [renewable energy] deployment that would have occurred 

even in the absence of the enacted RPS.” However, as mentioned in Section 2.1.1, the lobbying 

power of renewable energy producers may be considerable. In addition, Shrimali et al. (2015) do 

not acknowledge the potential endogeneity stemming from lobbying by those who would lose 

from RPS adoption (e.g., fossil fuel producers).  

 

There are a few papers in the literature that attempt to account for endogeneity. Delmas and 

Montes-Sancho (2011) is the earliest paper.9 They note that “the decision to adopt a renewable 

policy, such as RPS, and investments in renewable capacity [are] likely to be influenced by the 

same factors” and that prior studies had not controlled for this. The potential confounding 

variables they suggest include differences in renewable endowments and differences in the 

motivations of policymakers. To control for these effects, they use a two-stage model based on 

Heckman (1978), which one can think of as explicitly modeling endogeneity. The first-stage 

regression is a binary logit model, which provides an estimate of the probability that each state 

adopts the policy in each period. The resulting predicted values are then included in the second 

                                                
9 However, the authors do not explicitly use the term endogeneity. Instead, they argue that the results of these early 

papers likely suffer from “sample selection bias.” This is a rather confusing use of terminology, as sample selection 

bias is usually used to refer to cases where a sample of a population overemphasizes certain groups. It could be that 

they are using this term to indicate that certain realizations of the stochastic processes under question are being 

systematically overrepresented because of omitted factors that affect both RPS and renewables investment. But if 

this is their intention, then it would be more intuitive to refer to this as endogeneity. 
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stage, which uses a Tobit model to estimate the impact of the policy on renewable capacity. 

Furthermore, in the second stage regression, they include an interaction between the RPS 

variable and a binary variable equal to 1 if a utility is investor-owned and 0 if it is publicly 

owned; this interaction is included because the authors hypothesize that investor-owned utilities 

are more responsive to renewable policies than publicly owned utilities. The results with the 

predicted values from the first stage are then compared with the results using the observed 

values. With the latter, the RPS binary variable is not significant alone, but the coefficient of the 

interaction is significant and positive. However, with the predicted values, the coefficient of the 

binary variable alone is significant and negative in the models with and without the interaction; 

the coefficient of the interaction is significant and positive, with a coefficient that is greater in 

absolute value than that for the binary RPS variable, resulting in a net positive effect for 

investor-owned utilities. Thus, they conclude that their results suggest that after correcting for 

endogeneity, RPSs have a positive effect for investor-owned utilities but a negative effect for 

publicly owned utilities. 

 

While the attempt to control for endogeneity by Delmas and Montes-Sancho (2011) is a welcome 

development, their approach has several limitations. First, they measure the presence of RPSs 

with a binary variable. As shown in Yin and Powers (2010), while using the RPS binary variable 

yields a negative coefficient, replacing this variable with the IPR results yields a positive 

coefficient. In addition, Fischlein and Smith (2013) note that the failure to incorporate policy 

heterogeneity explains why they find that RPSs are only effective for investor-owned utilities; 

rather than this difference being due to differences in the governance of investor-owned and 

publicly owned utilities, it is likely because 11 states completely exempt publicly owned utilities 

from the requirements and six others impose weaker requirements on them. Second, it is not 

clear what variable they are using as an instrument. In the text, there is no discussion of the 

motivations for choosing an instrument. Since all variables in the first-stage regression appear in 

the second-stage regression, the reason for this omission appears to simply be that they did not 

choose an instrument. As a result, it is impossible to interpret their results in the second-stage 

regressions. Third, their use of a logit model as opposed to a hazard model in the first-stage 

model “appears to assume that the RPS is up for reconsideration each year” (Lyon, 2016), which 

may only be the case if one accounts for heterogeneity. Fourth, they use a two-stage predictor 
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substitution approach, which, as discussed in Section 3.3 of this thesis, is inconsistent when 

nonlinear models are used.  

 

Hitaj (2013) is another one of the few papers that attempts to address the endogeneity problem, 

but since it does so for a set of five policies supporting wind generation, problems arise that 

prevent the RPS endogeneity problem from being addressed. Specifically, the paper includes six 

instruments because the model has six endogenous variables, five of which are policies. When all 

the endogenous variables are instrumented simultaneously, the exogeneity tests indicate that the 

variables are endogenous at the 1% level. However, when each variable is instrumented 

individually, none remain significant. Therefore, the paper only instruments three variables at a 

time, and in each case, the RPS variable is never instrumented.  

 

Finally, Upton and Snyder (2017) note that their synthetical control does not account for 

unobserved factors that impact both RPS adoption and renewables. That is, it does not directly 

control for endogeneity. To address the potential for endogeneity, they run a falsification test 

estimating the impact of RPSs on a variable they argue that RPSs should not affect: motor 

gasoline demand. Since no effect is identified, it is argued that endogeneity is likely not an issue. 

However, since their theoretical motivation for this test is related to unobserved factors 

pertaining to energy demand in general, it is possible that the endogeneity channels discussed in 

Section 3.1 will not be addressed by this test.  

 

 

3. METHODOLOGY 

 

3.1. Potential Endogeneity Channels 

This thesis argues that endogeneity stems from the presence of special interests, which, as 

mentioned in Section 2.2.1, plays an important role in the adoption of RPSs. While special 

interests may be measurable to some extent through proxy variables, these variables may not 

capture the full scope of the roles played by these groups. For example, special interests may not 

only have an explicit effect through campaign contributions; they may also have an implicit 

effect on politicians via the potential to finance attack ads or make campaign contributions to 
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political opponents. There may also be informal ties between politicians (e.g., the potential for 

private sector positions for politicians after public service) that cannot be explicitly captured by a 

particular variable. How these unmeasurable special interests can affect the dependent variables 

will be made clear in the following three subsections.   

 

3.1.1. Channel 1: Omitted Variable Bias 

The simplest endogeneity channel is that states with stronger traditional energy lobbies may be 

less likely to invest in renewables, while states with stronger renewable energy lobbies are more 

likely to invest. In addition, since the ideal dependent variable for measuring the effectiveness of 

RPSs is the share of renewables, stronger special interests may tend to imply a higher share of 

fossil fuel generation that crowds out the share of renewables. This effect is labeled 1a in Figure 

1.  

 

Figure 1: Omitted Variable Bias Channels 

 
 

Special interest can also lobby for or against other policies that affect the renewables share. If 

these policies are not controlled for, there will be an indirect effect from special interests that 

will be included in the error term. This effect is labeled 1b in Figure 1. But what could these 
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other policies be? Due to the crowding-out mechanism mentioned above, they need not just be 

related to renewables; they could also be related to investment in non-renewables. For example, 

in recent years, natural gas and renewables have become the only competitive forms of new 

generation, so states with weaker regulation on factors affecting gas investment (say, the 

availability of pipelines) may see faster natural gas investment and thus may tend to have a lower 

share of renewables; some of these policy factors may not be directly measurable, and it might 

not be possible to control for them. This omitted effect is labeled 1b in Figure 1.   

 

3.1.2. Channel 2: Policy Expectations 

The second omitted variable bias channel above relates to the effect of existing policies; this is 

represented by the top channel in Figure 2. There is also a potential endogeneity channel due to 

how strongly special interests believe they can affect future policies. In states where, say, natural 

gas special interests are stronger, agents may have more certainty about future regulations that 

affect investment and may be willing to invest. In states with weaker natural gas special interests, 

there may be more ambiguity about the potential for states to impose siting restrictions on 

pipelines and thus there may be more reluctance to invest in new natural gas plants. 

 

Figure 2: Policy Expectations Channel 
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3.1.3. Channel 3: Reverse Causality 

This last channel stems from the possibility that the dependent variables and the RPS variables 

could affect each other, both directly and indirectly. Unlike channels 1a, 1b, and 2, this channel 

may affect the estimation of both the effectiveness of RPSs and the impact of RPSs on electricity 

prices. In the case of the latter, this interdependency is likely direct and thus not dependent on 

special interests, as shown in the left panel of Figure 3. For example, due to arguments in Section 

2.2.2, states could be more reluctant to adopt RPSs when electricity prices are high. But RPSs 

could also affect electricity prices. In the case of the effectiveness of RPSs, special interests 

likely play a role again, as shown in the right panel. A higher share of renewables likely leads to 

stronger renewables special interests or weaker fossil fuel special interests (e.g., by impacting 

their revenue), and this can affect the likelihood of adoption of RPSs. A mathematical proof that 

this channel causes correlation between the RPS variable and the error term is provided in 

Appendix 1.  

 

 

 

Figure 3: Reverse Causality Channels 
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3.2. Empirical Models 

To account for these sources of endogeneity, two approaches are used: the instrumental variable 

(IV) and control function (CF) approaches. To understand how these approaches work, first 

consider the following model of the impact of RPSs on either electricity prices or the non-hydro 

renewable share: 

 

 𝑦1𝑖𝑡 = 𝜷𝟏𝒚𝟐𝒊𝒕 + 𝜷𝟐𝑿𝒊𝒕 + 𝜆𝑖 + 𝛿𝑡 + 𝑒1𝑖𝑡 (1) 

 

where 𝜆𝑖 are individual fixed effects, 𝛿𝑡 are time fixed effects, and 𝒚𝟐 is a 1 × 𝑛 vector of RPS 

indicators; these indicators could include the IPR and dummy or categorical variables for various 

RPS policy features, as the papers discussed in Section 2.3 have used. If for any 𝑗 ∈ 𝑛, 

𝑐𝑜𝑟𝑟(𝑦2𝑗𝑖𝑡 , 𝑒1𝑖𝑡) ≠ 0 (e.g., through any of the channels in the previous section), then 𝑦2𝑗𝑖𝑡  is 

endogenous.  

 

To consistently identify each 𝛽1𝑗, the IV–2SLS approach can be used. This requires finding a 

vector, 𝒛𝒊𝒕, with at least 𝑛 elements that  

 

1) is strongly correlated with 𝒚𝟐𝒊𝒕. 

2) can be excluded from (1). 

3) is uncorrelated with 𝑒1𝑖𝑡. 

 

If these conditions are met, then the following set of models can be run: 

 

 𝑦2𝑗𝑖𝑡 = 𝜶𝟏𝒛𝒊𝒕 + 𝜶𝟐𝑿𝒊𝒕 + 𝜃𝑖𝑗 + 𝜇𝑡𝑗 + 𝑒𝑗𝑖𝑡, for all 𝑗 ∈ 𝑛 (2) 

 

These regressions effectively break each 𝑦2𝑗  into two components: 1) a predicted component 

𝑦̂2𝑗𝑖𝑡  that is explained by 𝒛𝒊𝒕 and orthogonal to 𝑒𝑗𝑖𝑡 and 2) a portion 𝑒𝑗𝑖𝑡 that is correlated with 

𝑦2𝑗𝑖𝑡 . The first portion can be thought of as being “purged” of its endogenous component 

(Wooldridge, 2018). The vector these 𝑦̂2𝑗𝑖𝑡  terms can then substitute for 𝐲𝟐𝒊𝒕 in equation (1). 
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In the case of RPS, 𝐲𝟐𝒊𝒕 can be either vector of policy features or replaced by a scalar 

representing the binary RPS adoption decision or an index of policy features. As noted above, 

the second option is not adequate because it ignores the heterogeneity of RPSs. In the ideal 

scenario, the first option would be chosen over the third because it would avoid the difficulties 

associated with aggregating heterogeneous variables into an index. However, option 1 would be 

exceedingly difficult to implement given that the IV approach requires an instrument for each 

endogenous variable; even a single instrument is difficult to find. Thus, this thesis uses the third 

option; the details of this index will be discussed in Section 3.3.  

 

If equation (1) or (2) is nonlinear, the control function (CF) approach must be used. To determine 

if the results in this thesis are robust to such models, this approach is also used. As with the IV 

approach, an instrument must be chosen satisfying the same three conditions discussed above. 

However, Terza et al. (2008) note that there is a distinction between the two-stage predictor 

substitution (2SPS) and two-stage residual inclusion (2SRI) versions of the CF approach. With 

the 2SPS approach, the predicted values from the first-stage regression – that is, equation (3) – 

are substituted for the endogenous variable(s) in the second-stage regression. With the 2SRI 

approach, the residuals are included. When both models are linear, then the results with either 

2SPS or 2SRI will be identical to those using 2SLS. But if at least one of the two functions is 

nonlinear, the results with either 2SPS or 2SRI will differ; in particular, 2SPS will no longer be 

consistent. This discrepancy in the consistency of 2SPS and 2SRI with nonlinear models is 

relevant for this thesis because when modeling the probability of RPS adoption, nonlinear 

models are preferred; while the probability of RPS adoption could be modeled with a linear 

probability model, this would require treating RPS as a binary variable. 

 

Therefore, either an ordered probit or logit model with 2SRI should be used. To create the 

response categories for this model, cluster analysis can then be used. However, two issues then 

arise. The first concerns the residuals that should be used in the approach; since multivariate logit 

and probit models do not have an additive error term, the residuals cannot simply be computed 

by subtracting the predicted values from the observed values for each observation. Wooldridge 

(2014) proposes an alternative method for the CF approach using the generalized residuals. But 

accepted techniques for computing these residuals are only available for the ordered probit 
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models (Chiburis and Lokshin, 2007). Therefore, based on this criterion, the order probit model 

should be used. A description of this model is provided in Appendix 2.   

 

Second, since this paper uses panel data, there is an additional difficulty in computing the 

generalized residuals: the formula in Chiburis and Lokshin (2007) is for cross-sectional data, not 

panel data. With nonlinear models, the use of fixed effects is also problematic due to the 

incidental parameter problem. To avoid these problems, this thesis uses an approach inspired by 

Mundlak (1978) and estimates correlated random effects models. Specifically, rather than 

controlling for individual fixed effects, the first stage ordered probit model includes the within-

state averages for all time-varying variables: 

 

 𝑦∗ = 𝜶𝟏𝒙 + 𝜶𝟐𝒙̅ + 𝜶𝟑𝝀 + 𝑒 (3) 

 

where 𝑦∗ is the latent variable in the cross-sectional ordered probit model, 𝝀 is a vector of 

dummy variables for each period, and 𝒙̅ is a vector of the within-state averages for the 

covariates. The approach in Chiburis and Lokshin (2007) is then used to compute the generalized 

residuals.  Finally, following Wooldridge (2014), this paper incorporates the generalized 

residuals into the second-stage regression using the following “flexible” specification:   

 

 𝑦𝑖𝑡 = 𝛼𝑦2𝑖𝑡 + 𝝍𝟏𝐱𝐢𝐭 + 𝜂1𝑚𝑖𝑡𝟏{𝑦2𝑖𝑡 = 2} + 𝜂2𝑚𝑖𝑡𝟏{𝑦2𝑖𝑡 = 3} + 

            𝜂3𝑚𝑖𝑡 + 𝜂4𝑚𝑖𝑡
2 + 𝜆𝑡 + 𝜇𝑖 + 𝑒𝑖𝑡 

(4) 

 

where 𝑚𝑖𝑡 represents the generalized residuals from the ordered probit model, 𝑦2𝑖𝑡 is the 

endogenous cluster variable, 𝐱𝐢𝐭 is a vector of exogenous control variables, 𝜆𝑡 represents time 

fixed effects, and 𝜇𝑖 are state fixed-effects. 

 

3.3. Dataset and Variables 

This paper uses a highly comprehensive dataset that was graciously provided by Sanya Carley of 

Indiana University. The dataset was previously used in Carley et al. (2018). The dataset features 

many of the important policy design features for state RPSs between 1992 and 2014, and it 

captures changes in these features over time. The dataset also addresses some of the limitations 
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of the datasets used in other studies incorporating RPS heterogeneity. For example, Carley et al. 

note that the dataset in Fischlein and Smith (2013) is based on policy features in a single year 

according to keywords, while Yin and Powers (2010) and Shrimali et al. (2015) used summaries 

of RPS policy design from secondary databases instead of deriving their policy variables directly 

from RPS legislation. In contrast, Carley et al. carefully examined the text of each initial RPS 

and amendment over the period. They then coded the policy features using a multi-step process. 

 

A list of the variables from this dataset that are used in this thesis is provided in Table 1. As 

discussed in Section 2.3, the dependent variables in the analysis are the non-hydro share of 

renewables in total generation, 𝑝𝑟𝑒𝑛𝑔𝑒𝑛, and the real retail price of electricity, 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒. The 

former is used to evaluate the effectiveness of RPS, while the latter is used to estimate the costs. 

As for the measurement of RPSs, two indicators are used. The first is 𝑑𝑦𝑛𝑎𝑚𝑖𝑐, which is an 

index of seven RPS policy features computed using a dynamic factor algorithm presented in 

Zirogianni and Tripodis (2018). The seven RPS indicators are the percentage renewables target; 

the number of years the policy has been in place; a binary variable indicating whether the policy 

is mandatory; and four ordinal variables indicating the scope of the cost recovery provisions, 

planning requirements, geographical limits on compliance, and restrictions on REC trading. This 

indicator is used in the IV approach. The second indicator, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟, is a categorical variable with 

three categories representing increasing levels of RPS stringency; this RPS indicator is used in 

the CF approach. This variable is computed using the k-means cluster analysis approach and the 

same seven policy features used to compute the 𝑑𝑦𝑛𝑎𝑚𝑖𝑐. Then, the clusters are ranked 

according to their mean values for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐. 

 

The third section of the table presents the instrument used in both methodologies: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛. This 

variable is based on a methodology proposed by Berry et al. (1998) that locates the ideology of 

citizens in state-year along a liberal-conservative continuum. Recall from Section 3.2 that three 

conditions must be met for a variable to be used as an instrument. The arguments for why 

𝑐𝑖𝑡𝑖𝑧𝑒𝑛 can be expected to satisfy these conditions are as follows: 

1. Several studies have found that citizen ideology is a significant predictor of RPS 

adoption. 
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2. It likely has no direct impact on 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 because survey research has indicated that 

there is strong bipartisan support for expanding renewables (Funk and Kennedy, 2016). 

Furthermore, several papers have found that ideology does not have a significant effect 

on renewables directly (e.g., Carley et al., 2018). In the electricity price regressions, it is 

difficult to propose a direct mechanism by which ideology and electricity prices could be 

linked. It could be that ideology is indirectly correlated with electricity prices; for 

example, more liberal states tend to have higher income, which can be correlated with 

electricity prices. However, in these cases, these intermediate factors can be controlled 

for. 

3. While special interest may be able to affect 𝑐𝑖𝑡𝑖𝑧𝑒𝑛, these variables are likely only 

weakly correlated with special interests because ideology is determined by a wide range 

of factors. Furthermore, the indirect effect of citizen ideology on policy can be potentially 

controlled for. In the electricity price regressions, this potential effect can be at least 

partially controlled for by including 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 as a control. 

The third section in the table presents the control variables. These variables capture economic, 

social, and political conditions, and the bottom four variables are proxies for the presence of 

special interests. Each of these control variables was chosen based on the literature cited in the 

preceding sections. 
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Table 1: Summary of Variables 

  

Variable Description Source 

 

Dependent variables 

  𝑝𝑟𝑒𝑛𝑔𝑒𝑛 
Share of non-hydro renewable net generation  

in total generation 
EIA 

  𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 
Real retail price of electricity in cents per  

kWh  

RPS variables 

  𝑑𝑦𝑛𝑎𝑚𝑖𝑐 Dynamic factor index of RPS characteristics Computed by Carley 

et al. (2018)  

Authors’ 

computation 
  𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

Three-category ordinal variable based on  

dynamic factor index  

 

Instrument 
  

  𝑐𝑖𝑡𝑖𝑧𝑒𝑛 Index of citizen liberalism (0–100 scale) † 

 

Controls 

  𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆 
Percentage of neighboring states with RPS in 

previous period 

Computed by Carley 

et al. (2018) 

  𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 
Binary variable indicating whether state has 

deregulated electricity sector 
Delmas et al. (2007) 

  𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  
Carbon emissions from electricity generation per 

capita 
EPA 

  𝑔𝑟𝑜𝑤𝑡ℎ Population growth rate US Census Bureau 

  𝐺𝑆𝑃𝑃𝐶 Gross state product per capita BEA 

  𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒 Price of natural gas in USD per MMBTU 

EIA 

  ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒 
Share of hydro net generation in total  

generation 

  𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒 
Share of nuclear net generation in total  

generation 

  𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒 
Share of coal net generation in total  

generation 

  𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒 
Share of natural gas net generation in total 

generation 

  𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡 Number of solar establishments 
 NAICS 

  𝑤𝑖𝑛𝑑𝑒𝑠𝑡 Number of wind establishments 

† Berry et al. (1998, 2010) and data from https://www.icpsr.umich.edu/icpsrweb/ICPSR/ 

studies/188/detail and http://www.bama.ua.edu/~rcfording/stateideology.html 
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4. RESULTS 

 

4.1. Descriptive Statistics 

Table 2 provides the summary statistics of the main variables used in the analysis. These 

statistics provide a summary of the overall dataset. For example, the mean column provides the 

averages for each value across all state-years, while the standard deviation (SD) summarizes the 

distribution of state-years around that mean. Overall, there are 49 states10 over 23 years, resulting 

in 1,127 state-years observations. It is also possible to compute “between” and “within” statistics 

for the SD; the between SD provides a summary of the dispersion of the state-level means, while 

the within SD is the average of the SDs for each state. Of note is the distinction between the 

between SD and the within SD for the instrument, 𝑐𝑖𝑡𝑖𝑧𝑒𝑛. The former is nearly twice the latter – 

that is, 13.93 and 6.652, respectively. This indicates that, in general, there is more variation in 

𝑐𝑖𝑡𝑖𝑧𝑒𝑛 across states than for each state across time. Indeed, a visual inspection of the time series 

plots (not shown but available upon request) indicates that 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 has relatively little within 

variation. Furthermore, for most states, 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 exhibits no clear trend over time.  

 

For some states, there is also little variation in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 and 𝑑𝑦𝑛𝑎𝑚𝑖𝑐. Thirteen states11 remain at 

the minimum value for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 for the entire period and, besides South Carolina, 

they are the only states that do not have an RPS at any point during the period.12 The values for 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 for the remaining states vary over the period, as shown in Figure 4. The 

value for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 for these states tends to increase sharply the year they implement their RPS. 

Thereafter, there are differences across states in the variability in the index depending on the 

content and frequency of amendments to the policies. For example, note how the index for 

Rhode Island increases suddenly in 2004, the year it implemented its RPS, and then appears to 

change little for the remainder of the period, whereas the index for Massachusetts appears to 

increase gradually throughout the period. Both indexes are actually continuously increasing since 

the index includes the number of years the RPSs have been in place. However, Massachusetts 

                                                
10 Iowa is omitted because data for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is not available. 
11 These states are Alabama, Alaska, Arkansas, Florida, Georgia, Idaho, Kentucky, Louisiana, Mississippi, 

Nebraska, South Carolina, Tennessee, and Wyoming. 
12 Technically, South Carolina does not remain at the minimum value for the entire period. Its value for the index 

increases slightly in 2014 because it implemented a voluntary RPS in that year.  
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also revised its RPS twice during the period, while Rhode Island did not revise any of the 

features included in the index. 

 

Figure 4 also shows the placement of each state into the three 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 categories over time. The 

cluster analysis places all states into cluster 1 at the beginning of the period, when no state has an 

RPS. Then, in general, states are placed into either cluster 2 or 3 the year that they implement 

their RPS, which also corresponds with year that 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 increases sharply. For some states, 

however, the sharp increase in 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and the transition of these states out of cluster 1 do not 

occur in the same year. Nevada and Texas are two clear examples. Even after they implement 

their RPSs, these states remain in the first clusters, which includes the 13 states that never 

implement an RPS. That being said, this paper still uses 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in the control function 

approach, as it avoids the arbitrariness of manually placing states into clusters. Figure 4 also 

shows that some states move through all three categories as their values for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 increase 

gradually over the period.   

 

Each state can also be categorized based on its placement in the clusters over the entire period. 

This categorization is useful in order to determine if key variables for states with similar 

placements tend to have similar trajectories. This can be thought of as a form of correlation 

analysis that can help to provide “empirical cues” that can then be probed further based on the 

results with more rigorous methods. Four clear groups13 of states emerge from Figure 4:  

 

1. The states that remain in cluster 1 for the entire period 

2. The states that transition from cluster 1 to cluster 2 and remain in cluster 2 

3. The states that transition through all three categories 

4. The states that transition directly from cluster 1 to cluster 3 

 

 

                                                
13 The states in the first category are listed in footnote 19. The second category includes Arizona, Indiana, Iowa, 
Massachusetts, Michigan, Missouri, Montana, New Hampshire, North Carolina, North Dakota, Oklahoma, 
Pennsylvania, Rhode Island, South Dakota, Texas, Virginia, Washington, and Wisconsin. The third includes 
Colorado, Connecticut, Delaware, Hawaii, Illinois, Maryland, Minnesota, Nevada, New Jersey, and New Mexico. 
The fourth includes California, Kansas, Maine, New York, Ohio, Oregon, Utah, and West Virginia. 
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Table 2: Descriptive Statistics 
1.  

Variable  Mean SD Min. Max. 

 

Dependent variables 
  

  𝑑𝑦𝑛𝑎𝑚𝑖𝑐 –0.034 1.922 –1.272 4.718 

  𝑐𝑙𝑢𝑠𝑡𝑒𝑟 1.357 0.630 1.000 3.000 

  𝑝𝑟𝑒𝑛𝑔𝑒𝑛 0.032 0.047 –0.007 0.371 

  𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 8.063 3.156 3.370 34.040 

 

Instrument 
    

  𝑐𝑖𝑡𝑖𝑧𝑒𝑛 50.280 15.313 8.450 95.972 

 

Controls 
  

  𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆 0.299 0.355 0.000 1.000 

  𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 0.309 0.462 0.000 1.000 

  𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  10.815 13.809 0.000 92.335 

  𝑔𝑟𝑜𝑤𝑡ℎ 0.011 0.011 –0.059 0.116 

  𝐺𝑆𝑃𝑃𝐶 0.036 0.011 0.016 0.076 

  𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒 5.306 2.827 0.320 32.390 

  ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒 17.74 18.62 -0.71 80.77 

  𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒 10.92 20.06 0.00 94.28 

  𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒 0.463 0.302 0.000 0.986 

  𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒 0.463 0.302 0.000 0.986 

  𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡 23.480 63.398 0.000 678 

  𝑤𝑖𝑛𝑑𝑒𝑠𝑡 80.924 150.738 0.000 1238 
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Figure 4: Dynamic Index and Clusters by State 
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In Figure 5, the state-level time series for states in each of these groups are plotted together. The 

first four graphs plot the time series of 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 for the states in each group. For these time 

series, the proportion of states with a rising trajectory over time in groups 2 through 4 is higher 

than that in group 1.14 Only three out of the thirteen states in group 1 have an upward trend for at 

least four years, whereas at least half of the states in each of the remaining three groups have 

such a trend. Upward trends in these groups become particularly present towards the end of the 

period – that is, after most states have implemented an RPS. This should not be interpreted as a 

causal argument; it just suggests that there is some correlation between placement in the clusters 

and 𝑝𝑟𝑒𝑛𝑔𝑒𝑛. While endogeneity may prevent a causal interpretation for this correlation, it is 

consistent with the previous research discussed in Section 2.3 that finds a relationship between 

RPSs and renewables development when heterogeneity is accounted for.  

 

The bottom four graphs in Figure 5 plot the 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 time series.15 These graphs show that 

there is a more general upward trend in 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 than in 𝑝𝑟𝑒𝑛𝑔𝑒𝑛; no states have a declining 

trend or stable values for 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 over the period as a whole. Furthermore, unlikely in the 

plots for 𝑝𝑟𝑒𝑛𝑔𝑒𝑛, there are no obvious differences among the plots for each group. The plots 

for groups 1 and 2 are more or less identical, except for the larger number of states in plot 2. In 

all years, states in group 3 tend to have higher electricity prices than the states in other groups, 

while the distribution of electricity prices in group 4 is more bimodal. However, none of the 

differences suggest that there is any correlation between placement in the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 categories and 

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, though the more rigorous methods in the subsequent sections may contradict this.  

 

In addition to considering large groups of states, empirical cues can be identified by comparing a 

small group of states, similar to comparative case studies. The comparisons are provided by plots 

in Figure 6, which present the 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 time series and RPS implementation and amendment 

                                                
14 Note that the scaling of the y-axis is different in each plot in order to better compare the trajectories for each group. 

Furthermore, some readers may be confused as to why the values of 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 for some states in some years appear 

to be negative. Note that 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 is the share of net generation of renewables. 
15 Unlike the 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 plots, the scaling is the same for each plot. In addition, one state, Hawaii, had to be removed 

from the plot for group 3 because it is an outlier and therefore made comparisons among states difficult with 

equivalently scaled axes for each graph. Hawaii begins the period with electricity prices similar to the states with the 

highest electricity prices in group 3, but it then experienced much higher electricity price growth. As a result, its 

electricity prices reached 34.04¢ per kWh in 2012. As Figure 5 shows, all other states have electricity prices far below 

this level.   
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dates of pairs of states. The aim of the first three panels in Figure 6 is to determine whether the 

trajectories of the time series correlate with differences in the RPS adoption and amendment 

dates and the content of these policies. In each figure, the first vertical dotted line represents the 

year RPS was implemented, and the subsequent lines represent amendment years; the vertical 

lines for each state share the color of the state’s 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 time series (e.g., the blue vertical lines 

in the graph with Massachusetts and Illinois indicate the implementation and amendment dates 

for Massachusetts).  

 

The first panel of Figure 6 reveals that in Massachusetts, there was a sharp decline in the share of 

renewables just after RPS is implemented. This sharp decline may reflect idiosyncratic factors, 

similar to the sharp decline in the renewable share in Maine following the implementation of 

RPS (see footnote 7). The panel also shows that Connecticut experienced a similar decline just 

after it implemented RPS, though this decline appears to have started before RPS was 

implemented. In contrast, the second and third panels show that in New York and Colorado, 

there is a clear upward trajectory in 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 that began approximately the year that their RPSs 

were implemented. In California, there is no decline in 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 after implementation, but there 

is also no clear change in 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 for several years. However, in all states but Connecticut, 

there is eventually an upward trajectory in 𝑝𝑟𝑒𝑛𝑔𝑒𝑛. In Illinois, this clearly begins the year RPS 

was amended, while in Massachusetts, it appears that it begins the year of the second 

amendment. In California, there is a clear upward trend a few years after the policy was 

amended, and this trend may have started the year of the amendment. 

 

One empirical cue provided by these figures is that the initial RPS designs may have been too 

weak to spur renewable development. Indeed, Figure 4 shows that when Illinois and 

Massachusetts implemented RPS, their values for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 increased little compared to other 

states in the years when they implemented RPS. The values for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 then increase 

substantially as the policies were amended. This can perhaps be explained by the changing 

contents of the policies. Massachusetts introduced REC trading and planning requirements in 

2002 and introduced geographic limits on REC trading and procurement in 2008; in Illinois, the 

initial RPS implemented in 2001 was only voluntary, and the amendment in 2007 made it 

mandatory. 
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Figure 5: Non-Hydro Renewable Share and Electricity Prices by Group 
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In California, there is a larger initial increase in 𝑑𝑦𝑛𝑎𝑚𝑖𝑐, but it subsequently increases more 

sharply after the introduction of REC trading, which may have helped the LSEs subject to the 

policy more easily comply with it. This apparent correlation between increases in RPS stringency 

and 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 is not necessarily a causal link. For example, the simple correlation is complicated 

by the lack of any correlation in the case of Connecticut. But it does provide some further 

informal evidence that accounting for policy heterogeneity is important. 

 

Figure 6: Non-Hydro Renewable Share for Selected States 

 

 

The final panel of Figure 6 is included to provide some empirical cues for what might complicate 

the simple correlations mentioned above. The figure shows the 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 time series and RPS 

implementation dates for Texas and Oklahoma, two neighboring states with extremely high wind 

potential. Both states have virtually the same 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 trajectory for most of the period, though 

Texas implemented its RPS over a decade before Oklahoma did. Two hypotheses arise from this 

finding. The first is that the Texas RPS was increasing wind development in Oklahoma, perhaps 

because LSEs in Texas subject to the policy satisfied their requirements with out-of-state RECs. 
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The second hypothesis is that wind development was driven by factors unrelated to RPS, such as 

the high wind potential in both states. While the first hypothesis is plausible, it is not 

supportable, as over the period, the LSEs subject to the policy were able to entirely comply with 

the policy using in-state RECs (Mack et al., 2011).  

 

4.2. Baseline Regressions 

This section provides the results of panel regressions without accounting for endogeneity. The 

results will be compared later with the results of the approaches accounting for endogeneity. It 

also presents the set of regression specifications that will be used in each approach. Only the 

coefficients of the RPS variables are presented here; the complete regressions can be found in 

Appendix 3. In addition, all regressions used individual fixed-effects, and the coefficients are 

presented with cluster-robust standard errors.  

 

The first specification in the first panel of Table 3 is the simple regression of 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 on 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐. In the second specification, time fixed effects are added, which eliminates the 

significance of the coefficient in specification 1. The third specification adds several control 

variables, including two special interest proxies for the renewable energy sector. These additions 

leave the magnitude of the regression coefficient for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 virtually unchanged, but it 

becomes significant again. Finally, the remaining two specifications add one fossil fuel proxy at 

a time; specification 4 uses 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒 while specification 5 uses 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒. The reason that 

both are not added simultaneously is that the regression may begin to simply capture accounting 

relations rather causal effects; that is, in some states, the shares of renewables, coal, and natural 

gas make up virtually the entirety of the energy mix, so including all three in the regression 

would leave little else to be explained.   

 

The estimates in Table 3 indicate for all models except for specification 2, increases in RPS 

stringency have statistically significant effects on 𝑝𝑟𝑒𝑛𝑔𝑒𝑛. This result is consistent with some 

of the informal correlation analyses in the previous section, as well as the literature accounting 

for heterogeneity. The magnitudes of the coefficients in specifications 3 through 5 indicate that 

on average and all else equal, a one-unit increase in 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (recall from Table 2 that the range 
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of 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is about six units) results in an approximately 0.3 percentage point increase in 

𝑝𝑟𝑒𝑛𝑔𝑒𝑛.  

 

When 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is used instead of 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 as the RPS indicator variable, the results are less 

significant. Cluster 2 is only significant in two of the five specifications, while cluster 3 is only 

significant in specification 1. However, aside from specification 2, the coefficients are close to 

being significant at the 5% level. This is also the case when the coefficients for the two clusters 

are tested for joint significance, which is represented by the row labelled 𝐹(2, 48). As for the 

sign of coefficients, the results are consistent with those using 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 as the indicator 

variable. Specifications 3 through 5 predict that, all else equal, states in cluster 2 have a non-

hydro renewable share that is about 1.1 percentage points higher than those in cluster 1, while the 

share in cluster 3 is approximately two percentage points higher.  

 

Table 3 also provides the results of the baseline models using 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 as the dependent 

variable. The specifications with controls use different variables than the specifications in Table 

3. In particular, specification 5 uses the shares of all major generation sources. Since the 

dependent variable is no longer a generation share, there is no concern that including several 

generation sources as controls could explain most of the variation in the dependent variable.  

 

The first specification in panel 3 is the simple regression of 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 on 𝑑𝑦𝑛𝑎𝑚𝑖𝑐. Consistent 

with the literature, the coefficient from this regression indicates that a one-unit increase in 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is associated with a highly significant increase (0.736¢ per kWh) in 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒. 

However, the fades away as the specifications become more detailed. When time-fixed effects 

are added in specification 2, there is no longer a significant effect. The effect becomes significant 

again when 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 is added as a control in specification 3, but it is weaker than in 

specification 1.16 In specifications 4 and 5, various controls are added, and the coefficient for 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 becomes insignificant, though in specification 5, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is significant at the 10% 

                                                
16 It is also interesting that 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 has a significant negative effect on 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 in this specification, since 
one of the channels through which RPS can influence is electricity prices is the relatively high cost of 
renewables. That being said, this effect becomes smaller and then insignificant as more controls are added.   
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level. This finding is consistent with empirical cues provided by the bottom four panels in Figure 

5.  

 

Table 3: Baseline Regression Results 

     (1)     (2)     (3)     (4)     (5) 

Dependent variable: 𝒑𝒓𝒆𝒏𝒈𝒆𝒏  

     RPS variable: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

          𝛽𝑅𝑃𝑆  0.567***  0.274  0.318*  0.325*  0.285*   

         (0.000) (0.059) (0.025) (0.020)  (0.042) 

       

     RPS variable: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

          Clus. 2  2.081**  1.111  1.157  1.192*  1.059 

 (0.004) (0.073) (0.054) (0.041) (0.064) 

          Clus. 3  3.024**  1.099  1.950  2.014  2.182 

 (0.007) (0.320) (0.076) (0.063) (0.050) 

          𝐹(2, 48)  7.150**  1.910  2.880  3.320*  2.870 

 (0.002) (0.160) (0.066) (0.045) (0.067) 

      

     Time FE     No    Yes    Yes    Yes    Yes 

     Controls     No     No      A A+𝑐𝑜𝑎𝑙𝑠. A+𝑛𝑎𝑡𝑠ℎ. 
      

Dependent variable: 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆  

     RPS variable: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

          𝛽𝑅𝑃𝑆  0.690***  0.109  0.135*  0.097  0.085 

 (0.000) (0.059) (0.019) (0.062) (0.091) 

      

     RPS variable: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

          Clus. 2  2.299***  0.230  0.335  0.369  0.380 

 (0.000) (0.310) (0.132) (0.154) (0.139) 

          Clus. 3  4.305***  1.501  1.604*  0.968**  0.941**  

 (0.000) (0.054) (0.040) (0.005) (0.002) 

          𝐹(2, 48)  103.7***  2.120  2.610  5.240**   5.540** 

 (0.000) (0.131) (0.084) (0.009) (0.007) 

      

     Time FE      No     Yes     Yes     Yes     Yes 

     Controls      No      No    𝑝𝑟𝑒𝑛.    B+𝑝𝑟𝑒𝑛. B+C+𝑝𝑟𝑒𝑛. 
      

 

Notes: Controls A includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆, 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, 𝑤𝑖𝑛𝑑𝑒𝑠𝑡, 

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡, and 𝐺𝑆𝑃𝑃𝐶. Controls B includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, and 𝐺𝑆𝑃𝑃𝐶. Controls C includes 
𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒, and 𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒. The abbreviations 𝑐𝑜𝑎𝑙𝑠., 𝑛𝑎𝑡𝑠ℎ., and 𝑝𝑟𝑒𝑛. refer to 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, and 𝑝𝑟𝑒𝑛𝑔𝑒𝑛, respectively. Results do not account for endogeneity. Individual fixed effects and cluster-
robust standard errors used in all models. Standard errors in parentheses. Full results available in Appendix 3.  

*  𝑝 < 0.05,  **  𝑝 < 0.01,  ***  𝑝 < 0.001    
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The results in panel 4 reveal that for the 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 specifications, cluster 3 is generally much 

more significant than cluster 2; the former is significant or nearly significant for all 

specifications, while the latter is only significant in specification 1. As for the magnitude of the 

coefficients, the results indicate that states in cluster 3 have, on average and all else equal, 

electricity prices that are between 1 and 4 cents higher than states in cluster 1.  

 

For both dependent variables and with 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 as the RPS variable, the results in Table 3 can be 

summarized by computing the average predicted values of the dependent variables for each 

cluster. These figures provide estimates of the electricity prices experienced by an “average” 

state in each cluster – that is, a hypothetical state with average values for all covariates in the 

models. Table 4 provides these predicted values in columns 2 and 4 based on the results from 

specification 4 for both dependent variables. The third and fifth columns then provide the 

percentage difference between clusters 2 and 3 and cluster 1.  

 

Table 4: Average Predicted Values from Baseline Regressions  

Cluster 
Predicted 

Elec. price 
% diff. 

Predicted 

RE share  
% diff. 

1 7.38     – 2.59%     – 

2 9.56 29.4% 4.59% 77% 

3 10.98 48.7% 5.02% 94% 

 

 

4.3. Instrumental Variable Regressions 

Table 5 presents the results for the first-stage regressions for both 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 and 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 in 

order to gauge the strength of the instrument. For each dependent variable, four sets of 

regressions are provided; both contemporaneous and lagged values for the instrument are 

provided, and year fixed effects are included in omitted. Furthermore, note that each column in 

the table corresponds to the column with the same number in Table 3.  
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The results reveal that the magnitude and sign of the coefficients for each set of regressions are 

relatively consistent; that is, for each row in the table, the coefficients are similar. However, 

there are clear differences in the strength of the instrument (i.e., moving vertically in the table). 

With the instrument lagged, the instrument is stronger, though it never reaches significance at the 

5% level. One reason for this could be that there is little variation in the instrument over time, as 

mentioned in Section 4.1. Since the regressions use fixed-individual effects, this lack of variation 

may cause the instrument to be absorbed in the individual error term. This lack of variation 

across time may also provide an explanation for why the instrument is stronger in the regressions 

without year fixed effects.  

 

Table 6 presents the results of the second-stage models with 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 as the dependent variable. 

The magnitude of 𝑝-value of the coefficients are fairly consistent with each other, regardless of 

the controls (i.e., the column in the table), instrument, and treatment of time fixed effects. The 

shared result is that after accounting for endogeneity, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 does not have a significant effect 

on 𝑝𝑟𝑒𝑛𝑔𝑒𝑛. This result contradicts the baseline results in Table 3, which do not account for 

endogeneity, and are presented at the bottom of the table for comparison.  

 

What does differ substantially across the columns and panels of Table 6 is the Cragg-Donald Wald 

F (CDWF) statistic. This statistic is used in the Stock-Yogo test for weak identification due to 

weak instruments. The test involves comparing the CDWF statistic to a set of critical values that 

determine the maximum bias of IV relative to OLS at the 5% level; that is, if the CDWF statistic 

is above the 20% critical value, there is a 95% chance that the IV results have a maximum bias of 

20% compared to OLS. For the models used in this thesis, the critical values from Stock and Yogo 

(2005) are as follows: 

 

 

Maximal relative bias Critical value 

10% 16.38 

15% 8.96 

20% 6.66 

25% 5.53 
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Table 5: First-Stage Instrumental Variable Results 

    (1)    (2)    (3)    (4)    (5) 

 

Specifications for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏 

     Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

        w/ years     –  0.018  0.011  0.011  0.012 

             – (0.244) (0.368) (0.368) (0.324) 
      

       w/o years  0.062***     –  0.011  0.013  0.011 

 (0.000)     – (0.196) (0.153) (0.193) 

      

     Instrument: 𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

         w/ years       –  0.029*  0.021  0.021  0.022 

             – (0.046) (0.078) (0.078) (0.070) 
      

        w/o years    0.078***     –  0.021*  0.021*  0.021* 

 (0.000)     – (0.021) (0.016) (0.021) 

      

     Controls     No    No     A A+𝑐𝑜𝑎𝑙𝑠. A+𝑛𝑎𝑡𝑠ℎ. 
       

Specifications for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆 

     Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

        w/ years     –  0.018  0.022  0.020  0.020 

             – (0.244) (0.135) (0.188) (0.179) 
      

        w/o years    0.062***     –  0.071***  0.017  0.019 

 (0.000)     – (0.000) (0.133) (0.075) 

      

     Instrument: 𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

        w/ years     –  0.029*  0.033*  0.031*  0.031* 

             – (0.046) (0.021) (0.034) (0.030) 
      

        w/o years    0.078***     –  0.083***  0.037**  0.036**  

 (0.000)     – (0.000) (0.002) (0.001) 

      

     Controls    No    No   𝑝𝑟𝑒𝑛.   B+𝑝𝑟𝑒𝑛. B+C+𝑝𝑟𝑒𝑛. 
      

 

Note: Controls A includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆, 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, 

𝑤𝑖𝑛𝑑𝑒𝑠𝑡, 𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡, and 𝐺𝑆𝑃𝑃𝐶. Controls B includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, and 

𝐺𝑆𝑃𝑃𝐶. Controls C includes 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒, and 𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒. The abbreviations 

𝑐𝑜𝑎𝑙𝑠., 𝑛𝑎𝑡𝑠ℎ., and 𝑝𝑟𝑒𝑛. refer to 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, and 𝑝𝑟𝑒𝑛𝑔𝑒𝑛, respectively. Individual fixed 

effects and cluster-robust standard errors used in all models. Standard errors in parentheses. Full results 

available in Appendix 4. *  𝑝 < 0.05,  **  𝑝 < 0.01,  ***  𝑝 < 0.001    
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Table 6: Second-Stage Instrumental Variable Results for Non-Hydro Renewable Share 

 

 

    (1)     (2)     (3)     (4)     (5) 
 

IV with year fixed effects 

   Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛  

     𝛽𝑅𝑃𝑆     – –2.971 –4.389 –4.424 –2.765 

              – (0.370) (0.471) (0.472) (0.491) 

     CDWF      –  6.972  2.887  2.837  3.562 
 

   Instrument:  𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

     𝛽𝑅𝑃𝑆     – –1.707 –2.016 –2.039 –1.278 

              – (0.199) (0.246) (0.255) (0.341) 

     CDWF      –  17.76  10.91  10.44  12.24 
 

IV without year fixed effects 

   Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛  

     𝛽𝑅𝑃𝑆 –0.535     – –3.809 –3.354 –3.498 

          (0.148)     – (0.285) (0.253) (0.295) 

     CDWF   70.61     –  4.554  5.707  4.644 
 

   Instrument:  𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

     𝛽𝑅𝑃𝑆 –0.208     – –2.030 –1.971 –1.813 

          (0.384)     – (0.098) (0.091) (0.112) 

     CDWF   120.6     –  16.34  17.26  16.59 

      

Baseline results 

     𝛽𝑅𝑃𝑆  0.567***  0.274  0.318*  0.325*  0.285*   

         (0.000) (0.059) (0.025) (0.020)  (0.042) 

     Time FE     No    Yes   Yes   Yes   Yes 

      

Controls A     No    Yes   Yes   Yes   Yes 

Other controls     No     No    No 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒 
      

 

Note: CDWF refers to the Cragg–Donald Wald F-statistic. Baseline results are taken from Table 3 and do not 
account for endogeneity. Full results for the IV regressions can be found in Appendix 4. Bottom two rows 

provides lists of controls for all regressions in each column. Controls A includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆, 

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, 𝑤𝑖𝑛𝑑𝑒𝑠𝑡, 𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡, and 𝐺𝑆𝑃𝑃𝐶. Individual fixed effects 

and cluster-robust standard errors used in all models. Standard errors in parentheses.  

* 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001    
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The CDWF statistics are higher in the models without year fixed effects than those with year 

fixed effects. Furthermore, those with the instrument lagged have higher CDWF statistics than 

those with the contemporaneous instrument. For some of the models without year fixed effects 

and/or with the lagged instrument, the CDWF statistic is greater than 10, indicating that the 

maximal relative bias for those models, assuming the other IV assumptions hold, is between 10% 

and 15%.   

 

Table 7 provides the results of the second-stage regressions with 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 as the dependent 

variable. As in the baseline results, the coefficients in Table 8 are not significant in specifications 

2, 4, and 5. In specification 3, the coefficient is also not significant in the model with year fixed 

effects, whereas it was significant in the baseline. Furthermore, for both 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 and 𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 in 

all specifications, the CDWF statistics increase when year fixed effects are omitted. 

 
 

4.4. Control Function Regressions  

As with the IV approach, this section first presents the first-stage results to gauge the strength of 

the instrument. Here, however, since the regression uses a model inspired by the Mundlak 

approach, the regressions include both instrument and the mean of the instrument; in Table 8, the 

coefficients of these variables are labeled 𝛽𝑐𝑡𝑧. (or 𝛽𝑙𝑐𝑡𝑧.) and 𝛽𝑐𝑡𝑧.̅̅ ̅̅ ̅ (or 𝛽𝑙𝑐𝑡𝑧.̅̅ ̅̅ ̅̅ ), respectively. To 

determine the strength of the instrument, the joint significance of the coefficients of these 

variables is necessary. This is achieved with a Wald test, the result of which is provided by the 

chi-squared statistic (i.e., labeled 𝜒2(2)) in each panel of the table. 

 

The coefficients of the instrument and the mean of the instrument together are never individually 

significant. In general, though, the mean of the instrument tends to be significant while the 

instrument alone does not, and if the mean is not significant, it is at least more significant than 

the instrument alone. One reason for this could be the relatively low variation in the instrument 

across time. That is, the mean alone is sufficient to capture the variation in the instrument, as it 

mainly occurs across states. In addition, within each panel in the table, there are no clear 

differences in the significance or magnitude of the coefficients for each of these variables across 

specifications across specifications 3 through 5. The main difference across specifications in 

each panel occurs between 1 and 2. 
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Table 7: Second-Stage Instrumental Variable Results for Electricity Prices 

 

    (1)     (2)     (3)     (4)     (5) 

IV with year fixed effects 

    Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛   

      𝛽𝑅𝑃𝑆     –  0.857  0.501  0.344  0.241 
     – (0.422) (0.489) (0.406) (0.538) 

     CDWF      –  6.972  2.887  2.837  3.562 
 

   Instrument:  𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

     𝛽𝑅𝑃𝑆     –  0.365  0.197  0.138  0.089 

              – (0.484) (0.662) (0.607) (0.729) 

     CDWF      –  17.76  10.91  10.44  12.24 
 

IV without year fixed effects 

   Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛    

     𝛽𝑅𝑃𝑆  1.062***     –  1.020*** –0.813 –0.687 

          (0.000)     – (0.000) (0.588) (0.567) 

     CDWF   70.60     –  109.8  8.677  11.32 
 

   Instrument:  𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

      𝛽𝑅𝑃𝑆  0.956***     –  0.944***  0.206  0.107 
 (0.000)     – (0.000) (0.664) (0.822) 

     CDWF   115.7     –  154.0  44.47  43.26 

      

Baseline results 

     𝛽𝑅𝑃𝑆  0.690***  0.109  0.135*  0.097  0.085 

 (0.000) (0.059) (0.019) (0.062) (0.091) 

     Time FE    No   Yes   Yes   Yes   Yes 

      

Controls B    No    No    No   Yes   Yes 

Controls C    No    No    No    No   Yes 

Other controls    No    No 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 
      

 

Note: CDWF refers to the Cragg–Donald Wald F-statistic. Baseline results are taken from Table 3 and 

do not account for endogeneity. Full results for the IV regressions can be found in Appendix 4.  

Controls B includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, and 𝐺𝑆𝑃𝑃𝐶.  Bottom rows provides lists 

of controls for all regressions in each column. Controls C includes 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, 

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒, and 𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒. Individual fixed effects and cluster-robust standard errors used in all 

models. Standard errors in parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001    
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However, the instrument and the mean are in most cases jointly significant at the 5% level. For 

both 𝑝𝑟𝑒𝑛𝑔𝑒𝑛, this joint significance tends to decrease as more controls are added, though 

specification 4, which controls for the share of coal generation, is more significant than 

specification 3. For 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, the addition of controls also tends to decrease the joint 

significance, though specification 5, which has controls for each major generation source, breaks 

this trend. Unlike with the IV regressions, though, the results do not change when the instrument 

is lagged instead of treated contemporaneously. As for the instrument alone and the mean of the 

instrument, using the 𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 as opposed to 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 actually tends to reduce the significance of 

the coefficients.  

 

Tables 9 and 10 provide the second-stage results with the baseline results from Table 3 provided 

for comparison. In each panel with the control function results, the endogeneity-adjusted 

coefficients for clusters 2 and 3 are provided. In addition, the table provides the results of a Wald 

test of the joint significance of the coefficients involving the generalized residuals are provided. 

There are four such coefficients: the generalized residuals alone, the square of the generalized 

residuals, and interactions between the generalized residuals and clusters 2 and 3. The statistics 

from the Wald tests have a similar interpretation as the CDWF statistics presented in the 

previous section; the higher the chi-squared statistics are, the more evidence there is that the 

instrument is strong enough to provide valid results, assuming all other assumption regarding the 

instrument hold. 

 

The results in Table 9 indicate that after adjusting for potential endogeneity, the coefficients for 

both clusters are highly insignificant, and this finding is robust across specifications and 

instruments. These results differ from the baseline results presented at the bottom of the table, 

where many of the coefficients are significant at (or close to) the 5% level. However, among the 

specifications with controls, the magnitudes of the coefficients in the baseline and control 

function approach do not differ substantially. As for the validity of these results, the Wald tests 

indicate that among the specifications with controls, the adjustment is strongest for specification 

3. Interestingly, the chi-squared statistic for specifications 4 and 5 differ rather substantially, 

even though they only differ in terms of the fossil fuel proxy used. 
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Table 8: First-Stage Control Function Results 

      (1)     (2)      (3)      (4)      (5) 
 

Specifications for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏 

   Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

        𝛽𝑐𝑡𝑧.     0.035** –0.006 –0.002  0.000 –0.001 

 (0.001) (0.675) (0.860) (0.979) (0.908) 

        𝛽𝑐𝑡𝑧.̅̅ ̅̅ ̅   –0.005  0.059**   0.043*  0.042  0.042* 

 (0.676) (0.004) (0.045) (0.057) (0.046) 

        𝜒2(2) -21.61***  14.04**  6.190*  6.710*  5.740 

 (0.000) (0.001) (0.045) (0.035) (0.057) 
      

   Instrument: 𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

        𝛽𝑙𝑐𝑡𝑧.    0.044***  0.002  0.007  0.009  0.008 

 (0.000) (0.885) (0.584) (0.502) (0.521) 

        𝛽𝑙𝑐𝑡𝑧.̅̅ ̅̅ ̅̅    –0.013  0.050*  0.032  0.033  0.032 

 (0.275) (0.017) (0.125) (0.132) (0.131) 

        𝜒2(2)  29.97***  13.98**  6.450*  7.270*  5.970 

 (0.000) (0.001) (0.040) (0.026) (0.051) 
      

   Time FE    No   Yes   Yes    Yes    Yes 

   Controls    No    No     A A+𝑐𝑜𝑎𝑙𝑠. A+𝑛𝑎𝑡𝑠ℎ. 
      

Specifications for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆 

   Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

        𝛽𝑐𝑡𝑧.    0.038*** –0.005  0.001 –0.014  0.003 

 (0.000) (0.742) (0.940) (0.389) (0.880) 

        𝛽𝑐𝑡𝑧.̅̅ ̅̅ ̅   –0.008  0.056**  0.047*  0.055*  0.058* 

 (0.513) (0.005) (0.025) (0.046) (0.034) 

        𝜒2(2)  22.97***  12.88**  9.260*  4.690  11.76** 

 (0.000) (0.002) (0.010) (0.100) (0.003) 
      

   Instrument: 𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

        𝛽𝑙𝑐𝑡𝑧.    0.049***  0.005  0.014  0.002 –0.016 

 (0.000) (0.751) (0.355) (0.907) (0.281) 

        𝛽𝑙𝑐𝑡𝑧.̅̅ ̅̅ ̅̅    –0.018  0.046*  0.033  0.039  0.044 

 (0.117) (0.028) (0.107) (0.132) (0.077) 

        𝜒2(2)  34.52***  13.04**  9.230*  4.470  13.30** 

 (0.000) (0.002) (0.010) (0.110) (0.001) 
      

   Time FE     No    Yes   Yes    Yes    Yes 

   Controls     No     No   𝑝𝑟𝑒𝑛.   B+𝑝𝑟𝑒𝑛. B+C+𝑝𝑟𝑒𝑛. 
      

Note: 𝛽𝑐𝑡𝑧. and 𝛽𝑙𝑐𝑡𝑧. are the coefficients of the instruments, and 𝛽𝑐𝑡𝑧.̅̅ ̅̅ ̅ and 𝛽𝑙𝑐𝑡𝑧.̅̅ ̅̅ ̅̅  are the coefficients of the means of 

instruments. The 𝜒2(2) statistics test for the joint significance of two coefficients above each statistic. Controls A 

includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆, 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, 𝑤𝑖𝑛𝑑𝑒𝑠𝑡, 𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡, and 

𝐺𝑆𝑃𝑃𝐶. Controls B includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, and 𝐺𝑆𝑃𝑃𝐶. Controls C includes 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒, and 𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒. The abbreviations 𝑐𝑜𝑎𝑙𝑠., 𝑛𝑎𝑡𝑠ℎ., and 𝑝𝑟𝑒𝑛. refer to 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, and 𝑝𝑟𝑒𝑛𝑔𝑒𝑛, respectively. Individual FEs and cluster-robust SEs used in all models. SEs in parentheses. 

Full results available in Appendix 5. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001   
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Table 9: Second-Stage Control Function Results for Non-Hydro Renewable Share 

 

     (1)     (2)     (3)     (4)     (5) 

Control function regressions 

  Instrument: 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

     Cluster 2 –1.374 –0.389  0.856  0.941  0.930 

          (0.158) (0.798) (0.532) (0.509) (0.491) 

     Cluster 3 –4.401 –3.772  1.871  1.918  2.915 

 (0.240) (0.129) (0.513) (0.505) (0.288) 

     𝜒2(4)  21.00***  7.070  11.17*  9.470  4.970 

 (0.000) (0.133) (0.025) (0.050) (0.290) 
 

  Instrument:  𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

     Cluster 2 –0.382 –0.438  0.843  0.931  0.899 

          (0.597) (0.771) (0.531) (0.509) (0.500) 

     Cluster 3 –1.194 –3.818  1.880  1.936  2.909 

 (0.647) (0.122) (0.502) (0.493) (0.280) 

     𝜒2(4)  21.77***  7.010  11.21*  9.610*  5.040 

 (0.000) (0.136) (0.024) (0.048) (0.283) 

      

Baseline regressions 

     Cluster 2  2.080***  1.111  1.157  1.192*  1.059 

 (0.002) (0.073) (0.054) (0.041) (0.064) 

     Cluster 3  3.143**  1.099  1.950  2.014  2.182 

 (0.002) (0.320) (0.076) (0.063) (0.050) 

      

Time FE     No    Yes    Yes    Yes    Yes 

Controls A     No    Yes    Yes    Yes    Yes 

Other controls     No     No     No 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒 
      

Note: The 𝜒2(4) statistics are derived from tests of the joint significance of the terms with the generalized 

residuals. Bottom three rows apply to all regressions in each column. Controls A includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆, 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, 𝑤𝑖𝑛𝑑𝑒𝑠𝑡, 𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡, and 𝐺𝑆𝑃𝑃𝐶. Baseline 

results are taken from Table 3 and do not account for endogeneity. Full results for the CF regressions 

can be found in Appendix 5. Individual FEs and cluster-robust SEs used in all models. SEs in 

parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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The results for 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒, which are provided in Table 10, differ from those for 𝑝𝑟𝑒𝑛𝑔𝑒𝑛. First, 

the coefficients for the clusters tend to be positive and significant across all specifications and 

with either instrument. In many cases, the coefficients are close to being significant at the 1% 

level, even in the specifications with several controls. Second, the significance and the 

magnitude of the coefficients are higher than in the baseline. In particular, the control function 

approach substantially increases the significance of the second cluster relative to the baseline. 

Third, the chi-squared statistics across the specification and with each instrument are generally 

higher for 𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒 than for 𝑝𝑟𝑒𝑛𝑔𝑒𝑛. 

  

Since there is a noticeable difference in the magnitude of the coefficients in the baseline and in 

the control function approach, it will be instructive to compare the average predicted values from 

each approach. Table 11 shows that these values also differ substantially. The differences 

between the percentage differences columns from the two approaches stems from the fact that 

the control function approach yields a lower average predicted value for cluster 1 and higher 

average predicted values for clusters 2 and 3. The difference is particularly large for cluster 3. 
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Table 10: Second-Stage Control Function Results for Electricity Prices 

           

     (1)     (2)     (3)     (4)     (5) 

Control function results 

   Instrument:  𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

     Cluster 2  3.991***  0.972**  1.153**  0.998*  0.627 

          (0.000) (0.006) (0.003) (0.015) (0.089) 

     Cluster 3  13.43***  6.838*  5.615  2.195**  1.302**  

          (0.000) (0.027) (0.065) (0.004) (0.007) 

     𝜒2(4)  35.56***  8.850  14.80**  14.76**  10.69* 

 (0.000) (0.065) (0.005) (0.005) (0.030) 

 

   Instrument:  𝑙𝑐𝑖𝑡𝑖𝑧𝑒𝑛 

     Cluster 2  3.515***  1.001**  1.170**  1.037*  0.632 

           (0.000) (0.003) (0.002) (0.011) (0.082) 

     Cluster 3  10.38***  6.804*  5.540  2.237**  1.302**  

          (0.000) (0.025) (0.062) (0.003) (0.006) 

     𝜒2(4)  37.54***  9.420  15.76**  15.45**  10.75* 

 (0.000) (0.051) (0.003) (0.004) (0.030) 

      

Baseline results 

     Cluster 2  2.307***  0.230  0.335  0.369  0.380 

 (0.000) (0.310) (0.132) (0.154) (0.139) 

     Cluster 3  4.321***  1.501  1.604*  0.968** 0.941**  

 (0.000) (0.054) (0.040) (0.005) (0.002) 

      

Controls B    No    No    No   Yes   Yes 

Controls C    No    No    No    No   Yes 

Other controls    No    No 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 𝑝𝑟𝑒𝑛𝑔𝑒𝑛 
      

 

Note: The 𝜒2(4) statistics are derived from tests of the joint significance of the terms with the generalized 

residuals. Bottom three rows apply to all regressions in each column.  Controls B includes 𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑, 

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒, 𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒, and 𝐺𝑆𝑃𝑃𝐶. Controls C includes 𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒, 𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒, ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒, and 

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒. Baseline results are taken from Table 3 and do not account for endogeneity. Full results for the 

CF regressions can be found in Appendix 5. Individual FEs and cluster-robust SEs used in all models. SEs 

in parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table 11: Average Predicted Electricity Prices from Baseline and CF Regressions 

 

Cluster 
Predicted 

Baseline 
% Difference Predicted CF  % Difference 

1 7.38     – 7.13     – 

2 9.56 29.4% 9.81 37.7% 

3 10.98 48.7% 13.45 88.7% 
     

 

Note: Predicted baseline and predicted CF refers to predicted values in the baseline and CF 

approach, respectively. The % difference column measure the percentage difference between the 

predicted value in the cell to the left and that for cluster 1.  
 

 

5. DISCUSSION 

 

5.1. Key Findings 

In general, the findings with each approach and for both dependent variables tend to be robust 

across specifications; the main exception in some cases is that the coefficients of interest and their 

significance for specification 1 tend to differ from the other four specifications. This result suggests 

that the results are not attributable to a particular choice of control variables and provides some 

evidence that there are no unobservable factors related to both RPSs and the dependent variables. 

Furthermore, since these controls were selected ex-ante, this robustness cannot be viewed as a 

form of data mining, such as the stepwise regression approach.  

 

For the regressions with the non-hydro renewables share as the dependent variable, the RPS 

coefficients from the IV approach are consistent with those from the CF approach. This is to be 

expected if the results stem from a fundamental relationship and are not simply the consequence 

of the empirical approach. The results are also economically meaningful; the significance of the 

RPS coefficient in the baseline, which was also suggested by the empirical cues discussed in 

Section 4.1, disappears in the approaches accounting for endogeneity. However, the validity of 

these results depends on the strength of the instrument. With the IV approach, the strength of the 

instrument various considerably depending on whether the instrument is lagged or if year fixed 

effects are included. With the CF approach, the strength of the instrument appears more robust to 

the choice of the instrument. 
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In contrast, with electricity prices as the dependent variable, the coefficients from the IV approach 

are not consistent with those from the CF approach: the results with the IV approach are 

insignificant while those with the CF approach are significant, positive, and higher in magnitude 

than in the baseline. That being said, the strength of the instruments with both approaches is 

generally higher than the strength of the instruments in the regressions with the non-hydro 

renewable share as the dependent variable. Moreover, the strength of the instrument is rather high 

regardless of whether it is lagged or if year fixed effects are included. Thus, while the inconsistency 

of the IV and CF results undermines the validity of the results, the relatively high strength of the 

instrument supports it.  

 

There is a theoretical reason to prefer the IV results, though. It is rather difficult to identify a 

mechanism by which RPSs could affect electricity prices without affecting the non-hydro 

renewable share. The change in this share due to RPSs is the main channel through which RPSs 

are expected to affect electricity prices. Therefore, the fact that RPSs have no significant impact 

on both dependent variables is a reason to prefer the IV results.  

 

5.2. Comparisons with Prior Literature 

The findings in the IV and CF regressions with the non-hydro renewables share as the dependent 

variable are similar to the early research on RPSs. As noted in Section 2.3, this literature generally 

found that RPS did not have a significant impact on the non-hydro renewables share. But this 

literature did not account for heterogeneity. When papers began accounting for heterogeneity, a 

consensus developed that suggested that RPSs had significant impacts on the non-hydro 

renewables share. This thesis provides some evidence that the consensus rested on the assumption 

that RPS was exogenous.  

 

The findings with the CF approach, though not the IV approach, that RPSs have positive price 

impacts is consistent with the literature. However, the price impacts identified with the CF 

approach are significantly larger than those in the literature. Table 12 uses the information in Table 

11 to show the size of this disparity.  
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Table 12: Comparison of Electricity Price CF Results with the Literature 

Study Timeframe Estimated Effect  

Previous Literature   

   Morey and Kirsch (2013)  1990–2011  Res.: 3.8%; Comm.: 1.8%; Indus. 1.3%  

   Wang (2014)  1990–2011  Increases ranging from 5 to 7.5% 

   Tra (2016)  2001–2012  3% inc. in residential and commercial rates 

   Upton and Snyder (2017)  1990–2013  11% increase 

   Greenstone and Nath (2019)  1990–2015  11% inc. after 7 yrs. and 17% after 12 yrs.  

   

Average predicted effect from CF results 

   Cluster 2  1990–2013  37.7% inc. relative to cluster 1 

   Cluster 3  1990–2013  88.7% inc. relative to cluster 1 
  

 Source: Barbose (2019) and author’s calculations 

 

 

5.3. Limitations 

Although a reason to prefer the IV results was noted above, the regressions with relatively strong 

instruments depend on some assumptions that can be criticized as ad hoc. That is, aside from the 

specifications without controls, the only regressions with relatively strong IVs are those with the 

lagged instrument and/or without year fixed effects. Since there is no strong theoretical reason for 

either of these modeling choices, the models without strong instruments were also included to 

avoid accusations of “p-hacking.” Future research should determine whether the modeling choices 

that yield strong instruments are theoretically well-founded. 

 

This limitation relates to a more fundamental problem with the instrument. First, it has little 

variation across time, which complicates estimates of its impact on the dependent variables. 

Second, even when the instrument is lagged and year effects are excluded, it is still rather weak. 

Third, there are reasons to believe the instrument is somewhat correlated with the error of the 

dependent variable, which violates the third assumption for IV mentioned in Section 3.2. 
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Another limitation of this study is that some controls likely not exogenous. For example, if special 

interests affecting the share of non-hydro renewables also affect the share of natural gas generation, 

the latter may be endogenous. While the analysis here does not focus on the estimates of the control 

variables, it is possible that the endogeneity of these controls could distort the estimates of the 

coefficients of interest – that is, the coefficients for RPS. The inclusion of various specifications 

could account for this, however. 

 

Finally, the dataset used for this thesis, though comprehensive, is relatively outdated; the last year 

used in the regressions above is 8 years prior to the publication of this thesis. Since much of the 

growth in renewables has come after in more recent years, particularly since 2015, running the 

regressions in this thesis with an updated dataset could yield significantly different results.  

 

5.4. Are These Results Useful for Public Policy? 

By virtue of the subject matter, the work of economists is necessarily intertwined in the public 

debate concerning public policy. It is often used by politicians to support their agendas, even if the 

results are misinterpreted. It can also be disseminated into the media, where it can then affect 

public opinion. It is therefore incumbent upon economists to address how their work can be 

interpreted by stakeholders and whether they can help inform public policy, particularly when 

there are reasons to question the validity of the results. In this case of this thesis, the recognition 

of these points leads to the following two questions: 

 

1) How should the findings in this study be interpreted if they are accurate?  

2) How strongly should stakeholders take the uncertainty regarding the accuracy of the 

findings into account? 

 

Two possible responses to the first question are considered here. First, if the evidence presented 

above is correct in identifying that RPSs have been ineffective, some may conclude this past 

ineffectiveness represents a fundamental property of RPSs. Thus, RPSs could be interpreted as 

either symbolic and/or inefficient policies, as some researchers have argued. One could then argue 

that the current set of RPSs should be replaced with an alternative policy. This conclusion would 
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be consistent with the general preference among economists for price-based economy-wide 

measures to target GHGs, such as carbon taxes.   

 

The second response is that RPSs may not have been stringent enough to achieve a higher non-

hydro renewable share than would have otherwise occurred. Indeed, the findings indicating that 

RPSs have not been effective do not necessarily indicate whether they can be effective. For 

example, it is possible that there is a nonlinear relationship between RPS stringency and the 

dependent variable, and the model is not able to capture these nonlinearities. Figure 7 provides an 

“RPS impact function” that represents this hypothesis. The x-axis represents the stringency of RPS 

conditional on the other covariates, while the y-axis provides the impact of RPSs on the dependent 

variable, all else equal. The hypothesis implies that the current sample is contained within the 0𝐴 

segment on the x-axis region, where there is no difference between the actual outcome and the 

counterfactual. However, a positive relationship emerges at some point outside of this region.  

 

It may be that this nonlinear relationship occurs for different states at different levels of stringency. 

If so, taking the average impact at each level of stringency, conditional on the controls, may mask 

this effect; there may be enough states positioned along in region 0𝐴 in Figure 7 to offset the states 

in the region where the RPS impact function becomes nearly vertical, thereby resulting in an 

average partial effect of zero at each level of conditional stringency in the current dataset. This 

hypothesis is in line with some of the empirical cues mentioned in Section 4.1. For example, recall 

the differences in the trajectories of the non-hydro renewable shares of New York and Connecticut 

following the adoption of RPS. Thus, further work should aim to investigate not only how the 

heterogeneity of RPSs results in a range of average effects that is not captured by treating RPS as 

a binary variable but also the potential heterogeneity of the impacts of these different levels of 

RPS stringency across states.  

 

This relationship could also exist for electricity prices, it could be that at some level of RPS 

stringency, bottlenecks emerge that cause large increases in prices. Beyond this point, perhaps the 

relationship in the figure would break down for the non-hydro renewable share, and instead, the 

graph would become horizontal again, thereby creating a sort of sigmoid function for the range of 

conditional stringency values. While this may result in pressures to free up resources from other 
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sections, thereby causing shifts in the RPS impact functions, the resulting price increases during 

the adjustment process may be socially and politically unacceptable. If so, cost containment 

measures, such as those mentioned in Section 3.1, could be employed to prevent the policy from 

exacerbating the bottlenecks. These measures could be automatically triggered based on economic 

indicators in order to optimize response time. Furthermore, with such safeguards in place, policies 

could be designed to automatically increase stringency until some target is reached (e.g., 100% 

renewable share), as policymakers may not be able to accurately predict what level of stringency 

is necessary to enter the nearly vertical region of the RPS impact function.   

 

Figure 7: A Representation of Nonlinear RPS Impacts 

 

For those who accept the consensus that carbon taxes are superior to RPSs, this hypothesis to the 

first question above may be considered moot: that is, even if RPS is effective after a certain point, 

it will always be less efficient than carbon taxes. Therefore, the policy framework proposed above 

would be considered inferior. However, there may be reasons for policymakers to err on the side 

RPSs. First, there are numerous questions about how and whether the optimal carbon taxes can be 
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calculated. Second, even if carbon taxes are superior in theory, it may be more politically difficult 

to implement carbon taxes than RPSs.  

 

Determining which of these two answers to the first question above is correct leads directly to the 

second question. When two competing hypotheses are presented, favoring one over the other 

depends on the confidence one has in the evidence supporting it. This confidence, in turn, is 

derived from two sources. First, for each piece of evidence (say, the results of a given regression), 

there are margins of error that researchers aim to aim to minimize through their methodological 

choices. These margins of error are subject-dependent. For example, in this thesis, the strength of 

the instrument is one margin of error. While it is impossible to fully eliminate these errors or know 

their true magnitude, methodological improvements can reduce the estimates of them, thereby 

increasing the confidence in the findings. Second, confidence is derived from the integration of 

each piece of evidence into a comprehensive “web” of knowledge. The confidence in the links in 

this web is strengthened when various lines of evidence from independent sources converge on 

common conclusions. This phenomenon is referred to as consilience. For example, consilience is 

often invoked as an explanation for the scientific consensus in climate science (Oreskes, 2018).  

 

How does the RPS literature fare on each of these fronts? One could argue that based on the review 

of the literature in Chapter 2, there have methodological improvements that may have helped to 

reduce the margins of error for each finding; in the case of the effectiveness literature, research 

has moved from overly simplistic models to more comprehensive ones and from models failing to 

account for policy heterogeneity to those that account for it. But throughout this development, the 

lurking endogeneity problem has never been adequately addressed. This thesis has provided some 

hypotheses indicating that it should be addressed and has presented some evidence that it is indeed 

a problem. However, the limitations discussed in Section 5.3 provide a reason to be skeptical about 

how much the methodologies used have helped to reduce the margins of error. Therefore, further 

work is needed to increase the accuracy of the findings. 

 

However, the empirical literature on RPSs has a relatively limited range of independent lines of 

inquiry. While researchers have used methodologies such as case studies or interviews in addition 

to regression analyses, the independence of these alternatives from regression analysts is limited. 
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For example, interviewee respondents’ perceptions of the effects of RPSs may be largely affected 

by the same data used in the regressions. Thus, while these alternatives are certainly welcome, 

more work is needed if a consilience of evidence in RPS empirical research is to be achieved.  

 

With these points in mind, policymakers should view the research on RPSs, including this thesis, 

with a high degree of caution. Furthermore, they should weigh the high degree of uncertainty about 

this literature against the urgency of climate change, which is supported by greater degree of 

consilience. In this regard, the study of RPSs could be considered a branch of “post-normal 

science” – that is, a discipline “where facts are uncertain, values in dispute, stakes high and 

decisions urgent” (Funtowicz and Ravetz, 1993).  

 

 

6. CONCLUSION 

 

The central aim of this thesis has been to investigate the costs and benefits of renewable portfolio 

standards (RPSs), as represented by the impacts on the share of non-hydro renewables and 

electricity prices, respectively. To provide unbiased estimates of these impacts, this thesis has 

argued that two factors must be taken into account. The first is the heterogeneous nature of RPSs; 

unlike, say, vaccine trials, units do not receive a homogenous treatment. This point has been 

acknowledged in the literature on the impacts of RPSs, particularly the effectiveness literature, and 

various methodologies have been presented that account for this heterogeneity. The second factor 

is that there are reasons to believe that RPSs are endogenous; to use vaccine trials again for 

contrast, since there is no way to randomly assign RPSs to states, RPS indicators may be correlated 

with the error terms in regressions estimating the impacts of RPS on either dependent variable. 

This thesis has argued that this endogeneity likely stems from the presence of special interests. 

 

To account for both the endogeneity and heterogeneity of RPSs, this thesis used the instrumental 

variable (IV) and control function (CF) approaches. The instrument chosen for these approaches 

is an index of citizen ideology. For the IV approach, a dynamic factor index capturing seven RPS 

policy features is used as the endogenous variable. For the CF approach, a categorical variable 

with three categories was constructed using cluster analysis and the same seven policy features 
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used to create the dynamic factor index. The clusters were then ranked used each cluster’s mean 

variables for the index. 

 

The results provide some evidence that endogeneity is present. With the IV approach, RPSs are 

found to have, on average, no significant effect on either the non-hydro renewable share or 

electricity prices. With the CF approach, the RPSs once again have no significant effect on the 

non-hydro renewable share but have a significant positive effect, for some clusters in some models, 

on electricity prices.  

 

The results have a number of limitations. Most importantly, the strength of the instrument in the 

IV approach varies considerably across models; reasonably strong results are only generated in the 

models where the instrument is lagged and/or year fixed effects are excluded. Therefore, future 

research should aim to determine whether these modeling choices are justified. 

 

This paper also asks how policymakers should incorporate these findings into public policy. It 

argues that two questions must be answered. First, it asks how the findings in this study should be 

interpreted if they are accurate. Two answers to this question are proposed: the findings indicate 

that RPSs are inherently ineffective, or the findings indicate RPSs have not been stringent enough 

to yield results outcomes that are significantly different from what would have otherwise occurred. 

To support the latter, a simplified model of the relationship between stringency and the impacts of 

RPS is proposed. If this relationship exists, it could serve as the basis for an RPS policy wherein 

stringency is automatically increased until 100% renewables is achieved, while stopgap measures 

are triggered if the policy yields social or political undesirable increases in electricity prices.  

 

Second, this thesis asks how strongly stakeholders should take the uncertainty regarding the 

accuracy of the findings into account. It argues that confidence in the evidence for a hypothesis 

stem from two sources: the margin of error of the evidence itself and the integration of the evidence 

into a consilient web of evidence. The empirical research on RPS, however, is limited on both 

fronts. Therefore, policymakers should be wary of using this research for policymaking. Moreover, 

while future research should of course further study these policies to increase the build a 

consilience of evidence, it is important to note that the climate crisis is too urgent to wait for such 
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a body of work to emerge; it may be that policymaking regarding RPS in the near term will have 

to depend more on theory than empirical evidence.  
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APPENDIX 1: PROOF OF ENDOGENEITY DUE TO CHANNEL 3 

 

First, consider the following system of equations for the effectiveness case: 

 

𝑦1 = 𝛽1𝑦2 + 𝜷𝟐𝒙𝟏 + 𝑒1, 𝑥𝑢 = 𝛼1𝑦1 + 𝜶𝟐𝒙𝟐 + 𝑒2, 𝑦2 = 𝜋1𝑥𝑢 + 𝝅𝟐𝒙𝟑 + 𝑒3 

 

where 𝑦1 is the share of renewables, 𝑦2 is RPS, 𝑥𝑢 is a variable representing special interests,17 

and the 𝐱’s and 𝑒’s are exogenous regressors and error terms, respectively. Substituting the second 

equation into the third yields the following two equations: 

 

𝑦1 = 𝛽1𝑦2 + 𝜷𝟐𝒙𝟏 + 𝑒1     

𝑦2 = 𝜋1𝛼1𝑦1 + 𝜋1𝜶𝟐𝒙𝟐 + 𝝅𝟐𝒙𝟑 + 𝜋1𝑒2 + 𝑒3 

 

In the non-trivial case, 𝜋1, 𝛼1, 𝛽1 ≠ 1. It can then be seen that 𝑦2 is endogenous by expressing it in 

reduced form:  

 

𝑦2 =
𝝀𝒙 + 𝜋1𝛼1𝑒1 + 𝜋1𝑒2 + 𝑒3

1 − 𝜋1𝛼1𝛽1
 

 

where 𝝀𝒛 is a linear combination of the exogenous regressors. Thus, 𝑦2 is correlated with 𝑒1 with 

a proportionality constant of 𝜋1𝛼1/(1 − 𝜋1𝛼1𝛽1) when 𝜋1𝛼1𝛽1 ≠ 1, which is ruled out by 

assumption. 

 

Algebraically, it is simpler to demonstrate that the reverse causality between RPS and electricity 

prices causes endogeneity because there is no intermediate step through special interests. In this 

case, the system of equations can be written as  

 

𝑦1 = 𝛽1𝑦2 + 𝜷𝟐𝒙𝟏 + 𝑒1, 𝑦2 = 𝛼1𝑦1 + 𝜶𝟐𝒙𝟐 + 𝑒2,   

 

                                                
17 Note that the conclusions here would still hold if 𝑦2 and 𝑥𝑢 were vectors, thought the algebra would become 

considerably more complicated.  
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and the reduced form for 𝑦2 is as follows:  

 

𝑦2 =
𝝍𝒙 + 𝛼1𝑒1 + 𝑒2

1 − 𝛼1𝛽1
 

 

where 𝝍𝒙 is a linear combination of the exogenous regressors and 𝛼1𝛽1 ≠ 1 in the non-trivial 

case.  

 

 

APPENDIX 2: OVERVIEW OF THE ORDERED PROBIT MODEL 

 

An order probit model is used to model the probability that a set of observations adopt an observed 

response category, 𝑦 = {𝑦0, 𝑦1, … , 𝑦𝑛}, such as an individual’s responses to a question on a survey 

with a Likert scale. The model assumes that the response category observed for each unit is a 

function of an unobserved latent continuous variable, 𝑦∗. This variable is typically assumed to be 

predicted by a linear model: 

 

 𝑦∗ = 𝝀𝐳 + 𝑒, 𝑒 | 𝒛 ~ Normal(0,1) 

 

(5) 

The mapping of 𝑦∗ to 𝑦 is based on a set of increasing thresholds, 𝜏 = {𝜏0, 𝜏1, … , 𝜏𝑛+1}, where 

𝜏0 = −∞ and 𝜏𝑛+1 = ∞. Formally, this can be written as follows:   

 

 

𝑦 = {

 0  if  𝜏0 < 𝑦∗ ≤ 𝜏1 
 1  if  𝜏1 < 𝑦∗ ≤ 𝜏2

 ⋮
 𝑛  if 𝜏𝑛 < 𝑦∗ ≤ 𝜏𝑛+1

 

 

(6) 

While this mapping is ordering preserving (i.e., for any 𝑗, 𝑦𝑗
∗ < 𝑦𝑗+1

∗ ), no assumption is made about 

the distances between each of the response categories, as 𝑦 is an ordinal variable. Equation (6) is 

then used to derive the probability (conditional on 𝐳) of each observed response probability, 

P(y = 𝑗 | 𝐳), which is the probability that 𝑦∗ for each 𝑗 is bounded by the corresponding thresholds 
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in equation (6) – that is, P(y = 𝑗 | 𝐳) = P({y = 𝜏𝑗 < 𝑦∗ ≤ 𝜏𝑗+1} | 𝐳). Substituting equation (5) and 

rearranging yields 

 

P({𝜏𝑗 < 𝝀𝐳 + 𝑒 ≤ 𝜏𝑗+1} | 𝐳) = P({𝜏𝑗 − 𝝀𝐳 < 𝑒 ≤ 𝜏𝑗+1 − 𝝀𝐳 }| 𝐳)

= P({𝜏𝑗+1 − 𝝀𝐳 ≥ 𝑒}| 𝐳) − P({𝜏𝑗 − 𝝀𝐳 < 𝑒}| 𝐳) 

 

Given the assumption that 𝑒 | 𝒛 is normally distributed, the normal cumulative density function 

can be substituted for the two conditional probabilities above. Thus,  

 

P(y = 𝑗 | 𝐳) = Φ(𝜏𝑗+1 − 𝝀𝐳) − Φ(𝜏𝑗 − 𝝀𝐳) 

 

Given the definition of the thresholds, Φ(𝜏𝑗+1 − 𝝀𝐳) = 1 when 𝑗 = 𝑛 and Φ(𝜏𝑗 − 𝝀𝐳) = 0 when 

𝜏 = 0.  
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APPENDIX 3: BASELINE REGRESSION TABLES WITH CONTROLS  

 

Table A.1: Baseline Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏 with Dynamic Index as RPS Variable 
 

    (1)    (2)    (3)    (4)    (5) 
      

𝑑𝑦𝑛𝑎𝑚𝑖𝑐  0.567***  0.274  0.318*  0.325*  0.285*   

 (0.000) (0.059) (0.025) (0.020) (0.042) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     – –0.590 –0.570 –0.287 

     –     – (0.210) (0.230) (0.461) 
      

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –     – –0.031 –0.057  0.332 

     –     – (0.973) (0.950) (0.666) 
      

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     –     – –0.117 –0.155 –0.175 

     –     – (0.262) (0.269) (0.116) 
      

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –  11.02  9.629  2.513 

     –     – (0.509) (0.595) (0.885) 
      

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –     – –0.524*** –0.535*** –0.467*** 

     –     – (0.001) (0.000) (0.000) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –  0.213  0.212  0.163 

     –     – (0.103) (0.104) (0.147) 
      

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     –     –  0.001  0.001  0.002*   

     –     – (0.240) (0.222) (0.038) 
      

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –     – –0.004 –0.004 –0.004 

     –     – (0.523) (0.467) (0.469) 
      

𝐺𝑆𝑃𝑃𝐶     –     –  146.4*  136.8  89.32 

     –     – (0.026) (0.065) (0.175) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –  0.022     – 

     –     –     – (0.537)     – 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.102*** 

     –     –     –     – (0.000) 

Notes: Complete results from corresponding panel of Table 3. Results do not account for 

endogeneity. Individual fixed effects and cluster-robust standard errors used in all models. 

Time fixed effects used in models 2 through 5. Standard errors in parentheses. * 𝑝 < 0.05;  ** 

 𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.2: Baseline Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏 with Cluster as RPS Variable 

 

    (1)    (2)    (3)    (4)    (5) 
      

Cluster 2  2.081**  1.111  1.157  1.192*  1.059 

 (0.004) (0.073) (0.054) (0.041) (0.064) 
      

Cluster 3  3.024**  1.099  1.950  2.014  2.182 

 (0.007) (0.320) (0.076) (0.063) (0.050) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     – –0.701 –0.683 –0.437 

     –     – (0.164) (0.178) (0.289) 
      

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –     – –0.123 –0.159  0.159 

     –     – (0.894) (0.860) (0.841) 
      

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     –     – –0.112 –0.154 –0.169 

     –     – (0.310) (0.296) (0.147) 
      

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –  9.984  8.408  1.613 

     –     – (0.552) (0.642) (0.924) 
      

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –     – –0.553*** –0.566*** –0.505*** 

     –     – (0.000) (0.000) (0.000) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –  0.212  0.211  0.155 

     –     – (0.126) (0.127) (0.187) 
      

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     –     –  0.001  0.001  0.002*   

     –     – (0.275) (0.255) (0.033) 
      

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –     – –0.004 –0.004 –0.005 

     –     – (0.502) (0.440) (0.373) 
      

𝐺𝑆𝑃𝑃𝐶     –     –  151.1*  140.4  93.14 

     –     – (0.022) (0.058) (0.158) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –  0.025     – 

     –     –     – (0.486)     – 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.106*** 

     –     –     –     – (0.000) 

Notes: Complete results from corresponding panel of Table 3. Results do not account for endogeneity. 

Individual fixed effects and cluster-robust standard errors used in all models. Time fixed effects used in 

models 2 through 5. Standard errors in parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.3: Baseline Results for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆 with Dynamic Index as RPS Variable 

    (1)    (2)    (3)    (4)    (5) 
      

𝑑𝑦𝑛𝑎𝑚𝑖𝑐  0.690***  0.109  0.135*  0.097  0.085 

 (0.000) (0.059) (0.019) (0.062) (0.091) 
      

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     –     – –0.094** –0.075**  0.006 

     –     – (0.008) (0.007) (0.803) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –     – –0.055 –0.081 

     –     –     – (0.722) (0.577) 
      

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –     – –8.780 –9.519*   

     –     –     – (0.063) (0.035) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –     –  0.648***  0.642*** 

     –     –     – (0.000) (0.000) 
      

𝐺𝑆𝑃𝑃𝐶     –     –     –  51.34*  38.55 

     –     –     – (0.018) (0.059) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –     –  6.690**  

     –     –     –     – (0.003) 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     –  5.433**  

     –     –     –     – (0.001) 
      

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.056**  

     –     –     –     – (0.006) 
      

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.068*** 

     –     –     –     – (0.000) 

Notes: Complete results from corresponding panel of Table 3. Results do not account for 

endogeneity. Individual fixed effects and cluster-robust standard errors used in all models. Time 

fixed effects used in models 2 through 5. Standard errors in parentheses. * 𝑝 < 0.05;  **  𝑝 <
0.01,  ***  𝑝 < 0.001 
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Table A.4: Baseline Results for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆 with Cluster as RPS Variable 

    (1)    (2)    (3)    (4)    (5) 
      

Cluster 2  2.299***  0.230  0.335  0.369  0.380 

 (0.000) (0.310) (0.132) (0.154) (0.139) 
      

Cluster 3  4.305***  1.501  1.604*  0.968**  0.941**  

 (0.000) (0.054) (0.040) (0.005) (0.002) 
      

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     –     – –0.094** –0.080** –0.000 

     –     – (0.009) (0.007) (0.996) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –     – –0.147 –0.161 

     –     –     – (0.311) (0.278) 
      

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –     – –8.772 –9.554*   

     –     –     – (0.058) (0.027) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –     –  0.613***  0.612*** 

     –     –     – (0.000) (0.000) 
      

𝐺𝑆𝑃𝑃𝐶     –     –     –  56.42**  41.94*   

     –     –     – (0.009) (0.037) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –     –  6.517*** 

     –     –     –     – (0.000) 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     –  5.055*** 

     –     –     –     – (0.000) 
      

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.058*** 

     –     –     –     – (0.001) 
      

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.067*** 

     –     –     –     – (0.000) 

Notes: Complete results from corresponding panel of Table 3. Results do not account for 

endogeneity. Individual fixed effects and cluster-robust standard errors used in all models. 

Time fixed effects used in models 2 through 5. Standard errors in parentheses. * 𝑝 < 0.05;  ** 

 𝑝 < 0.01,  ***  𝑝 < 0.001 
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APPENDIX 4: IV REGRESSION TABLES WITH CONTROLS  

 

Section 4.3 provides the results of regressions with lagged and contemporaneous values for the 

instrument. Since the results for the control variables do not change substantially when the 

instrument is lagged, those results are excluded here. They are available upon request.  

 

Table A.5: First-Stage IV Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏, with Year Fixed Effects 
 

    (2)    (3)    (4)    (5) 
     

𝑐𝑖𝑡𝑖𝑧𝑒𝑛  0.018  0.011  0.011  0.012 
 (0.244) (0.368) (0.368) (0.324) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –  0.189  0.174  0.215 
     – (0.396) (0.446) (0.345) 
     

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –  1.970***  1.979***  1.994*** 
     – (0.001) (0.001) (0.000) 
     

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     – –0.028 –0.002 –0.034 
     – (0.731) (0.984) (0.687) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     – –13.76 –12.72 –14.46 
     – (0.109) (0.156) (0.088) 
     

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –  0.115  0.121  0.119 
     – (0.217) (0.202) (0.186) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     – –0.011 –0.010 –0.015 
     – (0.880) (0.889) (0.829) 
     

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     – –0.002 –0.002 –0.002 
     – (0.159) (0.151) (0.191) 
     

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –  0.004  0.004  0.004 
     – (0.062) (0.053) (0.069) 
     

𝐺𝑆𝑃𝑃𝐶     –  15.78  22.42  10.59 
     – (0.702) (0.578) (0.798) 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     – –0.016     – 
     –     – (0.342)     – 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     – –0.009 

     –     –     – (0.349) 

Notes: Complete results from corresponding panel of Table 5. Since specification 1 only differs 
from specification 2 in that it does not have year FEs, this table begins with column (2). 
Individual fixed effects and cluster-robust standard errors used in all models. Standard errors in 

parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.6: First-Stage IV Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏, without Year Fixed Effects 
 

    (1)    (3)    (4)    (5) 
     

𝑐𝑖𝑡𝑖𝑧𝑒𝑛  0.062***  0.011  0.013  0.011 

 (0.000) (0.196) (0.153) (0.193) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –  0.194  0.193  0.200 

     – (0.344) (0.361) (0.336) 
     

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –  2.353***  2.259***  2.377*** 

     – (0.000) (0.000) (0.000) 
     

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     – –0.028  0.004 –0.028 

     – (0.746) (0.961) (0.745) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     – –12.79* –9.99 –13.23*   

     – (0.032) (0.102) (0.026) 
     

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –  0.174*  0.165*  0.176*   

     – (0.012) (0.013) (0.011) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     – –0.017 –0.010 –0.018 

     – (0.665) (0.808) (0.657) 
     

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     – –0.001 –0.001 –0.001 

     – (0.165) (0.171) (0.174) 
     

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –  0.004  0.004 0.004 

     – (0.081) (0.052) (0.083) 
     

𝐺𝑆𝑃𝑃𝐶     –  35.75  32.70  36.36 

     – (0.095) (0.120 (0.104) 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     – –0.022     – 

     –     – (0.134)     – 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     – –0.003 

     –     –     – (0.691) 

Notes: Complete results from corresponding panel of Table 5. Since specification 2 only differs 
from specification 1 in that it has year FEs, this table omits column (2). Individual fixed effects and 

cluster-robust standard errors used in all models. Standard errors in parentheses. * 𝑝 < 0.05;  ** 

 𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.7: First-Stage IV Results for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆, with Year Fixed Effects 
 

    (2)    (3)    (4)    (5) 
     

𝑐𝑖𝑡𝑖𝑧𝑒𝑛  0.018  0.022  0.020  0.020 

 (0.244) (0.135) (0.188) (0.179) 
     

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     –  0.077*  0.077  0.120* 

     – (0.047 (0.050) (0.044) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –  0.384  0.386 

     –     – (0.106 (0.118) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     – –17.33* –16.69 

     –     – (0.030) (0.051) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –  0.025  0.029 

     –     – (0.440) (0.375) 
     

𝐺𝑆𝑃𝑃𝐶     –     –  34.01  26.98 

     –     – (0.505) (0.590) 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –  1.580 

     –     –     – (0.577) 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –  2.247 

     –     –     – (0.399) 
     

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –  0.049 

     –     –     – (0.183) 
     

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –  0.036 

     –     –     – (0.171) 

Notes: Complete results from corresponding panel of Table 5. Since specification 1 only differs 
from specification 2 in that it does not have year FEs, this table begins with column (2). 
Individual fixed effects and cluster-robust standard errors used in all models. Standard errors in 

parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.8: First-Stage IV Results for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆, without Year Fixed Effects 
 

    (1)    (3)    (4)    (5) 
     

𝑐𝑖𝑡𝑖𝑧𝑒𝑛  0.062***  0.071***  0.017  0.019 

 (0.000) (0.000) (0.133) (0.075) 
     

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     –  0.265***  0.116**  0.157**  

     – (0.000) (0.002) (0.001) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –  0.410  0.355 

     –     – (0.053) (0.120) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     – –19.92** –14.72*   

     –     – (0.003) (0.030) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –  0.022  0.047 

     –     – (0.570) (0.202) 
     

𝐺𝑆𝑃𝑃𝐶     –     –  107.6***  88.98*** 

     –     – (0.000) (0.000) 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –  0.022 

     –     –     – (0.993) 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –  3.545 

     –     –     – (0.120) 
     

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –  0.044 

     –     –     – (0.126) 
     

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –  0.040*   

     –     –     – (0.048 

Notes: Complete results from corresponding panel of Table 5. Since specification 2 only differs 
from specification 1 in that it has year FEs, this table omits column (2). Individual fixed effects and 

cluster-robust standard errors used in all models. Standard errors in parentheses. * 𝑝 < 0.05;  ** 

 𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.9: Second-Stage IV Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏, with Year Fixed Effects 
 

    (2)    (3)    (4)    (5) 
     

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 –2.971 –4.389 –4.424 –2.765 

 (0.360) (0.471) (0.472) (0.491) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –  0.319  0.276  0.374 

     – (0.843) (0.862) (0.740) 
     

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –  9.317  9.416  6.459 

     – (0.467) (0.470 (0.452 
     

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     – –0.233 –0.145 –0.264 
     – (0.598) (0.720) (0.406) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     – –54.35 –51.33 –41.77 

     – (0.543) (0.547) (0.481) 
     

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –  0.037  0.064 –0.090 

     – (0.962) (0.939) (0.862) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –  0.154  0.156  0.112 

     – (0.683) (0.683) (0.651) 
     

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     – –0.006 –0.006 –0.002 
     – (0.584) (0.582) (0.741) 
     

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –  0.014  0.015  0.008 

     – (0.570) (0.571) (0.657) 
     

𝐺𝑆𝑃𝑃𝐶     –  224.6  247.4  126.1 

     – (0.355) (0.339) (0.442) 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     – –0.052     – 

     –     – (0.669)     – 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     – –0.126**  

     –     –     – (0.006) 

Notes: Complete results from corresponding panel of Table 6. Since specification 1 only differs 
from specification 2 in that it does not have year FEs, this table begins with column (2). 
Individual fixed effects and cluster-robust standard errors used in all models. Standard errors in 

parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.10: Second-Stage IV Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏, without Year Fixed Effects 
 

    (1)    (3)    (4)    (5) 
     

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 –0.535 –3.809 –3.354 –3.498 
 (0.143) (0.285) (0.253) (0.295) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –  0.280  0.186  0.399 
     – (0.819) (0.869) (0.722) 
     

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –  10.41  8.978  10.40 
     – (0.236) (0.204) (0.214) 
     

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     – –0.322 –0.184 –0.325 
     – (0.401) (0.572) (0.395) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     – –46.36 –29.59 –55.49 
     – (0.371) (0.428) (0.261) 
     

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –  0.720  0.606  0.734 
     – (0.229 (0.206) (0.194) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     – –0.309 –0.272 –0.317 
     – (0.136) (0.168) (0.099) 
     

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     – –0.002 –0.002 –0.001 

     – (0.703) (0.757) (0.794) 
     

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –  0.018  0.017  0.017 
     – (0.364) (0.337) (0.378) 
     

𝐺𝑆𝑃𝑃𝐶     –  243.9  215.7  251.0 
     – (0.132) (0.105) (0.112 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     – –0.088     – 
     –     – (0.298)     – 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     – –0.100* 

     –     –     – (0.021 

Notes: Complete results from corresponding panel of Table 6. Since specification 2 only differs from 
specification 1 in that it has year FEs, this table omits column (2). Individual fixed effects and cluster-robust 

standard errors used in all models. Standard errors in parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 <
0.001 
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Table A.11: Second-Stage IV Results for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆, with Year Fixed Effects 
 

    (2)    (3)    (4)    (5) 
     

𝑑𝑦𝑛𝑎𝑚𝑖𝑐  0.857  0.501  0.344  0.241 

 (0.422) (0.489) (0.406) (0.538) 
     

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     – –0.120* –0.095* –0.012 

     – (0.016) (0.041) (0.819) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     – –0.147 –0.131 

     –     – (0.475) (0.511) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     – –4.852 –7.320 

     –     – (0.552) (0.326) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –  0.623***  0.623*** 

     –     – (0.000) (0.000) 
     

𝐺𝑆𝑃𝑃𝐶     –     –  47.02*  38.46*   

     –     – (0.013) (0.022) 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –  6.179**  

     –     –     – (0.003) 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –  4.895**  

     –     –     – (0.003) 
     

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –  0.050 

     –     –     – (0.067) 
     

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –  0.059**  

     –     –     – (0.010) 

Notes: Complete results from corresponding panel of Table 7. Since specification 1 only differs 
from specification 2 in that it does not have year FEs, this table begins with column (2). 
Individual fixed effects and cluster-robust standard errors used in all models. Standard errors in 

parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.12: Second-Stage IV Results for Electricity Prices, without Year Fixed Effects 
 

    (1)    (3)    (4)    (5) 
     

𝑑𝑦𝑛𝑎𝑚𝑖𝑐  1.062***  1.020*** –0.813 –0.687 

 (0.000) (0.000) (0.588) (0.567) 
     

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     – –0.0783  0.158  0.309 

     – (0.156) (0.441) (0.178) 
     

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –  0.446  0.247 

     –     – (0.452) (0.573) 
     

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     – –35.70 –24.96 

     –     – (0.200) (0.139) 
     

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –  0.348  0.403 

     –     – (0.192) (0.141) 
     

𝐺𝑆𝑃𝑃𝐶     –     –  164.1  108.9 

     –     – (0.244) (0.217) 
     

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –  7.364**  

     –     –     – (0.006) 
     

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –  12.92*   

     –     –     – (0.018) 
     

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –  0.162 

     –     –     – (0.059) 
     

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –  0.133*   

     –     –     – (0.047) 

Notes: Complete results from corresponding panel of Table 7. Since specification 2 only differs from 
specification 1 in that it has year FEs, this table omits column (2). Individual fixed effects and cluster-

robust standard errors used in all models. Standard errors in parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  *** 

 𝑝 < 0.001 
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APPENDIX 5: CF REGRESSION TABLES WITH CONTROLS  

 

In the tables below, the means of the regressors are excluded. Furthermore, the results for the 

control variables do not change significantly with the instrument is lagged, so on only 

regressions with 𝑐𝑖𝑡𝑖𝑧𝑒𝑛 are provided. Finally, the terms that include the generalized residuals 

are excluded from the second-stage regressions. The full results are available upon request.  

 

Table A.13: First-Stage CF Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏 

    (1)    (2)    (3)    (4)    (5) 
      

𝑐𝑖𝑡𝑖𝑧𝑒𝑛  0.035** –0.006 –0.002 –0.0003 –0.001 
 (0.001) (0.675) (0.860) (0.979) (0.908) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –  0.602*  0.639*  0.625* 
     –     – (0.031) (0.022) (0.026)       

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –     –  0.274  0.292  0.213 
     –     – (0.556) (0.515) (0.630)       

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     –     – –0.0763 –0.0472 –0.0764 
     –     – (0.353) (0.655) (0.355)       

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –  3.322  3.510  3.567 
     –     – (0.651) (0.638) (0.629) 
      

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –     –  0.084  0.093  0.088 
     –     – (0.292) (0.256) (0.261) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     – –0.0543 –0.0515 –0.0603 
     –     – (0.428) (0.453) (0.359)       

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     –     –  0.0004 0.00002  0.0004 
     –     – (0.801) (0.987) (0.794)       

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –     –  0.002  0.003*  0.002 
     –     – (0.053) (0.019) (0.077)       

𝐺𝑆𝑃𝑃𝐶     –     – –5.422 7.971 –5.208 
     –     – (0.898) (0.850) (0.908) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     – –0.020     – 
     –     –     – (0.297)     – 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.004 

     –     –     –     – (0.768) 

Notes: Complete results from corresponding panel of Table 8. Individual FEs and cluster-robust SEs used in all models. 

Time FEs used in models 2 through 5. SEs in parentheses. * 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.14: First-Stage CF Results for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆  

    (1)    (2)    (3)    (4)    (5) 
      

𝑐𝑖𝑡𝑖𝑧𝑒𝑛  0.038*** –0.005  0.001 –0.014  0.003 

 (0.000) (0.742) (0.940) (0.389) (0.880) 
      

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     –     –  0.078*  0.111**  0.034 

     –     – (0.026) (0.004) (0.502) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –     –  0.596  0.800* 

     –     –     – (0.095) (0.021) 
      

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –     – –0.172 2.391 

     –     –     – (0.983) (0.768) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –     – –0.0297 –0.0232 

     –     –     – (0.404) (0.377) 
      

𝐺𝑆𝑃𝑃𝐶     –     –     – –57.59* –89.17* 

     –     –     – (0.047) (0.016) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.0593* 

     –     –     –     – (0.036) 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.0561 

     –     –     –     – (0.053) 
      

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.0413 

     –     –     –     – (0.270) 
      

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.0560* 

     –     –     –     – (0.037 

Notes: Complete results from corresponding panel of Table 8. Individual FEs and cluster-

robust SEs used in all models. Time FEs used in models 2 through 5. SEs in parentheses.  

* 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.15: Second-Stage CF Results for 𝒑𝒓𝒆𝒏𝒈𝒆𝒏 with 𝒄𝒊𝒕𝒊𝒛𝒆𝒏 as instrument 

    (1)    (2)    (3)    (4)    (5) 
      

Cluster 2 –1.374 –0.389  0.856  0.941  0.930 
 (0.158) (0.798) (0.532) (0.509) (0.491) 
      

Cluster 3 –4.401 –3.772  1.871  1.918  2.915 
 (0.240) (0.129) (0.513) (0.505) (0.288) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     – –0.702 –0.706 –0.476 
     –     – (0.190) (0.195) (0.277) 
      

𝐿𝑐𝑜𝑛𝑡𝑅𝑃𝑆     –     –  0.062 –0.010  0.220 
     –     – (0.958) (0.994) (0.840) 
      

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠     –     – –0.095 –0.133 –0.154 
     –     – (0.416) (0.394) (0.193) 
      

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –  4.883  4.559 –1.298 
     –     – (0.783) (0.809) (0.942) 
      

𝑒𝑙𝑒𝑐𝑝𝑟𝑖𝑐𝑒     –     – –0.497** –0.517** –0.480**  
     –     – (0.003) (0.002) (0.001) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –  0.191  0.192  0.133 
     –     – (0.153) (0.152) (0.253) 
      

𝑤𝑖𝑛𝑑𝑒𝑠𝑡     –     –  0.001  0.001  0.002 
     –     – (0.345) (0.317) (0.060) 
      

𝑠𝑜𝑙𝑎𝑟𝑒𝑠𝑡     –     – –0.003 –0.003 –0.005 
     –     – (0.707) (0.623) (0.481) 
      

𝐺𝑆𝑃𝑃𝐶     –     –  163.6*  154.0*  103.7 
     –     – (0.014) (0.041) (0.112) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –  0.020     – 
     –     –     – (0.582)     – 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     – –0.104*** 
     –     –     –     – (0.000) 

Notes: Complete results from corresponding panel of Table 9. Individual FEs and cluster-robust 

SEs used in all models. Time FEs used in models 2 through 5. SEs in parentheses.  

* 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
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Table A.16: Second-Stage CF Results for 𝒆𝒍𝒆𝒄𝒑𝒓𝒊𝒄𝒆 with 𝒄𝒊𝒕𝒊𝒛𝒆𝒏 as instrument 

    (1)    (2)    (3)    (4)    (5) 
      

Cluster 2  3.991*** 0.972**  1.153**  0.998*  0.627 
 

(0.000) (0.006) (0.003) (0.015) (0.089) 
      

Cluster 3  13.43***  6.838*  5.615  2.195**  1.302**  
 

(0.000) (0.027) (0.065) (0.004) (0.007) 
      

𝑝𝑟𝑒𝑛𝑔𝑒𝑛     –     – –0.129* –0.098*** –0.018 
     –     – (0.011) (0.001) (0.451) 
      

𝑑𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑     –     –     – –0.307* –0.236 
     –     –     – (0.042) (0.132) 
      

𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒     –     –     – –5.468 –8.247 
     –     –     – (0.261) (0.058) 
      

𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒     –     –     –  0.593***  0.604*** 
     –     –     – (0.000) (0.000) 
      

𝐺𝑆𝑃𝑃𝐶     –     –     –  47.97*  34.52 
     –     –     – (0.011) (0.085) 
      

𝑐𝑜𝑎𝑙𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.060*** 
     –     –     –     – (0.000) 
      

𝑛𝑎𝑡𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.044*** 
     –     –     –     – (0.000) 
      

ℎ𝑦𝑑𝑟𝑜𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.049**  
     –     –     –     – (0.001) 
      

𝑛𝑢𝑐𝑠ℎ𝑎𝑟𝑒     –     –     –     –  0.059*** 
     –     –     –     – (0.000) 

Notes: Complete results from corresponding panel of Table 10. Individual FEs and cluster-robust 
SEs used in all models. Time FEs used in models 2 through 5. SEs in parentheses.  

* 𝑝 < 0.05;  **  𝑝 < 0.01,  ***  𝑝 < 0.001 
 


