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Abstract

Black holes are recently at the cutting edge of cosmological and astrophysical research. Both
experiment and theory are leading to surprising conclusions on the physical properties of black
holes and their a↵ects on space and time. In this project, I set out to explore the origin and
mechanics of a black hole’s spin, that is, its internal angular momentum. What causes a black
hole to spin in the first place is rich and nuanced. In order to make this project accessible and
focused I explore the process of a minor merger, a collision between two black holes, one large
and one comparatively small. Working from the ground up, I provide the necessary background
information on General Relativity, and guide the reader to explore the subject from scratch. I
determine how the spin is altered by a minor merger, making a few necessary approximations
along the way. This project provides a foundation for further exploration into the subject of
black hole spin. There are many other causes and ways in which spin can be altered that are
not touched upon here. Future work could examine larger black hole mergers, accretion disk
accumulation, and initial conditions of a collapsing star. This project gives a theoretical model
of black hole motion. As black holes are now being observed and pictured, the calculations I do
and others can be tested, validated, and observed. Future predictions and experiments on black
hole spin is an exciting prospect for the future.
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1
Special Relativity and Spacetime

Along with Quantum Mechanics, General Relativity completely restructured our view of the

physical world, exposing us to elements that are not seen in every day experience. A famous

implication of General Relativity’s was the existence of black holes. Black holes were determined

to be a theoretical possibility before they were ever actually observed. What makes their exis-

tence possible, and perhaps Einstein’s most crucial formulation, was the notion of spacetime.

Until the twentieth century, time was thought to be an independent quantity, existing entirely

separately from the three spatial dimensions. Before General Relativity was even developed, it

was discovered that space and time are linked, and that the geometry of the universe is defined

by four dimensions, one of them being time. This generalizes Euclidean geometry, which is by

nature, three dimensional. Euclidean geometry does not account for time as another dimension

and coordinate. Spacetime is what allows the possibility of black holes, which form due to the

e↵ect gravity has upon spacetime. In this chapter, spacetime is examined in detail within the

context of Special Relativity. The form spacetime takes independent of a gravitational field is

referred to as flat spacetime. Having a grasp of what exactly spacetime is, and what its properties

are is an important step towards understanding fundamental properties of black holes.
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1.1 Reference Frames and The Invariant Quantity

1.1.1 Reference Frames

The idea of reference frames are very common to all who work in physics. Relativity was a

known concept before the time of Einstein. Galileo emphasized that the laws of physics would

be universally upheld in any moving frame of constant velocity. But, the simple conclusion

of light’s universal speed, no matter what reference frame it is observed in, led Einstein to

realize that fundamental properties of objects and events could be changed based upon their

observations in frames of reference with varying velocities. The most surprising and important

consequence of this is that time is not invariant or universal. Time varies between inertial

reference frames, meaning there is no universal clock that ticks independently of of all motion,

events, and occurrences. The inconsistency between durations of time in di↵erent frames is most

easily noticed at speeds near the speed of light, explaining why such e↵ects went unnoticed for

so long.

Given that time was known not to tick independently of casual motion, a need arose to be able

to plot it graphically, so it could be compared throughout di↵erent reference frames. Finding

the location of one particle with respect to another means that both of the times in their own

separate frames of reference would need to be calculated in order to make accurate predictions

of their motion with respect to both frames. Because of this sort of issue, Herman Minkowski

began to plot events on diagrams, defining an event as a moment in space and time. Of course, to

plot this event you would need coordinates of both time and space. Since there are three spatial

dimensions, x, y, and z, a four-dimensional geometry is needed which would have coordinates

of space and time, t, x, y, and z. This line of thought led to the inception of spacetime, which

plots points as events that occur in both space and time, and allows for an analytical geometry

of spacetime. This geometry treats time as it would any other coordinate, that is it is variable

and dependent on the motion of the frame being studied. For years, the spatial coordinates x,

y, and z had special mathematical transformations to translate them from one reference frame
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to another. Now new transformations exist in order to account for time di↵erences between

di↵erent reference frames. To get sense of how these frames a pictured, observe Figure 1.1.

Figure 1.1.1. Plot of time axis vs position (x). Two reference frames are plotted independently, a unprimed
frame and a primed frame. Events are plotted on graphs such as these.

1.1.2 The Spacetime Invariant

While much changes in between reference frames, events still do occur in every one of them.

Most importantly, one mathematical quantity does not change no matter which reference frame

it is measured in. A universal quantity in all reference frames is referred to as an invariant. This

particular invariant quantity determines the very nature of spacetime. As we will soon see, it is

what di↵erentiates flat spacetime from other forms of spacetime that we will encounter in future

chapters. The spacetime invariant is defined by the following

ds

2 = �dt

2 + dx

2 + dy

2 + dz

2 (1.1.1)

This equation resembles the infinitesimal line element of Euclidean geometry, ds2 = dx

2+dy

2+

dz

2, otherwise known as the equation for an infinitesimally short straight line, or the shortest

distance between two points. Just as this axiom defines many of the properties of Euclidean

geometry, the spacetime invariant defines the properties of flat spacetime. The ds2 above defines

the shortest displacement between two points in space and time. The major di↵erence between

Euclidean geometry and flat spacetime is the negative time component, which ensures the ge-
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ometry is uniquely determined, and plots coordinates with time as well as space. The negative

sign gives time its unique distinction, separating it as a di↵erent quantity then the three spatial

dimensions. The interpretation of the invariant is that it represents an infinitesimal displacement

in space and time.

1.2 Four Vectors and The Metric of Flat Spacetime

1.2.1 Four Vectors

Since geometry is redefined under Special Relativity as four-dimensional, four-dimensional vec-

tors are needed, which include both space and time. Four-vectors carry this property, and any

relation or algebraic manipulation rules for them are invariant, similar to the general laws of

physics. The scalar product of two four-vectors, analogous to the dot product is

a · b = �atbt + axbx + ayby + azbz (1.2.1)

Here the subscripts t, x, y, and z specify the vector’s components for time and the three spatial

directions. As with three-vectors, all components of special relativistic four vectors are mutually

orthogonal, as is evident in Eq. (2). Separating a four-vector into its components, one can see

that direction is represented with e↵ where the ↵ subscript can take any of the index values t,

x, y, or z. The magnitude of each component is denoted by a

↵, with alpha being again an index.

Indices such as ↵, are either free and can be chosen to take each value freely, or, when repeated

once up and once down, represent a summation over all values. With this in mind, the scalar

product of two vectors can be re-expressed as the following

a · b = (e↵ · e�)a↵b� (1.2.2)

This equation is a double sum over ↵ and �. The scaler (e↵ ·e�) represents the scalar product of

the basis vectors. In flat spacetime, the basis vectors are simply (-1,0,0,0), (0,1,0,0), (0,0,1,0) and

(1,0,0,0) attached to t, x, y and z respectively. These define the directions of each component,

and point along the orthogonal coordinate axis t, x, y and z. This scalar product is defined as

⌘↵� . This quantity is a matrix and its usage in this situation will become clear shortly.
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1.2.2 The Metric

Using ⌘↵� to re-express the scalar product of two four vectors in flat spacetime, we get

a · b = ⌘↵�a
↵
b

� (1.2.3)

The indexes again refer to a summation over each of the four components of space and time. This

linear combination of orthogonal components specifies an invariant quantity in four-dimensional

spacetime. Armed with four-vectors, scalar products, and Einstein’s spacetime invariant, a “met-

ric” of flat spacetime can be defined. The metric is, in fact, the previously defined quantity ⌘.

From the indices ⌘ can be expressed as a matrix

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA (1.2.4)

The matrix is diagonal and symmetric, where the four components (et, ex, ey, ez) represent the

spaces in order from top down and left to right. This shows that multiplying one matrix element

by another di↵erent element (eg e

t and e

x) would yield 0. This displays the orthogonal charac-

teristics of scalar products in flat spacetime. This metric represents the crucial property of flat

spacetime, the invariant displacement as predicted by Special Relativity. Knowing the definition

of ds2, it can be written as

ds

2 = ⌘↵�dx
↵
dx

� (1.2.5)

Which, if expanded using the definition of ⌘, would yield ds

2 = �dt

2+dx

2+dy

2+dz

2. As illus-

trated, the metric of flat spacetime also ensures the correct minus sign for the time component

of a four vector scalar product.

1.3 Moving towards General Relativity

A known fact often quoted by the layman is that black holes severely warp the fabric of spacetime.

This chapter has provided the means for such a statement to make sense at all. Because of

Einstein, it was known that space and time were connected. This connection is defined by the
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metric, ⌘, and the invariant spacetime from equation (6). Knowing that there exists a four-

dimensional geometry that links both space and time, serves to partially decode the above

statement about black holes. The other part of that sentence, which must be illuminated is

how spacetime can be severely warped. Special Relativity incorrectly assumed spacetime always

took the form specified in this chapter, that is the invariant displacement would always be

determined by the same metric ⌘. As will be seen in the next chapter, spacetime can be changed,

most specifically it can have di↵erent metrics. What these metrics represent is curvature, the

straight line in spacetime specified by ds

2 will not always be straight. The next chapter will

examine geodesics, as the shortest paths particles will take in spacetime, and often these paths

will not be straight lines, instead they will be curved. This forces new metrics to be defined,

which drastically alter the properties of spacetime that were just discussed in this chapter. What

causes these alterations of curvature, as Einstein discovered, is gravity. Specifically, sources of

mass cause spacetime to curve and alter the metric and invariant line element of flat spacetime.

Since black holes are such massive objects, the curvature produced by them is going to be all the

more dramatic. As will also be seen, the metric can contain other properties of spacetime itself,

such as energy or angular momentum. Deducing the angular momentum of a rotating black hole

and comparing it to the angular momentum of particles in the a↵ected spacetime will greatly

help answer questions behind the mechanics of black hole spin.



2
General Relativity and Curved Spacetime

2.1 How Gravity Curves Spacetime

2.1.1 The Equivalence Principle

There were two primary observations that led to the discovery of curved spacetime. The first is

a known property of photons, the fact that they are massless. If this was true, then, of course,

photons would have to remain una↵ected by the force of gravity as understood from Newton’s

Law, due to the fact that mass is the quantity which determines the magnitude of the Newtonian

gravitational force. The second was a novel observation by Einstein, often referred to as his

“happiest thought.” Using similar logic to the principles that define inertial frames, he deduced

that there were no experiments one could do to distinguish between a frame a↵ected by a constant

gravitational force, versus a frame undergoing constant acceleration. These observations remain

the same for any object, since the rate of an object’s acceleration due to gravity its not dependent

on its intrinsic mass. If these two states of motion really are the same, the following thought

experiment explains a behavior of light that shouldn’t be physically possible under Newton’s

theory of gravity. The following set up was considered; a ray of light passing horizontally through

the interior of a two-dimensional frame accelerating upwards at a constant rate. The light travels

exactly in a straight line in the reference frame inside the ship. However, if it continues in a

straight line the frame will have traveled upwards, meaning the beginning of the lights path will
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be lower then the end of its path. From the point of view of an outside frame, it will appear

that the light has travelled downwards in the acceleration frame. According to Einstein, this

exact same phenomena would be observed in a frame subject to a uniform downward pointing

gravitational field. Therefore, light must somehow be a↵ected by the gravitational force. This

Figure 2.1.1. This figure illustrates the idea of light bending in a gravitational field. In the situation with
constant acceleration, the lights path is shown to be curved in the frame of the ship. If this situation
really is equivalent exactly to a constant gravitation field, the same e↵ect would have to be observed even
if the ship was not acceleration upwards.

simple thought experiment has profound consequences. It implies that there is a fundamental

flaw in the Newtonian theory of gravity, which was thought to be universally accurate and

verifiable before Einstein put together the theory of General Relativity.

2.1.2 Geodesics

The motion of particles in spacetime must be thought of entirely di↵erently if the force of

gravity is to be reformulated. Gravity, in fact, is not a basic field as once thought, it can no

longer share all the analogous properties with Electricity and Magnetism. The solution to this

issue is complex, and its full derivation is beyond the scope of this project. However, broadly

speaking, spacetime is shown to be curved by sources of mass, meaning it must be represented

by a di↵erent metric then the flat spacetime one that was shown in Chapter 1. Particles move

throughout all of spacetime on geodesics, basically the shortest distances in spacetime between

its points. This is commonly known as a straight line in one of the crucial axioms of flat Euclidean

geometry. In Classical Mechanics, there exists a form of a geodesic principle that arrises through
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the Calculus of Variations. Hamilton’s Principle states that the motion of the system in a given

time interval is such as to maximize or minimize the time integral of the Lagrangian, which is

known as the action integral. In other words, particles follow the path of the extrema of the time

integral between between two points in space in Lagrangian Mechanics. A similar principle exists

in General Relativity where the principle determining a particles motion through spacetime is as

follows: “The worldline of a free test particle between two timelike separated points extremizes

the proper time between them.” Note that this di↵ers from Lagrangian Mechanics, as now the

action integral refers to the particle’s proper time. The particle’s proper time, as you will recall

from Chapter 1, is the time as measured within its own frame of reference. The idea of using a test

particle is a mixed blessing. Test particles in General Relativity are dramatically approximated

as massless, so as to neglect the e↵ects they may have gravitationally on spacetime. A planet

orbiting a sun for instance may even be treated as a test particle. While this paves the way

for more simple elegant calculations and conceptual understanding, the e↵ect the particle itself

has on spacetime is certainly a point of interest. A notable example of the shortcomings of

such approximations is the famous two body problem, often studied in Newtonian Mechanics.

In General Relativity, both bodies in orbit around each other would need attention as proper

particles of mass significant enough to warp spacetime. Proceding for now with the idea of test

particles, the variational principle can be utilized. Starting with the proper time path length

⌧AB =

Z B

A
d⌧ (2.1.1)

The relation from Chapter 1 between proper time and path length ds can be utilized to replace

the proper time d⌧ . Additionally, in general any path length in any coordinate basis is defined

by

d⌧

2 = �ds

2 = �g(x)↵�dx
↵
dx

� (2.1.2)

These relations give

⌧AB =

Z B

A
(�g(x)↵�dx

↵
dx

�)1/2 (2.1.3)
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If this function is parameterized arbitrarily by the variable � such that �=0 at A and �=1 at B

the proper time is then

⌧AB =

Z B

A
(�g(x)↵�

dx

↵

d�

dx

�

d�

)1/2 (2.1.4)

Finding the Legrange Equations for this integral can be utilized to derive the motion of certain

particles. Specific examples will follow later on. This is really all that is needed in order to be

able to start solving for equations of motion for a test particle, as long as integrals for the proper

time can be determined.

2.1.3 Local Spacetime

Locally speaking, that is infinitesimally, there exists a coordinate transformation that transforms

any general metric of spacetime to that of flat spacetime. This is an idea that a lot of people

may have good intuition for in an analogous situation. If you have space that is defined by a

spherical shape, an infinitesimal area on that sphere will be flat locally, a reason why the earth

would appear flat from our perspective. The local properties of curved spacetime should appear

indistinguishable from those in flat spacetime. A curved metric is defined in general by the

symbol g↵�(x). In the flat spacetime considered in Chapter 1, that of Special Relativity, basis

vectors that specified the directions of each quantity t,x,y,z were all orthogonal to each other,

giving the relation in cartesian coordinates

ds

2 = ⌘↵�dx
↵
dx

� = �dt

2 + dx

2 + dy

2 + dz

2 (2.1.5)

However, a coordinates basis of a general metric with basis vector components e↵ and e� are

not necessarily orthogonal to each other. The scaler product of any two vectors is still defined

by

a · b = g↵�a
↵
b

� (2.1.6)

And the relation

e↵(x) · e�(x) = g↵�(x) (2.1.7)

still holds and defines the metric. The di↵erences from Minkowski’s flat spacetime are contained

within the metric, g↵�(x), as opposed to ⌘↵� . The scalar product still gives you the infinitesimal
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distance between two points in spacetime, and the scalar product of coordinate basis vectors

still give the definition of the metric. As stated before, mass warps the fabric of spacetime, and

therefore changes the flat spacetime metric to a general one, causing a di↵erence in the motion of

objects that manifests as the force of gravity. The path length of the object in spacetime follows

the variational principle discussed in section 2.1.2. But, infinitesimally speaking, in any localized

point, there exists a coordinate transformation that will yield the metric of flat spacetime. Stated

mathematically,

g

0
↵�(x

0
p) = ⌘↵� (2.1.8)

Here x

0
p represents the localized point. A nice analogy can be made by taking a infinitesimally

localized point on a sphere, which can be treated as flat despite being on a curved surface.

Figure 2.1.2. If we take the analogy of the curved surface of the earth, we have to isolate lots of little
square patches, each patch being pretty near flat. The small patch pictured here can be pictured as such.
This would very much explain why the earth appears as flat from our perspective!

This fact also has the implication that at every point there are three space dimensions and one

time dimension. The neighborhood of this point must be small enough so that the derivatives of

the metric vanish at it, and, of course, this form of the metric cannot hold for all of spacetime,

or else spacetime would be flat. But this transformation has a powerful ability to allow us to

work locally in flat coordinates with the simple metric of flat spacetime.

Finally, an important relation that will be heavily called up is the dot product of the four

velocity vector with itself. The four velocity vector accounts for all four dimensions of space and

time, and is defined in general as the derivative of the position vector with respect to the proper

time of a moving frame. In any case

u · u = g↵�u
↵
u

� = g↵�
dx

↵

d⌧

dx

�

d⌧

= �1 (2.1.9)
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Since d⌧

2 = �ds

2. This relation is referred to as the normalization of four velocity and often

comes in handy in simplifying calculations.

2.2 Spherically Symmetric Star Geometry

As heavily implied by the preceding sections, black holes will curve the fabric of spacetime

dramatically. Black holes are made up of a large amount of mass, which curves spacetime such

that a new metric is needed to describe regions around them. For regions far enough away

from the blackhole, beyond a radius called the Schwarzschild radius, this spacetime can be

represented by the Schwarzschild geometry. Understanding the Schwarzschild geometry is the

first step towards understanding the fundamentals of black holes, and how they a↵ect spacetime.

2.2.1 The Schwarzschild Metric

The metric of this curved spacetime, defined exclusively for regions outside of spherically sym-

metric stars is

ds

2 = �(1� 2M

r

)dt2 + (1� 2M

r

)�1
dr

2 + r

2(d✓2 + sin2(✓)d�2) (2.2.1)

The quantities involved will be explored shortly. This metric arrises out of the Einstein equations.

Theoretically and experimentally the Schwarzschild metric is tested and observed through the

orbits of test particles. Some e↵ects that will be discussed can be measured to small degrees in

the solar system. The representation of the metric above is in MLT units, where the speed of

light c = 1, and the gravitational constant, G = 1.

2.2.2 Properties of Schwarzschild Geometry

Being that the line element takes the form of Eq. (3) the metric, g↵�(x), is

g↵�(x) =

0

BB@

�(1� 2M
r ) 0 0 0

0 (1� 2M
r )�1 0 0

0 0 r

2 0
0 0 0 r

2 sin2(✓)

1

CCA (2.2.2)

The first thing to notice about this metric is that it is independent of time. This means the

metric is symmetric under displacement in the coordinate time t. The second is that the metric
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is spherically symmetric, which follows from the fact that the angular metric is r2d✓2+r

2 sin2 d�2,

the same as that of a sphere. Third, the large quantity M is simply the total mass of the source

of curvature, which does not depend on how the mass is radially distributed on the star. Finally

it is worth now defining the Schwarzschild radius. Here we briefly restore the units of G and c in

order to get a physical picture of this radius. At r = 2GM
c2

, or r = 2M under MLT units, it can be

seen that the quantity in front of dr2 blows up. This indicates a coordinate singularity suggesting

that the Schwarzschild coordinates do not accurately represent that particular radius. Therefore,

Schwarzschild coordinates are only used for regions outside or inside of that radius, and other

ones are needed to make meaningful statements about it. Often the Schwarzschild radius can

be smaller then that of the actual star in question, so the Schwarzschild metric adequately

describes the spacetime outside of stars. Being that a black hole collapses all of its mass to

e↵ectively zero radius, di↵erent kinds of coordinates will be needed to represent there properties

accurately. Another singularity exists at r = 0, as one can see by looking at the metric. Unlike

the Schwarzschild radius, this singularity is believed to be a physically accurate description of

the region, rather then a fault in the coordinates. However, like with stars, any region outside of

the Schwarzschild radius, or inside of it before r=0, a blackhole can be accurately represented

by Schwarzschild geometry.

2.3 Particle Motion Around Spherically Symmetric Bodies

Particle motion is best studied by examining the orbits of test particles following their geodesic

paths. Even particles as large as a planet can be e↵ectively treated as a test particle, as long as

they are orbiting large enough bodies.

2.3.1 Quantities conserved in Schwarzschild Geometry

As mentioned before, the metric is independent of both t and �. According to Noether’s Theorem,

[2] these symmetries have conserved quantities associated to them. The symmetries can be

described more precisely by the vectors, ⇣ (1,0,0,0) and  (0,0,1,0). Taking the scaler product
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of these with the four velocity u, we get two new quantities which are called e and l

� ⇣ · u = (1� 2M

r

)
dt

d⌧

= e (2.3.1)

 · u = r

2 sin2(✓)
d�

d⌧

= l (2.3.2)

The quantity e represents the energy per unit mass, and gives conservation of energy for a

free particle in General Relativity. In the formulation of four-vector mechanics, the energy of

a particle is represented by a four-vector. Is is redefined as the time component of a particle

four-vector momentum. As the four momentum is p = Mu

↵, the time component is simply

�Mu

t. This also implies that E = �⇣ · p. Dividing by mass on both sides gives �⇣ · u = e,

meaning e = E/M , a relation that holds true in all spacetime. Similarly, l represents the angular

momentum per unit rest mass, and the relation is similarly analogous to the conservation of

angular momentum. These quantities make calculations relating to particle orbits far more

tractable. To check the validity of representing them as energy and angular momentum, one can

check to see that in flat space, E=mu

t, the known special relativistic total energy per unit rest

mass. At low velocities, l would be equivalent to angular momentum per unit rest mass.

2.3.2 E↵ective Potential

It is useful to examine the motion of a particle’s orbit to see the significant e↵ect of curved

spacetime. Crucially, the conservation of angular momentum implies that the orbits lie in a

plane, which is analogous to classic Newtonian Theory. The particle remains in a plane such

that �=0. Then one can reorient the coordinates such that ✓=pi/2. It is helpful to consider the

universal normalization of four velocity to supply us another integral for the geodesic equation,

that being

u · u = g↵�u
↵
u

� = �1 (2.3.3)

This can be used to express the three nonzero components of the four velocity in terms of the

conserved quantities l and e. Expanding the above Eqn,

� (1� 2M

r

)(ut)2 + (1� 2M

r

)�1(ur)2 + r

2(u✓)2 = �1 (2.3.4)
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By expanding out using the definitions of four-velocity from earlier in the chapter, we get

� 1

(1� 2M
r )

e

2 +
1

(1� 2M
r )

(
dr

d⌧

)2 +
l

2

r

2
(2.3.5)

Rearranging algebraically we end up with expression for (e2�1)
2 .

(e2 � 1)

2
=

1

2
(
dr

d⌧

)2 + V (r) (2.3.6)

where importantly, V (r) is the radial e↵ective potential for an orbiting particle. It is referred

to as radial since the only variable it depends upon is r all the rest are the constant conserved

quantities e and l and then the mass. Writing out V (r) entirely,

V (r) = �M

r

+
l

2

2r2
� Ml

2

r

3
(2.3.7)

This quantity is very similar to the Newtonian e↵ective potential, di↵ering only by an additional

factor of Ml2

r3
. In fact, with limits of large enough r, the final term disappears, reducing the entire

expression to its classical counterpart. The di↵erences between Newtonian and Schwarzschild

potentials is pictured below

Figure 2.3.1. The vertical axis represents the potential at certain radii on the horizontal axis. The classical
vs Schwarzschild general relativistic potentials are labeled. Likely the newtonian curve is familiar to
students of classical mechanics. The potential in GR goes to zero at small radii, exactly the opposite of
the Newtonian!

Since we now have this potential to work with, techniques for treating orbits by e↵ective po-

tentials in the Newtonian mechanics can be applied to the orbits in the Schwarzschild geometry.

2.3.3 Stable Circular Orbits

A concept that is crucial for orbiting bodies around a black hole is the innermost stable circular

orbit, or “ISCO.” These occur at the minima of the e↵ective radial potential, which would be
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found by taking the derivative of the potential with respect to r. This gives us

rmin =
l

2

2M

"
1 +

r
1� 12(

M

l

)2

#
(2.3.8)

As can be seen above, when l
M is equal to

p
12, r = 6M , the smallest value that rmin can

take. This is the ISCO. This orbit will become very important for exploring the properties

of black hole spin later. We often approximate the last point a particle exists with a certain

angular momentum before collapsing into the black hole at the ISCO. This will give us crucial

information on the resulting spin afterwards.

2.3.4 The Relevance of This Chapter

While this chapter goes pretty deep information of spacetime that will be true without the

presence of a black hole, it still holds significant relevance in the chapters to come. Conserved

quantities in spacetime will be of primary importance, particularly the angular momentum and

energy per unit rest masses, l and e. These quantities will end up functioning as the backbone

of exploring the mechanics of a black hole’s spin. Since we will look into mergers, the collision

between two black holes, the inner-most stable circular orbit, RISCO will be important. The ISCO

radius plays a huge part in determining initial conditions of a black hole orbiting another, which

helps determine the final spin of the resulting combined black hole. Finally, an introduction to

the way in which calculations are made and motion is studied in General Relativity is enormously

helpful investigating the deeper physics behind black hole spin. Black holes mold spacetime into

that of the Schwarzschild metric, so using it as our example was not arbitrary. With a stronger

grasp of General Relativity, and how spacetime is a↵ected by mass, we can move to explore

qualitative and quantitative properties of black holes and their e↵ects on spacetime.



3
How Black Holes A↵ect Spacetime

In the previous two chapters, it has been made clear why discussion of spacetime and General

Relativity are so important. Spacetime is curved by mass, and there is no source of gravitation

more dramatic then that of a black hole. The properties of a black hole will alter the metric

of spacetime, for select few points in space. However, chapter two holds extra relevance, as

Schwarzschild geometry correctly represents the region outside a black hole’s event horizon.

After this, the topic will move to how the angular momentum of a rotating black hole a↵ects

spacetime, providing more clues on ways in which a black hole can gain or loose its spin.

3.1 A Conceptual Introduction

While what lies at the center of a black hole remains a mystery, it is often comparatively more

straightforward to make empirical calculations on black hole properties, and their a↵ect on

spacetime. Any star reacts to the e↵ects of its own intrinsic gravity, created just by the fact

that they exist as masses in what would otherwise be flat spacetime. When a star is compressed

due to gravity, the fusion of the inner core gasses push back. The fusion inside the core depletes

whichever elements constitute it, leading to the creation of new elements. In stars with mass

lower then 10 solar masses, the core eventually overwhelms the force of gravity, and the star’s

ultimate fate is an explosion, creating a supernova. However, if the mass 10 solar masses or
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higher, the force of gravity will overwhelm that of the core, exhausting the core’s supply of gas

entirely. With nothing to push back against gravity, the star continuously collapses with no end.

Consequently, the interior of a black hole contains a region of spacetime where a large com-

pact mass is compressed into an infinitesimally small volume. This region, with essentially zero

volume and huge quantities of mass is called a “singularity.” The singularity is encoded within

Schwarzschild coordinates, existing at the point r = 0, as seen in Chapter 2. How could it be

physically possible for so much mass to be contained within such a small region? In fact, Gen-

eral Relativity predicts that the density approaches infinity, which appears physically impossible.

Unfortunately, constructing a theory that addresses such questions has remained out of reach.

Black holes contain regions called event horizons, the last possible surface in spacetime where

light can escape the black hole’s gravitational pull. The radius of this surface is also encoded as

a singularity in the Schwarzschild coordinates, but the singularity can be removed by switching

coordinates. For radii less then that of the event horizon, no form of matter or electromagnetic

radiation can escape, the gravitational field, the curvature of spacetime, is too strong. Many

measurable properties of black holes are available to us for study, for example the mass-energy

and angular momentum. These quantities are also easily discernible with mathematics when

examining test particles placed in the spacetime around the black hole. The metric created by

Figure 3.1.1. This is the first real image of a black hole, which was published a couple weeks ago. The
event horizon is scene as the ring of light around the darkness of the interior, from which no light can
escape.

a black hole can be analyzed perfectly, as can the infinitesimal line element, ds2, allowing us to
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Figure 3.1.2. As can be seen, spacetime is curved more and more as the singularity is approached.
Eventually the origin implies a source of infinite curvature.

study geodesics. This project will focus on said properties, in particular the angular momentum,

and this chapter will explain the General Relativistic e↵ects black holes have on spacetime.

3.2 Schwarzschild Blackholes

3.2.1 The Metric of Spherically Symmetric Black Holes

A Schwarzschild black hole gives a spherically symmetric metric, and are applicable for regions

outside the event horizon of a black hole, and inside of it. However, two coordinate singularities

arise at the regions previously discussed, at radii r = 2M and r = 0. The singularity r = 2m is

not a singularity in the geometry of spacetime, but just in Schwarzschild coordinates. Therefore,

new coordinates will su�ce to correct this, one being Eddington-Finkelstine coordinates. To

make the transformation, the time coordinate of the Schwarzschild metric is redefined for a new

one v.

t = v � r � 2Mlog(
r

2m
� 1) (3.2.1)

Then the Schwarzschild line element becomes

ds

2 = �(1� 2M

r

)dv2 + 2dvdr + r

2(d✓2 + sin2(✓)d�2) (3.2.2)

This is still the same geometry represented by the Schwarzschild line element, but with a di↵erent

set of coordinates used for labeling points. Since r = 2M no longer signifies an infinite spacetime

element, the two regions, r > 2M and r < 2M are now smoothly connected, with a regular

continuos set of values across that boundary. Without the term (1 � 2M
r )�1

dr

2 the singularity
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disappears, so Eddington-Finkelstine coordinates excellently describe regions in and outside of

the event horizon, at least before r = 0. At large enough radius r, the geometry becomes flat,

which is what one would naturally assume. The point r = 0, as discussed, is a real singularity

of infinite spacetime curvature and gravitational force.

3.2.2 The Behavior of Light

Light can be used to exemplify a crucial property of blackholes, that nothing can escape from

the event horizon. Examining a radial light ray, with a world line such that, ds2=0, we see

� (1� 2M

r

)dv2 + 2dvdr = 0 (3.2.3)

From this it’s easy to see that v=const. is one solution to this equation, since in that case dv=0.

Eq. (1) also shows that as time increases, r must decrease, or else v would not be a constant.

Therefore, the light rays are ingoing, moving towards r = 0, the center of the blackhole. However,

Eq. (3) has another solution

� (1� 2M

r

)dv + 2dr = 0 (3.2.4)

This solution is useful as it allows the dv/dr to be solved and then integrated

v � 2(r + 2Mlog(
r

2M
� 1) = constant (3.2.5)

This equation reveals that if r > 2M , r must increase. By similar logic, r decreases if r < 2M .

Therefore, r > 2M light rays are outgoing, and r < 2M light rays are ingoing, since t =

r + constant. This shows crucially that just via the spacetime geometry, light rays inside the

event horizon must always be ingoing, and therefore never escape from the region! With every

point r > 2M one radial light ray, v=const. which was one solution to Eq. (3) moves inward to

smaller values of r. The other moves outward to larger and large values of r as shown by eq(5).

Both solutions for a light r < 2M light ray, are ingoing light rays with decreasing r. The surface

r = 2M , is the event horizon, and it has just been proved that light rays inside that region

cannot ever be outgoing. The event horizon r = 2m also allows for a solution where light rays

remain stationary, e↵ectively hovering at the event horizon. These are all defining features of a

black hole’s geometry.
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3.3 Geometry of Event Horizon and the Singularity

As has been shown, once something has crossed the event horizon it cannot cross back. To get a

sense of the area of the event horizon, one can examine a slice where the coordinate v is constant.

Simply putting in r = 2M and v=const. into Eq. (2) yields a two dimensional metric

d⌃2 = (2M)2d✓2 + sin2(✓)d�2) (3.3.1)

It might be hard to see, but this defines the familiar geometry of a sphere with constant area

A = 16⇡M2
. (3.3.2)

The area of a sphere from basic geometry is equal to ⇡r

2. From the definition of the constant

2-D metric above, 2M is the constant r coordinate. Therefore plugging in 2M for the radius

r yields Eq. (7).This area corresponds to the area of the event horizon. As long as the entire

geometry is time independent, then A does not change with the coordinate v. However, A clearly

has dependance on M , as the mass of a spherically symmetric black hole increases, so does the

area of it’s event horizon.

3.4 A Brief Summary

The qualitative and quantitative pictures of black holes have now been reconciled. Now that

we can study black hole geometry with the aid of the spherically symmetric metric, we can

make calculations on its properties. The coordinate singularity r = 2M has been defined as the

event horizon, and spacetime geometry tells us the relationship between it’s area and the black

holes mass. It is also apparent now why light cannot escape the event horizon. Consequently, all

matter coming into the black hole is trapped within the surface indefinitely which will indeed

have consequences on its mass-energy and if it is rotating, angular momentum. Rotating black

holes are the next important area of study, and understanding the e↵ects rotating Black Holes

have on spacetime will be the last bit of information needed mathematically and theoretically

to discern the origins of a black holes spin.
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4
Rotating Black Holes

Now that there is a clear quantitative understanding of black hole, the core of this project can

be explored. The question posited was what makes Black Holes spin? The final step towards

addressing this is understanding the mechanics of a black hole with spin. Rotating Black Holes

are remarkably similar to stationary Schwarzschild Black Holes, depending simply on just the

total mass and total angular momentum. However, the fact that the Black Hole contains the

extra property of angular momentum means that spacetime is a↵ected in a di↵erent way. This

chapter will explore the new metric that arrises as a result, as well as the motion of test particles

in regions of spacetime a↵ected.

4.1 Kerr Spacetime Geometry

The new line element is specified with Kerr geometries, discovered in 1963

ds

2 = �(1� 2Mr

⇢

2
)dt2 � 4Marsin

2
✓

⇢

2
d�dt+

⇢

2

�
dr

2 + ⇢

2
d✓

2 + (r2 + a

2 +
2Ma

2
rsin

2
✓

⇢

2
)sin2

✓d�

2

(4.1.1)

where the following quantities are defined below

a =
J

M

, ⇢

2 = r

2 + a

2
cos

2
✓,� = r

2 � 2Mr + a

2 (4.1.2)
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This leads to some interesting conclusions. First of all, it’s easy to see that the metric is inde-

pendent of t and �. As with Schwarzschild geometry, both of these symmetries correspond to

conserved quantities. The metric is therefore stationary and axisymmetric, which as you will

recall from Chapter 2, has two associated vectors of symmetry

⌘

↵ = (0, 0, 0, 1) (4.1.3)

⇣

↵ = (1, 0, 0, 0) (4.1.4)

However, since there is an explicit dependance on ✓ by gtt and grr, the metric is not spherically

symmetric. Secondly, if a = 0 then the metric reduces to the Schwarzschild metric, which is to

be expected for a non rotating version of this.

4.2 Singularities in the Kerr Metric

Singularities can be found which correspond to the origin and the event horizon. If ⇢ = 0 which

would occur when r = 0 and ✓ = ⇡/2 a singularity occurs, corresponding to what is thought to

be the real place of infinite spacetime curvature. Otherwise, the quantity � = 0 would clearly

cause a singularity, but this is a coordinate singularity. This would happen at

r = M +
p
M

2 � a

2 (4.2.1)

and

r = M �
p
M

2 � a

2 (4.2.2)

Eq.(4) corresponds to the event horizon, and becomes the familiar Schwarzschild radius if a = 0.

The total angular momentum of a black hole is limited by the square of its mass. This can

be seen in Eq. (4) which exists only for a < M . If a = M then J = M

2. Matter that falls

into a Black Hole carries it’s own angular momentum, and due to the conservation of angular

momentum, the black hole J will increase, until it is limited by J = M

2. Black Holes often

get very close to this extreme limit, and the parameter a will be very relevant in tackling any

question relating to black hole spin.
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4.3 Rotating Black Hole Orbits

4.3.1 Conserved Quantities and the E↵ective Potential

Unlike in the Schwarzschild metric, the total angular momentum is not conserved, only the

component of angular momentum along the symmetry axis. Some orbits however are confined

to the ✓ = ⇡/2 plane. In this specific plane, the Kerr metric becomes

ds

2 = �(1� 2M

r

)dt2 � 4aM

r

d�dt+
r

2

�
dr

2 + (r2 + a

2 +
2Ma

2

r

)d�2 (4.3.1)

Again similar to the procedure in Chapter 2, there are quantities that correspond to conserved

energy per unit rest mass and angular momentum per unit rest mass, arriving from the ✓ = ⇡/2

metrics independence of t and �. These have the same symmetry vectors e and l. Evaluating

these quantities at infinity, away from sources of curvature show there identities as such. Given

that e = ⇣ · u and l = ⌘ · u, just like chapter 2, e and l can be expressed in the following way

� e = gttu
t + gt�u

� (4.3.2)

and

l = gt�u
t + g��u

� (4.3.3)

Which if solved for ut and u

� yield

dt

d⌧

=
1

�
((r2 + a

2 +
2Ma

2

r

)e� 2Ma

r

l) (4.3.4)

and

d�

d⌧

=
1

�
((1� 2M

r

) +
2Ma

r

e) (4.3.5)

These relations give us the tools to sole for an e↵ective potential, which governs the radial motion

of the test particles. Like the Schwarzschild metric, this can be found with the fact that u ·u = 1

and that u✓=0. Solving u ·u = 1 with all these relations in mind means that dr/d⌧ can be found.

Explicitly defining a radial potential

e

2 � 1

2
= (

dr

d⌧

)2 + V (r, e, l) (4.3.6)



26 4. ROTATING BLACK HOLES

where

V (r, e, l) = �M

r

+
l

2 � a

2(e2 � 1)

2r2
� M(l � ae)2

r

3
(4.3.7)

This e↵ective potential is particularly useful for examining orbits of constant radius, in which

case it will only depend on such radii R, and the conserved quantities of energy and angular

momentum, e and l. This makes the process of orbital calculations tractable around rotating

black holes. As will become clear in Chapter 5, studying such orbits will be a crucial piece of

determining how black holes spin.

4.3.2 Radial Plunge Orbits

The conserved quantities e and l are again crucial to relate to four velocity vectors, such as

d�/dr. Similar to the radial plunge calculation done in Chapter 2, another can be done with the

Kerr Metric.

d�

dr

=
(d�/d⌧)

(dr/d⌧)
= �2Mar

�
[
2M

r

(1� a

2

r

2
)]1/2 (4.3.8)

Integrating this expression would show a relation between r and �, specifically the angle ��

swept out in falling to radius r. What turns out to be interesting about particle orbits is the

fact that the radii of photons and particles are di↵erent depending on whether or not they

are rotating with the black hole or in the opposite direction. Positive values of l correspond to

rotation with the blackhole, and the opposite applies for particles counterrotating with respect to

the black holes. Particles due indeed become dragged around by Black Hole rotation, indicating

that rotating black holes cause rotational frames which particles are susceptible to in their

motion. As will be elucidated in the next chapter, any generalized equation dealing with particle

orbits around black holes, should take into account all possible motion with respect to the black

holes spin.

4.4 Putting The Pieces Together

Up until now, this project has reviewed the basics of General Relativity, and black hole physics.

The idea is that an undergraduate student studying physics, with a solid background in Classi-
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cal Mechanics and math would be able to follow along the whole time. The next chapter finally

moves into more uncharted territories, and partially gets to the very question that this project

set out to answer. Chapter 1 showed how Einsteins theory Special Relativity reformulated the

scientific communities idea of the nature of time. Time could not be treated as a quantity inde-

pendent of spacial dimensions, so the conceptual idea of spacetime was accepted geometrically

and algebraically in dealing with any event. Chapter 2 showed how spacetime was not always in

the form as it took in Chapter 1, that it could be a↵ected and changed by sources of mass. This

was taken by Einstein as the explanation for gravity, that the “force” of gravity was nothing

more then the motion of objects in spacetime, and that when spacetime was curved by mass,

the geodesics of any object would be altered. Not lost however, as the ability to treat spacetime

as flat locally. Also examined in that chapter was a direct case study which made an example of

how large sources of mass curve spacetime, namely large spherically symmetrical Schwarzschild

stars. In Chapter 3, black holes were explained with the new tools developed from General Rel-

ativity, and many properties turned out to be very similar to those of the Schwarzschild metric.

The orbits of particles in Chapters 2 and 3 were studied, as well as conserved quantities familiar

to us as energy and angular momentum. Finally, this chapter extended the knowledge built up

towards rotating black holes, and the orbits of particles as well as conserved quantities were

examined again. It turns out that some specific orbits around Kerr black holes will contribute

to it’s spin, even if the black hole is rotating extremely slowly. Chapter 5 will reveal how the

result of two black holes merging into one will create negative spin, i.e. spin down. There is even

a specific calculation that can be done that relates how much the final black hole will have spun

down to the accumulated mass. Now that we know all we do about rotating black holes, what

properties can be examined on events that a↵ect its spin?
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5
A Source of Spin

As a vast array of current research will indicate, there are many factors that can lead to a black

hole’s spin. According to Gammie et al, spin can arise due to initial conditions of a collapsing

star, accretion along the Event Horizon, and mergers.[1]This project will focus on the case

of minor mergers, a small black hole colliding with a larger one that is slowly rotating. The

collision of two black holes, an event that was experimentally observed rather recently using

gravitational waves, leads to the formation of a single more massive black hole, which has a new

angular momentum J . Remarkably, everything studied up until this chapter, is all that will be

needed to make a fairly good model of how a black hole’s spin changes due to the accretion of

a smaller source of mass. Crucial to this calculation will be the conserved quantities, l and e, as

well as the Schwarzschild radius R. You will recall that l and e are the angular momentum and

energy of a test particle and are per unit rest mass of this particle. Allowing the merger itself to

contain all the angular momentum of the system is an approximation that will be made here.

This unfortunately ignores more recent discoveries, and treats the gravitation radiation emission

during the process as negligible. Thankfully this factor emitted is very small, so ignoring it leads

to a reasonable approximation.[1]
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5.1 The Set Up

5.1.1 Initial Conditions

To set up this problem we take a relatively small Kerr black hole with mass m and imagine it

orbitally plunging into a larger Kerr black hole with mass M . The ratio of the two masses is

then of course q = m
M , which we will assume is a number far smaller then 1. The larger black

hole also spins slowly, with a value of j << 1. The lower case j is known as the reduced spin

and is equal to J
M2 . This is because j works ideally as a dimensionless quantity, and its use will

become very apparent as the calculation proceeds.Before attacking the calculation, it is useful

to reexamine the relevant quantities, these should now be familiar from previous chapters. This

entire situation, in fact, is very similar to radial plunge orbits of test particles, the di↵erence

being of course that the smaller black hole cannot be treated as a massless. It will, however,

still serve to treat it as a test particle, meaning its a↵ect on spacetime will be approximated

as negligible. Like the test particles examined before, its orbit will end up being the ISCO, the

innermost stable circular orbit. It makes sense to find the ISCO of the smaller orbiting black

hole, as this will be the last moment that the two black holes coexist independently before the

plunge and combination. In Chapter 4, we found an e↵ective radial potential V (r, e, l) from

conserved quantities, for the orbit of any particle subjected to a Kerr metric. For an orbit to

be circular, it will need to follow a path of constant radius r. Therefore, the radial acceleration

should vanish. If examining the ISCO, r must be a constant radius R. Knowing the angular

momentum and energy per rest mass comes exactly from the calculations done in Chapter 4.

Also, from Chapter 4, we recall the formula e2�1
2 = dr

d⌧ +V (R, e, l) where V is the e↵ective radial

potential function.

5.1.2 Inclination Angles

The last bit of setup that must be acknowledged is the inclination angle i. The inclination angle

is the angle between the direction of a large masses spin and the direction of the orbital angular

momentum of the smaller orbiting body. The quantity µ = cos(i) is defined which elucidates
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the behavior’s of masses around Kerr black holes. If µ = 1, the angle would be 0, meaning the

orbiting body is rotating exactly in the same direction as the large mass’s spin. In the opposite

case, µ = �1, the smaller mass would be rotating exactly in the opposite direction as the large

mass’s spin. Bardeen was able to find expansions for RISCO, e and l for the cases where µ = ±1.[4]

For the case of two black holes, the total energy per mass is defined as E
mM , the total energy of

the system divided by the product of the mass of both black holes. This quantity is simply the

total energy of the system divided by the product of small black hole mass times the larger mass,

very similar to e which accounted for only one source of mass. Similar quantities are defined for

L
mM , which relates to l in the same way, and RISCO

M which is the ISCO radius divided by the

mass of the large black hole.

5.1.3 Re-expressing Quantities

For the radial acceleration to be constant then,

@V (r, e, l)

@r

= 0 (5.1.1)

Taking the derivative of V (r, e, l) with respect to r we have

@V (r, e, l)

@r

=
@

@r

(�M/r + l

2 � a

2(e2 � 1)/2r2 �M(l � ae)2/r3) (5.1.2)

and setting the result equal to zero

� M

r

2
� l

2 � a

2(e2 � 1)

r

3
+

3M(l � ae)2

r

4
= 0 (5.1.3)

Note that all r terms here refer to RISCO since we are defining a minimum of the e↵ective

potential. Since (dr/d⌧)2 = V (R, e, l)� e

2 � 1/2, the entire equation must therefore be equal to

zero when r is constant. Therefore

r(�M

r

+
l

2 � a

2(e2 � 1)

2r2
� M(l � ae)2

r

3
)� e

2 � 1

2
= 0 (5.1.4)

These two relations are clearly quadratic for the variables e and l, meaning they can be solved

with familiar algebraic techniques.Using the quadratic equations and substitutions we can solve

for e and l separately in terms of r only, where r = RISCO. Finally, r = RISCO is found by plugging
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in the results for e and l into Eq. (3) and solving for r. Bardeen was indeed able to to express

the stable circular radius in terms of the spin parameter a, and l and e in terms of a the mass of

the large black hole M and RISCO. [4] The following relations, were found by solving E and L

independently. Also, from here onwards, we shall define new constant quantities e⇤ = e
M = E

mM

and l⇤ = l
M = L

mM , where m is the mass of the small black hole and M is the mass of the

large black hole. The larger mass was encoded in the equations and was largely divided out on

the other side of the equation, with the exception being the a
M terms. The smaller was already

encoded in the constants e and l from their already established definitions.

r

M

= 3 + Z2 ± [(3� Z1)(3 + Z1 + 2Z2)]
1/2 (5.1.5)

,

e⇤ =
E

mM

=
1� 2v2 ± ( a

M )v3
p

1� 3v2 ± 2( a
M )v3

(5.1.6)

and

l⇤ =
L

mM

= ±rv

1± 2( a
M )v3( a

M )2v3
p
1� 3v2 ± 2( a

M )v3
(5.1.7)

where v =
q

M
r ,

Z1 = 1 + (1� (
a

M

)2)1/3[(1 + (
a

M

))1/3 + (1� (
a

M

))1/3] (5.1.8)

and,

Z2 = (3(
a

M

)2 + Z

2
1 )

1/2 (5.1.9)

5.2 The Minor Merger Calculation

With all of this set up, the calculation can begin. Taking the change in total angular momentum

before and after the collision, assuming the momentum transfer is thought to be entirely closed

within the merger system we find

�(J2) = Jf
2 � Ji

2 = (J +�J)2 � J2 = 2J ·�J + (�J)2 (5.2.1)

The above equation just refers to the familiar subtraction of initial angular momentum from the

final, after the black holes merge.[1] The event of the merger is driven by gravitational waves, a
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topic which is out of the scope of this paper.[1] However, the inspiral can be approximated as

a progression of circular orbits with fixed inclination angles. Therefore, the final moment before

the two holes merge occurs when the smaller one is at the ISCO. Then , the total initial orbital

angular momentum of the smaller black hole can be evaluated at the ISCO. With this in mind,

(�J)2 can be set approximately equal to (ml ⇤M)2, where l⇤ is the total angular momentum

divided by the product of the masses of both black holes. Recall that earlier in this chapter,

this variable l⇤ was specified as l⇤ = L/mM , and similarly e⇤ is referring to E/mM . This takes

care of one term in Eq. (10), recasting it in terms of the familiar conserved quantity l, and the

masses of both black holes.

The requirement that j is extremely small means that high order terms in j can be neglected.

To deal with the other term in Eq. (10), recall Eq. (5). We replace ( a
M ) with j since j = J

M2

and J = a
M . This means that j is a dimensionless representation of the angular momentum of

the orbiting body. Recasting the Z terms with j we get

Z1 = 1 + (1� j

2)1/3[(1 + j)1/3 + (1� j)1/3] (5.2.2)

and

Z2 = (3j2 + Z

2
1 )

1/2 (5.2.3)

Taylor expanding Z1 and keeping terms only up to j

2 gives

Z1 = 3� (8/9)j2 (5.2.4)

and then plugging this in for Z2

Z2 = 3� (7/6)j2 (5.2.5)

A reminder is relevant here that that j = J
/M

2. From these expansions we see that,

r

M

= 6� 4
p
2p
3
jµ+O(j2) (5.2.6)

Doing similar expansions for Eq. (6) and (7), it can be seen that

L

mM

= 2
p
3µ� 2

p
2

3
jµ

2 +O(j2) (5.2.7)
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and,

E

mM

=
2
p
2

3
� 1

18
p
3
jµ+O(j2) (5.2.8)

As will soon be shown, these equations allow for a new convenient way to express the change in

angular momentum �J .

One very noticeable caveat in the derivations of the Eqs. (15), (16) and (17), is that they

contain the variable µ which comes out of nowhere. Recall that this relates to the inclination

angle i. The original Bardeen equations for l, e and RISCO were solved only for µ = ±1,[5] which

is why they were not present before. The factor of µ accounts for all possible inclination angles

taken on by the smaller black hole with respect to the spin of the larger one. Elucidating their

appearance in Eq. (9), (10), and (11) would be a useful point of further study, but unfortunately

I ave not had the chance to do it.

Using Eq. (16), we can now solve for the other part of Eq. (10), the overall change in angular

momentum

2J ·�J = 2jM2�L = 2jM3
m2

p
3µ� 2

p
2

3
jµ

2 (5.2.9)

To account for the possibility of any inclination angle, we take an average from 1 to �1

Z 1

�1
(2jM3

m2
p
3µ� 2

p
2

3
jµ

2)dµ =
�4

p
2M3

mj

2

9
(5.2.10)

Next up, we define e ⇤ m as the change in mass of the large black hole. This change is meant

to model the accretion of mass from the smaller black hole. For convience, which will become

apparent later we also multiply J by M , giving

M�J

2

e ⇤m =
Md(j2M4)

dM

=
d(j2M4)

d lnM
(5.2.11)

noting that j = J/M

2. Now putting in both pieces for Eq. (10)

d(j2M4)

d lnM
=

M

e⇤m

"
4
p
2M3

mj

2

9
+ l ⇤2 m2

M

2

#
(5.2.12)

By solving for d ln j
d lnM utilizing the product and chain rule, the above becomes

d ln j

d lnM
= �2� 2

p
2

9e⇤ +
l ⇤2 m

2e ⇤Mj

2
(5.2.13)



5.2. THE MINOR MERGER CALCULATION 35

Next one only needs to substitute for e⇤ and l⇤ to find the remarkably simple result

d ln j

d lnM
= �7

3
+

9mp
2Mj

2
(5.2.14)

Remarkably, the second term can be ignored under limits where j2/q >> 27. Separating variables

and integrating both sides then yields

ln j = �7

3
lnM +A (5.2.15)

Here A is an arbitrary constant of integration. Since a constant can be cast as any value, it is

useful to specify as well under a logarithmic function. After this one can simplify the expression

using familiar logarithmic algebra.

ln j = �7

3
lnM + lnA = lnM�7/3 + lnA = lnAM�7/3 (5.2.16)

Rearranging a bit more algebraically we arrive at the relationship between the black hole spin

j and the accumulation of mass M

j = AM

�7/3 (5.2.17)

But what is the integration constant and what does it represent? As usual, this sort of problem

is solved with boundary conditions. Since A = j
M�7/3 , and we know initially j = jo the initial

angular momentum, and M = Mo, the initial mass, Eq. (26) takes the form

j =
jo

Mo

�7/3
M

�7/3 (5.2.18)

This equation o↵ers us a powerful tool to insert a value of mass accumulated from a merging

black hole and yield a value of the angular momentum. It also proves that the process of a minor

merger spins down a black hole. As mass is accumulated, the spin decays with a negative root

power. The more minor mergers occur, the less e↵ect they have on the large black hole’s spin.

This decay in spin yields the curve pictured below, where the initial value jo starts out at a

number much less then 1, as specified in the original set up. See figure 5.2.1 As can be seen, the

allowed range of j from 0-1 decays swiftly as mass accumulates. Intuitively, this result seems to
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Figure 5.2.1. Plot of j vs M. The region that should be concentrated on is from 0-1. The initial spin jo
begins at a very small value where jo is much less then 1.

make sense. As mass is accreted on to the black hole, it spins less rapidly. This shows that the

larger mass’s spin slows down.

Major mergers, a topic not touched on in this project, have been shown to spin black holes up,

suggesting that the previous intuition may have limited validity. Also, the second term in Eq.

(22) cannot be ignored if the mass ratio q is a significantly large number. Being that we assumed

the mass ratio was small, that is, the smaller black hole was of much less mass comparatively,

it was ok to ignore it. However, a more generalized look would also aim to solve this system for

larger q values, meaning Eq. (22) would have to be solved with the second term as included.

During this project we narrowed focus to examine the mechanics of spin due to a minor

merger. If the small black hole is small enough, then I have shown that a minor merger spins

the black hole down. This successfully addresses the minor merger process in many valid cases,

giving an accurate if at times approximated result.



6
Conclusion

From all of this, it can be seen that these mergers will spin down a black hole if one of them

is significantly smaller then the other. This has led this project to a partial success, with some

approximations and reliance on previous research, one valid answer to the question of the black

hole spin has been answered. However, this work still merely scratches the surface of a bigger

picture. As this paper has illustrated, many familiar laws of physics change within the context

of General Relativity. Parameters that represent energy and angular momentum come from

symmetry vectors of their respective metrics, and despite being a close analogy to classical

energy and angular momentum, do have di↵erent origins, being that they are divided by the

mass of an object. Noether’s Theorem classically relates conservation of energy and angular

momentum to rotational coordinate displacement symmetries, and coordinate independence of

time. These symmetries in General Relativity appear within the metric, but do they behave the

same way when spacetime is curved rather then flat? From Chapter 4, we do know that l = L
M

is conserved, and can indeed be related to the total angular momentum J = a
M . Another crucial

approximation was neglecting the loss of energy and angular momentum that occur through

the emission of gravitational waves. Accounting for this would greatly enrich the merger model,

and being that gravitational radiation was picked up from a real life merger already, it should

be a manageable task for future work. Also, being that the rotation of the large black hole
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was so small, j << 1, this allowed for the possibility of expanding any function involving j to

first order only. If the large black hole started out rotating significantly, it would dramatically

change the end result of the calculation. The inclination angle µ noticeably was not a part of the

Bardeen equations, which only expanded the parameters e, l, and RISCO for µ = ±1. A detailed

calculation on how the µ terms make it into the final equations for l, e and RISCO would be

useful for the sake of thoroughness and validity. Finally, there are many other sources of black

hole spin. One can examine the accumulation of accretion disks, mergers of black holes of more

or less equal size, and initial conditions of a rotating Schwarzschild star before it’s collapse and

transformation into a black hole. As this paper functions partially as a tool for grasping General

Relativity from the ground up, there was not enough much time to examine all of these cases

throughly. Future work in this topic should aim to neglect or further justify the approximations

made, and explore other causes of black hole spin.
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