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Abstract

The brain is constantly changing during development because of various stimuli: memories,
language, visual patterns and other sensory information. As a result, networks need to have
specific learning rules to function being both plastic and stable. In this project, I’ve constructed
a mathematical model based on a biological neural network. I’ve written differential equations
to describe: a. these learning rules and b. methods of visual input to the network. Using Euler’s
method, I’ve created a discrete-time version of this biological phenomenon to implement on
the computer. I’ve successfully coded this, using difference equations in MATLAB to simulate
developmental neurons in the retina. This project is at the cutting edge of the computational
neuroscience field, particularly, because it remains unknown exactly how the topology of a neu-
ral network changes in development and how neurons self-organize from a previously random
network of connections. Ultimately, I’ve found specific ways that synaptic connections evolve
over time and my results illustrate the maturation of a previously unrefined network. This gives
us insights into how learning takes place during an organism’s critical period of development.
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Introduction

A biological neural network is a group of two or more neurons that are connected in a specified

fashion. For example, if neuron i is connected to neuron j, then neuron i sends information to

neuron j and neuron j sends information to neuron i in the form of electrical charge. A spike

is when a neuron receives so much information that its voltage exceeds a set threshold and

immediately resets back down to a resting potential. We can visualize a neural network as a

graph, in which every pair of neurons is connected to each other, though no neuron is connected

to itself.

Neural networks are governed by a set of biological learning rules, which keep the network

stable, though also allow for the connections between neurons to change. If we expose our

network to external stimuli, whether it be visual, auditory, tactile, etc., the topology of the

network changes.

In the last twenty years in the field of computational neuroscience, researchers found that

in development, networks use these learning rules to converge from a relatively unrefined

state to something more organized, a stable state. These learning rules include: a voltage-based

model called leaky integrate and fire; a current-based model; a rule called spike-time-

dependent plasticity in which neurons are rewarded based on how much information they

send to their neighbors; and finally homeostatic plasticity, which is an umbrella term for the
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following network normalization techniques: synaptic scaling and changing threshold, tools

to readjust the parameters so that they are receptive to how frequently a neuron is spiking.

Modeling such a network requires converting what we already know about biological neural

networks, particularly those networks located in the retina, into a simplified model of differen-

tial equations. The difficulty with this lies in the fact that our time differential equations only

describe continuous network behavior in the absence of spiking. Since spiking is an instanta-

neous change to an assumed continuous system, we must convert these differential equations to

difference equations using Euler’s method to create an accurate simulation of a developing

network.

A dynamical system is a system whose state, an element of a state space, changes over time

and is governed by a particular fixed rule, in our case, the voltage of neurons [1]. In our simplest

model, we are looking at a 100-dimensional dynamical system, comprising of the voltages of

100 neurons. In particular our dynamical system is interesting because as mentioned, it exhibits

characteristics of both continuous and discrete systems, making it a hybrid system.

My goals in this project were to create a mathematical model of differential equations

describing a spiking neural network that receives visual input, as well as to successfully create a

computer simulation of this model in MATLAB, implementing the learning rules above. While it

was time my first time using this program, MATLAB turned out to be very beneficial in working

with the large matrices and graphs we were using. Beginning with random connections between

neurons, my goal was to see how the strengths of connections in the network would change in

response to a visual stimulus, after running my simulation for a few days.

Previous research has been done in this area with Xenopus tadpoles, mice, Zebra fish and

Zebra finches, particularly observing and modeling neuron behavior during development [2].

Researchers have shown using MATLAB, that with these learning rules, networks can maintain

homeostasis and become more refined even to the extent of repairing the loss of ion channels [3].

In my simulation, I found that the connections between neurons changed over time and the

majority of them converged to zero. This gave reason to believe that neurons initially reacted
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much stronger to input as opposed to later on in the simulation. My resulting graphs of con-

nections illustrate that a patterned visual stimulus is enough information for the neurons to in

a sense, “figure out” that they are organized in a grid and eventually use this point of reference

to organize themselves into a grid. This shows the maturation of a previously random, chaotic

network.

In this project, the chapter structure is arranged as follows: In Chapter 1, I will describe the

biological aspects of my project such as how neurons send information to each other in the form of

action potential and I will show differential equations that model this behavior. The particular

learning rules I will discuss in this chapter mostly occur in the absence of spiking. These include

leaky integrate and fire, a basic way to model the neurons’ behavior; a current-based model,

which is a reasonably good model for describing how neurons“communicate” with each other;

spike time dependent plasticity, the reward system I spoke about previously; synaptic scaling, a

normalization technique used for scaling the sum of inputs to a particular neuron; visual input

to the network, in the form of an approaching stimulus or expanding disc; and finally changing

thresholds, another technique that normalizes the network so that all neuron spiking approaches

a target rate.

In Chapter 2, I will convert all of my differential equations into difference equations as well as

explain more of my parameters and the particular functions of my code in MATLAB. In Chapter

3, I will describe the results I mentioned above as well as the final graphs of my simulation, and

goals for future work in this field. In the Appendix, I will show my final MATLAB simulation

code, as well as that for my input function.
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1
Chapter 1: My Model

1.1 Leaky Integrate and Fire

As previously stated, we define a neural network as two or more neurons that are connected

in a graph, where a neuron represents an node and its connection to another neuron represents

an edge. Assume the following information: neuron i is connected to neuron j and neuron i

sends information to neuron j in the form of an electrical charge. This means that neuron i is

called the presynaptic neuron and neuron j is called the postsynaptic neuron. A synapse as

in the words pre and postsynaptic refers to the connection between both neurons, biologically,

in the form of axons and dendrites. In this project, we will casually refer to neurons i and j as

“neighbors” in a neural network.

But how exactly do neurons send these signals to each other? Action potential describes

the process by which, biologically, cells send and receive input, and chemical signals turn into

electrical signals. Here’s how the process works: Every neuron has a resting potential; this is

its equilibrium. This value is on average equal to −70 mV meaning that neurons are negatively

charged at rest [5]. However, when a stimulus is presented, whether its an electrode, a visual

stimulus, a smell, etc., the neurons’ sodium channels open and let sodium ions (Na+) from the

exterior enter the cell causing it to become more positive. This process is called depolarization.

The membrane potential increases and the sodium channels inactivate (roughly causing the
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membrane potential to jump up to +30 mV). This causes the cell’s potassium channels to open

and positively charged potassium ions (K+) to leave the cell. Next the cell repolarizes, as in

the voltage lowers and finally hyperpolarizes, meaning that the membrane potential decreases

so much that it becomes lower than the original resting potential. This causes sodium channels

to de-inactivate over time and ionic pumps to restore equilibrium in the interior and exterior of

the cell.

But how do we model this mathematically and create a basic “toy model” of signals between

neurons: For example, those signals between photoreceptors and bipolar cells and even those

between horizontal cells and bipolar cells in the retina. The first step requires constructing a

Leaky integrate and fire model.

After Louis Lapicque’s neuroscience discoveries in the early 20th century in frog nerve stim-

ulation and also later, Bruce Knight and Rick Purple’s discoveries, the phrase “leaky integrate

and fire” was developed and the model, originally something which was purely circuit-based, was

conceived [7]. The meaning of the phrase “leaky integrate and fire” refers to the fact that some-

times a neuron fires and sometimes it “leaks,” meaning after the neuron reaches a set threshold

(i.e. its maximum voltage), its voltage decays and is reset back to the resting potential.

In the field of computational neuroscience, leaky integrate and fire is one of the most common

models of an individual spiking neuron. There are various types of leaky integrate and fire models,

some very simple and others, more complicated. These include exponential integrate and fire

in which voltage decays with the addition of an exponential term, linear integrate and fire and

non-linear integrate and fire [8]. In this project, we are using a version of the leaky integrate

and fire model, though with the addition of current-based synaptic transmission. However, let’s

first start describing the standard leaky integrate and fire model.

Here’s how the model works: Each neuron, j, has a voltage as well as a resting potential ( mV).

In my model, the initial voltage value is equal to zero, slightly differing from the biology, where

the resting potential is −70 mV. This voltage value decays exponentially by a factor of e in
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10 ms in the absence of spiking. Broadly speaking, this is similar to how a real neuron might

repolarize when potassium channels open. Let’s call this decay factor Tv = .01 seconds.

Taking account of spiking: when a neighboring neuron, i, spikes, j receives a small amount of

input: a boost in a neuron’s voltage from either its neighboring neuron or an external stimulus.

When neuron j receives enough voltage from all neighboring neurons (i included), it surpasses its

threshold (which we set as = 1), spikes and is reset back to the resting potential. No hyperpolar-

ization occurs in this model, as it does in biology because our goal is to use the simplest model

possible and still get optimal results. This process continues and eventually, j’s neighboring

neurons receive enough voltage to spike.

Our model consists of a network of 100 neurons. The way in which the neurons are connected

resembles a complete graph: the neurons are assigned to a point on a grid and they are all

connected. In biology however, networks are much larger than 100 neurons, as there are roughly

103 million photoreceptors in the human retina [9]. In addition in our model, we are assuming a

fact that is not necessarily true in biology. We are assuming that every synapse between neurons

is excitatory: the signal is probabilistically going to be transferred from postsynaptic neuron

to presynaptic neuron successfully, differing from inhibitory synapses [10].

Let vmax be our threshold. When the voltage of a neuron reaches its threshold, vmax, it spikes.

When it spikes, it sends signals to neighboring neurons and its voltage resets to 0.

In figure 1.1.1, when the voltage increases, we know that the neuron has received a signal.

When the voltage decreases that is due to the nature of exponential decay. The graph represents

a neuron that receives multiple signals from neighboring neurons until it eventually gathers so

much voltage that it spikes, and then resets to 0.

In our Leaky integrate and fire model, we model purely voltage. We write our exponential

decay equation as the following differential equation, in terms of neuron i:

dvi
dt

=
−vi
τv

Using separation of variables, we see that the solution to our differential equation is:

vi(t) = vi(0)e−t/τv
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Figure 1.1.1: Neuron j receives small degrees of input from neighboring neurons while simultane-
ously exponentially decaying. Once the sum of this input exceeds the threshold level, Neuron j
spikes, sends input to its neighbors and its voltage is reset back to 0 mV.

i j

Figure 1.1.2: Neuron j receives small degrees of input from neighboring neurons while simultane-
ously exponentially decaying. Once the sum of this input exceeds the threshold level, Neuron j
spikes.

where vi represents the voltage of neuron i and τv represents the decay factor of e for each single

neuron (in units of ms). We place a negative sign to show proper exponential decay. We see this

differential equation is what we want because it decays by a factor of 1
τv

, however it does not

take into account the instantaneous voltage neuron i receives from it’s neighbors.

In our model all of the neurons are connected by a weight, wij , which indicates the strength of

the signal between neuron j and neuron i (Figure 1.1.2). When neuron j spikes, its neighboring

neurons receive a small amount of voltage. We can write the instantaneous change in voltage

for neuron i as:

∆vi = wij when j spikes
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Therefore, this is what we want because every time j spikes, its neighboring neurons receive

a small amount of voltage.

1.2 Current-Based Synaptic Transmission

As we discussed, action potential is a necessary process transferring information between neu-

rons, and we wouldn’t exist without it! Voltage-gated sodium and potassium channels control

the timing and release of sodium and potassium ions. This allows for a gradual increase and

subsequent decrease of voltage, where graphs resemble continuous parabolic curves with an

identifiable peak voltage (i.e., the threshold). In addition, neurons and synapses resemble the

structure of circuits and they depend on current (amps), conductance and capacitance. Though

in our model, we are just going to focus on current.

If current didn’t exist in a biological neural network, this network would be hyperactive; some

might call this epileptic. Incorporating current improves our model, and delays the speed in which

the input travels from neuron j, which just spiked, to j’s neighboring neurons. Similarly, a strictly

voltage-based model would not realistic at all because the voltage would travel instantaneously,

causing all of neuron j’s neighbors to spike immediately after j spiked. Therefore, presenting

voltage and current together, makes our model more realistic to a biological human neural

network.

In our model, voltage also exponentially decays, though it increases with the addition of

current from neighboring neurons instead of just purely synaptic input from spiking neurons, as

we saw in our leaky integrate and fire model. Current, scaled by a constant, vr ≈ 271.8282, is

being added to voltage. We will explain the meaning behind this value in the next subsection.

This exponentially decaying variable, current, decreases the power of the voltage and guarantees

that our network will not explode, but will instead converge to fixed values over time. We can

write a new differential equation combining current and voltage:

dvi
dt

=
−vi
τv

+ vrci
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in which vi represents neuron i’s voltage, vr ≈ 271.8282 controls how much current is released,

and τv = .01 sec implies that it takes neuron i 10ms or .01 sec for its voltage to decay by a factor

of e. Also, ci indicates the current for neuron i. Therefore, when a neuron spikes current makes

the voltage increase at a rate of vr.

Yet how does the current alone work, and when does it increase? Let’s examine our current

differential equation in the absence of spiking:

dci
dt

= −ci
τc

where current decays by 1
τc

. τc implies that it takes neuron i τc = 10 ms or τc = .01 sec for its

current to decay by a factor of e. Solving for ci, we have that ci(t) = e−t/τc , using separation of

variables.

We see that the differential equation above accurately models the decaying current which we

wanted to decrease the speed that the voltage spreads, yet how do we explain for what happens

when instantaneous spiking occurs?

As discussed in last chapter, we know already that every pair of neurons, i, j, is connected.

Therefore, we define the weight, wij , as something which measures the strength of the connection

from j to i. We can write this instantaneous change in current for neuron i as:

∆ci = wij when j spikes

Therefore in this case, when j spikes it releases synaptic input to all of its neighbors i in the form

of current, and this current gets added to neuron i’s voltage (also called, membrane potential).

1.2.1 Parameter Values

The parameter, vr appears quite often in our current model and is crucial to our model, as it

controls how much current is released. Yet, how do we solve for its precise value?

More specifically, we want to solve for vr in the instance where voltage starts at zero, and

current starts at 1, c(0) = 1. In addition, we would like to normalize this parameter so in

circumstances when the voltage goes up to one, the current goes back down to zero. This makes

voltage and current inversely related, which is the entire purpose of our model.
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Figure 1.2.1: Graph showing Current Exponential Decay

We found the solution to
dc

dt
in the previous section:

c(t) = e−t/τc

Let’s take the integral of c(t) from 0 to ∞, to find its average value on this interval. We have:

∫ ∞
0

e−t/τcdt

We have:

=
[
−τce−t/τc

]∞
0

= τc

where as we saw previously, 1
tauc

is the rate in which the current is decaying. We can use

substitution in our differential equation for
dv

dt
, replacing c with our solution to

dc

dt
. We have:

dv

dt
=
−1

τv
v + vrc

dv

dt
=
−1

τv
v + vre

−t/τc

Let’s assume that vr is the maximum point on the voltage curve (and is the solution to the

dv

dt
differential equation). We realize that if a neuron spikes and current gets an input of 1, our

graph looks something like this:
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Figure 1.2.2: Graph showing voltage curve, where the maximum point on the curve is tm

Using the Dsolve command in Mathematica, let’s solve for the solution to our differential

equation for voltage to best determine vr. This will give us the maximum point of the voltage

curve, which we can use to determine how much current is released. We start with the initial

condition that v(0) = 1. We have the following graph:

Let tm be the maximum point on our voltage curve. Therefore, at this maximum point:

v′(tm) = 0

and

v(tm) = vr

Using Mathematica and these initial conditions (above), we find that the solution to the differ-

ential equation is:

v(t) = vrte
−t/τv

Plugging in tm in Mathematica, we see that when τc = τv, tm = τv. So we can plug our solution

into the differential equation:

v(tm) = vrtme
−tm/τv

v(tm) = vrτve
−τv/τv

v(tm) =
vrτv
e
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Assuming that v(tm) = 1 because this is the maximum of our voltage range, we can use substi-

tution:

1 =
vrτv
e

1

vr
=
vrτv
vre

1

vr
=
τv
e

vr =
e

τv

vr =
e

.01

vr ≈ 271.8282

Therefore, we can also conclude that −1
τv
vr is the initial slope of the Voltage curve because

v(t) = vrte
−t/τv

v′(t) =
−1

τv
vre
−t/τv

v′(0) =
−1

τv
vr

1.3 Spike Time Dependent Plasticity

When the brain matures from a disorganized spiking network into something more organized,

synapses are changing, more specifically, the types of synapses, the number of connections as well

as the strengths of the connections (i.e. the synaptic weights). As mentioned previously, we

define every pair of connected neurons as i, j. Therefore, we define the weight, wij , as something

which measures the strength of the connection from j to i, and wji, as a value which measures the

strength of the connection from i to j. Summing the inputs to neuron i represents the aggregate

synaptic drive coming to this neuron from neighboring neurons.

We define Hebbian plasticity as “changes in the connection strength between two neurons

as a result of correlated firing” [4]. Spike time dependent plasticity (STDP) is a generalization

of Hebbian plasticity. We can think of this as a type of reward system for spiking neurons; it
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i j

Figure 1.3.1: Neuron i (yellow) spikes,
and this causes wij , the connection
from neuron j to neuron i to increase.
This causes wji, the connection from
neuron i to neuron j to decrease.

i j

Figure 1.3.2: Neuron j (yellow) spikes,
and this causes wij , the connection
from neuron j to neuron i to decrease.
This causes wji, the connection from
neuron i to neuron j to increase.

adjusts the strengths of connections and increases those connected to neurons who are spiking

often.

On a neurological level, we can break STDP down into two categories: Long Term Potentiation

(LTP) and Long Term Depression (LTD). LTP refers to the rule that when a neuron spikes, the

already-existing strong inputs to that neuron become stronger. This is a strong demonstration of

Hebbian plasticity. LTD refers to the rule that if a neuron did not spike, then the already-existing

weak inputs from that neuron get weaker.

Therefore, looking at our neurons i and j, we can conclude the following. First scenario: If i

spikes, wji (the connection from neuron i to j) increases in strength. Assuming j did not spike

recently, then wij (the connection from j to i) decreases in strength. Second scenario: If j spikes,

wij (the connection from j to i) increases in strength. Assuming i did not spike recently, then

wji (the connection from i to j) decreases in strength.

Similarly to voltage and current, we can describe our STDP model with a differential equation.

Let p be an exponentially decaying trace for spiking, which controls how much synaptic input

from neighboring neurons is released, similarly to current, which controls how much voltage is

released. Let’s look at the differential equation for pi, corresponding to the decaying trace for
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neuron i:

dpi
dt

=
−pi
τp

We can solve for our solution:

pi(t) = pi(0)e−t/τp

where pi(0) is our initial value and t is time. Let’s solve for τp, also know as our e-folding time.

We would like τp to make p decay about 10 times in about 50 ms. Therefore, we can write this

as:

pi(.05) =
1

10
pi(0)

This means that:

pi(0)e−.05/τp =
1

10
pi(0)

Therefore, we can rewrite this as:

e−.05/τp =
1

10

Taking the natural log of both sides we have:

log e
−.05
τp = log

1

10

−.05

τp
= log(

1

10
)

We see that τp is roughly equal to .0217146, our e-folding time.

However, we are just considering our model in the absence of spiking. What happens when

we do have spiking? When neuron j spikes, something instantaneous happens:

• wji immediately increases by wspikepi

• wij immediately decreases by wspikepj

each describing LTP and LTD, respectively. wspike is a constant roughly equal to .00046052. We

will explain how this is calculated when we discuss changing thresholds. wspike controls how much

the weights change.
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Next, we see that synaptic weight (wij) has an effect on how much current is released. There-

fore, when neuron j spikes, ci increases by:
0 if wij ≤ 0

wij if 0 < wij < 1

1 if wij ≥ 1

We see that this model works exactly as we like. When wij or wji changes, this has an effect on

the current and thus the voltage in the entire system (as we can infer from our Current-Based

Synaptic Transmission model)

1.4 Synaptic Scaling

In biology, there exist various negative feedback mechanisms that add stability to the system.

Homeostatic Synaptic Plasticity (i.e. synaptic scaling) is considered a facet of the main

negative feedback mechanism in cells, Homeostatic Plasticity. This is a normalization proce-

dure in biologically which in our model, should make all of our randomized connections converge

faster.

We know already wij means that every pair of neurons i, j, is connected. Summing the inputs

to neuron i represents the aggregate synaptic drive coming to this neuron from neighboring

neurons.

To control the speed in which the synaptic drive increases and the neuron spikes [11], let’s

normalize all of the inputs to neuron i, so that they don’t exceed a particular value, which we

set as being equal to 1. All the inputs to i will be scaled by 1
sum of inputs to i . In the case that

there exist zero inputs to i, we set the sum of all inputs to be equal to one, guaranteeing that

eventually the sum of all inputs to i does not change as a result of synaptic scaling.

More motivations behind synaptic scaling include the fact that: if these inputs become too

large, our network will be physically unrealistic. Similarly, to current, we see that if synaptic

scaling didn’t exist, biologically, a neural network would be hyperactive; or epileptic. Incorpo-

rating synaptic scaling improves our model and delays the speed in which the input travels from

the neuron j that just spiked, to other neighboring neurons.
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In addition as we saw with STDP, when weights change, wij , for instance, will become stronger,

and by default wji will become weaker. However, if we did not have synaptic scaling, then we

would always end up with wij as being really large and wji as being really small. Thus, synaptic

scaling makes our synaptic connections more realistic.

For a particular pair of neurons, neuron i and j, we can define the following to be the sum of

all inputs to neuron i.

m =
100∑
j=1

wij

where m = the sum of inputs to neuron i. We assume that mi 6= 0, because in that case we

would be dividing by zero. In this case that mi = 0, we change mi to equal 1. Finally we define

our new synaptic weight as:

wij
new =

wij
mi

where wij = the new strength of the connection from j and i. We see this technique is exactly

what we want because it normalizes the connections between neurons by making sure the inputs

to i don’t exceed 1, and it makes our model more biologically realistic.

1.5 Input

You see an object in the distance. It’s getting bigger as its gradually approaching your face. The

speed in which the object is approaching you seems to be getting faster and faster. It’s a ball

and it’s being thrown at you, at full force. How do you react?

Neurologically speaking, this object is a stimulus. The human brain is constantly changing

during development as a result of many different types of stimuli such as sights, sounds and

tastes. In this project we will primarily focus on visual stimuli, also called input.

Human vision starts with incoming light traveling through all of the layers in the retina: the

Ganglion Cell Layer, the Inner Plexiform Layer, the Inner Nuclear layer, the Outer Nuclear

Layer, the Layer of Photoreceptor Outer segments and finally, the Pigmented epithelium [6].

We are mostly focused on the layer of photoreceptors for this project. Rods and cones are
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Figure 1.5.1: Input Disc Expansion, the magenta point indicates (xc, yc) our center of the ex-
panding disc

photoreceptors which are necessary for vision, though these cells are also neurons. Our project

is mainly (though not specifically) focused on modeling an 100-neuron network of photoreceptors.

Lets start by constructing a model of the colliding object on a 10 × 10 grid. This “object”

could represent a ball getting thrown at an infant or possibly a predator approaching the infant

in the wild. In our network, the object, also called a patterned visual stimulus structure on

a grid, should be enough information for the neurons to, in a sense, figure out that they are

organized in a grid. Eventually, the goal is for the neurons to use this point of reference to

organize themselves back into a grid.

Our expanding disc will be overlaid on top of a 10× 10 grid of all the neurons in our network,

where each vertex represents a neuron. We see that the point (10, 1) on the grid corresponds to

neuron 1 in our network, (9, 1) for neuron 2, (8, 3) for neuron 3, etc. For the next ten neurons,

we have that (10, 2) corresponds to neuron 11, (10, 3) for neuron 12, (11, 3) for neuron 22, etc.

The disc will be constructed as a matrix, which we will discuss in the next chapter. The

model works in such a way so that the disc starts from a random center point, such that

1 < (xc, yc) < 10, where xc, yc ∈ R. As the disc expands at a rate of τm = 0.001 (taking 20

seconds of simulation time to expand, equal to only 5 seconds of real time) over the grid, it

delivers input to a neuron when the rim of the disc hits the vertex corresponding to that neuron.

Thus the neurons positioned furthest from the center, if they get any input, will get it much
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later than those located closest to the center of the disc. We set our τm to this value, as it creates

the most biologically realistic model of an object approaching.

Therefore we see our equation for the radius of the disc expanding is:

r(t) = τm(t− t0)

where τm = the rate in which the circle is expanding and in which the center of the disc is

randomly selected. Once the disc expands beyond the dimensions of the grid, it starts over at a

different random point on the grid, not necessarily an integer value, and begins to expand and

deliver input to the neurons.

1.6 Changing the Thresholds

As described previously, every neuron has a resting potential which is roughly equal to −70 mV.

When it receives enough input, it depolarizes and eventually reaches the target threshold which

is often −30 mV in a cell (or = 1 in our model). Once the voltage reaches this value, it will reset

back to the resting potential (zero in our model).

Biologically, there exist slight fluctuations in threshold from neuron to neuron, though it’s

still unclear whether this is mere noise or a more complicated mechanism, one that depends on

how frequently the neuron is firing and specific membrane potentials [12]. This process is called

Homeostatic Intrinsic Plasticity. We see in some studies, neuronal threshold values decrease after

high-frequency synaptic stimulation (i.e. current) is introduced in rat hippocampus pyramidal

neurons [13].

Threshold changing makes our model more accurate to a real brain, and regulates neuronal

activity, causing neurons that are too excited (high spiking rate) to spike less, and neurons that

are not spiking enough to spike more.

In our current-based model, the rate in which neurons spike changes from that of a purely

voltage-based model. While current adjusts the rate in which voltage approaches the threshold,

this model alone doesn’t adjust the constant-valued threshold.
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Why do we want to incorporate a changing threshold? We see that when thresholds are too

high for a particular neuron, the network is dead, and cell input isn’t even sufficient to result

in an eventual spike. In the rare case that one neuron spikes, this neuron doesn’t give enough

voltage to neighbors to make them spike. Contrarily, when the thresholds are too low, we see that

the network becomes epileptic (hyperactive); when one neuron spikes, it gives input to all of its

neighbors and since the neighbors’ threshold values are much lower, they spike instantaneously.

The learning rule we’re implementing is similar to synaptic scaling, in that it adjusts neuron’s

average spiking so that every neuron spikes roughly 10 times a second, further normalizing the

network. While, biologically speaking this target spiking value (St = 10 spikes per second) is

relatively high, we set it to this value to make our network converge faster. Furthermore, if

a neuron is spiking too much (as we see looking at its average spiking history), its threshold

increases, making frequent spiking less frequent. And if a neuron isn’t spiking enough relative

to the target spiking rate, its spiking threshold will be lowered, making it easier for the neuron

to spike.

Each neuron has a spike history, which measures how many times recently the neuron has

spiked. In addition, there exists a target value for how often we choose a neuron to spike. When

a neuron’s recent history shows more spiking than the set target value, we want the threshold

to go up. When a neuron’s recent history shows less spiking than the set target value, we want

the threshold to go down.

Here’s how the spike history, Savi for neuron i, works mathematically. Savi decays exponentially

in the absence of spiking, and we see that the units for Savi are: number of spikes per second.

In particular Savi obeys the following differential equation:

dSavi

dt
= −Savi

τSav

However, we see that the model also depends on the instantaneous change in Savi for neuron i

when there is spiking:

∆Savi =
1

τSav
when i spikes
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Therefore Savi will increase by 1
τSav

when i spikes and when i does not spike Savi will continue

exponentially decaying. τSav is a parameter that describes the amount of time (sec) it takes for

a neuron to realize it is not spiking. So we see that the units of 1
τSav

are 1
sec .

In addition to the average spiking vector, there exists a target value indicating how often

we choose for a neuron to spike. Let’s call this St = 10 spikes/sec. Therefore, we choose that

every neuron spikes roughly 10 times a second, which seems very high though reasonable for

our model because it will result in faster convergence. From this, the thresholds should go up

or down depending on the difference between the target spiking, St and the average spiking

history, Sav. Let vmax = be i’s threshold, indicating i’s maximum voltage (mV). We begin with

the following equation:

dvmax

dt
=
Savi − St

τth

Note that this differential equation includes the difference (Sav − St). We see this is exactly

what we want: If Sav > St, then vmax increases, and neuron i spikes less. If Sav < St, then vmax

decreases, and neuron i spikes more. To clarify, we have the following cases:

• Case 1: Sav > St ⇒ Threshold increases and as a result, neurons have less likelihood to

spike.

• Case 2: Sav < St ⇒ Threshold decreases and as a result, neurons have more likelihood to

spike.

• Case 3: Sav = St ⇒ Threshold remains the same and activity stays constant.

How responsive is i’s threshold to recent spiking? Let τth be a parameter that is equal to the

threshold’s response time, where if τth = 100, in a completely dead network, i’s threshold will

go to zero in about 100 seconds. However, this value is slow and might take the network an

unnecessary amount of time to converge. The difficulty in decreasing this time of responsiveness

is that if it is too fast (i.e. τth is too low), then the network will quickly start producing seizures.

Thus, this parameter needs to change over time. Let τth start at 1 sec and converge to τth =
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100 sec. We see our differential equation for τth can be shown as:

dτth
dt

=
100− τth
τrelax

This does what we want it to do because we see that when τth = 100, τth will stop changing, and

if τth > 100, τth will continue to approach 100. In addition, since our parameter τrelax = 10, 000,

τth will continue to increase until it asymptotically approaches 100. We see that the solution to

the differential equation is:

τth(t) = 100− Ce
−t

τrelax

where C is a constant of integration. Ultimately, in our model we want connections between

neurons to change over time, not the individual spiking rates of neurons, because in biology,

every excitatory neuron spikes at a similar rate. We want to see initial chaos in the network and

then convergence. The learning rule we’ve described is necessary in achieving that.



2
Converting Differential Equations to Discrete Time

2.1 Our Approach

In this section, we will convert our continuous model into a discrete-time simulation in MAT-

LAB. Since MATLAB does not do symbolic computation, using difference equations (also called

recurrence relations) is most efficient [14]. In addition, differential equations are not preferred in

implementing this model because in actuality, they are average time differential equations,

which are continuous until biologically-speaking, an instantaneous event occurs. For instance

when a neuron spikes, we use a discrete rule for that instant.

One major difference between the simulation and the biological model is in the fact that in the

model, it is not possible for two neurons to spike at the same time because the spiking differs by

a fraction of a second, but in the simulation this is possible. Ultimately our differential equations

model only really governs behavior between spikes, therefore it is necessary to implement our

discrete model for the time when a neurons spikes.

In order to convert our continuous differential equations into difference equations, we use a

technique called Euler’s Method (to be discussed later). Another difference between these

two approaches is that our discrete model uses vectors and matrices to keep track of values

such as weights, voltage, spiking history, and threshold values of every neuron in the network,

as we are modeling a network consisting of 100 neurons. Finally, additional parameters will be
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introduced using those from the previous chapter. However these will be taking our ∆t step size

into account. We must remember that ultimately, these discrete time equations are really just an

aspect of our simulation of the biological model itself, which in actuality, is purely a differential

equations model.

2.2 Weight Matrix, Spike Vector and Voltage Vector

We start by introducing our method for organizing the synaptic weights between neurons. Let’s

define W as our 100× 100 weight matrix of synaptic connections. Entry wij of W implies that

neuron j is connected to neuron i. Almost each synaptic weight is a randomly generated real

number between 0 and 1, implying that all neurons in the network are connected and for all 100

neurons, we have 10, 000 connections. Another way of stating this is that every neuron represents

a node of a graph and the synaptic connection between neurons represents edges of a directed

graph.

W has a diagonal line of all zeros, implying that no neuron is connected to itself. The line of

zeros (where i = j) indicates that there exist no neuron that is connected to itself, as we see

below:

W =


0 w1,2 w1,3 . . . w1,100

w2,1 0 w2,3 . . . w2,100

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
w100,1 w100,2 w100,3 . . . 0


We see that while w1,2 and w2,1, for example, represent the same connection between two

neurons, w1,2 6= w2,1. Let’s define: s as our 100× 1 spike vector, which consists of only zeros and

ones. At a particular time step value k, if neuron i spikes, then si becomes a 1 at the k+ 1 time

step. If not, si stays as 0. To simplify this, we see that:

si
k+1 =

{
1 vi

k > vmax

0 vi
k < vmax

where v is our 100 × 1 voltage vector, which consists of the voltage values (mV) for every

neuron in the network. vi represents neuron i’s voltage. As we saw in our modeling chapter,

when the voltage in a particular neuron, say vi
k, exceeds the vmax threshold value, vi

k+1 is reset

to 0.
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Let’s multiply W by s, our spike vector:

sk+1 = W sk

This quantity sk+1 gives us the spike record for each neuron in the k + 1 time step, because of

synaptic scaling which we will speak about later. We see this in matrix form:

sk+1 = W · sk =


0 w12 w13 . . . w1j

w21 0 w23 . . . w2j

w31 w32 0 . . . w3j
...

...
...

. . .
...

wi1 wi2 wi3 . . . 0

 ·

s1

s2
...
si


were i = j = 100. Adding the spike record at step k + 1 to the vector of voltages at k gives us

the voltage vector for the k + 1 time step. We prove this more extensively in the next chapter,

converting our differential equations into difference equations using Euler’s method.

vk+1 = rvv
k +W · sk

where W · sk indicates the synaptic input the spiking neuron releases to neighboring neurons.

We see that this difference equation does what we want it to do because in the absence of

spiking, the voltage decreases exponential, though as soon as a neuron spikes and an entry in

the s vector = 1, the voltage for that particular neuron increases.

2.2.1 Implementation in Code

• tmax: runs program for a specified number of seconds of simulation.

• delta t: Indicates the step size.

• maxstep=tmax/delta t: Number of iterations program runs for.

• size: The size of the network is 100 neurons.

• W: Our weight matrix. Weights along the diagonal equal zero, while the rest of the entries

initially are a random rational real number in between zero and one.

• Vreset: Resets voltage back to 0 after neuron has spiked.
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• Wscale: Scales the weight matrix: Wscale = 2
size−1 = 0.0202

• Vscale: Indicates the maximum initial voltage for each neuron, and works as a coefficient

for our initial voltage vector. In our program, Vscale = 0.

• V: Indicates voltage. This is specifically, a 100×1 vector, which contains the initial voltages

of the neurons, v and then gets updated as the program runs.

• S: The initial 100 × 1 spike vector, which is essentially input in this model. As explained

previously, s consists of zeros and ones. This indicates the spiking history where a zero

indicates there was no spike and a one indicates there was a spike. s initially contains all

zeros.

2.3 Leaky Integrate and Fire

As stated earlier, using Euler’s method, we see that the discrete time model is really just an

aspect of the simulation of the model itself. Our mathematical model mostly comprises of just

differential equations. We start with our differential equation from Chapter 1.

dvi
dt

= − vi
τv

where vi represents the voltage of neuron i and τv implies that neuron i takes 10 ms to decay by

a factor of e. In our model, τv = .01. This equation, above is very simplified because it purely

describes this decay in the absence of spiking or between spikes, hence the fact that it is a

average time differential equation. It does not take into account the instantaneous input

neuron i receives from it’s neighbors.

We can rewrite the above differential equation in vector form, where now instead, we are

looking at the voltages of all 100 neurons in our network. We have:

dv

dt
= − v

τv

Now, let’s convert this into a difference equation using Euler’s method. We can write our change

in voltage (dv) as the difference between two subsequent time steps determined by the step size
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∆t. We write this as: (vk+1 − vk). In addition we can write our dt as a change in time: simply,

∆t. Therefore, we have:

vk+1 − vk

∆t
= −vk

τv

We can simplify this to:

vk+1 = (1− ∆t

τv
)vk

Let rv = 1− ∆t
τv

. Therefore, we have:

vk+1 = rvv
k

We see that rv is just an aspect of our simulation because it depends on ∆t, whereas τv represents

the fact that it takes neuron i 10 ms for its voltage to decay by a factor of e. Therefore, we set

τv = 0.01 sec and ∆t = .001:

rv = 1− .001

.01
= 0.9

This serves as the perfect decay constant for vk.

Now, what does our discrete model look like where neurons are spiking? Again, let’s look at

the rules for our spike vector, where i indicates any given neuron:

si =

{
1 if neuron i just spiked

0 otherwise

We can now implement, W · sk, the sum of synaptic input released by spiking neurons to

neighboring neurons, into our difference equation. To simplify this, let’s look at it in component

form, where vi
k = neuron i’s voltage at the kth time step, and wijsj indicates the sum of the

synaptic input from neuron j to neuron i in the kth time step.

vi
k+1 = rvvi

k +

100∑
j=1

wijsj
k

Rewriting our component equation into vector form, we have:

vk+1 = rvv
k +W sk

We see that, like our differential equation, this difference equation does exactly what we

wanted it to do because every time step v decays by a rate of rv. This means that if neuron j
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spikes, then vecsj will be equal to 1 and wij will be added to the voltage vector of every neuron

in the network (i.e. every neuron j is connected to). In the case that j doesn’t spike, the entries

in voltage vector will decrease because they haven’t gotten any input.

2.3.1 Implementation in Code

Many of these variables follow from the last section.

Old Variables (from last section):

• tmax: runs program for a specified number of seconds of simulation.

• delta t: Indicates the step size.

• maxstep=tmax/delta t: Number of iterations program runs for.

• size: The size of the network is 100 neurons.

• W: Our weight matrix. Weights along the diagonal equal zero, while the rest of the entries

initially are a random rational real number in between zero and one.

• Vreset: Resets voltage back to 0 after neuron has spiked.

• Wscale: Scales the weight matrix: Wscale = 2
size−1 = 0.0202

• Vscale: Indicates the maximum initial voltage for each neuron, and works as a coefficient

for our initial voltage vector. In our program, Vscale = 0.

• V: Indicates voltage. This is specifically, a 100×1 vector, which contains the initial voltages

of the neurons, v and then gets updated as the program runs.

• S: The initial 100 × 1 spike vector, which is essentially input in this model. As explained

previously, s consists of zeros and ones. This indicates the spiking history where a zero

indicates there was no spike and a one indicates there was a spike. s initially contains all

zeros.

New variables:
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• τv: Time it takes neuron i for its voltage to decay by a factor of e. We set τv = 0.01 sec

• r V: the decay factor of voltage for each neuron at each time step. rv = 1 − ∆t
τv
⇒ rv =

1− .001
.01 = 0.9

• V=r V*V+W*S: The recurrence relation in our for-loop. WS creates a 100× 1 vector, which

we add accordingly to our voltage (v) vector.

2.4 Current-Based Synaptic Transmission

Using Euler’s method, we can convert the following differential equation describing current and

voltage into another recurrence relation. From Chapter 1, we have:

dvi
dt

=
−vi
τv

+ vrci

in which vres, which stands for voltage response, a parameter which controls how much current

is released, and τv is the time constant for the decay. We rewrite our differential equation as:

vi
k+1 − vik

∆t
=
−vik

τv
+ vrci

k

vi
k+1 − vik = −vik ·

∆t

τv
+ (vr ·∆t)ci

vi
k+1 = vi

k(1− ∆t

τv
) + (vr∆t)ci

Let rv = 1− ∆t
τv

and vres = vr∆t. We can write our final difference equation as:

vi
k+1 = rvvi

k + vresci
k

We can write this in vector form as:

vk+1 = rvv
k + vresc

k

We can also use Euler’s method to convert our current differential equations into recurrence

relations, however this gets slightly more complex. We have the current differential equation:

dci
dt

=
−ci
τc
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where τc is the time constant for the current decay, and the current decays by 1
τc

.

However, this is considered an average time differential equation because the model also de-

pends on the instantaneous change in current for neuron i, which we explained previously was:

∆ci = wij when j spikes

where τc is the time constant for the decay. After this instantaneous change, voltage resumes

changing continuously.

So how do we incorporate both the differential equation and this condition into our difference

equation? Using Euler’s method, we can write the current equation describing a particular neuron

i as:

ci
k+1 − cik

∆t
=
−cik

τc

ci
k+1 − cik = −(

∆t

τc
)ci

k

ci
k+1 = ci

k − (
∆t

τc
)ci

k

ci
k+1 = (1− ∆t

τc
)ci

k

Let’s add the instantaneous change of current to this difference equation. This guarantees that

when neuron j spikes, each ci immediately increases by wij , or the sum of synaptic inputs from

neighboring neurons. We have:

ci
k+1 = (1− ∆t

τc
)ci

k +

100∑
j=1

wijsj

where as previously mentioned, τc is the time constant for the decay. Let 1 − ∆t
τc

= rc. By

substitution, we have:

ci
k+1 = rcci

k +

100∑
j=1

wijsj

We see this works because when neuron j spikes, each ci immediately increases by wij . Therefore,

we see that rv is necessary for the releasing of current. When there is no current, we see that

when neuron j spikes, each vi immediately increases by wij , as mentioned in the previous section.

We can rewrite our current recurrence relation in vector form as:

ck+1 = rcc
k +W s
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2.4.1 Implementation in Code

• r C = 1-delta t/T c: the decay factor for the current for each neuron at each time step.

The decay factor changes depending on our ∆t value. rc = 1−.001
.01 = .9

• V r=exp(1)/T v: vr is the max point of the V curve (solution to the
dv

dt
differential equa-

tion).

• Vresponse = V r*delta t: Controls how much current is added to the voltage in a given

time step.

• C: Our initial vector of currents consisting of all zeros.

• C=r C C +(1/size)*W*S: Our recurrence relation for current. This formula does not in-

clude input, as we will see later in this chapter.

• V=r V*V+Vresponse*C: Our recurrence relation including current.

2.5 Spike Time Dependent Plasticity

As mentioned in the first chapter, spike time dependent plasticity (STDP) is a generalization

of Hebbian plasticity. We can think of this as a type of reward system for spiking neurons; it

adjusts the strengths of connections and increases those connected to neurons who are spiking

often.

We start with our differential equation, showing the decaying trace for spiking over time:

dpi
dt

=
−pi
τp

We can now rewrite our differential equation as a recurrence relation, where p is a vector. Every

entry in the vector corresponds to a particular neuron, i’s decaying trace for spiking:

pk+1
i − pki

∆t
= −pi

k

τp

pk+1
i − pki = −∆t

τp
pki
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pk+1
i = pki −

∆t

τp
pki

pk+1
i = (1− ∆t

τp
)pi

k

However, as we say in our model, there is an instantaneous component to our decaying trace.

When a neuron spikes, the spiking trace increases by 1, corresponding to the entry in our s spike

vector. If not, p continues to exponentially decrease. We can write the instantaneous change in

spiking trace for neuron i as:

∆pi = 1 when j spikes

Therefore, we need to show this instantaneous change of the spiking trace in our difference

equation, so we add an additional term: the corresponding entry of our s vector (consisting of

only zeros and ones)

pk+1
i = (1− ∆t

τp
)pi

n + si

We see that this does what we want because, naturally p decays on its own, though when i

receives input from neighboring neurons, pi increases by 1.

Let (1− ∆t
τp

) = rp. By substitution, we have:

pk+1
i = rppi

k + si

We can write this in vector form:

pk+1 = rpp
k + sk

How big should p be? Let’s add St, our target spiking rate from Chapter 1, to our decaying

trace differential equation to best approximate spiking in the network:

dp

dt
=
−1

τp
p + St

Therefore, we see that we can find the equilibrium by setting the differential equation equal

to zero. We have:

−1

−τp
p + St = 0
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p = τpst ≈ (21.7)(10) ≈ 217

so this is the average p value. Let’s make a new variable Wchange = .0001, where Wchange

represents the amount we expect a weight to change with a spike. Meaning, when there is a

spike, the average weight change is .0001. Since the weights start out at .01 (for 100 neurons),

this means it takes about 100 bad spikes for one neuron to start ignoring input from its neighbor.

Therefore, we define:

Wspike =
Wchange

τpst

where τp represents the e-folding time in STDP, we have it decaying by a factor of 10 in about

50 milliseconds. As we know the weights are starting at roughly .01 because of synaptic scaling,

which we will observe later.

Now, how do we connect these two equations to our matrix of weights, W in a way that

properly simulates our model? Remember, we can break STDP down into two categories: Long

Term Potentiation (LTP) and Long Term Depression (LTD). LTP refers to the rule that if a

neuron spiked in the previous time step, then the already-existing strong inputs to that neuron

become stronger. LTD refers to the rule that if a neuron didn’t spike in the previous time step,

then the already-existing weak inputs from that neuron get weaker.

Therefore, we can deduce that when neuron j spikes, something instantaneous happens:

• wji immediately increases by wspikepi

• wij immediately decreases by wspikepi

And when neuron i spikes,

• wij immediately increases by wspikepj

• wji immediately decreases by wspikepj

Examine the expression below:

wspike(si
kpj

k − sjkpik)
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i j

Figure 2.5.1: Neuron i (yellow) spikes,
and this causes wij , the connection
from neuron j to neuron i to increase.
This causes wji, the connection from
neuron i to neuron j to decrease.

i j

Figure 2.5.2: Neuron j (yellow) spikes,
and this causes wij , the connection
from neuron j to neuron i to decrease.
This causes wji, the connection from
neuron i to neuron j to increase.

We see that if j spiked, meaning sj = 1 and si = 0, then the expression above follows as:

= wspike(0 · pjk − 1 · pik)

= −wspikepi
k

So for a spiking j, we’ve shown some sort of decrease of wspikepi
k. Consider the case when i

spikes, meaning si = 1 and sj = 0, then the expression follows as:

wspike(si
kpj

k − sjkpik)

= wspike(1pj
k − 0 · pik)

= wspikepj
k

So for a spiking i neuron, we’ve also shown some sort of increase of wspikepj
k. Adding this

expression to our weight, wij will give us a difference equation for all inputs from neuron j to

neuron i.

wij
k+1 = wij

k + wspike(si
kpj

k − sjkpik)

In our model,

wspike =
wchange

τp · St
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wspike =
.0001

0.0217(10)

wspike = .00046083

We see that synaptic weight (wij) has an effect on how much current is released. When neuron

j spikes, for example, ci increases by:
0 if wij ≤ 0

cspikewij if 0 < wij < 1

cspike if wij ≥ 1

We can rewrite our difference equation in vector form as:

W k+1 = W k + wspike(s
k(pk)> − pk(sk)>)

The transpose allows us to multiply our two existing column vectors so that we can determine

whether we add or subtract a value from W k.

2.5.1 Implementation in Code

• Wchange=.0001: Used for computing.

• Wspike=Wchange/(T p*St): Used for change in synaptic weight if a neuron spikes. wspike =

.00046083

• r p=1-(delta t/T p) Spike Decaying Trace for STDP. rp = 0.9539.

• W(W<0)=0: Guarantees that all weights will be positive.

2.6 Synaptic Scaling

Again, to control the speed in which the synaptic drive increases and the neuron spikes [11],

let’s normalize all of the inputs to neuron i, so that they don’t exceed a particular value, which

we set as being equal to one. So all the inputs to i are scaled by 1
sum of inputs to i . In the case that

there exist a sum of zero inputs to i, we set the sum of all inputs to be equal to one, guaranteeing

that eventually the sum of all inputs to i, does not change as a result of synaptic scaling.
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This involves us constantly scaling our W matrix every time-step of our simulation. This

differs from our model where synaptic scaling occurs after every spike. The first step in synaptic

scaling is summing all of the inputs to i. To do this, we sum all of the rows in W . That looks

something like this:

Let a be a vector of all ones:

a =


1
1
...
1


Let’s define:

m = Wa

This equals the sum of all of the rows of W , representing the inputs to i. Therefore, we have:

m = Wa =


∑100

i=1∑100
i=2
...∑100
i=100


And then, component-wise, we see that

mi =
100∑
j=1

wij

We set mi 6= 0, because in that case we would be dividing by zero. In the case that mi = 0, we

change mi to equal 1.

Next, dividing every entry in W by the sum of its particular row, will guarantee that the sums

of the rows will add up to 1.

wij
k+1 =

wij
k

mi

This means that the program is constantly readjusting so that
∑100

j=1wij = 1. We can convert

this into vector form:

W k+1 =
W k

m

2.6.1 Implementation in Code

• v=ones(size,1): Creates an initial 100× 1 column vector of ones that is used to sum the

rows of W . v′ indicates the transpose of v in MATLAB.
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• m=W*v: Multiplying W by our vector of ones gives us a 100 × 1 column vector, m, of the

sums of the rows in W .

• m(m==0) = 1: Guarantees that no entry in m is equal to zero because in this case we would

get a divide by zero error in the code.

• m=1./m: Takes the reciprocals of all of the elements in m.

• W=W.*(m*v’): Since MATLAB does not execute component-wise division, here we are using

component-wise multiplication to turn our new m vector of reciprocals into a matrix, in

which the column vector gets repeated 10 times horizontally. This operation makes it

possible for us to multiply every entry in our W matrix by this new scaling value in our

m*v’ matrix.

2.7 Input

As we already discussed in Chapter 1, our expanding disc will be overlaid on top of a 10 × 10

graph of neurons, where each vertex represents a neuron. We see that the point (10, 1) on the

grid corresponds to neuron 1 in our network, (9, 1) for neuron 2, (8, 3) for neuron 3, etc. For the

next ten neurons, we have that (10, 2) corresponds to neuron 11, (10, 3) for neuron 12, etc.

We define our input vector as a vector that gives us the times in which a neuron gets input.

input is a vector of all zeros, initially. In our simulation it is a 20, 000× 1 column vector which

results in our disc expanding in roughly 5 seconds of real time, though running for 20 seconds

of simulation time. We see this because the dimension of input is determined by:

=
⌊20

τm

⌋
=
⌊ 20

.001

⌋
= 20, 000

where τm is our rate of disc expansion. We are taking the floor function of the above value so

that we have an integer value corresponding to the length of the input vector.

The program works as such: Let (xc, yc) be the randomly chosen center of a disc, where

1 < xc, yc < 10 so that the center remains within our pixelated 10 × 10 grid, though never

touches the edges.
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Figure 2.7.1: The magenta point indi-
cates (xc, yc) our randomly selected
center of the expanding disc. Red dots
show neurons that have already re-
ceived input. Black dots show neurons
that haven’t already received input.

Figure 2.7.2: The caption of the figure
to the left applies here. In this figure,
we see the disc has now expanded since
the last iteration, so that the radius
is bigger implying that more neurons
have received input.

Let’s call our graph, G. Therefore, for every vertex on our grid (x, y) ∈ G we are finding its

distance from the center point (xc, yc). Using the distance formula, we have that: a = (xc− x)2,

the horizontal distance and b = (yc− y)2, the vertical distance from the center point. Therefore,

using substitution we have:

d =
√
a+ b

Then using our scaling factor, to control the rate in which the disc expands, we modify accord-

ingly:

d =

√
a+ b

Tm

Next, we find use the floor function again to find the value of the distance, to guarantee that

this will be an integer.

d =

⌊√
a+ b

Tm

⌋

Since d is an integer, this will help us determine which entry to change in our input vector:

input(d) = 10(x− 1) + y
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If (x, y) = (9, 2), this means that d = 379 using the equations for a and b we previously

mentioned. It follows that the 379th entry of input will become the value: 10(9− 1) + 2⇒ 82,

corresponding to the 82th neuron in our network.

Simply speaking, this value will tell us that after roughly 379 iterations, neuron 82 will get

input. In other words:

c379(82) = c378(82) + 1

where c represents our current vector. When the disc has filled the whole input field, the program

starts over.

2.7.1 Implementation in Code

• global delta t T m size n k kreset maxZ input: Keeps these listed variables as

global variables in both this function and our original program.

• kreset = k-1: creates new system for iterating through the disc function, such that 1 ≤

k − kreset ≤ 20, 000.

• maxZ = 0: An initial condition.

• input = zeros(floor(20/Tm),1): initial input vector which keeps track of the times in

which the neurons receive input.

• d = floor(sqrt(a+b)/Tm): Computes the distance of all (x, y) points from the random

center.

• input(d,:) = (x-1)*10 + y: Reorganizes entries of input vector so that they specify

which neuron should get input for a given time step (d).

• kreset=1: so that k − kreset > 0

• disc1(): the name of our disc function. We call this function in the main program under

the condition that k-kreset==maxZ.
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• C(input(k-kreset)) = C(input(k-kreset))+1: Here is where the input gets added to

the current vector, c under the condition that input(k-kreset) = 0 . The current in-

creases by 1 every time a neuron receives input.

2.8 Changing the Thresholds

As we saw in Chapter 1, we can write our differential equation for average spike history as:

dSavi

dt
= −Savi

τSav

Savi decays exponentially but increases every time neuron i spikes. We can notate this instanta-

neous change in the average spike history for neuron i as:

∆Savi =
1

τSav
when i spikes

Let’s first begin by using Euler’s method to convert our differential equation into a recurrence

relation. We can represent the change in time, dt as ∆t and Sav as the difference between two

subsequent iterations of the program, k and k + 1. Therefore, we have:

Savi
k+1 − Savi

k

∆t
= −Savi

k

τSav

Savi
k+1 − Savi

k = − ∆t

τSav
Savi

k

Savi
k+1 = Savi

k − ∆t

τSav
Savi

k

Savi
k+1 = (1− ∆t

τSav
)Savi

k

Now, we can implement the instantaneous component to our difference equation. For every time

neuron i spikes, our Sav vector increases by 1
τSav

. Therefore, it suffices to add an additional term

to our difference equation. We have:

Savi
k+1 = (1− ∆t

τSav
)Savi

k +
si
k

τSav

where si represents an element in our spike vector, equal to one in the case that neuron i did

spike, and zero in the case that neuron i did not spike. To simplify this, let rSav = 1− ∆t
τSav

. By
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substitution, we have:

Savi
k+1 = rSavSavi

k

where in our program,

rSav =
1− .001

1

= 0.9990

We can write the above equation in vector form as:

Sav
k+1 = rSavSav

k s

τSav

Now let’s examine our threshold differential equation:

dvmaxi

dt
=

1

τthSt

(Savi − St)

where vmax is our threshold for neuron i, thres measures how long it takes for threshold to go

from 1 to 0 in the absence of any spiking and St is our target spiking rate = 10 spikes per second.

We use Euler’s method to convert this into a difference equation. We have:

vmax
k+1 − vmax

k

∆t
=

1

τthSt

(Sav − St)

vmax
k+1 − vmax

k =
∆t

τthSt

(Sav − St)

vmax
k+1 = vmax

k +
∆t

τthSt

(Sav − St)

Let ∆t
τthSt

= thres. We have:

dvmaxi

dt
=

1

τthSt

(Savi − St)

This equation works the way we want because when the average spiking rate of a neuron is

greater than the target spiking rate, vmax will increase by thres, resulting in the following:

Case 1: Sav > St ⇒ Threshold increases and as a result, neurons have less likelihood to spike.

Case 2: Sav < St ⇒ Threshold decreases and as a result, neurons have more likelihood to

spike.

Case 3: Sav = St ⇒ Threshold remains the same and activity stays constant.
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2.8.1 Threshold Response Time

We create an exponential function for τth, our response time for the thresholds which will begin

at 1 and exponentially increase to 100 throughout the simulation. 100 seconds means that in

a completely dead network, the thresholds will go to zero in about 100 seconds. We define the

following, τrelax as how long it takes for τth to get to 100, where τrelax = 10, 000 seconds. Let’s

begin by defining that when t = 0, a constant C = 99, which guarantees that:

dτth
dt

=
C

dt

And since, we define: τth = 100− C ⇒ C = 100− τth

Therefore, we can rewrite our differential equation as:

dτth
dt

=
100− τth

dt

We see that the solution to the differential equation is:

τth(t) = 100− Ce
−t

τrelax

And

100− τth(t) = Ce
−t

τrelax

Converting this to a difference equation, we have:

dτth
dt

=
100− τth

dt

τk+1
th − τkth

∆t
=

100− τkth
τrelax

τk+1
th − τkth =

100∆t

τrelax
− τkth∆t

τrelax

τk+1
th =

100∆t

τrelax
− τkth∆t

τrelax
+ τkth

τk+1
th =

100∆t

τrelax
+ τkth(1− ∆t

τrelax
)

τk+1
th = 100− (1− ∆t

τrelax
)(100− τkth)
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Let rrelax = 1− ∆t
τrelax

. We have:

τk+1
th = 100− rrelax(100− τkth)

We see this exponential decay with:

100− τk+1
th = rrelax(100− τkth)

This guarantees that the threshold response time is faster initially (1 second) and then relaxes

to 100 seconds over the course of the simulation. This assures that the network isn’t hyperactive.

2.8.2 Implementation in Code

• T th=1: The threshold response time begins at 1 second and then relaxes to 100 seconds.

• T relax=10000: A parameter of the model, τrelax indicates how long it takes for τth to get

to 100

• r relax=1-delta t/T relax: A parameter of the simulation, rrelax is the “decay” factor

for the threshold response time.

• T sav=1: For every time neuron i spikes, our Sav vector increases by 1
τSav

.

• r sav=1-delta t/T sav: A parameter of the simulation, where rSav is the decay factor for

the average spiking vector.

• St=10: target spiking rate, which is a comparison value for the spiking average (Sav) vector.

• Sav=St*ones(size,1): The initial spiking average vector, in which every neuron’s averages

spiking value begins at the target spiking rate (St = 10).

• thresponse=delta t/(T th*St): Controls the responsiveness of the changing threshold.

• threshold: Refers to the initial threshold vector (of size 100× 1), also called vmax in our

model. Each element corresponds to the threshold value for each neuron. Initially starts

at threshold=1.
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• T th=100-r relax*(100-T th): The threshold response time eventually relaxes from 1 to

100 seconds.

• threshold=threshold+thresponse*(Sav-St): This recurrence relation guarantees that

if Sav > St then the threshold will increase for a particular neuron. If Sav < St, then the

threshold will decrease for that neuron.

• Sav=r sav*Sav+S/T sav: If a neuron didn’t spike, since Sav is exponentially decaying, Sav

will continue to decrease. If a neuron did spike, then Sav will increase. If Sav = St then the

threshold level will remain constant. If Sav, St, then the threshold will decrease causing

the neuron to ’spike’ more.

• Sav(Sav>2*St)=2*St: guarantees that guarantees that Sav will never be greater than 20

spikes per second.



3
Results

After running my simulation multiple times, slightly adjusting parameters, I found some notice-

able differences in my network over time. While I didn’t see any clear convergence to a strongly

identifiable structure, I did notice that the majority of the synaptic weights converged to zero.

For instance, running the program for 400, 000 seconds (approximately 111 hours of simulation,

though taking only 19.6017 hours in real time) and setting the initial τth = 1, I found that

1, 898 of the weights converged to precisely zero, comprising about 18.98% of the networks’s

connections. In addition, the majority of the connections that didn’t die got stronger. We saw

this in each of our four final simulations despite different τth values and durations of simulation.

In creating the below graphs, I designed a filter which would sort through the W matrix of

synaptic weights depending on a threshold value I specified. All weights equal to the threshold

value or higher than it, would get rounded to 1 and remain on the graph. All other weights

would be rounded to 0 and would be omitted from the graph. The specific thresholds for each

graph are specified in the figure comments below.

These graphs look interesting even after 10 seconds of simulation, when the network has just

received two rounds of visual input. We see very clearly, that the neurons who just received input

and spiked have a significantly large number of connections to other neurons. In particular, these

neurons which we will call “popular” neurons, are spiking a lot and then sending large amounts
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Figure 3.0.1: τth = 1, 200, 000 sec simulation, threshold for figure = .072

Figure 3.0.2: τth = 10, 200, 000 sec simulation, threshold for figure = .05
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Figure 3.0.3: τth = 1, 400, 000 sec simulation, threshold for figure = .082

Figure 3.0.4: τth = 10, 400, 000 sec simulation, threshold for figure = .07
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Figure 3.0.5: τth = 1, 200, 000 sec simulation, threshold for figure = .055

Figure 3.0.6: τth = 10, 200, 000 sec simulation, threshold for figure = .055
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Figure 3.0.7: τth = 1, 400, 000 sec simulation, threshold for figure = .05

Figure 3.0.8: τth = 10, 400, 000 sec simulation, threshold for figure = .05
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of input to their neighbors. This is exactly how we intended our model to work. When a neuron

spikes, it sends input to its neighbors. Interestingly enough, when the simulation is run for a

longer duration, we see that neurons react less to incoming input, as the structure of the graph

seems to resemble more of a grid-like pattern. Therefore, there is reason to suspect that the

nodes of these graphs with significantly more edges than others become “popular” neurons at

the very beginning of the simulation. Over time, neurons react less strongly to their spiking

neighbors and the “learning” process plateaus. We can view this as a type of desensitizing.

However, this is just an observation and has not been entirely confirmed yet. In order to do

this, we would need to record the weight matrices throughout the entire simulation to see the

exact changes.

My resulting graphs of connections illustrate that a patterned visual stimulus is enough in-

formation for the neurons to, in a sense, “figure out” that they are organized in a grid and

eventually use this point of reference to organize themselves into a grid. While my graphs don’t

resemble precise grid-like structures, they appear to be much more grid-like than in the begin-

ning of the simulation where every neuron was connected, showing that the existing edges are

definitely converging to some stable point.

We implemented two different τth constant values: τth = 1 and τth = 10, to see if the later

would help our network converge faster. From the graphs below, this hypothesis seems like an

accurate one, as these are more sparse.

If I had more time, I would consider playing around with the parameter values to investigate

to what extent I could get my graphs to look precisely like grids. In addition, I’d like to keep a

record of synaptic connections from the beginning to the end of the simulation to track exactly

how the network self-organizes. While I initially tried this, it gave such a considerable lag to

the program, that I unfortunately decided to disband it. In addition, I’d like to continue testing

which learning rules are most important in the convergence towards this stable state, by omitting

one at a time and seeing if the graphs converge to the same topological structure.
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Regardless, our graphs illustrate the maturation of a previously unrefined network and give us

insights into how neural networks learn during their critical period of development. Our graphs

give even more reason to believe that brains are plastic and ever-changing. We can determine

that it is more likely than not that an infant’s brain comprises of random connections that

change as a response to external stimuli, rather than a prefixed architecture of connections.
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Appendix

3.1 Disc Input Function

function [ ] = disc1()

global delta_t T_m size n k kreset maxZ input

kreset = k-1;

x_c=rand*9+1;

y_c=rand*9+1;

maxZ = 0;

input = zeros(floor(20/T_m),1);

for x=1:n

for y=1:n

a = (x_c-x)^2;

b = (y_c-y)^2;

d = floor(sqrt(a+b)/T_m);

input(d,:) = (x-1)*10 + y;

if d > maxZ

maxZ = d;
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end

end

end

end

3.2 Final Simulation Program

clear all

%profile ON

% This program simulates a network of a specified number of neurons using

% a Current-Based LeaKy Integrate and Fire Model. Each neuron is connected

% to all neurons in the networK, except itself via randomly generated

% synaptic weights. Input in our difference equation is negligible.

changingthreshold=1; %1 implies that threshold is changing, 0 implies that threshold

is constant.

currentmodel=1; %1 runs Leaky Integrate with Current model, 0 runs simple Leaky Integrate

and Fire model

saverandomness=0; %1 saves random variables from the last run, 0 generates new

random variables.

global delta_t T_m size n k kreset maxZ input

delta_t = 0.001; %time step in seconds, delta_t is equal one millisecond

T_m = delta_t; %speed of disc expansion

size = 100; % number of neurons in networK

n = sqrt(size);
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kreset=1;

maxZ=0;

input=zeros(floor(20/T_m),1);

x_c=rand*9+1;

y_c=rand*9+1;

Z=zeros(sqrt(size));

tmax = 200000; %runs program for 200,000 seconds

maxstep=tmax/delta_t; % maximum length of iterations

% neuron setup

T_v=.01; %the Voltage for a single neuron decays by a factor of e in 100ms.

T_c=.01; %the Current for a single neuron decays by a factor of e in 100ms.

r_v = 1 - delta_t/T_v; % decay factor of voltage for each neuron at each step

Vreset = 0; % resetting value of voltage after spiking

r_c = 1 - delta_t/T_c; % decay factor of current for each neuron at each step

V_r=exp(1)/T_v; %V_r is the max point of the V curve (solution to dV/dt).

Vresponse=V_r*delta_t; % regulates how much current is released

% random weighted adjacency matrix

if saverandomness==1 %1 saves random variables from the last run, 0 generates new random

variables.

s = rng;

end

Wscale=2/(size-1); % scaling value of W adjacency matrix

W=Wscale*rand(size); % creates an adjacency matrix of randomized synaptic weights

for i=1:size

W(i,i)=0; % weights along the diagonal should be zero
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end

% initial conditions

Vscale=0; % maximum initial voltage for each neuron

V = Vscale*rand(size,1); % initial vector of voltages

S=zeros(size,1); % initial S vector (essentially input)

C=zeros(size,1); % initial vector of currents (start with 0 current)

% parameters for threshold change

if changingthreshold==1 %1 implies that threshold is changing, 0 implies that threshold

is constant.

T_th=1; %Threshold response time, begins equal to 1

T_relax=10000;

r_relax=1-delta_t/T_relax;

T_sav=1; %in seconds

r_sav=1-delta_t/T_sav;

St=10; % S target: the comparison value for Sav vector

Sav=St*ones(size,1); % S average: initial Sav starts at St

thresponse=delta_t/(T_th*St); % responsivity of the threshold

threshold = ones(size,1); % initial thresholds start at 1

else

threshold=1; % in the case where changingthreshold=0, the threshold is set to a

constant value for all neurons.

end

%STDP

p=zeros(size,1);
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%precord = ones(size,maxstep);

v=ones(size,1); %used for synaptic scaling

T_p=-.05/log(1/10); %e-folding time

r_p=1-(delta_t/T_p);

Wchange=.0001;

Wspike=Wchange/(T_p*St);

% record keeping, for debugging and inspection only

Srecord=zeros(size,1);

Vrecord=[zeros(size,1),V];

numgraphs=4;

Vgraph=[zeros(numgraphs,1),V(1:4)];

Crecord=ones(size,1);

Savrecord=zeros(size,1);

T_threcord=zeros(maxstep,1);

threcord=zeros(size,1);

W1=zeros(size);

W2=zeros(size);

W3=zeros(size);

W4=zeros(size);

W5=zeros(size);

record1= maxstep/20000;

record2= maxstep/2000;

record3= maxstep/200;

record4= maxstep/20;

record5= maxstep/2;



58 3. RESULTS

%Input

%I=zeros(size,1);

N=zeros(size,1);

if saverandomness==1 % holds random variables from previous run.

rng(s);

end

for k = 1:maxstep

if k-kreset==maxZ

disc1();

end

if currentmodel==1

%if input(k-kreset) ~= 0

% I(input(k-kreset)) = I(input(k-kreset))+1;

%N(input(k-kreset)) = N(input(k-kreset))+1;

%end;

%reshape(N,[10,10]) %for viewing input/debugging

% N = N*0.99;

C= r_c*C+W*S;

if input(k-kreset) ~= 0

C(input(k-kreset)) = C(input(k-kreset))+1;

% N(input(k-kreset)) = N(input(k-kreset))+1;

%reshape(N,[10,10])

end
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%Crecord=[Crecord,C]; %for debugging

V=r_v*V+Vresponse*C;

else

V=r_v*V+W*S;

end

%Vrecord(:,k)=V; %Vrecord=[Vrecord,V]; % for debugging

%Vgraph=[Vgraph,V(1:4)];

if changingthreshold==1

T_th=100-r_relax*(100-T_th);

threshold=threshold + thresponse*(Sav-St);

%threcord(:,k)=threshold; %for debugging

end

S(1:size) = 0;

S(V>threshold) = 1;

%Srecord=[Srecord,S]; % for debugging

if changingthreshold==1

Sav=r_sav*Sav+S/T_sav;

Sav(Sav>2*St)=2*St; %guarantees that Sav will never be more than 20

%T_threcord(k)=T_th;

%Savrecord=[Savrecord,Sav];

end
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%STDP

p=r_p.*p + S;

W=W+Wspike*(S*p’-p*S’);

%Weight Cut off, gurantees that weights are between 0 and 1

W(W<0)=0;

%Synaptic Scaling

m=W*v; %sums the columns of W

m(m==0) = 1;

m=1./m;

W=W.*(m*v’);

%for b = 1:size

% W(b,:) = W(b,:) / m(b);

%end

V(V>threshold)=Vreset;

%record keeping of W matrix after select time intervals

% if k==record1;

% W1=W;

% end

%

% if k==record2;

% W2=W;

% end
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%

% if k==record3;

% W3=W;

% end

%

% if k==record4;

% W4=W;

% end

%

% if k==record5;

% W5=W;

% end

end
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