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Abstract

In this paper we consider the statistical properties of random walks on Thompson’s
group F . We use two-way forest diagrams to represent elements of F . First we describe the
random walk of F by relating the steps of the walk to the possible interactions between
two-way forest diagrams and the elements of {x0, x1}, the finite generating set of F , and
their inverses. We then determine the long-term probabilistic and recurrence properties
of the walk.
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1
Introduction

Thompson’s groups F , T and V were introduced by Richard Thompson in 1965 in connec-

tion with his work in logic. He and McKenzie used them to construct finitely-presented

groups with unsolvable word problems. This project exclusively considers Thompson’s

group F .

Thompson’s group F appears in many di↵erent and diverse areas of mathematics. Obvi-

ously, it is prominent in group theory. It also comes up in areas as diverse as cryptography

[10] and, less surprisingly, combinatorics.

Thompson’s group F is fairly widely researched and is still a very active area in math-

ematics. There are still some important unanswered questions. Chief among these is

whether Thompson’s group F is amenable.

Thompson’s group F has many di↵erent representations which allows for a variety of

points of view in studying the properties of the group. in addition to the standard group

presentation, there are also piecewise-linear homeomorphisms, rectangle diagrams, rooted

binary trees and forest diagrams. Each of these logically equivalent representations provide

a di↵erent perspective on this group. In this project, we will focus on the forest diagram

representation and its relation to the finite-generator presentation of F .
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Combinatorially, the finite group presentation of F is

F = hx0, x1|x�1
1 x2x1 = x3, x

�1
1 x3x1 = x4i,

where

x2 = x

�1
0 x1x0, and x3 = x

�2
0 x1x

2
0, and x4 = x

�3
0 x1x

3
0.

Another way of looking at Thompson’s group is by way of piecewise linear homeomor-

phisms. These are homeomorphisms from the interval [0, 1] to [0, 1]. The functions satisfy

these four conditions:

1. The function is piecewise linear.

2. The function is di↵erentiable except at finitely many points.

3. Each of these points is a dyadic rational number, i.e. a rational number whose de-

nominator is a power of 2.

4. On the intervals of di↵erentiability, the derivatives are powers of 2.

In this case, the elements of the group are simply the homeomorphisms themselves and

the operation is the composition of functions. It is fairly easy to see that, since the f0(x)

is always a power of 2, f(xi) where xi is a point of non-di↵erentiability, is also a dyadic

rational number. Therefore any f

�1 is well-defined and so every element of this group has

an inverse (geometrically, a reflection about the line y = x). The identity is simply the

line f(x) = x. This group is a subgroup of the group of all homeomorphisms from [0, 1]

to [0, 1].

Thompson’s group may also be interpreted geometrically by way of a rectangle diagram

representing f(x). These diagrams simply have the top representing the pre-image of the

above functions and the bottom representing the image of the function. [2]

Example 1.0.1. In this paper, we will exclusively consider the two-way forest diagram

interpretation of the elements of F [BB]. Forest Diagrams have been created as an alter-

native representation of F . Belk presents two-way forest diagrams as a way of presenting

elements of this group that interact particularly well with the finite generating set {x0, x1}.
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A two-way binary forest is a sequence (· · · , T�1, T0, T1, · · · ) of finite binary trees with a

pointer at T0, the Base tree. A trivial tree, one with no branches and a single leaf, is

represented as a dot. (Dots represent terminal leaves.) The simplest non-trivial tree is

represented as a caret placed on top of two adjacent dots. Starting from the identity, the

Base caret is the result of left-multiplication by x1.

Below is a visual example of a typical Forest Diagram.

Figure 1.0.1. A typical forest diagram.

⌃

Amenability of Thompson’s group F has been investigated through computational ex-

plorations which examine the long term behavior of of random walks on Thompson’s

group F [4]. Results from these explorations remain statistical and speculative, mainly

due to computational constraints and because of the unfeasibility of exhaustively sam-

pling random walk trajectories even of modest length. No closed-form expressions of the

long term probabilities are presented. Simulation projections and possible lower bounds

are presented.

In this paper we specifically investigate the probability that starting from a Base caret, a

random walk on F will never delete this caret. We obtain exact solution to this probability.

Our approach is two fold:
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1. We examine random walks on F whose trajectories are functions of the elements of

F , namely the depth of the Base tree, and the position of the top pointer relative to the

Base tree.

2. We reformulate these random walk as a gambler’s ruin problem, and compute prob-

abilities of winning for a finite goal. The limits of the probabilities as the goal goes to

infinity produce the desired results.



2
Simple Random Walk

A simple random walk represents random motion on a lattice, for example Zd, of a walker

that jumps at discrete time steps t = 1, 2, 3, ... to a randomly chosen site on the lattice. A

random variable is associated with each step; the distribution of these random variables

define the behavior of the walk. A simple symmetric random walk on Zd is one where

the successive steps are chosen independently. The steps are all of size 1 and are chosen

uniformly randomly (with equal probability) out of the 2d possible directions on Zd.

2.1 Probability Definitions

Here we will briefly review definitions from probability.

Definition 2.1.1. An outcome is the result of a single trial in an experiment and the

sample space of an experiment is the set of all possible outcomes of that experiment

denoted by S. 4

Example 2.1.2. If an experiment were to determine the sex of a newborn child, then

the possible outcomes would be a male or female. If the outcome of an experiment is the

sex of a newborn child, the sample space would be: S = {m, f} where m is the outcome

where the child is male and f is the outcome where the child is female. ⌃
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Definition 2.1.3. An event any subset E of the sample space. 4

In other words, an event is a set consisting of possible outcomes of the experiment. If

the outcome of the experiment is contained in E, then we say that E has occurred. Events

are very important in probability. Every event E has a probability P (E) of occurring.

Example 2.1.4. If E = {f} then E is the event that the child is female. ⌃

Definition 2.1.5. A random variable is a function whose domain is a sample space

and whose range is some set of real numbers. 4

If the random variable is denoted by X and has the sample space S = {o1, o2, ..., on}

as domain, then we write X(ok) for the value of X at element ok. Thus X(ok) is the real

number that the function rule assigns to the element ok of S. If a random variable has

codomain S we call it a random variable on S.

Example 2.1.6. Let S = {1, 2, 3, 4, 5, 6} and define X as follows:

X(1) = X(2) = X(3) = 1, X(4) = X(5) = X(6) = �1

Then X is a random variable whose domain is the sample space S and whose range is

the set {1,�1}. X can be interpreted as the gain of a player in a game in which a die is

rolled, the player winning 1 dollar if the outcome is 1 ,2, or 3 and losing 1 dollar if the

outcome is 4,5,6. ⌃

Example 2.1.7. Two dice are rolled and we define the familiar sample space

S = {(1, 1), (1, 2), ...(6, 6)}

containing 36 elements. Let X denote the random variable whose value for any element

of S is the sum of the numbers on the two dice. Then the range of X is the set containing

the 11 values of X : 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Each ordered pair of S has associated

with it exactly one element of the range. But, in general, the same value of X arises from

many di↵erent outcomes. For example X(ok) = 5 is any one of the four elements of the

event {(1, 4), (2, 3), (3, 2), (4, 1)}.
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⌃

Definition 2.1.8. A probability function is a function f whose value for each real

number x is given by f(x) = P ({ok 2 S|X(ok) = x}). f(x) is called the probability

function of the random variable X. 4

Example 2.1.9. Consider Example 2.1.6, if the coin is fair, then f(heads) = P (X =

heads) = 0.5 and f(tails) = P (X = tails) = 0.5, and f(x) = 0 otherwise. ⌃

Example 2.1.10. If both dice in Example 2.1.7 are fair and the rolls are independent, so

that each sample point in S has probability 1/36 , then we compute the value of the prob-

ability function at x = 5 as follows: f(5) = P (X = 5) = P ({(1, 4), (2, 3), (3, 2), (4, 1)}) =

4/36. This is the probability that the sum of the numbers on the dice is 5. We can compute

the probabilities f(2), f(3), ..., f(12) in an analogous manner. ⌃

Definition 2.1.11. A variable is identically and independently distributed if each

random variable has the same probability distribution as the others and are all mutually

independent. 4

Definition 2.1.12. Independence is when the conditional probability equals the prob-

ability. 4

Definition 2.1.13. The conditional probability of an event B is the probability that

the event will occur given the knowledge that an event A has already occurred.

This probability is written P (B|A), notation for the probability of B given A. In the

case where events A and B are independent (where event A has no e↵ect on the probability

of event B), the conditional probability of event B given event A is simply the probability

of event B, that is P (B). 4

Example 2.1.14. In a card game, suppose a player needs to draw two cards of the same

suit in order to win. Of the 52 cards, there are 13 cards in each suit. Suppose first the

player draws a heart. Now the player wishes to draw a second heart. Since one heart has
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already been chosen, there are now 12 hearts remaining in a deck of 51 cards. So the

conditional probability P (Draw second heart|First card a heart) = 12/51. ⌃

2.2 Definition of a Random Walk

Definition 2.2.1. The discrete random variables X1, X2, · · · on Zd are the steps of the

random walk with the following probability distribution: For all i 2 N : P (Xi = s) =

1/2d if s 2 Zd and ksk = 1, and P (Xi = s) = 0 otherwise. 4

S0 = 0 2 Zd. Sn = X1 +X2 + · · ·+Xn for n 2 N is the position of the random walk at

time n. Description of what d = 2 is to be more clear...

Definition 2.2.2. The trajectory is the sequence {s1, s2, s3, ...} of states that the ran-

dom walk goes through. 4

Example 2.2.3. Below is a graphical representation of the trajectory of a simple random

walk in one dimension; on the x-axis are the steps of the walk, and the y-axis is the

state. ⌃

500 1000 1500 2000 2500 3000

-20

20

40

60

Figure 2.2.1. A random walk in one dimension.

Following are sample paths of a simple random walk in two and three dimensions,. The

red dot marks the zero-position, the starting state of the walk.
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20 40 60 80 100 120

20

40

60

Figure 2.2.2. A random walk in two dimensions.
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Figure 2.2.3. A random walk in three dimensions.

2.3 Biased Random Walk

Definition 2.3.1. A Biased Random Walk on the integers is one where the probability

of +1 is not equal to the probability of �1. 4

Example 2.3.2. Below is an example of a biased random walk. The probability of moving

right is 55% and the probability of moving left is 45%. As we can see, the walk quickly

moves to the right even with this slight bias.
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500 1000 1500 2000 2500 3000

50

100

150

200

250

300

350

Figure 2.3.1. A biased radom walk.

⌃

2.4 Markov Chains

Definition 2.4.1. A Markov Chain is collection of random variables Xt (where the

index t runs through 0, 1, ...) having the property that, given the present, the future is

conditionally independent of the past. [?\edefn, Papoulis]

In other words,

P (Xt = j|X0 = i0, X1 = i1, ..., X(t� 1) = i(t� 1)) = P (Xt = j|X(t� 1) = i(t� 1)).

So if a Markov sequence of random variates Xn take the discrete values a1, ..., aN , then

P (xn = a(in)|x(n�1) = a(i(n�1)), ..., x1 = a(i1)) = P (xn = a(in)|x(n�1) = a(i(n�1))),

and the sequence xn is called a Markov chain.

We can describe a Markov chain as follows: We have a set of states, S = {s1, s2, ..., sr}.

The process starts in one of these states and moves successively from one state to another.

Each move is called a step. If the chain is currently in state si, then it moves to state sj
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at the next step with a probability denoted by pij, and this probability does not depend

upon which states the chain was in before reaching the current state.

The probabilities pij are called transition probabilities. The process can remain in the

state it is in, and this occurs with probability pii. An initial probability distribution,

defined on S, specifies the starting state. In this paper we deterministically specify a

particular state as the starting state.

2.5 Markov Chain Representation of Forest Random Walk

The random walk on Thompson’s Group F (F ) can equivalently be represented as a

discrete-time stochastic process with countably-infinite state space composed of the ele-

ments of F . We index the elements of the state space, F , by N, such that for fi, fj 2 F ,

fi = fj if and only if i = j for all i, j 2 N. We define f0 as the identity element of F .

From here on, we will refer to the elements of F by their index number.

Let Xt, t 2 N be the observed state of the process after t steps. X0 is the initial state

of the process. Without any significant loss of generality, we will consider the case where

we start the process from the identity element, that is X0 = 0.

Let P be the infinite-dimensional one-step probability transition matrix of this process

with entry pij = Pr(Xt = j|Xt�1 = i) for t, i, j 2 N and t > 0. In words, pij is the

probability that the process being in state i after t� 1 steps transitions to state j in next

step, t.

By the specification of this random walk, the process is a discrete-time time-

homogeneous countable-state-space Markov Chain (MC).

Definition 2.5.1. The probability of transitioning to the next future state only de-

pends on the present state of the process. Specifically, this one-step transition probability

is independent of the past history of the process that culminated in the present state.

The Markov property is also, more descriptively, called the memoryless property. This
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property is a direct consequence of the way the random walk is defined, where the step

probabilities are the same regardless of the past or the current state. 4

The transition probabilities are time-homogeneous, meaning that pij does not depend on

how long the process has been running or, equivalently, at which step in the development

of the process the transition takes place.

As a consequence of the Markov property and a countable state space, the process also

has the strong Markov property. This means that at each subsequent visit to a specified

state i, the process starts anew and behaves as if X0 = i.

So just from the definition of the random walk, we see that it is equivalent to a countable-

state MC whose transition probabilities are time-homogeneous.

Here are some more properties of this MC. I state those without proof (We can talk

about these.)

The MC is irreducible. This means that for all possible ordered pairs of states i, j 2 N,

there is a positive probability that, starting in state i the process visits state j in a

finite number of steps. In this case we say elements i and j communicate The relation

‘communicate’ is an equivalence relation.

Showing that this is true requires a definition of a trajectory of the process. Recall

that in its finite presentation, F has two generators x0, and x1 and each step of the MC

corresponds to a left-multiplication of the present state of the MC by one member chosen

at random from {x0, x1, x
�1
0 , x

�1
1 }, the generators of F and their inverses. So starting with

the identity (X0 = 0), each successive state of the MC (an element of F ) is the result

of iterative left multiplications. The sequence of these iterations is presented as a word

from the alphabet set {x0, x1, x
�1
0 , x

�1
1 }. For example the one-letter word x0 corresponds

to a MC with X1 = x0; the two-letter word x0x1 corresponds to X2 = x1.x0;x0x1x
�1
0

corresponds to X3 = x

�1
0 .x1.x0, where . is the group operation of F .

It is clear from this notation that every element in F can be represented by one or more

words with finite length. Thus every element of F can be reached can from the identity
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in a finite number of steps. Conversely, the identity can be reached in a finite number of

steps from any element in F : given a finite length word (say of length n) that corresponds

to an element in F , the identity can be reached in at most n steps, by a trajectory that

is the inverse of the word representing the given element.

Therefore, every element can reach every other element in a finite number of steps via

the identity element. Thus the MC is irreducible and F forms a single equivalence class.

The MC is periodic with period = 2. Let p

(n)
ij be the probability that the MC with

present state i reaches state j in n steps. The period of state i is defined as the

gcd(n)|p(iin) > 0. The MC can only return to its present state in an even number of

steps, and gcd of positive even numbers is 2.

The random walk on F is considered in the context of exploring the amenability of F .

This is due to the theorem by Kesten:

Theorem 2.5.2. A group is amenable if and only if limL�!1 sup p(L)1/L = 1. [7]

Here p(L) is the probability of a random walk, starting from the identity, returning to

the identity in L steps. The theorem states that a group is amenable if p(L) decreases

more slowly than exponentially with the number of steps, L.

For a specified finite number of steps, L, let m be the number of generators (here, m=2,

x0, andx1).Thus, there are (2m)L = 4L non-reduced possible paths (words) of length L.

Let T (L) be the set of length-L words which represent the identity. Then p(L) can be

directly measured as

p(L) = |T (L)|
4L

This direct approach to obtaining p(L) for F is not computationally feasible even for

moderate values of L, since the computational times grow exponentially in L. As an ex-

ample there are 2,684,354,456 paths (words) of length 14, out of which there are 1,988,452

represent the identity. [4]
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In there computational explorations of F , Burillo, Cleary, and Wiest use a Monte Carlo

method where they estimate p(L) by taking random samples of paths (words) of a given

length.

2.6 Transition Probabilities

Definition 2.6.1. Since the Xis are identically and independently distributed random

variables the future position is only dependent on the current position regardless of the

path taken to reach it. Thus the simple random walk is a Markov chain with state space

Zd. 4

Proposition 2.6.2. Let p(l) = P (X1 = l) = P (S1 = l), the one-step transition probability

starting from S0. p(l) = 1/2d for l a ”neighbor” (distance equals 1) of S0, and 0 otherwise.

Also, let Pn(l) = P (Sn = l) be the n-step transition probability, that is the probability the

walk is at position l at time n, starting at S0.

2.7 Recurrence

Definition 2.7.1. One of the properties of the long term behavior of the random walk

is whether the walker returns to S0. Let Sn be a random walk. Let R be the probability

that the walker eventually returns to S0. If R = 1, then S0 is recurrent; if R < 1, then

S0 is transient. If S0 is recurrent, the walk returns to S0 infinitely many times. If S0 is

transient, then there is a positive probability, 1 � R, that the random walk may never

return to S0. 4

Let N denote the number of returns to S0. In the transient case, N , the number of

returns to S0 (returns = failures to escape) before moving away for good (success =

escape), follows the geometric distribution with parameter 1�R, the probability of success.

The probability mass function of the distribution, in this case, is

P (N = k) = (1� (1� R))k(1� R) = R

k(1� R) for k = 0, 1, 2, .... (The probability of

k returns then escape)
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Therefore the expected number of returns to a transient S0 is R
1�R , the mean of the

geometric distribution.

In a random walk all states communicate, i.e. every position is reachable from every

other position. Thus the whole walk is recurrent/transient if S0 is recurrent/transient.

2.8 Polýa’s Theorem

Theorem 2.8.1. Simple random walks of dimension d = 1, 2 are recurrent, and of d � 3

are transient.

General criterion for classifying S0 as recurrent or transient:

Theorem 2.8.2 (Polýa’s Theorem). The state S0 is transient if and only if
P1

n=1 Pn(0) <

1.

Proof. The indicator variable It, for t 2 N, as It = 1 if St = 0, and It = 0 otherwise.

Thus N =
P1

t=1 It is the number of times S0 is revisited. So the expectation of N is

E[N ] = E

" 1X

t=1

It

#
=

1X

t=1

E[It] =
1X

t=1

P (St = 0) =
1X

t=1

Pt(0).

Another expression of E[N ] is

E[N ] =
1X

k=0

[1� P (N  k)] =
1X

k=1

P (N � k) =
1X

k=1

R

k

The above expression of E[N ] is the discrete version of the expectation of an arbitrary

random variable, X, where

E[X] =

Z 1

0

[1� FX(x)]dx�
Z 0

�1
FX(x)dx,

where FX(x) is the cumulative distribution function of X. The last equality is because

each of the N returns to S0 occurs independently with probability R.

So we have

E[N ] =
1X

t=1

Pt(0) =
1X

k=1

R

k



2. SIMPLE RANDOM WALK 21

The sum diverges if R = 1, that is, if S0 is recurrent, and converges if R < 1, that is, if

S0 is transient.

Computing Pn(0) for d = 1:

Any path the random walk takes on a horizontal one-dimensional lattice from S0 to S0

must have an even number of steps, with equal number of steps to the left as to the right.

Therefore P2n+1(0) = 0, (probability of return to S0 after an odd number of steps = 0)

and

P2n(0) =

✓
2n
n

◆ 
1

2

!n 
1

2

!n

=
(2n)!

n!(2n� n)!

1

22n
.

(the number of di↵erent specific paths of length 2n from S0 to S0 [n left steps and n right

steps] times the probability of any specific path of length 2n with independent steps each

with probability 1/2.)

Using Stirling’s approximation of n! ⇡ n

n
e

�n
p
2⇡n as n �! 1, and substituting we get

P2n(0) ⇡
22nn2n

e

�2n
p
4⇡n

n

2n
e

�2n2⇡n

1

22n
=

1p
⇡n

asn �! 1.

One-dimensional random walk is recurrent:

In the one-dimensional random walk,

1X

n=1

Pn(0) =
1X

n=1

P2n(0) ⇡
1X

n=1

1p
⇡n

>

1

⇡

1X

n=1

1

n

= 1.

(the first equality is because we can skip over odd number of steps because they have

probability 0.)

So the one-dimensional random walk is recurrent.

Two-dimensional random walk is recurrent:

For a single two-dimensional walk, define two one-dimensional walks as follows:

Let Sn = (S1
n, S

2
n) be the two-dimensional position after n moves, where S

1
n, S

2
n are the

positions of the component two one-dimensional walks. The steps of a random walk are the

di↵erences between successive positions. Here, the two dimensional step, Xi = (X1
i , X

2
i )
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can take the values: North = (+1,+1), East = (+1,�1), South = (�1,�1) and West =

(�1,+1).

So in this way, any two independent one-dimensional random walks correspond precisely

to a single two-dimensional random walk and vice versa.

Therefore, for a two-dimensional walk we can write

P2n(0) = P (S2n = 0) = P (S1
2n = 0)P (S2

2n = 0) ⇡ (
1p
⇡n

)2 =
1

⇡n

and since P2n+1(0) = 0, the sum over n gives

1X

n=1

Pn(0) =
1X

n=1

P2n(0) ⇡
1

⇡

1X

n=1

1

n

= 1.

Thus, as is the one-dimensional random walk, the two-dimensional random walk is recur-

rent.

Random walk in three or more dimensions is transient:

The general method for proving recurrence or transience of random walks is based

on the well-known theorem for Markov chains due to Chapman and Kolmogorov which

defines a recurrence relationship to express higher-step transition probabilities in terms

of lower step transition probabilities. Discrete Fourier transform can be used to solve the

recurrence relation.

A simpler and more directly applicable method for determining the recurrence or tran-

sience of a simple random walk is presented in G. F. Lawler and L. N. Coyle Lectures on

Contemporary Probability [8]

For a random walk in d dimensions, the probability that the random walker, starting

at the origin, returns to the origin in 2n steps is a costant times n�d/2. The reasoning is

that, after n steps the walker tends to be a distance about
p
n from the origin. In Zd,

there are about nd/2 points within distance
p
n from the origin. Thus, the probability of

choosing a specific one of these points is of order n�d/2.

Proof. Let Yj = 1 if S2j = 0 and Yj = 0 otherwise. Then the number of visits to the origin

up through time 2n is given by the random variable Rn = Y0 + · · · + Yn. And the total
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number of visits is

R1 = Y0 + Y1 · · · .

Then the expected number of returns to the origin in n steps is: E[Rn] =
nX

j=0

P (S2j = 0).

For d � 3,

R[R1] =
1X

j=0

P (S2j = 0)b  1 + constant

1X

j=1

j

�d/2
< 1.

Thus, for d � 3, the expected number of returns to the origin is finite. And the random

walk is transient. ⇤



3
Random Walks on Groups

Definition 3.0.1. Let G be a group and S = {s1, s2, s3, ..., sn} S is symmetric if S = S

�1

Every group element can be written as Sj1
i1 , S

j2
i2 , S

j3
i3 , ..., S

jk
ik
. This is a word in S. 4

Definition 3.0.2. Thompson’s Group F is defined as the group presentation:

F = hx0, x1|x�1
1 x2x1 = x3, x

�1
1 x3x1 = x4i,

where

x2 = x

�1
0 x1x0, and x3 = x

�2
0 x1x

2
0, and x4 = x

�3
0 x1x

3
0.

4

Definition 3.0.3. Let G be a group and let S be a random walk on Z. is non-amenable

if there exist constants C > 0 and 0 < r < 1 so that P (Sn = e) < Cr

n for all n. 4

If the limit of the nth root of that probability < 1 then that implies non-amenability.

3.1 Thompson’s Group F and Forest diagrams

Thompson’s group F (F ) was introduced by Richard J. Thompson in the 1960’s. Thomp-

son’s Group F is usually defined as “the group of piecewise-linear orientation-preserving

homeomorphisms of the unit interval, where each homeomorphism has finitely many
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changes of slope which all are dyadic integers and and whose slopes, when defined, are

powers of 2” [BCW].

F presented the first example of a finitely presented infinite simple group. Since then,

F has been used in other branches of mathematics, cryptography and computer science.

F also is indicated in situations where there are groups actions on binary tree and still

stands as the simplest non-trivial examples of a diagram group [6]. Since its discovery,

mathematicians have been trying, without success, to solve the amenability problem for

F .

Forest Diagrams have been created as an alternative representation of F . Belk presents

two-way forest diagrams as a way of presenting elements of this group that interact par-

ticularly well with the finite generating set {x0, x1}. A two-way binary forest is a sequence

(· · · , T�1, T0, T1, · · · ) of finite binary trees with a pointer at T0. A trivial tree, one with

no branches and a single leaf, is represented as a dot. The simplest non-trivial tree is

represented as a caret placed on top of two adjacent dots. [2]

Here is the forest diagram of the identity element of F

Figure 3.1.1. The forest diagram of the identity element of F.

And here are the two way forest diagrams of x0 and x1, the elements of the finite

generating set of F .

Figure 3.1.2. The first generator, x0 of F .
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Figure 3.1.3. The second generator, x1 of F .

And below are the two inverses of the generators of F .

Figure 3.1.4. The inverse of x0

Figure 3.1.5. The inverse of x1.

Example 3.1.1. There is a third generator of F we call y. This generator is a combination

of the steps, x0 and x1. Below, is an example of y.

Figure 3.1.6. The generator y or steps x�1
0 followed by x1.

⌃
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Example 3.1.2. Below we will give examples of some di↵erent combinations of steps on

the forest diagram.

Figure 3.1.7. The steps x0 then x1.

Figure 3.1.8. The steps x1 then x1.

⌃

Example 3.1.3. Below are three examples of caret deletion.

In Figure 2.1.8., we start with a top caret. Then, we do the step x

�1
1 :

Figure 3.1.9. Example of caret deletion

Below is a second example of caret deletion. We start with a forest diagram with Base

caret depth of 2.
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Figure 3.1.10. Step 1 of caret deletion

Then we do the step x

�1
1 . This step then deletes the top caret and leaves us with Base

tree of one caret, or Base tree caret depth of 1:

Figure 3.1.11. Step 3 of caret deletion

Below is the third example of caret deletion. We start with a typical forest diagram.

Figure 3.1.12. Step 1.

Then, we do the step x

�1
1 . As we can see, this action inserts a bottom caret at the leaf

pointed to by the top pointer. This action inserts a new leaf and expands the support of

the forest diagram..
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Figure 3.1.13. Step 2.

Of course left-multiplying by x1 again we return to Figure 3.1.12. ⌃

3.2 Forest Random Walk

Definition 3.2.1. The random walk on F is a series of randomly chosen actions of {x0, x1}

and their inverses. The actions of the generating set and the corresponding inverses are

described in Belk Section 3.3 [1]:

Let f be a forest diagram for some f 2 F . Then:

1. A forest diagram for x0f can be obtained by moving the top pointer of f one tree to

the right.

2. A forest diagram for x1f can be obtained by attaching a caret to the roots of the

0-tree and 1-tree in the top forest of f . Afterwards, the top pointer points to the new,

combined tree.

3. A forest diagram for x�1
0 f can be obtained by moving the top pointer of f one tree

to the left.

4. A forest diagram for x

�1
1 f can be obtained by ’dropping a negative caret’ at the

current position of the top pointer. If the current tree is nontrivial, the negative caret

cancels with the top caret of the current tree, and the pointer moves to the resulting left

child. If the current tree is trivial, the negative caret ’falls through’ to the bottom forest,

attaching to the specified leaf.

Now we formally define the random walk on F :
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Let {x0, x1, x
�1
0 , x1�1} be the set of generators of F and their inverses. Let fn�1 2 F

be the state of the random walk at step n� 1 for n = 1, 2, 3 · · · . Let f0 = e, the identity

of F . Then, fn, the state of the walk after n steps is determined as

fn =

8
>>><

>>>:

x0fn�1 with probability 1/4

x

�1
0 fn�1 with probability 1/4

x1fn�1 with probability 1/4

x

�1
1 fn�1 with probability 1/4

4



4
Immortality of the Base-Tree Caret

In this chapter, we will examine a model of the Gambler’s Ruin problem applied to

the immortality of the base caret. In evaluating the asymptotic behavior of the random

walk on F all other studies to date use simulations and sampling, but do not produce

closed-form expressions for these probabilities. In the following chapter, we derive exact

probabilities that the base caret is never removed.

4.1 Gambler’s Ruin Model

Here we will define some notation for and derive probabilities of winning, or alternatively,

ruin.

i is the gambler’s initial fortune, in currency units.

Xn is the gambler’s fortune in units after n gambles.

T is the number of units that, if accumulated, the game ends and the gambler is a

winner.

Pi is the probability that the gambler wins the game given that the initial fortune is i

units.

While the game proceeds, {Xn : n � 0} forms a simple random walk on the nonnegative

integers with walk-terminating barriers at 0 and T .
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Consider a gambler who starts with an initial fortune of i units and then on each

successive gamble either wins one unit with probability p, loses 1 unit with probability

q, or it’s a draw, (i.e. neither wins nor loses) with probability r, independent of the past.

(Of course, p+ q + r = 1.) Let Xn denote the total fortune in units after the n

th gamble.

The gambler’s objective is to reach a total fortune of T units, without first getting ruined

(running out of units; Xn = 0). If the gambler succeeds, then the gambler is said to win

the game. In any case, the gambler stops playing after reaching a fortune of T units or

getting ruined, whichever happens first.

Theorem 4.1.1. The probability that a gambler in the above setup reaches a total fortune

of T units, given an initial fortune of i units is

Pi =

8
<

:

1�( qp )
i

1�( qp )
T , if p 6= q

i
T , if p = q.

(4.1.1)

Proof. The current fortune after n gambles is

Xn = i+�1 +�2 + · · ·�n, X0 = i,

where {�n} forms an i.i.d. sequence of random variables distributed as P (� = 1) =

p, P (� = �1) = q, and P (� = 0) = r, where p + q + r = 1, and represents the earnings

on the successive gambles.

Since the game stops when either Xn = 0 (ruin) or Xn = T (win), let

⌧i = min{n � 0 : Xn 2 {0, T}|X0 = i}

denote the time at which the game stops when the initial fortune X0 = i. If X⌧i = T then

the gambler wins, else if X⌧i = 0, then the gambler is ruined.

Let Pi = P (X⌧i = T ) be the probability that the gambler wins when X0 = i. Clearly,

P0 = 0 and PT = 1, by definition; so we go on to compute Pi for 1  i  T � 1.

By conditioning on the outcome of the first gamble, �1 = 1, �1 = �1 or �1 = 0, we

get the following recursion
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Pi = pPi+1 + qPi�1 + rPi (4.1.2)

This recursion is derived as follows: If �1 = 1, then the gambler’s total fortune increases

to X1 = i + 1 and by the Markov property the gambler will win with probability Pi+1.

Alternatively, if �1 = �1, then the gambler’s fortune decreases to X1 = i � 1 and so by

the Markov property the gambler will now win with probability Pi�1. Also, if �1 = 0 then

the gambler’s fortune does not change and so by the Markov Property the gambler will

now win with probability Pi. The probabilities corresponding to the three outcomes are

p, q and r, respectively, yielding the recursion (3.1.1).

Since p + q + r = 1, the recursion (3.1.1) can be re-written as pPi + qPi + rPi =

pPi+1 + qPi�1 + rPi, yielding

Pi+1 � Pi =
q

p

(Pi � Pi�1).

In particular, P2 � P1 = (q/p)(P1 � P0) = (q/p)P1 (since P0 = 0). And P3 � P2 =

(q/p)(P2 � P1) = (q/p)2P1. More generally

Pi+1 � Pi =

✓
q

p

◆i

P1, 0 < i < T

Thus

Pi+1 � P1 =
iX

k=1

(Pk+1 � Pk) =
iX

k=1

✓
q

p

◆k

P1,

which yields

Pi+1 = P1 + P1

iX

k=1

(
q

p

)k = P1

iX

k=0

(
q

p

)k.

Pi+1 =

8
<

:
P1

1�( qp )
i+1

1� q
p

, if p 6= q

P1(i+ 1), if p = q.

(4.1.3)

(Here For p 6= q we use the sum of a geometric series.) Letting i = T � 1 and using the

fact that PT = 1 we get

1 = PT =

8
<

:
P1

1�( qp )
T

1� q
p

if p 6= q

P1T, if p = q.
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Solving for P1 gives

P1 =

8
<

:

1� q
p

1�( qp )
T , if p 6= q

1
T , if p = q.

Substituting in (3.1.2) we obtain the solution

Pi =

8
<

:

1�( qp )
i

1�( qp )
T , if p 6= q

i
T , if p = q.

(4.1.4)

Theorem 4.1.2. When p > q, the probability of a gambler getting infinitely rich (i.e. is

never ruined) is 1�
⇣

q
p)

i
E
0.

Proof. The probability that the gambler never loses is the limit of (3.1.3) as T goes to

infinity. In our case p > q. Thus q
p < 1. Thus

P

1
i = limT�!1Pi = 1�

✓
q

p

◆i

> 0. (4.1.5)

Theorem 4.1.3. When p = q, the probability that us gambler gets infinitely rich (i.e. is

never ruined ) is zero.

Proof. If P = q, the limit as T goes to infinity of i
T is

P

1
i = limT�!1Pi = 0. (4.1.6)

The above two theorems specify the probability of getting infinitely rich, that is having

won an infinite number of units under the condition p > q and p = q.
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4.2 Gambling with Carets

Definition 4.2.1. Define the function L : F 7! {· · · , Left2, Left1, Base, Right1, Right2, · · · }

representing the ordinal location of the tree that the top pointer of a particular forest di-

agram is pointing to. In the following analysis the Base tree is initialized as the original

element x1 and that caret will always be part of the Base tree if and until it is deleted, of

course. 4

Definition 4.2.2. Define the functionD

l : L 7! N as the left distance in trees between the

top pointer location and the Base tree. If L = Base,then D

l = 0; if L = Left1, then D

l =

1; if L = Left2, then D

l = 2, and so on. Dl is undefined for L 2 {Right1, Right2, · · · }.

Similarly, define the function D

r : L 7! N as the right distance in trees between the top

pointer location and the Base tree. If L = Base,then D

r = 0; if L = Right1, then D

r = 1;

if L = Right2, then D

r = 2, and so on. Dr is undefined for L 2 {Left1, Left2, · · · }. 4

Definition 4.2.3. We define the function C : F 7! N as the depth (number of stacked

carets) of the base tree. C is a function since once each and every element in F is identified

by a unique reduced forest diagram; and for each forest diagram there can be but a single

C. Starting from the, identity, C = 0, since the base tree is trivial and has no carets. A

subsequent left-multiplication by x1 gives C = 1. Then further left multiplying by x

�1
1

removes the base-tree caret and gives C = 0. 4

Definition 4.2.4. Instead of the two generators of F , {x0, x1}, here we use an alternative

set of generators, namely {x1, y} where y = x1x
�1
0 . To be clear, for an element f 2 F ,

yf = x1x
�1
0 f . That is f is first left-multiplied by x

�1
0 and the resultant element is in

turn left multiplied by x1. As in the forest random walk described above, each step of

the random walk on F involves a left multiplication of the current element by one of

{x1, y, x
�1
1 , y

�1} with equal probability of 1/4. The choice of y as a generator makes the

successive moves more symmetrical, as we shall see below. Formally, the state of the walk
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after n steps, in terms of the {x0, x1, x
�1
0 , x

�1
1 } generator set is

fn =

8
>>><

>>>:

x1fn�1 with probability 1/4

x

�1
1 fn�1 with probability 1/4

x1x
�1
0 fn�1 with probability 1/4

x

�1
0 x

�1
1 fn�1 with probability 1/4

4

In what follows, we investigate the probability that the above random walk random

walk on F , but whose trajectory records values of the function C, starting with f0 = x1

(that is C = 1) will never return to C = 0. In other words, what is the probability that

once a caret is added to the trivial base tree, that caret is never removed? (Note that

C = 0 can result from multiple elements of F , among them the identity.)

Starting from f0 = x1 having C = 1 left multiplication by either x1, or y increases

C by 1 (giving C = 2) while left multiplication by either x

�1
1 , or y

�1 decreases C by 1

(giving C = 0). Thus with probability 1/2, C increases from from 1 to 2 and with the

same probability decreases from 1 to 0.

Once the random walk transitions from C = 1 to C = 2, the probability structure of

the walk changes. Not every step will result in a change of C. Conditional on the top

pointer being on Base, Left1 or Right1 (that is the vicinity of Base tree) and C � 2 the

probability of an increase of one caret in C is 1/2 and that of a decrease in C of one caret

is 1/4, and the probability of no change in C is 1/4. Note that changes in C can only

take place if the top pointer of the forest diagram is in the vicinity of the Base tree (That

is on the Base tree, one tree to the left of the base tree (Left1), or one tree to the right

(Right1)).

Starting with the C = 2 this random walk is a variant of the gambler’s ruin problem

which we will address below. We also show that the gambler’s ruin model can also be

applied to random walks on F whose trajectories are the values of the functions D

l

and D

r. The gambler’s ruin models of the random walks provide a convenient tool for

calculating the desired probabilities. These are the probability that once a caret is added
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to the trivial base tree, that caret is never removed, and the probability that starting from

the vicinity of the Base tree, the top pointer eventually returns to the Base tree.

Example 4.2.5. Below is an example of the base tree caret and carets stacked on the

base tree caret.

Figure 4.2.1. Base tree caret.

Figure 4.2.2. Carets stacked on the base tree caret. Base caret depth = 3.

⌃

Below is a Markov Chain representation of the transition probabilities for moving left

and right of the Base tree. We can see that in the immediate vicinity of the Base tree

(that is the three trees: Left1, Base, and Right) the transition probabilities define a biased

random walk where there is greater probability that the walker on either the Left1 or

Right1 tree moves onto the Base tree than the walker who is on the the Base tree moves

onto either the Left1 or Right1 trees. Elsewhere, the walk is balanced in terms of the top

pointer moving right or left.
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BaseLeft 1Left 2 Right 1 Right 2

3/41/2
1/4

1/2 1/2 1/2
1/8 1/8

1/4

1/4 1/4

1/41/4 1/4

1/4

1/41/4

Figure 4.2.3. Transition probabilities for moving left and right of the base caret.

Below, is the same Markov Chain representation as figure 4.2.3, but with removing the

probabilities that you stay on the current position.

Left 1Left 2 Right 1 Right 2

1/2 1/2 1/2

1/2

1/2 1/2

1/21/2 1/2

1/2

1/21/2

Base

Figure 4.2.4. Conditional transition probabilities for moving left and right of the base
caret.

Below, we use a Markov Chain representation to illustrate the transition probabilities

for the depth of the base tree. In other words, this shows the probability one deletes the

base tree, builds on the base tree, or moves left or right of the base tree.
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1/4

Left 2

Left 1

Left 0

Right 2

Right 1

Right 0

Base 2

Base 1

Base 0

Fail

1

1/8

1/2

1/2

1/2
11

1

1/8

1/8 1/8

1/4

Figure 4.2.5. Transition probabilities for chain of depth of base tree.

In our case the random walk takes place in two phases: Phase one and starting with

one caret on the base tree, then with equal probability of 1/2, the caret gambler either

fails (C = 0) or gets to phase 2, to enter into a game with a beginning fortune of 2 carets

and where the probability of winning a caret (C �! C + 1) is p = 1/2 and probability of

losing a caret (C �! C � 1) is q = 1/4.

The probability that starting with two carets (i = 2) the gambler gets infinitely rich is

P

1
2 = 1�

✓
(1/4)

(1/2)

◆2

=
3

4
.

So under this scenario, starting with one caret on the Base tree, the probability that this

caret is never destroyed, is the probability of moving from 1 caret to 2 carets (1/2) times

the probability that starting with two carets (i = 2) the gambler gets infinitely rich (3/4):

P

1
2

2
=

3

8
.

But this probability is based on the transition probabilities conditional on the top

pointer being in the vicinity of the Base tree. So the next step is to compute the probability

that starting in the vicinity of the Base tree, the top pointer returns to the Base tree.
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To do this we random walks on F whose trajectories are the values of the functions

D

l and D

r, described above: We consider first Dl and by symmetry we apply the results

to D

r. The gambler’s ruin model for D

l uses as currency the trees to the left of the

Base. Starting with Left1 tree, the probability of moving to Left2 is p = 1/4 (this is the

transition probability of Dl = 1 to D

l = 2 (winning a tree). Also, q = 1/4, the probability

of moving from Left1 (Dl = 1) to the Base tree (Dl = 0). As we move the left of Left1

tree, these single step transition probabilities are unchanged. Thus the D

r random walk

starting at Left1 tree can be reformulated as a gambler’s ruin problem with initial fortune

of 1 tree and p = q. But from (4.1.5) we know that the probability of winning an infinite

number of trees is

P

1
i = limT�!1Pi = 0,

Since there can be only two outcomes of the game, the probability of returning to the

Base tree is

1� P

1
i = 1.

Thus with certainty the D

l random walk returns to the Base tree.

A symmetric argument for D

r random walk gives the same result for the right-hand

gambler’s ruin starting at Right1 tree.

Thus either starting from either Left1 or Right1, with with probability 1 the distance

random walks return to the vicinity of the Base tree.

What about starting from the Base tree? The probability of returning to the base tree

is
3

4
+

1

8
(1� P

1
i ) +

1

8
(1� P

1
i ) = 1.

Thus starting in the vicinity of the Base tree the random walk returns with certainty,

probability of 1.

Therefore, the unconditional probability that the Base caret is never removed is exactly

the same probability conditional on the top pointer being in the vicinity of the base

tree = 3/8.



Bibliography

[1] Jim Belk, Thompson’s group F, arXiv preprint arXiv:0708.3609 (2007).

[2] James M and Brown Belk Kenneth S, Forest diagrams for elements of Thompson’s
group F, International Journal of Algebra and Computation 15 (2005), 815–850.

[3] Dimitri P. and Tsitsiklis Bertsekas John N., Introduction to Probability, M.I.T., Mas-
sachusetts, 2000.

[4] Josep and Cleary Burillo Puig Sean andWiest, Computational explorations in Thomp-
son’s group F (2005).

[5] Persi Diaconis, Random walks on groups: characters and geometry, Groups St An-
drews 2001 in Oxford 1 (2002), 120–142.

[6] Victor S and Sapir Guba Mark V, Diagram groups, Memoirs of the Amer. Math. Soc
130 (1996), 1–117.

[7] Harry Kesten, Symmetric random walks on groups, Transactions of the American
Mathematical Society 92 (1959), 336–354.

[8] Gregory F and Coyle Lawler Lester Noel, Lectures on Contemporary Probability,
Vol. 2, American Mathematical Soc., 1999.

[9] Athanasios Papoulis, Brownian Movement and Marko↵ Processes, McGraw-Hill, New
York, 1984.

[10] Vladimir and Ushakov Shpilrain Alexander, Thompson?s group and public key cryp-
tography, International Conference on Applied Cryptography and Network Security
v1 (2005), 151–163.


	Random Walks on Thompson's Group F
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Simple Random Walk
	Probability Definitions
	Definition of a Random Walk
	Biased Random Walk
	Markov Chains
	Markov Chain Representation of Forest Random Walk
	Transition Probabilities
	Recurrence
	Polýa's Theorem

	Random Walks on Groups
	Thompson's Group F and Forest diagrams
	Forest Random Walk

	Immortality of the Base-Tree Caret
	Gambler's Ruin Model
	Gambling with Carets

	Bibliography

