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Abstract

Community detection in large networks is a process that has been heavily researched in the

past decade due to the the emergence of online social networks. For Twitter, Inc., analyzing

terrorists communities is vital in the fight against ISIS recruiters who use the twitter platform

to radicalize people around the world. The goal of this project is to develop an algorithm

which can accurately detect communities in large networks and to provide textual analysis on

the discovered communities. Our algorithm combines the results of two unsupervised clustering

algorithms to find communities in a given network. One algorithm uses the structure of the

network, and the other algorithm uses the text associated with the nodes. Our algorithm is

tested on a hand labeled ground truth twitter network and applied to an ISIS twitter recruiting

network.
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Chapter 1

Introduction

1.1 Background

This community detection algorithm utilizes concepts from the areas of network science and

text analysis. The algorithm was inspired by the ISIS Twitter Recruiting data set (kaggle.com).

The data set features 17,000 tweets by 112 ISIS recruiters from 2014-2016. There has been

significant research in both network science and text analysis on the topic of clustering within

each field independently, however, effectively combining methods from both fields has not yet

been explored to a significant degree. The CESNA algorithm [7] uses network attributes to

cluster sets of nodes into communities where nodes can be associated with multiple communities.

First, it is important to acknowledge that nodes in communities share properties and have many

relationships amongst themselves which are independent of their network structures. This is

key to understanding that there are multiple sources of data which can be used to perform

the clustering task. In our case, we have a network with text data(tweets) associated with the

nodes. This means that our input data is more complex than the input data necessary to run

CESNA.

In this paper, we consider true communities to be groups of people that share interests or

live in the same area. The algorithm that we build is a community detection algorithm, but

it is important distinguish the types of communities we strive to discover are different than

1



2 Chapter 1. Introduction

what typical community detection algorithms search for. While many researchers have defined

“communities” as groups of densely connected nodes, this is only a part of detecting “true”

communities as we define them.

The network is constructed by assigning each user to a node and each tweet @ another

recruiter as an edge. Take for example the following tweet written by the recruiter named

@ISBAQIYA “@spamci16: More than 70000 childrens have been killed by Assad regime. Why

cry only for the drowned child? Hypocricy of the world.” This tweet would lead to the

construction of an edge between @ISBAQIYA and @spamci16. When analyzing the text, all

tweets from one user are appended together and treated as one document. The following sections

feature brief explanations of the theory behind each step of our algorithm which utilizes both

the network structure and the text data to group the users into communities.

Figure 1.1: The ISIS Twitter Recruiting Network.
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1.2 Network Science

Network Science is the study of systems using their network structure or topology. A net-

work’s structure can be described by a bunch of nodes and edges between pairs of nodes that

represent a connection of some sort. In the case of the ISIS twitter recruiting data set, the

recruiters themselves are represented by nodes and the social interactions between the users

are represented as edges.

A directed network is a network that contains only edges that can only run in one direction.

We build an undirected network, which is a network that contains edges that point in both

directions which represents a simple connection between nodes[8]. An undirected network is

utilized because much more research has been produced in community detection algorithms in

undirected networks.

A network can be represented as a square matrix. A matrix that corresponds to a given

network is called it’s adjacency matrix. The rows and columns are represented by the nodes

in the network, with a 1 or 0 in position (vi, vj). If vi is adjacent to vj than position (vi, vj)

is represented by a 1. If vi is not adjacent to vj than position (vi, vj) is represented by a 0.

We take an undirected network, and the resulting adjacency matrix is symmetric. A weighted

network can be represented in an adjacency matrix by assigning values that correspond to the

weights of the connections [10].

There are a few key terms to understand that are used to describe characteristics of networks.

The degree of a node in a network is the number of edges connected to it. The path is any

sequence of nodes such that every consecutive pair of nodes in the sequence is connected by

an edge in the network. A path’s length is described by the number of edges traversed along

the path. The geodesic path is the shortest path between any two nodes. The centrality

of a node is a measurement of the node’s importance in the network. The most simple way of

measuring centrality is the degree. The higher the degree, the more central the node is to the

network. But as networks grow larger and have higher complexity, it’s easy to see that degree

is not always the best way to define centrality. A more complex measurement of centrality is
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closeness centrality. Closeness is a measure of the degree to which an individual is near all

other individuals in a network. It is the inverse of the sum of the shortest distances between each

node and every other node in the network. Another method, called betweenness centrality,

is a measure of the extent to which a node is connected to other nodes that are not connected

to each other. Its essentially a measure of the degree to which a node serves as a bridge [10].

Numerous methods have been developed over the years in order to analyze networks based

off of their structure. The development of online social networks like Facebook and Twitter led

to a heightened interest in grouping network nodes into communities. Communities are found

in networks that have tightly knit groups of nodes with many edges between them with looser

connections outside of the communities. Community structure stemmed from the concepts of

network clustering. Clustering is based off of a concept known as network transitivity, which is

a postulate which states that two nodes that are both neighbors of the same third node have

a heightened probability of also being neighbors of one another.

As research has progressed, three major categories of community detection algorithms have

emerged: hierarchical, optimization, and others. We implement Clique Percolation due to

it’s inherent ability to detect overlapping communities. Clique Percolation is considered a

member of the “other” category in the greater score of community detection algorithms. Clique

Percolation utilizes network structure and probability concepts to group nodes in a graph into

communities.

1.3 Clique Percolation

Clique Percolation is an effective algorithm for detecting overlapping communities in large

graphs. Before the creation of the Clique Percolation clustering algorithm, most techniques

used to find communities in large networks required the division of networks into smaller con-

nected clusters by the removal of key edges which connect dense sub-graphs. This process is

not effective for discovering overlapping networks because the removed edges could be key in

detecting a different community later in the process.
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The following definitions are important for understanding the clique percolation algorithm.

Cliques are fully connected sub-graphs of k vertices. K-clique adjacency means two k-

cliques are adjacent if they share k1 vertices. A k-clique chain is a sub-graph which is the

union of a sequence of adjacent k-cliques. Two k-cliques are k-clique-connected if they are

parts of a k-clique chain. A k-clique percolation cluster (or component): is a maximal k-

clique-connected sub-graph, meaning it is the union of all k-cliques that are k-clique-connected

to a particular k-clique.

The algorithm finds k-cliques, which correspond to fully connected sub-graphs of k nodes. It

understands a community as the maximal union of k-cliques that can be reached from each other

through a series of adjacent k-cliques. First, all of the existent maximal k-clique percolation

clusters for the given k are discovered. The k-clique percolation cluster is a maximal k-clique-

connected sub-graph. This is understood as the union of all k-cliques that are k-clique-connected

to a particular k-clique. The percolation transition takes place when the probability of two

vertices being connected by an edge reaches the threshold pc(k) = [(k − 1)N ]−1/(k−1) It is

proven in [3] that the success in overlapping community detection with clique percolation on

randomized networks translates to success on real networks. This is because only small clusters

would be expected for any k at which the networks is below the transition point, but large

clusters do appear, they must correspond to locally dense structures.

1.4 TF and TF-IDF

While analyzing the network structure is an effective approach to discover communities in

the ISIS twitter recruiting data, text clustering is another logical approach. Treating all tweets

by a given user as a personal document, TF and TF-IDF are useful methods to vectorize the

tweets associated with each recruiter.

Term frequency (TF) is a simple way of vectorizing text where all words in the corpus are

featured in a vector for each document, and the frequency of each term is reflected in the

number representing the corresponding word. The problem with TF is that there are many
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words that may be used many times but are not helpful in clustering. TF-IDF is usually favored

over TF for this reason.

TF-IDF is the term frequency-inverse document frequency. The result of calculating the

TF-IDF for each word in a document is a vector of weights, with the importance of a term

in its contextual document corpus represented by the weight. First, the term frequency is

calculated as normalized frequency, which is the ratio of the number of occurrences of a word in

its document to the total number of words in its document. To calculate the inverse document

frequency, the logarithm of the ratio of the number of documents in the corpus to the number

of documents containing the given term is calculated. This inversion assigns a higher weight

to terms that are rare. Multiplying the TF and IDF gives the TF-IDF which values terms

that are frequent to a particular user, but rare in the corpus. The TF-IDF weighting scheme

assigns to term t a weight in document d given by tf − idft,d = tft,d × idft With the standard

vector space model, a set of documents S can be expressed as a m × n matrix V , where m is

the number of terms in the dictionary and n is the number of documents in S. Each column

Vj of V is an encoding of a document in S and each entry Vij of vector Vj is the significance

of term i with respect to the semantics of Vj, where i ranges across the terms in the dictionary

[4]. With the important words for each document highlighted by TF-IDF we test multiple

clustering techniques on the vectorized text data.

1.5 Non-negative Matrix Factorization

In Non-negative Matrix Factorization (NMF), a matrix V is factorized into two W and H

where all of the elements are non-negative. In terms of text clustering, the size of V would be

(number of words) by (number of documents). NMF requires an expected number to be given

and this number is the number of features that it should find. The features matrix W would

be of size (number of words) by (number of features). The coefficients matrix would become

(number of features) by (number of documents). The product of W and H is a matrix of the

same size as the input matrix V and is a fairly reasonable approximation of the input matrix V .
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Each column in the resulting matrix from WH is a linear combination of the column vectors

in the features matrix W with coefficients supplied by the coefficients matrix H. NMF for text

clustering could be summed up as an extraction of latent features from high-dimensional data.

NMF’s power is in it’s ability to look at complex data and find hidden patterns. It finds a

decomposition of samples X into two matrices W and H of non-negative elements, by optimizing

for the squared Frobenius norm (we choose Frobenius norm because it is available in open

source): arg min
W,H

1
2
||X −WH|| = 1

2

∑
i,j(Xij −WHij)

2 [12].

It has been observed by many that NMF can produce a parts-based representation of the

data set, resulting in interpretable models.

1.6 Set Theory

In order to utilize both the network structure and text associated with the nodes, we take

concepts from set theory to combine the results of two clustered data types. These definitions

are useful for understanding the steps taken in the process of algorithm combination. The

union of A and B is the set of all objects that are a member of A, or B, or both. The

intersection of the sets A and B is the set of all objects that are members of both A and B.

The set difference of U and A is the set of all members of U that are not members of A. The

symmetric difference of sets A and B is the set of all objects that are a member of exactly

one of A and B (elements which are in one of the sets, but not in both). These definitions will

help in our set matching for both combining the results of the two algorithms and for comparing

to ground truth communities.

1.7 Choosing K

Choosing the amount of clusters to search for is a challenging problem faced by anyone dealing

with clustering. K is the number representative of whatever is being searched for. In clique
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percolation, k represents the size of the cliques that the algorithm discovers for. In NMF, k is

the the number of features to be found.

For Cliaue Percolation, we set k = 3 on the test data and the ground truth data. In our

ground truth data set, this produces a communities of sizes that make sense for the size of

the data set. With k<3, there are too many small communities. With k>3, there are too few

communities. Because the ISIS data set is of similar size and structure, we assume that 3 also

produces communities with sizes that make logical sense.

For NMF, we utilize the NMF silhouette method to determine the optimal number of clusters.

The silhouette score for a user gives us a measure of how closely matched it is to data within

it’s cluster and how loosely it is matched to data of the neighbouring cluster. We choose the

number of features in NMF which maximize the average silhouette score of the entire network.

The following equations represent how the silhouette score for a single user s(i) is calculated.

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

s(i) =
b(i)− a(i)

max(a(i), b(i))

In general, a very large average silhouette width can be taken to mean that the clustering al-

gorithm has discovered a very strong clustering structure. [11] However, if the data set contains

multiple outliers, non-outliers may appear to be tighter than they actually are. Visualizing the

data and removing clear outliers would be an effective step to aid the silhouette scoring method.
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1.8 Latent Dirichlet Allocation

To provide information on the discovered communities, we utilize Latent Dirchlet Allocation

(LDA). LDA can automatically discover topics in a corpus of documents by learning the topic

representation of each document and the words associated to each topic. We utilize LDA in an

unconventional way by using it only for it’s ability to find words associated with 1 topic. We

know that our algorithm outperforms LDA in clustering the users, and we use LDA only to

find words associated with the clusters that have already been discovered. By setting K equal

to 1 and only searching through the users for one community, we find associated words for each

community.

The idea is that documents are represented as random mixtures over latent topics, where each

topic is characterized by a distribution over words. Figure 1.2 represents LDA as a probabilistic

generative model and emphasizes the three levels of LDA. α and β are sampled once while gen-

erating the corpus. They are considered corpus-level parameters which feed the document-level

variables θ. For each word, zdn and wdn sample once in the end of the process [1]. This bag of

words approach returns a list of words that are representative of each topic. We utilize the list

of representative words to attempt to understand each detected community.

Figure 1.2: Probabilistic Model of LDA [1].
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1.9 The Big-Clam

The BigClam algorithm utilizes the underlying adjacency matrix of the given graph to maximize

the likelihood of a new matrix F which represents how strongly associated each node is with

each community. BigClam formulates community detection as a variant of non-negative matrix

factorization. Similar to NMF, BigClam aims to learn factors that can recover the adjacency

matrix of a given network. Bloch coordinate gradient descent is used to solve the convex

optimization problem of updating each Fu in the matrix F [6]. The original Big-Clam algorithm

utilizes shortcuts to lessen it’s computational cost, we created a python implementation without

shortcuts because our data sets have edge lists with lengths in the thousands rather than the

millions. The BigClam algorithm is unable to accurately detect communities in our ground

truth data set. It’s impossible to point out exactly why the algorithm could not perform on

our ground truth network. We do know that the authors construct their model under the

following assumption: “On average 95 percent of all communities overlap with at least one

other community and only 15 percent of communitys members belong to only that community.

We thus examine the structure of community overlaps by measuring the probability of a pair of

nodes being connected given that they belong to k common communities. [6] ” In our ground

truth community, far less than 95 percent of communities overlap with at least one community.

This may have been a reason for why the model misclassified most of the nodes.

1.10 K-Means Textual Clustering with PCA

Conducting K-Means clustering on high dimensional TF-IDF data requires some kind of di-

mensionality reduction. We use principal component analysis (PCA) to reduce the text data’s

dimensionality to 2 dimensions. PCA performs a linear mapping of the data by maximizing the

variance of the data in the low-dimensional representation. The eigen-vectors on the matrix are

computed and those that correspond to the largest eigenvalues can now be used to reconstruct

a large fraction of the variance of the original data. The goal is to retain the important variance

in the data while shrinking its dimensionality. A quick way to think about how PCA works is
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by organizing data as an m by n matrix, where m is the number of measurement types and n

is the number of samples. Then subtracting off the mean for each measurement type. Finally

calculate the eigen-vectors of the covariance [5].

K-means works like this: Let X = (x1, ,xn) be n data points. We partition them into K

mutually disjoint clusters. The K-means clustering objective can be written as:

Jkmeans =
∑i

i=1 min
1<k<k

||xi − fk||2 =
∑k

k=1

∑
i∈Ck
||xi = fk||2

K-means has been shown to be successful at using it’s Euclidean distance measure to effi-

ciently cluster text documents [12]. However, NMF significantly outperforms K-means cluster-

ing in our ground truth data set. NMF is better at detecting patterns hidden patterns. The

vectorized textual data requires methods like NMF which are more complex.

1.11 Past Research

The Stanford Network Analysis Project (SNAP) is a leader in community detection research.

SNAP developed the CESNA algorithm, which is the first community detection algorithm to

utilize node attributes to aid the detection process. This project is partially inspired by the

CESNA algorithm because CESNA demonstrates that different kinds of data can be combined

to improve community detection efficiency. CESNA capitalizes on the fact that an algorithm

may fail to account for import structure in data when looking at the data independently.

The authors of paper about CESNA explain that “it is important to consider both sources

of information together and consider network communities as sets of nodes that are densely

connected, but which also share some common attributes. Node attributes can complement

the network structure, leading to more precise detection of communities; additionally, if one

source of information is missing or noisy, the other can make up for it. However, considering

both node attributes and network topology for community detection is also challenging, as one

has to combine two very different modalities of information [7].” We take these sentiments and

replace node attributes with textual data because our data sets give us tweets.
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Methods

2.1 Overview

Given a network with textual node attributes, our algorithm can detect sub-communities within

the network. In network science ”communities” are not strictly defined. In our case, we define

communities as users who have similar interests or are associated with certain places. We

perform clique percolation on the network, NMF clustering on the text (tweets), and use set

comparison and union to combine the results of two algorithms. The following sections are

sequentially ordered and contain brief explanations of the process at each step.

2.2 Clique Percolation

The first step in our algorithm is to run clique percolation on the given network to discover

k communities. We first utilize the clique percolation algorithm on the network to discover

k-cliques. We choose k=3 .

12
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2.3 NMF on the Text

The text must be cleaned before clustering. We find that removing typos and strange characters

before clustering produces tighter clusters. We use the following code to remove user-names

from the tweets.

de f remove users ( tweet ) :

t ex t = tweet . lower ( )

removeAt = re . sub ( r ”@\w+”, ”” , t ex t )

re turn ( removeAt )

In order to discover typos and messy tweets written by bots, we use the list returned by

”newCount” to find and remove them from the data set.

s p l i t = ” ” . j o i n ( data [ ” tweet ” ] ) . s p l i t ( )

n s twee t s = [w f o r w in s p l i t i f not w in stopwords . words (” e n g l i s h ” ) ]

newCount = Counter ( ns twee t s ) . most common (100)

p r i n t ( newCount )

We print ”newCount” and remove all messy words. We continue this process until all unrec-

ognizable words are removed from the text.

After cleaning the tweets, we find that the NMF silhouette R package is best for estimating

the optimal number of features for NMF to find. We adjust how we deal with the results of

NMF to account for overlapping communities by not just assigning nodes to the community

that has the max score. We edit the NMF clustering process by allowing any nodes in the top

75 percentile of all scores in that feature.

t f i d f d o c s = T f i d f v e c t o r i z e r . f i t t r a n s f o r m ( docs )

nmf = model . f i t t r a n s f o r m ( t f i d f d o c s )

This code builds an NMF model for the vectorized TF-IDF text data and returns the trans-

formed data. It’s the transformed matrix which represents the users in the rows and the different

features in the columns. For each user, if they are in the 75th percentile or above for all scores
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in each column, they are considered to be a part of the cluster that the corresponding column

represents.

2.4 Set Comparisons

With K cliques (clique percolation) and F features (NMF) the sets must be matched to attempt

to improve the detection. We create an intersection score which provides a score for best

matching sets. We define intersection score as:

de f i n t e r s e c t s c o r e ( net , t ex t ) :

a = s e t ( net )

b = s e t ( t ex t )

i n t e r = s e t ( a ) . i n t e r s e c t i o n (b)

maxlen = max( l en ( a ) , l en (b ) )

re turn l en ( i n t e r )/ maxlen

Any set in K with at least a .25 intersection score will be matched with a set in F. If there

are multiple sets in F that create an intersection score higher than .25, the set that produces

the highest score will be matched. The two sets will union to produce a new set which is

appended to the list of matched sets M. After all sets from K and F are compared, we consider

the final group of sets to be all sets in M (union sets) and all the sets not included in M will

be considered independent sets. By performing this set matching, we are combining similar

sets, under the assumption that if there are common users in sets, they are representative of

the same community. Those sets that are not matched will be left on there own, as we assume

that one data type presents a community that might not be visible in the other data type.

2.5 Topic Extraction

With LDA, we extract words which are representative of the text for each discovered community.

We set the number of topics to 1, and find the words representative of the 1 topic for each
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community discovered. These lists of words help gain an understanding of who the clusters of

users are and what they talk about.

2.6 Evaluation on Ground Truth

In order to evaluate the performance of the combined algorithms, we build a set comparison

method to find the closest matching sets to the ground truth communities.

bad0 = [ ]

bad1 = [ ]

s c o r e l i s t = [ ]

f o r com in a l lGt :

comMax = [ ]

f o r group in f ina l communi t i e s :

s co r e = i n t e r s e c t s c o r e (com , group )

comMax . append ( ( a l lGt . index (com)+1 , f ina l communi t i e s . index ( group )+1 , s co r e ) )

another = [ ]

f o r i t in comMax :

i f i t [ 0 ] not in bad0 and i t [ 1 ] not in bad1 :

another . append ( i t )

e l s e :

another . append ((100 ,100 ,−200))

themax = max( another , key=lambda x : x [ 2 ] )

s c o r e l i s t . append (max( another , key=lambda x : x [ 2 ] ) )

bad0 . append ( themax [ 0 ] )

bad1 . append ( themax [ 1 ] )

”scorelist” returns a list of all of the discovered communities matched to the closest ground

truth communities. With this list, we can evaluate the F1 scores on each matched set.
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Results

3.1 The Ground Truth Data Set

In order to obtain a ground truth community we scrape the network of @patmikekelly4 via

tweepy. We scrape the list of followers for each user that follows @patmikekelly4. We then create

an edge list of all of the users who follow each other while taking @patmikekelly4 out of the edge

list because having one central user in the network would not occur in a terrorist recruitment

network. Next, we scrape the last 300 tweets that each user published. Finally, we hand label

each user into a list of ground truth communities. 8 communities are formed and all have at least

3 users. The users are members of one or more of the following communities: Bard College, the

state of Massachusetts, passion for music, passion for politics, plays a sport (Athletics), plays

basketball, a family member of @patmikekelly4, or computer science student/professional. For

example, someone who plays music at Bard would be considered part of both the Bard and the

Music ground truth communities. The data set includes 143 users. Figure 3.1 gives a visual of

all of the users in the ground truth network and who they are connected with.

For the network diagrams in the following sections: A red dot means that the user is

correctly classified in the community. A blue dot means that the algorithm incorrectly

classified the user into it’s respective community. An orange dot means missed classifica-

tion. Missed classification means that the user is a part of the ground truth community, but

16
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Figure 3.1: The Ground Truth Network.

not classified as a part of that community by the algorithm.

We choose F1 scores to rank the ability of the algorithm because F1 considers both precision

and the recall of the test. [2] We look at each user as a binary number telling us if that user is

in the community we are examining. Precision is the number of correct positive results divided

by the number of all positive results. Recall is the number of of correct positive results divided

by the number of positive results that should have been returned. The F1 scores creates a

weighted average of precision and recall that returns between 0 and 1. In order to rank the

success of each algorithm as a whole, we calculate the average F1 score on each community

and multiply it by the number of detected communities divided by the total number of ground

truth communities.
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3.2 The Bard Community

Figure 3.2: Bard Clique Percolation Results with F1 Score: 0.948905109489.

Figure 3.3: Bard NMF Results with F1 Score: 0.476987447699.
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Figure 3.4: Bard Combination Results with F1 Score: 0.501766784452.

The Bard community is by far the largest community in the network. Clique percolation

performs extremely well for this community because of the density of it’s connections. Unfor-

tunately, because of the diversity of interests amongst Bard students, it’s NMF pairing brought

it’s overall F1 score down significantly. To try to improve this, future algorithms could attempt

to understand that it’s dealing with a larger community which overlaps other communities, and

could assign more weight to the clique percolation than to the textual clustering.

The LDA extracted topics are:

[im, gonna, literally, dying, sorry, glad, way, like, girl, eating, tired, mad, crying, really, season,

date, sad, going, facebook, f*cking]
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3.3 The Massachusetts Community

Figure 3.5: Massachusetts Clique Percolation Results with F1 Score: 0.786206896552.

Figure 3.6: Massachusetts NMF Results with F1 Score: 0.271428571429.
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Figure 3.7: Massachusetts Combination Results with F1 Score: 0.524390243902.

The Massachusetts community is the second largest community in the ground truth data set.

Massachusetts makes up almost all of the nodes that are not a part of the Bard community.

Together these two communities make up a majority of the network and both contain most of

the sub communities within themselves. Once again, the NMF clustering hurts the performance

that clique percolation had initially achieved, but this is expected as the topics vary greatly

amongst the Massachusetts network.

The LDA extracted topics are:

[thanks, connect, follow, looking, following, miss, got, voice, lmk, time, hope, need, told, fan,

congrats, best, dont, libertarians, nice, florida]
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3.4 The Athletics Community

Athletics Clique Percolation Results

No athletics community detected.

Figure 3.8: Athletics NMF Results with F1 Score: .371428571429.
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Figure 3.9: Athletics Combination Results with F1 Score: 0.225563909774.

After Bard and Massachusetts, clique percolation isn’t expected to perform well because

these communities have a lesser likelihood of being connected, and a greater likelihood of

talking about similar subjects. Many of the sub-communities aren’t directly connected. As

many of the athletics community members are both a part of Bard and Massachusetts, clique

percolation couldn’t possibly detect their membership as they are not directly connected. NMF

performs well in finding athletes referring to similar topics.

The LDA extracted topics are:

[love, people, thank, ty, life, today, free, advisor, probably, rarely, mom, hope, bro, youre, pic,

bard, thing, obamas, ur, culture]
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3.5 The Music Community

Figure 3.10: Music Clique Percolation Results with F1 Score: 0.

Figure 3.11: Music NMF Results with F1 Score: .29219325239.
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Figure 3.12: Music Combination Results with F1 Score: .201293491293.

Clique percolation is unable to detect the actual music community. NMF performs well on

this community with an F1 score of .29.

LDA extracted topics are:

[home, hvac, ecolife, life, eco, protection, help, heating, comfort, water, air, energy, new, furnace,

costs, save, comfortable, make, systems, sure]
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3.6 The Family Community

Figure 3.13: Family Cliaue Percolation Results with F1 Score: 0.615384615385.

Figure 3.14: Family NMF Results with F1 Score: 0.0769230769231.
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Figure 3.15: Family Combination Results with F1 Score: 0.585384615385.

Members of @patmikekelly14’s family are detected at a surprisingly high rate. This tiny

community is detected very well by clique percolation, probably due to it’s nature of being a

small community which are densely connected and not connected to the large communities that

make up a majority of the network. NMF achieved minor success.

LDA extracted topics are:

[just, like, think, man, dude, did, going, got, really, lol, idea, boss, fight, roommate, years,

mother, past, team, dont, stop]
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3.7 The Politics Community

Figure 3.16: Politics Clique Percolation Results with F1 Score: 0.

Figure 3.17: Politics NMF Results with F1 Score: 0.124031007752.

Combination Results

No politics community detected.
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With all of the political dialogue on Twitter in the past year cluttering the text data, the

true passionate political users are unable to be accurately detected by NMF.

3.8 The Basketball Community

Clique Percolation Results

No basketball community detected.

Figure 3.18: Basketball NMF Results with F1 Score: 0.410109209349.



30 Chapter 3. Results

Figure 3.19: Basketball Combination Results with F1 Score: 0.310344827586.

The basketball community is detected well by the NMF textual clustering, but is not detected

by clique percolation. With an overall F1 score of .31, this sub-community is detected fairly

well.

LDA extracted topics are:

[day, great, happy, best, photo, big, hours, good, february, finsup, makes, perfect, senior,

valentines, going, weekend, new, presidentsday, tomorrow, youre]

3.9 The Computer Science Community

Clique Percolation Results

No computer science community detected.

NMF Results

No computer science community detected.
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Figure 3.20: Computer Science Combination Results with F1 Score: 0.310344827586.

The computer science community results are the most intriguing, because while the algorithm

does not recognize the community at first, the union of it’s closest matching results create a

fairly accurate final community. This is possible due to the nature of the matching process

in this algorithm. When deciding which sets to union, these two sets could have been the

mismatched in clique percolation or in NMF, but when combined they match closest to the

computer science community.

LDA extracted topics are:

[data, machinelearning, science, big, machine, learning, python, mining, miningtechniques,

bruce, analytics, bigdata, hadoop, datascience, ai, know, power, datamining, scientist, better]

3.10 Failure of BigClam and K-means

To illustrate the difficulty that our community detection problem presents by our definition of

community, we share the results of the BigClam (Network Structure) and K-Means (Textual

Clustering). The BigClam algorithm failed to detect any communities with an F1 score of

higher than .19. Visually, the easiest community to detect would be the Bard community, as it
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is the biggest and most densely connected community. Since the bigclam attempts to maximize

the likelihood of the matrix F using sets of neighbors and non-neighbors to understand the

network, we expect the Bard community to be an easy find for the BigClam. The algorithm

produces almost identical sets of users in the Snap Stanford C Library version and our python

implementation. Figure 3.21 displays the results of the python implementation for the Bard

community.

Figure 3.21: BigClam Bard Community Results with F1 Score: .461929432.

We hoped to build a mathematical model on top of the BigClam because not only does it

offer overlapping community detection at scale, but it also returns a matrix F which gives a

metric representing confidence in the grouping of each user. Fu in the resulting matrix offers a

non-negative scoring of how well the user fits into each community where each community is a

different column in the matrix F .

Dimensionality reduction and k-means clustering also failed to utilize the tweets to group

users into something close to the ground truth communities. There are two possibilities for why

k-means failed to recognize clusters of users given the tweets. The data could have been non-

spherical. The nature of K-means utilizing euclidean distance fails to find non-spherical clusters,

whereas other algorithms can detect patterns in the data and can find non-spherical clusters.
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K-means also struggles with clusters of differing sizes. As K-means attempts to minimize the

within-cluster sum of squares, larger clusters are split because they are given more weight and

it ends up splitting the cluster. K-means and PCA produce an extremely low average F1 score

on our ground truth data set.

3.11 Average F1 Scores by Algorithm

An average F1 score is calculated by multiplying the average F1 score of the detected commu-

nities and multiplying that by the number of communities detected by 8, the total number of

communities.

Algorithm Clique Percolation NMF Text Clustering Combined Algorithms

Equation 0.39915684431167 * 6/8 0.24766934442273 * 6/8 0.37043279809681 * 7/8

Score 0.2993676332337525 0.1857520083170475 0.32412869833470875

3.12 Results on ISIS Data set

For the ISIS recruiting data set there ended up being 8 Communities formed by 4 clique

percolation communities and 7 NMF communities. After set comparison, we end up with 8

communities detected. Because we have no knowledge of the true communities, presenting the

list of users grouped by the algorithm is unnecessary. Instead we display the terms extracted

from these communities by LDA:

Topics in Community 1: [http, english, new, sheikh, al, video, statement, wilayat, mte2, jn,

ha, coming, soon, regarding, time, media, el, town, wilayataljazirah, people]

Topics in Community 2: [isis, killed, iraq, army, ramadi, soldiers, iraqi, attack, today, west,

deirezzor, near, claims, breakingnews, forces, fighters, militants, islamicstate, breaking, huge]

Topics in Community 3: [allah, protect, ya, azzawajal, muslims, brothers, swt, akbar, make,

help, people, said, family, accept, freemuslimprisoners, messenger, love, dua, reward, abu]

Topics in Community 4: [syria, russia, assad, geneva, usa, talks, regime, war, airstrikes,
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russian, deirezzor, opposition, people, kids, idlib, madaya, homs, children, assads, kerry]

Topics in Community 5: [know, did, dont, al, just, fact, shia, caliphate, ottomon, islam,

muslims, want, used, didnt, world, created, america, ummah, sheikh, religion]

Topics in Community 6: [follow, brother, sisters, account, khair, support, dear, spread, true,

path, jazakallah, baqiyah, shout, family, nation, great, jazakallahu, retweet, surprise, dm]

Topics in Community 7: [akhi, jazakallahu, ya, shout, im, nasheed, dm, sheikh, happened,

know, link, inschallah, check, source, khair, better, plz, akh, punishment, surprise]

Topics in Community 8: [state, islamic, fighters, israel, military, says, territory, group, at-

tacks, time, turkish, soldiers, terrorist, enter, explosive, sinai, wilayatsalahuddin, iraq, general,

spy]

With closeness centrality[10], we discover the central figures for each ISIS recruiting community.

The central figures for each ISIS community: Community 1: @WarReporter1

Community 2: @KhalidMaghrebi

Community 3: @UncleSamCoco

Community 4: @GunsandCoffee70

Community 5: @RamiAlLolah

Community 6: @KhalidMaghrebi

Community 7: @Nidalgazaui

Community 8: @ismailmahsud
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Conclusion

4.1 Summary of Thesis Achievements

Our combination of algorithms was able to detect sub-communities in a network with a score

of 0.32412869833470875 which is strong considering the difficulty of the problem. The average

score is slightly stronger than both the clique percolation and NMF textual clustering, which

shows that our algorithm is able to effectively combine both forms of the given data to aid in

the community detection problem.

We also demonstrate the difficulty of our problem by displaying the failure of BigClam and

K-Means textual on the ground truth data set. Both K-Means and BigClam have proven to be

successful when applied to simpler data on large networks.

4.2 Applications

This algorithm can be applied to detect communities in a network in which the users have

textual attributes such as tweets. When applied to the ISIS twitter network, we are able to

group them into sub-communities, summarize what each community is discussing, and learn

about who the users are. Marketing agencies may have an interest in this algorithm to improve

35
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their ability to target customers in particular communities given limited data.

4.3 Future Work

With a larger ground truth data set in a larger network, a more thorough evaluation can occur

on how to best deal with the problem of community detection in networks with nodes with

textual attributes. Given that there are an immense amount of algorithms that could deal

with a problem of this nature, more combinations of network clustering and text clustering

algorithms could be applied using our set matching process.

Further, the model could be enhanced by extending the algorithms to handle the dynamics in

the networks and to detect the evolutions of communities along with the time. Understanding

the shaping of a network can allow an algorithm to better understand the network’s communi-

ties. Several studies have been devoted to such extensions without much success, but with the

added textual data, better results may appear.

Finally and most importantly, building a model that allows the network analysis and text

analysis to occur simultaneously would most likely produce stronger results than what we see

with our set matching. We could not build a dynamic model due to the failure of the Bigclam

on our data set. Our thesis illustrates that putting time into building a single model that would

combine network science and text analysis to detect communities in networks would likely be

worthwhile and produce strong results.
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Appendix A

The BigClam Python Implementation

import numpy as np

import networkx as nx

import matp lo t l ib . pyplot as p l t

import community

import math

import i t e r t o o l s as IT

import s c ipy

#A cut , ver tex cut , or s epa ra t ing s e t o f a connected graph G

#i s a s e t o f v e r t i c e s whose removal render s G disconnected .

de f c u t s i z e (G, S , T=None , weight=None ) :

edges = nx . edge boundary (G, S , T)

return sum( weight f o r u , weight in edges )

#the degree o f each node in the graph

de f volume (G, S , weight=None ) :

degree = G. degree

d ic tVo l = degree (S , weight=weight )

summ = [ ]

f o r key , value in d ic tVo l . i tems ( ) :

summ. append ( value )

re turn sum(summ)

#number o f cut edges / min ( volume o f the set , volume o f other s e t )

de f conductance (G, S , T=None , weight=None ) :

i f T i s None :

T = se t (G) − s e t (S)

num cut edges = c u t s i z e (G, S , T, weight=weight )

volume S = volume (G, S , weight=weight )

volume T = volume (G, T, weight=weight )

re turn num cut edges / min ( volume S , volume T )

#k = INIT method = b ig c l am in i t . py

k = 7

F = np . z e ro s ( ( l en ( l s ) , k ) )

c= {}

#i n i t i a l i z e the matrix F

de f graphConductance (G) :

f o r w in s e t (G) :

newSet = se t (G. ne ighbors (w) )

c [w] = ( conductance (G, newSet ) )

nx . s e t n od e a t t r i b u t e s (G, ’ conductance ’ , c )

localGraph = G
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f o r i in range (1 , k ) :

com = nx . g e t n od e a t t r i bu t e s (G, ’ conductance ’ )

comNode = min(com , key=com . get )

community = G. ne ighbors (comNode)+[comNode ]

G = se t (G)− s e t ( community )

f o r x in range ( l en ( localGraph . nodes ( ) ) ) :

i f x in community :

F [ x−1] [ k−2] = 1

i f x in G:

F [ x−1] [ k−1] = 1

return (F)

#i t e r a t i n g through the edges o f Graph .

#Assign 1 node as u and 1 as v .

F = graphConductance (Graph )

nodes = Graph . nodes ( )

#orthogonal dot product try and f i n a l l y

de f ca t ch In f ( exponent ia l ) :

e = np . l og (1− exponent ia l )

i f e == f l o a t ( ’− i n f ’ ) :

r e turn −10

e l s e :

r e turn e

#loops through the edges o f the graph

#the L ike l ihood o f the e n t i r e matrxi F

#the s c a l a r g iven here i s our o v e r a l l

#l i k e l i h o o d f o r each loop i t e r a t i o n through the e n t i r e matrix .

#th i s loop w i l l run un t i l the l i k e l i h o o d s tays the same

lF = [ ]

de f l i k e l i hoodOfF (Graph ) :

f o r node in Graph . edges ( ) :

# u = a node from the edge

u = node [ 0 ]

# v = another node from the edge

v = node [ 1 ]

#grabs the Fu Row from connect ion s t r ength matrix F

Fu = F[ u−1 , : ]

#same thing f o r Fv

Fv = F[ v−1 , : ]

FvT = np . t ranspose (Fv)

# dot product o f Fu ,FvT

mFuFvT = np . dot (Fu ,FvT)

#exponent ia l o f Fu . Fv

expVal = math . exp(−mFuFvT)

fVal = ca t ch In f ( expVal )

#fVal = (np . l og (1−expVal ) )

lF . append ( fVal )

sLF = sum( lF )

#now the compliment s e t

nLF = [ ]

nonEdges = l i s t ( nx . non edges (Graph ) )

f o r node in nonEdges :

nU = node [ 0 ]

nV = node [ 1 ]

nFu = F[nU−1 , : ]

nFv = F[nV−1 , : ]

nFvT = np . t ranspose (nFv)

nmFuFvT = np . dot (nFu , nFvT)

nLF . append (nmFuFvT)

snLF = sum(nLF)

l i k e = sLF − snLF
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re turn l i k e

#loops through each node ,

#and then the ne ighbors f o r each node

de f l ike l ihoodOfFu (Graph , node ) :

ne ighLike = [ ]

nonNeighLike = [ ]

f o r neighbor in Graph . ne ighbors ( node ) :

u = node

v = neighbor

Fu = F[ u−1 , : ]

Fv = F[ v−1 , : ]

FvT = np . t ranspose (Fv)

mFuFvT = np . dot (Fu ,FvT)

expVal = math . exp(−mFuFvT)

fVal = ca t ch In f ( expVal )

ne ighLike . append ( fVal )

#loop through non−ne ighbors o f node u

lSum = sum( ne ighLike )

f o r non in nx . non ne ighbors (Graph , node ) :

u = node

v = non

Fu = F[ u−1 , : ]

Fv = F[ v−1 , : ]

FvT = np . t ranspose (Fv)

mFuFvT = np . dot (Fu ,FvT)

nonNeighLike . append (mFuFvT)

nLSum = sum( nonNeighLike )

fLSum = lSum − nLSum

return fLSum

def divExp (divNum ) :

func = 1 − math . exp (divNum)

return func

#computing the grad i ent

de f computeGradient (Graph , node ) :

ne ighLike = [ ]

nonNeighLike = [ ]

f o r neighbor in Graph . ne ighbors ( node ) :

u = node

v = neighbor

Fu = F[ u−1 , : ]

Fv = F[ v−1 , : ]

FvT = np . t ranspose (Fv)

mFuFvT = np . dot (Fu ,FvT)

expVal = math . exp(−mFuFvT)

divVal = math . exp(−mFuFvT)

i f divVal == 1 :

oneMinusDivVal = 1

e l s e :

oneMinusDivVal = 1 − divVal

fExpVal = expVal/oneMinusDivVal

fvProd = np . mult ip ly (Fv , fExpVal )

ne ighLike . append ( fvProd )

sumFvProd = sum( ne ighLike )

f o r non in nx . non ne ighbors (Graph , node ) :

v = non

Fv = F[ v−1 , : ]

nonNeighLike . append (Fv)

sumOfFv = sum( nonNeighLike )

g rad i ent = sumFvProd − sumOfFv

return grad i ent
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alpha = .001

maxIter = 1000

th r e s = .0001

curL = 0.0

i = 0

de f getCommunity (rowNum) :

rowData = V[ rowNum]

com = rowData . argmax ( )

return com

def backTrackingLineSearch ( theGraph , alpha ) :

s t epS i z e = 1

f o r i in range ( maxIter ) :

f o r node in Graph . nodes ( ) :

deltaV = computeGradient (Graph , node )

com = getCommunity ( node−1)

newVal = s t epS i z e ∗ deltaV [ com ]

i f newVal < minVal :

newVal = minVal

i f newVal > maxVal :

newVal = maxVal

sVal = np . dot ( computeGradient (Graph , node ) , l i ke l ihoodOfFu (Graph , node ) )

i f l i ke l ihoodOfFu (Graph , node ) < i n i t L i k e l i h o od + alpha ∗ s t epS i z e ∗ sVal [ com ] :

s t epS i z e = s t epS i z e ∗ Beta

e l s e :

break

i f i == maxIter−1:

s t epS i z e = 0 .0

return s t epS i z e

de f bigClam (Graph ) :

whi le i < maxIter :

i = i + 1

#get l i k e l i h o o d be fo r e update

prevL = l ike l i hoodOfF (Graph )

f o r node in Graph . nodes ( ) :

#c = community

#update matrix with grad i ent

f o r c in range (0 , k ) :

grad = computeGradient (Graph , node )

va l = alpha ∗ grad [ c ]

update = F[ node−1,c ] + val

#keep matrix between 0 and 1

i f update <= 0 :

F [ node−1,c ] = 0

e l i f update >= 1:

F [ node−1,c ] = 1

e l s e :

F [ node−1,c ] = update

#current l i k e l i h o o d

curL = l ike l ihoodOfF (Graph )

i f curL − prevL <= thre s ∗abs ( prevL ) :

break

e l s e :

prevL = curL

alpha = backTrackingLineSearch (Graph , alpha )

p r in t ( ’ i t e r a t i o n : ’ , i , curL )

p r in t (F)
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Generating a Ground Truth Data Set

From Twitter

B.1 getFollowers.py

#run th i s f i l e in termina l and name i t g e t f o l l ow e r s . py

#Get the key/ token from OAuth and enter your own username in to the

#screen name f i e l d

#Wil l p r in t a l i s t o f the user IDs o f your f o l l ow e r s on tw i t t e r

import time

import tweepy

c key = ’ ’

c s e c r e t = ’ ’

a token = ’ ’

a t o k en s e c r e t = ’ ’

auth = tweepy . OAuthHandler ( c key , c s e c r e t )

auth . s e t a c c e s s t o k en ( a token , a t o k en s e c r e t )

api = tweepy .API( auth )

i d s = [ ]

f o r page in tweepy . Cursor ( api . f o l l ow e r s i d s , screen name=”patmikeke l ly4 ” ) . pages ( ) :

i d s . extend ( page )

time . s l e ep (20)

p r in t ( i d s )

B.2 getTheTweets.py

#name th i s f i l e : getTheTweets . py

#enter the l i s t o f u s e r i d s that you created with

#generatenetwork . py in to the l i s t named ” id s ”

#th i s code w i l l c r e a t e a CSV conta in ing a l l o f the

#use r s tweets a s s o c i a t ed with t h e i r user ID

43
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import tweepy

import csv

import pandas as pd

#Put your l i s t o f u s e r i d s in here :

i d s = [ ]

#Twitter API c r e d e n t i a l s

consumer key = ””

consumer secre t = ””

acc e s s key = ””

a c c e s s s e c r e t = ””

#author i z e tw i t t e r , i n i t i a l i z e tweepy

auth = tweepy . OAuthHandler ( consumer key , consumer secre t )

auth . s e t a c c e s s t o k en ( acces s key , a c c e s s s e c r e t )

api = tweepy .API( auth )

outtweets = [ ]

de f g e t a l l t w e e t s ( screen name ) :

#Twitter only a l l ows ac c e s s to a use r s most r ecent

#3240 tweets with t h i s method

#i n i t i a l i z e a l i s t to hold a l l the tweepy Tweets

a l l tw e e t s = [ ]

new tweets = api . u s e r t ime l i n e ( screen name = screen name , count=200)

f o r tweet in new tweets :

outtweets . append ( ( tweet . i d s t r , tweet . t ext . encode (” utf −8”)))

re turn outtweets

a l l o f t h em = [ ]

f o r user in i d s :

t ry :

u = api . g e t u s e r ( user )

tweets = g e t a l l t w e e t s (u . screen name )

a l l o f t h em . append ( tweets )

except tweepy . TweepError as e :

pass

with open ( ’ a l l t w e e t s . csv ’ , ’w’ ) as f i l e :

output = csv . wr i t e r ( f i l e , d e l im i t e r = ’ , ’ )

output . wr i terows ( [

[ ’ id ’ , ’ tweet ’ ]

] )

#a f t e r running t h i s f i l e you w i l l have a l i s t o f u s e r i d s , and a

#l i s t o f the l a s t x number o f tweets that each user composed .

B.3 buildNetwork.py

This code is based off of the tutorial written by [9] and modified to fit our needs.

#This code w i l l genenate JSONs f o r each user conta in ing

#a l i s t o f who each user i s f o l l ow ing with up to 400 use r s f o r each .

import tweepy

import time

import os

import sys

import j son

import argparse

FOLLOWING DIR = ’ fo l l ow ing ’
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MAX FRIENDS = 400

FRIENDS OF FRIENDS LIMIT = 400

i f not os . path . e x i s t s (FOLLOWING DIR) :

os . makedir (FOLLOWING DIR)

enc = lambda x : x . encode ( ’ a s c i i ’ , e r r o r s =’ ignore ’ )

CONSUMERKEY = ’ ’

CONSUMER SECRET = ’ ’

ACCESS TOKEN = ’ ’

ACCESS TOKEN SECRET = ’ ’

# == OAuth Authent icat ion ==

# This mode o f au thent i ca t i on i s the new p r e f e r r ed way

# of authent i ca t ing with Twitter .

auth = tweepy . OAuthHandler (CONSUMERKEY, CONSUMER SECRET)

auth . s e t a c c e s s t o k en (ACCESS TOKEN, ACCESS TOKEN SECRET)

api = tweepy .API( auth )

de f g e t f o l l ow e r i d s ( centre , max depth=1, current depth=0, t a b o o l i s t = [ ] ) :

# pr in t ’ cur rent depth : %d , max depth : %d ’ % ( current depth , max depth )

# pr in t ’ taboo l i s t : ’ , ’ , ’ . j o i n ( [ s t r ( i ) f o r i in t a b o o l i s t ] )

i f cur rent depth == max depth :

p r in t ( ’ out o f depth ’ )

re turn t a b o o l i s t

i f c ent r e in t a b o o l i s t :

# we ’ ve been here be f o r e

p r in t ( ’ Already been here . ’ )

re turn t a b o o l i s t

e l s e :

t a b o o l i s t . append ( cent r e )

t ry :

userfname = os . path . j o i n ( ’ tw i t t e r−users ’ , s t r ( c ent r e ) + ’ . json ’ )

i f not os . path . e x i s t s ( userfname ) :

p r in t ( ’ Ret r i ev ing user d e t a i l s f o r tw i t t e r id %s ’ % s t r ( cent r e ) )

whi le True :

t ry :

user = api . g e t u s e r ( cent r e )

d = { ’name ’ : user . name ,

’ screen name ’ : user . screen name ,

’ id ’ : user . id ,

’ f r i ends count ’ : user . f r i ends count ,

’ f o l l owe r s count ’ : user . f o l l owe r s count ,

’ f o l l ow e r s i d s ’ : user . f o l l o w e r s i d s ( )}

with open ( userfname , ’w’ ) as out f :

out f . wr i t e ( j son . dumps(d , indent =1))

user = d

break

except tweepy . TweepError as e r r o r :

p r i n t ( type ( e r r o r ) )

i f s t r ( e r r o r ) == ’Not author i zed . ’ :

p r i n t ( ’Can ’ ’ t a c c e s s user data − not author i zed . ’ )

re turn t a b o o l i s t

i f s t r ( e r r o r ) == ’ User has been suspended . ’ :

p r i n t ( ’ User suspended . ’ )

re turn t a b o o l i s t

errorObj = e r r o r [ 0 ] [ 0 ]

p r i n t ( errorObj )

i f errorObj [ ’ message ’ ] == ’Rate l im i t exceeded ’ :

p r i n t ( ’ Rate l im i t ed . S l e ep ing f o r 15 minutes . ’ )

time . s l e ep (15 ∗ 60 + 15)

cont inue

return t a b o o l i s t

e l s e :
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user = json . l oads ( f i l e ( userfname ) . read ( ) )

screen name = enc ( user [ ’ screen name ’ ] )

fname = os . path . j o i n (FOLLOWING DIR, screen name + ’ . csv ’ )

f r i e n d i d s = [ ]

# only r e t r i e v e f r i e n d s o f Pat . . . s c r een names

i f screen name ==(’patmikekel ly4 ’ ) :

i f not os . path . e x i s t s ( fname ) :

p r in t ( ’No cached data f o r s c r een name ”%s ” ’ % screen name )

with open ( fname , ’w’ ) as out f :

params = ( enc ( user [ ’ name ’ ] ) , screen name )

p r in t ( ’ Ret r i ev ing f r i e n d s f o r user ”%s” (%s ) ’ % params )

# page over f r i e n d s

c = tweepy . Cursor ( api . f r i end s , id=user [ ’ id ’ ] ) . i tems ( )

f r i end coun t = 0

whi le True :

t ry :

f r i e nd = c . next ( )

f r i e n d i d s . append ( f r i e nd . id )

params = ( f r i e nd . id , enc ( f r i e nd . screen name ) , enc ( f r i e nd . name ) )

out f . wr i t e ( ’% s\ t%s\ t%s\n ’ % params )

f r i end coun t += 1

i f f r i e nd coun t >= MAX FRIENDS:

p r in t ( ’ Reached max no . o f f r i e n d s f o r ”%s ” . ’ % f r i e nd . screen name )

break

except tweepy . TweepError :

# h i t ra t e l im i t , s l e ep f o r 15 minutes

p r in t ( ’ Rate l im i t ed . S l e ep ing f o r 15 minutes . ’ )

time . s l e ep (15 ∗ 60 + 15)

cont inue

except S top I t e r a t i on :

break

e l s e :

f r i e n d i d s = [ i n t ( l i n e . s t r i p ( ) . s p l i t ( ’\ t ’ ) [ 0 ] ) f o r l i n e in f i l e ( fname ) ]

p r in t ( ’ Found %d f r i e n d s f o r %s ’ % ( l en ( f r i e n d i d s ) , screen name ) )

# get f r i e n d s o f f r i e n d s

cd = current depth

i f cd+1 < max depth :

f o r f i d in f r i e n d i d s [ : FRIENDS OF FRIENDS LIMIT ] :

t a b o o l i s t = g e t f o l l ow e r i d s ( f id , max depth=max depth ,

current depth=cd+1, t a b o o l i s t=t a b o o l i s t )

i f cd+1 < max depth and len ( f r i e n d i d s ) > FRIENDS OF FRIENDS LIMIT :

p r in t ( ’ Not a l l f r i e n d s r e t r i e v e d f o r %s . ’ % screen name )

except Exception as e r r o r :

p r i n t ( ’ Error r e t r i e v i n g f o l l ow e r s f o r user id : ’ , c ent r e )

p r in t ( e r r o r )

i f os . path . e x i s t s ( fname ) :

os . remove ( fname )

p r in t ( ’Removed f i l e ”%s ” . ’ % fname )

sys . e x i t (1 )

re turn t a b o o l i s t

i f name == ’ main ’ :

ap = argparse . ArgumentParser ( )

ap . add argument(”− s ” , ”−−screen−name” , r equ i r ed=True , help=”Screen name o f tw i t t e r user ”)

ap . add argument(”−d” , ”−−depth ” , r equ i r ed=True , type=int , he lp=”How f a r to f o l l ow user network ”)

args = vars ( ap . pa r s e a r g s ( ) )

tw i t te r sc reenname = args [ ’ screen name ’ ]

depth = in t ( args [ ’ depth ’ ] )

i f depth < 1 or depth > 3 :

p r in t ( ’ Depth value %d i s not va l i d . Val id range i s 1−3. ’ % depth )
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sys . e x i t ( ’ I nva l i d depth argument . ’ )

p r i n t ( ’Max Depth : %d ’ % depth )

matches = api . l ookup use r s ( screen names=[ twi t te r sc reenname ] )

i f l en (matches ) == 1 :

p r in t ( g e t f o l l ow e r i d s (matches [ 0 ] . id , max depth=depth ) )

e l s e :

p r i n t ( ’ Sorry , could not f i nd tw i t t e r user with sc r een name : %s ’ % twi t te r sc reenname )

B.4 twitterNetwork.py

This is the last step in the process. This code takes the central user out of the network, and

creates an edge list in a CSV of who is following who from the user list.

import glob

import os

import j son

import sys

from c o l l e c t i o n s import d e f a u l t d i c t

u s e r s = d e f a u l t d i c t ( lambda : { ’ f o l l owe r s ’ : 0 })

f o r f in glob . g lob ( ’ tw i t t e r−use r s /∗ . j son ’ ) :

data = json . load ( f i l e ( f ) )

screen name = data [ ’ screen name ’ ]

u s e r s [ screen name ] = { ’ f o l l owe r s ’ : data [ ’ f o l l owe r s count ’ ] }

SEED = ’ patmikekel ly4 ’

de f p r o c e s s f o l l o w e r l i s t ( screen name , edges =[ ] , depth=0, max depth=2):

f = os . path . j o i n ( ’ f o l l ow ing ’ , screen name + ’ . csv ’ )

i f not os . path . e x i s t s ( f ) :

r e turn edges

f o l l ow e r s = [ l i n e . s t r i p ( ) . s p l i t ( ’\ t ’ ) f o r l i n e in f i l e ( f ) ]

f o r f o l l owe r da t a in f o l l ow e r s :

i f l en ( f o l l owe r da t a ) < 2 :

cont inue

screen name 2 = fo l l owe r da t a [ 1 ]

# use the number o f f o l l ow e r s f o r screen name as the weight

weight = use r s [ screen name ] [ ’ f o l l owe r s ’ ]

edges . append ( [ screen name , screen name 2 , weight ] )

i f depth+1 < max depth :

p r o c e s s f o l l o w e r l i s t ( screen name 2 , edges , depth+1, max depth )

return edges

edges = p r o c e s s f o l l o w e r l i s t (SEED, max depth=3)

with open ( ’ tw i t t e r ne twork . csv ’ , ’w’ ) as out f :

e d g e e x i s t s = {}

f o r edge in edges :

key = ’ , ’ . j o i n ( [ s t r ( x ) f o r x in edge ] )

i f not ( key in e d g e e x i s t s ) :

out f . wr i t e ( ’% s\ t%s\ t%d\n ’ % ( edge [ 0 ] , edge [ 1 ] , edge [ 2 ] ) )

e d g e e x i s t s [ key ] = True
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