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Abstract

Debugging is rarely formally taught, despite being used by pro-

grammers every day. Research indicates that it is valuable to teach

debugging, and suggests that teaching it collaboratively may be max-

imally effective. The goal of this project is to create a collaborative

debugger. The debugger aims to be the ideal platform to teach and

learn debugging. This paper briefly reviews relevant literature cov-

ering teaching debugging and teaching programming collaboratively.

Most of the paper is devoted to the design of the collaborative debug-

ger.
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2 Introduction

Programmers spend large amounts of time debugging—the process of search-

ing for and correcting errors in code that are not immediately apparent. They

often use debuggers—tools which help programmers to inspect a running

program—to assist them in this process of diagnosing sometimes inexplica-

ble problems with their code. Though debuggers are primarily used to hunt

down hidden mistakes, they are also powerful tools to understand program

execution.

The goal of this project is to create a collaborative debugger to aid in the

teaching of debugging. The collaborative debugger hopes to help teachers

integrate this undertaught skill into their classes. It realizes the benefits of

collaborative programming and teaching debugging by providing a platform

that aims to be useful to both students and teachers.

2.1 Motivation

Debugging is invaluable in writing and understanding code, yet it is rarely

formally taught [25]. Students are typically taught programming structures,

concepts, and languages, but are left to learn the tools they use to write code

alone. This approach often works well—a programmer’s choice of tools is of-

ten very personal and students figure out how to configure an individualized

workflow. Perhaps because debuggers are tools, students are often expected

to learn them with minimal guidance. Unlike editors or reference guides
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however, effectively using a debugger requires a set of high-level, platform

agnostic, teachable skills. Teaching these skills is effective, and translates

into better and faster debugging and programming [24] [27]. Teaching these

debugging skills collaboratively will likely offer the same confidence and cor-

rectness benefits realized by teaching programming collaboratively [23] [26].

2.1.1 The Value of Teaching Debugging

There is an unfortunate lack of research specifically into the efficacy of teach-

ing debugging for computer science students, despite a recent rise in the

inclusion of debugging in “computational thinking” curricula [27]. These

curricula attempt to teach skills in computer science classes that translate

into other subject areas: the UK’s computer science curriculum considers

debugging an essential “transferable skill” [19].

There seems to be confidence that the problem-solving techniques used

in debugging are widely applicable, but of greater interest to computer sci-

ence teachers is whether teaching debugging directly benefits student pro-

grammers. Michaeli and Romeike conducted a good, albeit somewhat small,

study on the efficacy of teaching a systematic debugging process to K12 stu-

dents. They found that students who have been taught a specific debugging

framework performed better in debugging tests and were more confident in

their own debugging skills [27]. Their result is positive evidence towards the

efficacy of teaching debugging, though it doesn’t include college or university

students.

7



As Michaeli and Romeike point out, there is a lack of research into the

value of teaching debugging in higher education. None of the research these

authors found placed much focus on explicitly teaching debugging. Chmiel

and Loui studied whether students who were provided with debugging tools

and frameworks performed better on tests or spent less time on assignments

than those who were not [20]. Though this research wasn’t able to find

conclusive evidence towards better performance on tests or assignments, it

did find that students in the treatment group felt more confident in their

debugging abilities. Unfortunately Chmiel and Loui’s study didn’t involve

extended explicit teaching of debugging—use of the tools was voluntary, and

variations in the students’ individual abilities made the data difficult to eval-

uate.

Though there is a lack of higher-education research, the value of teaching

debugging is still demonstrable. The research discussed all finds that K-12

and college students alike commonly resort to sporadic debugging techniques

when beginning to learn. Since this pattern of behavior that explicitly teach-

ing debugging corrects exists in college as well as in K-12 students, it seems

logical that the benefit of explicitly teaching debugging to K-12 students

should be realized equally by their collegiate counterparts.

2.1.2 Methods for Teaching Debugging

Similarly to research on the value of teaching debugging, research into how to

best teach debugging is sparse. Chan et al. allow that “in general research on
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how to improve debugging is sporadic”—an observation that leads them to

research a framework to reduce the complexity of teaching debugging [24]. To

organize their framework, they split debugging knowledge into 5 categories:

Domain, System, Procedural, Strategic, and Experiential. They then review

different debugging tools and teaching aids—from those that involve writing

code to games—and map tools to the knowledge areas they seek to address.

After an evaluation of a host of different tools, they claim to find a few

significant faults in current debugging teaching platforms. The collaborative

debugger primarily seeks to address the lack of back-tracing ability/coverage

found in their research.

2.1.3 The Value of Collaborative Programming

Collaborative programming, where multiple programmers work together to

write and test code, is popular in both industry and computer science educa-

tion [26]. Collaborative programming most often manifests as pair programming—

two programmers working together on the same program. Research into the

value of pair programming is overwhelmingly positive. McDowell et. al.

found that not only does pair programming significantly boost student con-

fidence and the retention of students in computer science majors, but that it

demonstrably improves student’s work [26]. These benefits of confidence and

correctness are present when paired and non-paired students are given iden-

tical assignments [23], further indicating that the simple act of collaboration

definitively benefits computer science students.
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It seems that the benefits in confidence that result from teaching de-

bugging should be magnified by teaching debugging collaboratively. There

are similarities between the introductory nature of teaching fundamental de-

bugging skills and the nature of teaching fundamental programming skills

covered in the classes studied in [23] and [26]. Introductory programming

classes typically use a specific programming language in order to introduce

widely applicable programming principles. By using a specific collaborative

platform to introduce debugging principles, students may realize the same

benefits in both confidence and correctness that they do from pair program-

ming in introductory computer science classes.

Debuggers exist at an intersection of tools and skills similar to program-

ming languages themselves. By becoming familiar with a specific debugger,

students may learn techniques and paradigms necessary to use all debuggers

effectively. The collaborative debugger aims to provide the optimal platform

for students to learn debugging skills.
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3 Requirements

In order to provide the best platform for both teachers and students, the

collaborative debugger must fulfill two key requirements:

1. It must encourage collaboration through a seamless experience.

2. It must make it easier to enhance students’ understanding of debugging

and programs being debugged.

3.1 Encouraging Collaboration

A large number of tools exist to facilitate collaborative programming. COVID-

19 has greatly increased the demand for tools that not only make collabora-

tion easier, but make it easy remotely. The tool that was most influential in

the design of the collaborative debugger, Replit [15], enables remote collab-

orative programming.

Replit provides a simple browser-based IDE for over 50 languages. Pro-

grammers choose a language and can edit and run code collaboratively inside

the Replit webapp. Similarly to other collaborative text-editors, input and

output from all users is synced.

The collaborative debugger aims to provide a similar experience to tools

like Replit. Students should be able to start a debugging session, easily invite

other students, and interact with the debugger in a way that makes it easy to

share their knowledge. By allowing multiple users to interact with the same
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debugging session together in real-time, the collaborative debugger lets stu-

dents share experience and work through problems together. The debugger

also makes it easy for teachers to demonstrate debugging techniques remotely

to multiple students, any of whom can also interact with the debugger. Since

debugging sessions are hosted remotely, users can start a session in one lo-

cation and resume it later from a different computer. This is particularly

beneficial for students who may not always have access to a computer or a

machine capable of running the programs they wish to debug.

3.2 Enhancing Student’s Understanding

Apart from the benefits to understanding that are realized through collab-

oration, the collaborative debugger should enhance students’ understanding

of debugging in ways that a traditional debugger cannot. It aims to do this

by allowing teachers to design and distribute lessons in the form of debug-

ging sessions. Each debugging session is a lesson consisting of a deterministic

recording of program execution, which students can debug repeatedly in or-

der to build debugging skills and to learn about the execution process.

Currently, there are three example debug sessions included with the col-

laborative debugger:

1. hash: an example of classic pointer confusion. The hashtable imple-

mentation included with the program is slightly bugged, where failing

to call strncpy results in the value for each key-value pair in the hash

12



pointing to the same location in memory. This is a particularly use-

ful example for learning about setting watchpoints and breakpoints, as

well as basic procedures to step through code.

2. smash: a brief example of stack smashing. A badly designed call to

sscanf results in a portion of the call stack being overwritten, and the

process is killed as a result of stack smashing. This example focuses on

printing and examining memory locations.

3. memoization: a program that demonstrates the difference between a

recursive, iterative, and memoized-recursive implementation of the clas-

sic nth Fibonacci number function. This example focuses on examining

the stack under conditions produced by different types of functions.

The collaborative debugger should make it easy to distribute these ses-

sions and for students to learn from them collaboratively.

3.3 Current Functionality

The following section details the first few steps students take to explore the

memoization example using the current version of the collaborative debug-

ger. This example, which focuses more on learning about how functions

execute than on fixing bugs, highlights the ways in which the collaborative

debugger enables pair programming.

Students A and B begin by examining the call stack at its deepest point

in the recursive nth Fibonacci number function. The terminal interface to rr

13



and the source code view have been color-inverted to improve readability in

this paper.

Figure 1: Creating a new Memoization Example Session

Students A and B both log into the collaborative debugger. To start

a new session, Student A selects “memoization” from the list of example

sessions.
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Figure 2: Joining the Memoization Example Session

In order to join Student A’s session, Student B uses session code “71825”.

Meanwhile, Student A is presented with the the main view of the collabora-

tive debugger. On the left is a view of the source code for the memoization

example. On the right is the terminal interface to rr, the enhancement to gdb

used by the collaborative debugger. Students debug recordings of program

execution, which can be replayed deterministically. rr is covered in detail in

4.1.1.
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Figure 3: Observing Output from the Memoization Example Session

Student B now types c to continue execution. Both students see the

command and output: execution times and results for three different imple-

mentations of nth Fibonacci. An advantage of rr’s recording model is that

16



these numbers will be the same every time the students run the program.
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Figure 4: Setting a Breakpoint in the Memoization Example Session

Student A enters break 52 to set a breakpoint at line 52, the base case

of fib_rec. Student B types run and then c to restart the recording and

continue to the breakpoint.
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Figure 5: Examining the Stack in the Memoization Example Session

The students examine the stack resulting from a call of fib_rec(30).

Students can inspect different areas of the program and output while collaborating—

Student A can look at fib_rec, while Student B scrolls up for a preview of

the memoized implementation.
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The students will continue to inspect the stack for other functions, ex-

ploring the reasons for the vast performance disparity between fib_memo and

fib_rec. Students A and B can not only help each other to learn about the

stack and memoization, but can also teach one another how to use a de-

bugger. Because the frontend produces near-identical output to rr, students

can directly translate their knowledge to it or gdb in the future. Paradigms,

such as examining the stack to understand execution, can be expanded to all

future debugging.

3.4 Considerations

Though the collaborative debugger makes it easy for students in the above ex-

ample to practice using a debugger together, more features could be added to

help improve students’ understanding of the program being debugged. Stu-

dents using all three examples would benefit greatly from visualization tools

to help understand pointer locations, the process space, and data structures.

In memoization, a simple stack visualization that updated with each

command sent to the debugger would allow students to more easily see

changes in the process space. Rather than having to repeatedly continue and

backtrace to visualize the stack, students could simply step through relevant

portions of the program and watch as the stack updated. This sort of visual-

ization pairs particularly well with reverse-continue or reverse-step(i),

allowing students to move back and forth over particularly significant stack

changes. Visualization tools also aid students’ understanding of debugging—

20



students can see how typing bt to backtrace or info frame to view infor-

mation about the current stack frame provide the same information as the

visualization tools they are already familiar with. As discussed in 4.4, adding

visualization tools to the collaborative debugger should be relatively easy.

The aim of the collaborative debugger is to provide students with an

experience they can directly reference when using similar debuggers in the

future, as well as one which is seamless to encourage the acquisition of general

debugging skills. Creating such a platform will hopefully encourage both

students and teachers to explore the undertaught area of debugging.
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4 Frontend Webapp

An overview of the memoization example discussed in 3.3 is below. This pat-

tern is followed by all debugging sessions in the frontend of the collaborative

debugger.

Figure 6: Debugging the Memoization Example Session

1. Students A and B both log into the collaborative debugger from differ-

ent computers.

2. Student A creates a new Debug Session by clicking the button for

memoization under “New Session”. A few moments later, they’re pre-

sented with the main screen of the debugger.
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3. Using the session code (17734 in the example above), Student B joins

the Debug Session.

4. Both students can now interact with the same debugger remotely. Input

and output from the debugger and the current source file are synced

between all students. Students can work together to understand the

reasons why memoization often improves the execution time of recursive

programs.

4.1 Tools Used

The frontend of the collaborative debugger must handle constant changes in

state as users participate in the process outlined above. The frontend uses

React, Monaco, and Xterm.js to manage state and display output. It primar-

ily displays the output from rr, an enhancement of gdb that the collaborative

debugger uses to enable collaboration.

4.1.1 Mozilla’s rr

Notice that the debugging window in the above example is called “rr”. rr is

“a lightweight tool for recording, replaying and debugging execution of appli-

cations” [29]. rr allows a programmer to record the execution of a program

on any compatible machine and replay the execution later. This enhances

GDB’s ability to “time-travel” when debugging, using commands such as

reverse-continue and reverse-step(i) [22] to step backwards and for-
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wards through a program’s execution. Through a novel encapsulation of the

execution space, rr is able to deterministically record and replay the execu-

tion of syscalls and other process behavior that differs run-to-run. This is

invaluable when trying to debug behavior that is not entirely dependent on

the code being debugged. A typical workflow in rr consists of recording an

inexplicable error, replaying execution to find the area in which the error oc-

curs, and then narrowing in on the bug not by re-running the entire program,

but by progressing back and forth through execution in the problem area.

rr is an ideal tool for teaching debugging because it allows instructors

to record execution of a program and design a debugging example with the

knowledge that normally non-deterministic events will be repeatable, and

that any input they provide to the program will be exactly replicated. With

the collaborative debugger, teachers can record a program’s execution and

design a debugging lesson which students can work on together. The repeata-

bility of rr means that students can focus on debugging, and teachers can

create as specific examples as they please. The use of rr is the most significant

step the collaborative debugger takes to addressing the lack of back-tracing

ability/coverage found in existing tools for teaching debugging [24].

In comparison to solutions like PANDA [21] that rely on capturing the

entire state of of a virtual machine to replay execution, rr records and replays

faster, produces far smaller files, and doesn’t force execution inside of a

VM. [28] The trade off for these benefits are two major system limitations:

rr is only compatible with the Linux kernel, and it’s deterministic recording

24



and replay relies on a feature that is only found on modern Intel x86 CPUs.

These limitations influenced the development of this project as a webapp

similar to existing tools for collaborative programming.

Luckily, the speed and size benefits of rr lend themselves well to non-

local execution. In conjunction with tools used to create the backend of the

collaborative debugger it takes a few seconds to create a new debug session

running rr and connect it to the frontend webapp discussed in this section.

4.1.2 React

React is JavaScript library that simplifies creating user interfaces and man-

aging state [12]. React’s state management is of particular importance to

the collaborative debugger’s frontend. State constantly changes as users cre-

ate/delete debugging sessions, join existing sessions, and communicate with

rr. React allows classes and functions to encapsulate components such as a

list of existing debugging sessions, a view of the current program’s source

code, and the terminal interface with rr. Instances of these classes maintain

state and update efficiently.

The frontend makes extensive use of JSX, syntax which allows the inclu-

sion of segments of HTML code within a React app written in JavaScript.

This makes it easy for each component of the one-page webapp to hide/show

subcomponents as state changes.
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4.1.3 Monaco and Xterm.js

After joining or creating a debugging session, users spend most of their time

interacting collaboratively with rr. Their primary interface to rr is through

Xterm.js, a frontend component that makes it easy to emulate terminal be-

havior in the browser [17]. With a few control methods, it is simple to provide

a terminal interface to rr that is virtually indistinguishable from a local ses-

sion. By using the Xterm.js based interface, students can learn to use rr (and

by extension gdb) collaboratively, and directly translate that knowledge to

individual work.

In addition to the terminal interface, the frontend shows a view of the

current source file being debugged. The Monaco Editor [6] is used to dis-

play this source view. Though more complex than is strictly necessary to

display code, Monaco makes it easy to format and syntax-highlight. Using

Monaco also simplifies the future addition of editing source code, should the

need arise. React’s state management allows updating text in the editor as

efficiently as possible.

In order to easily integrate Monaco and Xterm.js into the React frontend,

React wrapper libraries were used. These are react-xterm [14] and react-

monaco-editor [13].

26



4.2 Overview

React makes it easy to create simple webapps with no build configuration

necessary through the use of the create-react-app command. This creates

a structure and toolchain for a basic one-page application—suitable for the

collaborative debugger. Once this structure was created and any superfluous

files/code were removed, it wasn’t necessary for the purposes of the collab-

orative debugger to directly edit any files except two: App.js and App.css.

The pre-defined build process takes care of transforming the React code de-

fined in App.js and the styles defined in App.css into portable JavaScript,

HTML, and CSS.

App.js consists of a primary React Component class, Debugger, as well

as many secondary classes and functions. More complex components of the

frontend, such as the Xterm.js interface to rr, are created as classes, while

simple components like buttons are defined as functions. All classes contain

a render() method responsible for returning HTML elements to display

based on the state contained in the class. Debugger’s render() method is

responsible for displaying all other components, based on whether the user

is logged in, has selected a new session, etc.

Many components “lift state up” to Debugger. This is accomplished by

passing methods from Debugger in as “props” when elements are created in

Debugger’s render() method:

onLogin(name) {
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this.setState({user: name})
.
.
.

}
// In Debugger.render(). This is JSX.
login = <LoginForm onLogin={this.onLogin}/>;

// In LoginForm.
this.props.onLogin(data.name);

Listing 1: Lifting State Up

Debugger’s onLogin(name) method changes the state of debugger to in-

dicate that the user is logged in. When an instance of LoginForm is created in

Debugger.render(), onLogin(name) is passed to it as a “prop”. The code

for logging in the user can be contained in LoginForm, but when it becomes

necessary to change the state of the whole application to indicate that the

user is logged in, LoginForm calls Debugger.onLogin(name), lifting state up

to Debugger.

Other than methods to handle state and display components, Debugger

also contains the Socket.IO client that is used to communicate with the actual

debugger running in the collaborative debugger’s backend. Socket.IO is a

library that extends WebSockets. It and this communication process will be

discussed in detail in (6.1). Similarly to how onLogin(name) is passed as a

property to LoginForm, the Socket.IO client is passed to the most important

component in the frontend, RRTerm, when it is instantiated.
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4.3 The Collaborative Interface to rr

As shown in Figure 6, the primary piece of the collaborative debugger’s

frontend is an interface to the rr debugger backend. This interface currently

consists of a view of the user’s source code and a terminal interface to rr.

These are contained within the most important class in the frontend: RRTerm.

This section will outline the process of sending an rr command to the backend

and displaying a response. Apart from sending simple API requests to start

sessions or log users in and out, this communication process is where the

frontend webapp spends most of its time.

In debugging the memoization example program, users will want to dis-

play the call stack from within each implementation of the nth Fibonacci

number function. To stop in fib_rec, the recursive implementation, one

user will want to set a breakpoint at line 52 in the source file. To do this

they will type the command break 52 and hit enter. The command will be

sent to the backend, and all users in the same debug session (17734 in Figure

6) will see the debuggers response:

Breakpoint 1 at 0x561c8fede303: file memo.c, line 52.

Users who did not send the command break 52 will see it displayed along

with the response.

4.3.1 Sending a Command

RRTerm’s state is instantiated as such:
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this.state = {command: ’’,
name: ’’,
linum: 0,
code: ’’};

Listing 2: RRTerm’s State

name, linum, and code store information about the current source file

being debugged. command is the most important field for examining how

commands are sent to the backend, as it holds the current command. Every

time the user types a character, command is updated to reflect the current

state of the Xterm.js component. The code to handle keystrokes is shown

below:

this.term.on(’key’, (key, ev) => {
const printable = !ev.altKey && !ev.ctrlKey && !ev.metaKey;
if (ev.key === ’Enter’) {
// Disable input while we wait for the response from rr
this.term.disableStdin = true;
const c = this.state.command;
this.sendCommand(c);
this.setState({command: ’’});

} else if (ev.key === ’Backspace’) {
// Do not delete the prompt
if (this.term.buffers._activeBuffer.x > prompt_length) {
this.term.write(’\b \b’);
this.updateCommand(this.state.command, ’delete’);

}
} else if (ev.key === ’ArrowUp’) {
} else if (ev.key === ’ArrowDown’) {
} else if (printable) {
this.term.write(key);
this.updateCommand(this.state.command, key);

}
});

Listing 3: Handling Keystrokes

Whenever the user types a printable key, the key is written to the terminal

and command is updated using the updateCommand method. If a user types
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brk, updateCommand would be called three times, once for each keystroke.

Upon realizing they made a mistake when typing break 52, the user would

likely delete a character. As long as the prompt ((rr) followed by a space)

would not be overwritten, the terminal is updated and updateCommand is

called again. When the user hits the enter key the command is finally sent

to the backend using sendCommand. To mimic the behavior of a local rr debug

session and to prevent garbled input, writing to the terminal is disabled until

a response is received.

4.3.2 Receiving a Response

All users connected to the same debug session will receive responses to the

commands sent by one user. This is how collaboration is achieved in the

collaborative debugger. The JSON response object to break 52 received by

all users is shown below:

{
channel: ‘‘11734’’
command: ‘‘break 52’’
from: ‘‘1ed644ad87d44cd68121de3daa65adb4’’
response: {
output: ‘‘Breakpoint 2 at 0x561c8fede303: file memo.c, line 52.’’
source: {
file_name: null
current_line: ‘‘87’’
contents: null

}
}

}

Listing 4: JSON Response

The command has been issued from a breakpoint set at main, which is at
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line 87 in memo.c. Since the source file hasn’t changed, source.file_name

and source.contents are set to null. output contains the response from rr,

while channel, command, and from contain information necessary to display

commands correctly for all users.

this.props.socket.on(’rr_response’, (data) => {
if(data.from !== this.props.socket.id){
// Display commands from other clients
this.term.disableStdin = true;
this.term.clear();
this.term.write(data.command);

};
// Write a newline, but no prompt
this.term.writeln(’’);
// Write each line of the output to the terminal
data.response.output.split(/\n+/).forEach((l) => {
this.term.writeln(l);

});
this.term.prompt();
// Re-enable input. See above and below.
this.term.disableStdin = false;
// If an error has occured, there wont be any new
// information about the location in the source file.
if(data.response.source != null) {
this.updateSource(data.response.source);

}
});

Listing 5: Processing a Response

When a response is received, RRTerm first checks to see if the response has

originated from a different user. If so, input is disabled, the current line is

cleared, and the command that corresponds to the response is written to the

terminal. Each line of the response is then written to the terminal. Finally,

input is renabled, having been disabled either to write commands received

from another user, or when the command was first sent. updateSource is

called to update the Monaco editor source file view. Since break 52 was sent
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from a location already inside memo.c, the source file name and contents are

not updated, though the line number is changed.

4.4 Considerations

The intention of much of the code described above, such as that to disable

input after a command has been sent, is to mimic rr in a way that is invisible

to the user. The user experience is intended to be that of using a fully-

fledged debugger collaboratively. The source code view allows users to easily

see what code they are working on together, and the terminal updates quickly

whenever a user enters a command.

Care has been taken to design the frontend in a modular fashion so that it

can be easily extended in the future. Visualization tools could be easily added

by sending additional data about program state in the response and creating

new components. If further authentication features or the ability to edit

source code are desired in the future, relevant components can be updated

without the need to change the entire application. Since the collaborative

debugger depends heavily on interactions between its frontend and backend,

similar care has been taken in designing the backend, which will be described

in the following sections.
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5 Backend Design Overview

The design of the collaborative debugger’s backend is heavily distributed,

allowing individual components to be modified without the whole system

needing to be reconfigured. Kubernetes in conjunction with Docker are used

to create the backend of the collaborative debugger.

5.1 Tools Used

Kubernetes and Docker were chosen largely so that new Debug Sessions could

be easily and securely created on demand.

5.1.1 Docker

Docker is containerization software. Docker containers encapsulate applica-

tions and their dependencies while sharing their host’s kernel. This allows

for lightweight, portable, and secure execution of complex programs [1]. All

programs in the collaborative debugger’s backend run in Docker containers.

Docker containers’ lightweight nature and security are instrumental when

trying to quickly create containers to run user-defined code.

5.1.2 Kubernetes

Kubernetes is the de facto standard in container orchestration software. It

provides a layer of abstraction on top of normal containers, like those created

by Docker. By bundling one or more closely linked containers into a “Pod”,
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Kubernetes is able to manage deployment and re-deployment of applications

running inside containers. It is trivial to create new Pods (or multiple Pods

running the same application) as needed within a Kubernetes cluster [3].

The speed at which even relatively large Pods can be created and the inher-

ent security provided by containerization drove the decision to create a new

Pod on the fly for each debugging instance in the collaborative debugger.

This allows the debugger to provide a similar level of convenience to existing

collaborative tools, such Replit (3.1).

Kubernetes also provides services to facilitate load balancing, manage

storage volumes, and contain secrets. The abstraction provided by these

features, in tandem with the ease of Kubernetes deployment on a managed

Kubernetes service [5] greatly accelerated development.

5.2 Overview

The collaborative debugger consists of a distributed Kubernetes backend and

frontend React webapp. Kubernetes was chosen for the backend primarily

so that a Pod could be created dynamically for each debugging session.
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Figure 7: Detailed Overview of the Collaborative Debugger

Each backend component of the collaborative debugger runs in it’s own

individual Pod. There are two different classes of Pods in the collaborative

debugger:

1. Statically created Pods. These are the RR Message Server Pods, the

Frontend/API Server Pods, and the Database Pod. This class of Pods

are manually created when the cluster that will run the backend is first

initialized. The RR Message Server Pods and Frontend/API Server

Pods may be created using Deployments [4] to allow scaling, where

multiple Pods running the same application may be created to facilitate

increased load.
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2. Dynamically created Pods. This class of Pod contains the individual

instances of RR Debug Session Pods that are created on request by the

API server. When a client requests a new debug session, the API server

uses the Kubernetes API to create a new Pod based on an existing

template, gives the Pod a unique identifier, and associates it in the

database with the requesting client.

These Pods communicate with other Pods in the cluster and with the

outside world through Services. The Kubernetes documentation defines a

Service as “an abstraction which defines a logical set of Pods and a policy

by which to access them” [4]. In the collaborative debugger, these Services

manifest as:

1. The Database ClusterIP : a ClusterIP, which exposes the Database Pod

only inside the cluster. The only component that makes use of this

ClusterIP is the API server, which uses it primarily to communicate

information about users and RR Debug Sessions with the database.

2. The RR Message Load Balancer : a Load Balancer, which exposes the

RR Message Server Pods to the outside world. Using Socket.IO, clients

send commands to and receive responses from individual RR Debug

Session Pods through the RR Message Server Pods.

3. The Frontend Load Balancer : another Load Balancer, which exposes

the Frontend/API Server Pods to the outside world. Clients request the
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frontend webapp and send API requests/receive API responses through

this Load Balancer.

The frontend webapp dynamically updates as the user requests new debug

sessions, issues commands to rr, and visits new source files. A user can be part

of multiple debug sessions simultaneously. Each debug session is assigned at

5 digit identifier at creation, which is used to join sessions in progress.

Each component of the backend will be discussed in depth in the following

sections.

5.3 Configuration and Setup

Configuration and setup of the collaborative debugger is relatively simple.

After a Kubernetes cluster is created (this is made easier by using a Managed

Kubernetes service) Pods and Services are created using various configura-

tion files. Services should be created first, so that Pods which rely on access

to Services function properly on creation. The following sections outline the

process of creating a cluster, Pods, and Services, with a focus on statically

created Pods. The process of building images for building dynamically cre-

ated Pods is similar, but the process of starting the Pods is more complicated.

This process will be discussed in-depth in the section on the API server (7).
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5.3.1 Cluster Requirements and Configuration

Though Kubernetes aims to be largely platform-agnostic, the requirements

of rr impose some restrictions on cluster setup and configuration. Clusters,

even those running inside a VM, must be run on machines using relatively

modern Intel x86 CPUs (Nehalem and beyond). The clusters must run on an

operating system using Linux kernel version 3.11 or higher [29]. Finally, in

order for rr to be able to work efficiently, the kernel.perf_event_paranoid

parameter must be set to 1 [29]. This should be done on every node in the

cluster which will run RR Debug Sessions. For the purposes of development,

it has been set to 1 on all nodes in the collaborative debugger cluster.

5.3.2 Creating Pods

Figure 8: The Pod Creation Process

Pods are created in five steps:

1. A Dockerfile is used to build a new Docker container image from

39



various pieces of source code, scripts, and a base image (such as the

official MongoDB image or official Ubuntu image). The Dockerfile also

contains instructions to install necessary packages, run build scripts,

and create file structures in the image.

2. The Docker image is tagged and uploaded to a private container reg-

istry.

3. A Pod configuration schema is defined/updated with details of the cor-

responding image’s tag and any necessary Pod-specific settings/startup

commands.

4. The Pod configuration schema is applied, either statically or dynam-

ically. When the schema is applied, Kubernetes pulls the image from

the container registry and creates a new Pod according to the schema,

running any startup commands if provided.

5. If Pod creation is successful, the result is a new Pod running in the

cluster.

1. Docker Container Creation Docker containers are created using a

Dockerfile. The Dockerfile used to create the container image for the RR

Message Server is shown below:

# Base Image
FROM ubuntu:latest

# Package Installation
WORKDIR /tmp/
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ENV DEBIAN_FRONTEND="noninteractive"
RUN apt-get update && apt-get install -y \
python3-pexpect python3-pip

# User Creation
RUN useradd -ms /bin/bash rrserver
USER rrserver

# File structure creation/app setup
RUN pip3 install requests python-socketio \
eventlet
WORKDIR /home/rrserver/
RUN mkdir app
WORKDIR /home/rrserver/app/
COPY server.py .
COPY startup.sh .

# Startup command
CMD ["sh", "startup.sh"]

Listing 6: RR Message Server Dockerfile

The build process for each collaborative debugger Docker image follows

the same structure as the one outlined in the Dockerfile above:

1. The base image is defined. The RR Message Server and RR Debug Ses-

sion images are based on the latest Ubuntu image. This is particularly

necessary for the RR Debug Session image, as rr’s low-level nature ne-

cessitates somewhat frequent updates as changes are made to the Linux

kernel. The Frontend/API Server image is based on the latest Node

image, and the Database image is based on the latest MongoDB image.

2. Second, any necessary packages are installed. For the RR Debug Ses-

sion image, rr is compiled from source and installed.

3. A non-root user is created if necessary.

4. Program files are copied over and a file structure is created. Pack-
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ages that don’t rely on the base image’s built in package manager are

installed at this time. In the example above, these include Python

packages.

5. A startup command is defined.

Each line in a Dockerfile corresponds to a layer in the built image. This

build order minimizes the amount of rebuilding necessary by placing the

items that are most likely to change towards the end of the build process.

2. Container Registry Upload Most Managed Kubernetes services

come with the option to create a private container registry. With proper

authentication, this allows Docker and Kubernetes to access user-created im-

ages as easily as if they were in a public registry. Images built with Docker are

uploaded to a private container registry for use in the collaborative debugger.

3. Pod Configuration Schema The Pod configuration schema for most

Pods in the collaborative debugger is fairly generic. It consists of a name, an

image sourced from the container registry, and in the case of Pods that need

to interact with a load balancer, an app.

apiVersion: v1
kind: Pod
metadata:
name: rr-translation
labels:
purpose: translate-rr

spec:
containers:
- name: rr-test-container
image: example-container-registry.com/sproj/...
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securityContext:
capabilities:
add:
- SYS_PTRACE

restartPolicy: OnFailure

Listing 7: RR Debug Session Schema

A notable exception is the RR Debug Session Schema, which adds the

SYS_PTRACE capability to the Pod. This is necessary for rr to properly trace

system calls.

4 & 5. Pod Creation For statically created Pods, the kubectl apply

command is used to create new Pods. Kubernetes pulls the container image

defined in the schema from the container registry and starts the Pod with

any necessary commands. The Database Pod is connected to a long-term

storage volume at this time. Upon successful creation, the Pod is ready to

interact with any necessary load balancers.

5.3.3 Service Creation

Services are the first components of the collaborative debugger created after

the cluster is initialized. The three Services used by the debugger are all

statically created. Like statically created Pods, schemas that define Services

are applied manually using the kubectl apply command.

apiVersion: v1
kind: Service
metadata:
name: frontend-load-balancer

spec:
selector:
app: frontend
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type: LoadBalancer
ports:
- port: 3000
targetPort: 3000

Listing 8: Frontend Load Balancer Schema

The app field in the above schema corresponds to the app field defined in

the metadata of the Frontend/API Server configuration schema. Traffic to

the Load Balancer’s external IP address on port 3000 is redirected automati-

cally by Kubernetes to any Pod running the Frontend/API Server. The Load

Balancer determines which Pod is the most suitable given current demands

on the system.
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6 RR Debug Sessions & RR Message Server

At the heart of the collaborative debugger is the RR Debug Session. Every

time a user wants to debug a new program execution, an RR Debug Session

Pod is dynamically created by the API server. The new Pod is assigned a

unique five digit identification number when it is created. This five digit

number is used as the channel for the RR Debug Session, separating its com-

munication from other RR Debug Session Pods. Clients, RR Message Server

Pods, and the RR Debug Session Pod connect through the RR Message Load

Balancer. Clients and RR Debug Sessions send messages using the channel

assigned to the Pod at creation time. A diagram of one full communication

cycle between two clients and an RR Debug Session Pod is outlined in the

diagram below:

Figure 9: RR Message Server Communication Cycle
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The process of sending a command to an RR Debug Session and receiving

a response is as follows:

1. Client A, already having connected to the channel that corresponds to

it’s current RR Debug Session (channel 12345 in the example), sends

an rr command.

2. The RR Message Server receives the command and emits a message

that RR Debug Session Pods are equipped to receive on the same

channel. In practice, since only one RR Debug Session Pod is ever

on a channel, this equates to emitting a message to the Pod directly.

3. The RR Debug Session Pod receives the message, and passes the com-

mand to its instance of RRInterface, the class which controls rr. When

it receives a response, it emits the output from rr along with other

debugging information and the channel.

4. The RR Message Server receives the response, and emits a response

message that clients are equipped to receive on the corresponding chan-

nel.

5. Clients A and B are connected to the corresponding channel, so they

both receive the response.
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6.1 RR Message Server

6.1.1 Tools Used

The collaborative debugger needs an efficient way for clients to communicate

with running RR Debug Sessions. The Socket.IO library was selected to

construct this efficient communication pathway.

Socket.IO To speed communication, the collaborative debugger uses Web-

Sockets to directly connect web clients and the Pods running rr. Socket.IO is

a library that extends WebSockets. It provides backup in case a WebSocket

connection cannot be established, enables automatic reconnection and dis-

connection detection, and adds support for namespaces [16]. The collabo-

rative debugger uses the standard JavaScript implementation of Socket.IO

on the client side. Messages are passed through a server to individual de-

bugging Pods, both of which use the Python implementation of Socket.IO,

python-socket.io [11].

6.1.2 Overview

The RR Message server is remarkably simple, consisting of just 3 important

functions:

@sio.on(’join_channel’)
def join_channel(sid, data):

sio.enter_room(sid, data[’channel’])

@sio.on(’rr_command’)
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def on_rr_command(sid, data):
data[’sid’] = sid
try:

sio.emit(’rr_command’, data,
room=data[’channel’])

except:
pass

@sio.on(’rr_response’)
def on_rr_response(sid, data):

sio.emit(’rr_response’, data,
room=data[’channel’])

Listing 9: RR Message Server

Even in a fully production ready version of the collaborative debugger

with more security features enabled, the RR Message Server is unlikely to

become much more complex. It exists purely to pass messages between clients

and RR Debug Session Pods and to manage channels. Since the design of

other aspects of the collaborative debugger ensure that all members of a

given channel exist only during the lifetime of it’s corresponding RR Debug

Session Pod, the ’join_channel’ event handler simply adds socket.io clients

to a specified channel on request.

The two message processing functions, on_rr_command and on_rr_response,

are equally simple. When the RR Message Server receives an ’rr_command’

message, it passes the message data along to the corresponding RR Debug

Session Pod by emitting an ’rr_command’ namespaced to the correct chan-

nel with room=data[’channel’]. Since the socket.io client running in RR

Message Server Pods has an event handler defined for ’rr_command’s but

frontend clients do not, only RR Message Server Pods receive the command.

The same process happens in reverse for ’rr_response’s, with only the
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frontend socket.io clients having a handler defined for ’rr_response’.

6.2 RR Debug Session

6.2.1 Tools Used

RR Debug Sessions primarily manage and communicate with rr, which has

already been covered in detail in 4.1.1. pygdbmi is used for this process.

pygdbmi In order to “support the development of systems which use the

debugger as just one small component of a larger system”, gdb provides

a machine-oriented interface called gdb/mi [22]. rr supports interaction

through gdb/mi, and using the interface was a natural choice for the col-

laborative debugger. In addition to being far easier to interact with from

within a program, the structured, machine-friendly output of gdb/mi lends

itself in particular to future development of visualization aids in the collab-

orative debugger.

To parse rr output into Python dictionaries and to easily control rr as

a subprocess, pygdbmi [10] is used in each debugging Pod. pygdbmi’s ab-

straction simplifies programmatically controlling rr. A Pod can receive a

command from the client, pass it to rr, and respond without having handle

directly parsing gdb/mi output or managing the rr process.
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6.2.2 Building Example Pods

The process for building RR Debug Session example images is differs slightly

from other images used by the collaborative debugger. Currently, three ex-

ample RR Debug Session images are available for use: hash, smash, and

memoization. Example container images are based on the primary RR

Debug Session image, RR Translation. The build process for this image,

based on the lasted official Ubuntu container image, installs rr, python, and

all necessary packages as well as the app that will run on the final image,

rrtranslation.py.

FROM example-container-registry.com/sproj/...

WORKDIR /home/debug/app/
COPY hash.c .
COPY names .
COPY startup.sh .

Listing 10: RR Debug Session Hash Example—Dockerfile

The Dockerfile shown above is for the hash RR Debug Session example.

The build process copies over any necessary files, as well as a startup script:

gcc -g -o hash hash.c
rr record ./hash
python3 rrtranslation.py $1

Listing 11: Example Startup Script

This script is used to start the ’rrtranslation.py’ program when the

Pod is dynamically created. The script will be passed the Pod’s channel as

argument $1 by the Kubernetes API on startup.

Current example Pod startup scripts compile the program to be debugged
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and record execution when the Pod is created.

6.2.3 The RR Translation Program

The RR Translation program consists of two main components: a Socket.IO

client, sio, and an instance of the RRInterface class, rri, that controls

the rr subprocess and parses interactions. Simple code to read information

about the current source file currently exists within sio’s ’rr_command’

event handler, but should be broken out into its own class if more complexity

is added.

The RR Translation program’s socket.io client instance begins by con-

necting to the RR Message Server. It immediately emits a ’join_channel’

message, using the channel number passed in by the Kubernetes API on Pod

creation (7.4.3).

if __name__ == ’__main__’:
channel = sys.argv[1]
sio.connect(’http://rr-message-server-load-balancer:8000’)
sio.emit(’join_channel’, {’channel’: channel})

Listing 12: RR Translation Main

After joining the appropriate channel, sio waits to receive an ’rr_command’.

The first part of sio’s ’rr_command’ event handler is shown below:

@sio.on(’rr_command’)
def on_rr_command(data):

body = {’from’: data[’sid’],
’command’: data[’command’],
’channel’: channel}

try:
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response = {’output’: rri.write(data[’command’])}

Listing 13: RR Command Event Handler

The handler first builds part of the response body, passing back data

about the channel and originator of the message that will be important for

the RR Message Server and client later. Next, it calls the function necessary

to pass a message to rr and receive a response, rri.write().

When the program starts, an instance of the RRInterface class, rri, is

initialized in the same scope as sio. RRInterface contains an instance of

the gdbController class from pygdbmi to interface with rr and control the

rr subprocess, as well as a collection of methods to parse rr output, the three

most important of which are shown below:

def get_full_rr_response(self, command):
response = self.gdbmi.write(command)
while(not(self.end(response) or self.exited(response))):

response.extend(self.get_rr_response())
return response

def write(self, command):
if self.command_forbidden(command):

raise DissallowedError
self.timeline.append(command)
return self.console_output(

self.get_full_rr_response(command))

def source(self):
f = self.get_full_rr_response(

’-file-list-exec-source-file’)[0][’payload’]
return {’file’: f[’file’],

’line’: f[’line’],
’path’: f[’fullname’]}

Listing 14: RRInterface

When write is called, it determines if the command to be executed is

forbidden. Currently only one gdb command, shell, is disallowed. Parsing
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the output from shell is difficult, it is of virtually no use since recordings, not

currently executing programs that shell could effect, are being debugged. It

also opens the door to security issues. Though containerization means that

the most users could probably do is render their own debug session useless,

the downsides of shell far outweigh the benefits.

Next, write appends the command to the RRInterface’s timline in-

stance variable. timeline is a list of all commands the debug session has

executed. Though unused at the moment, it can serve in the future to im-

plement a shared history between all clients and to facilitate the saving of

debug sessions in-progress. By issuing all commands in timeline to a new

instance of RRInterface with the same recording, it is possible to restore a

debug session to an identical previous state. To save a debug session, the

recording and timeline can be stored in a database, and be used to initialize

a new Pod with identical state to a previous RR Debug Session Pod. This

appears to clients as a seamless restoration of a previous Debug Session.

Since the frontend currently consists of a terminal interface to rr and

a view of the current source code, write does not need to return any in-

formation from rr other than console output. Future versions of the col-

laborative debugger that support visualization tools could use gdb/mi com-

mands such as -stack-list-frames to retrieve information to be used by

frontend visualization tools. console_output extracts user-relevant out-

put from the dictionary returned by GDBController’s write method. The

get_full_rr_response method ensures that all relevant output has been
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received from the rr subprocess before returning. write reduces the lengthy

dictionary that would be produced by a command as simple as break main

into a few lines of user-relevant output.

After the ’rr_command’ event handler has received a response from rri,

it calls RRInterface’s source function to retrieve information about the cur-

rent source file being debugged. Most often the source file has not changed,

and the only relevant piece of information that needs to be passed back to

the client is the new line number in the source file. If the source file has

changed, the handler reads its contents, updates current_file, and emits

the line number, file name, and contents. If an error occurs at any point in

the process, a detailed trace is emitted for debugging purposes. The trace

should be omitted in production.

6.3 Considerations

Most of the complexity in the RR Translation program stems from parsing

rr output. The flow of data in the program is quite simple: a command is

received, it is passed to rr, rr’s response is processed, and a response message

is emitted. This flow would remain unchanged even with the addition of

functions to retrieve information for data visualization. Since the process

of turning rr responses into a terminal interface takes place in the frontend,

rather than the RR Translation program providing some sort of REPL over

WebSockets, updates can be made to the frontend webapp without requiring

backend changes. The whole process is also quite snappy, with only a slight
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delay from the client’s perspective compared to running a debugger natively.

Effort is taken in the design of the RR Debug Session and RR Message

Server to ensure students receive a pleasant and near-identical experience to

debugging locally in the future. The system of inheritance used to create

example Debug Session Pods is designed to be as simple as possible, though

a more fully featured frontend could streamline this process further in the

future.
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7 Frontend/API Server

The second major backend system consists of the Frontend/API Server and

database. This system is responsible for serving the frontend webapp, as well

as processing all API requests, such as those to authenticate users and create

new RR Debug Sessions.

7.1 Tools Used

7.1.1 MongoDB

The collaborative debugger uses a database to store information about users,

Pods, and example debugging sessions. Due to it’s speed of deployment and

natural interaction with the object-oriented languages used to create the

project, MongoDB was chosen as database software [7].

7.1.2 Flask and Node.js

The primary server for the collaborative debugger is split into two sections: a

simple Node.js [9] server that serves the frontend webapp, and an API server

created using Flask [2]. While in development, the builtin React (4.1.2)

development server is used to serve the frontend. This makes debugging the

frontend far easier.

An API server is necessary to authenticate users and to provide a means

to create/delete debugging sessions. Since the rest of the backend was cre-
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ated using Python, Flask was chosen to create the API server. Flask is a

lightweight web application framework which lends itself perfectly to inter-

acting with the Python MongoDB and Kubernetes APIs.

7.2 Overview

The builtin React development server is used to serve the frontend webapp

and redirect API requests to the Flask API server during development. For

both security and performance reasons this should be changed to a combina-

tion of a more robust solution like Nginx [8] and a production suitable web

server for production. The relationships between components and overall

process will remain unchanged after this migration.

Since the entire webapp is one page, the process for serving it is completely

standard. The server receives a request for the index page of the website,

and returns the compiled React webapp that makes up the homepage. The

process for API requests is more involved, and an example is outlined below:

Figure 10: API Request Process—Login
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1. The client makes a POST request to the ’/login’ URL. This request

contains the necessary data to log in the user.

2. The frontend server forwards the request of a URL it does not recognize

to the API server running in the same Pod on a different port.

3. The API server recognizes the ’/login’ route, and communicates with

the database to attempt to log in the user.

4. The API server returns the result of the login request, which is returned

by the frontend server to the client.

7.3 Frontend/API Server Configuration

The Frontend/API Server uses Yarn [18] to manage packages. When a

Frontend/API Server Pod is deployed, the Pod’s startup script uses the

yarn start and yarn start-api commands to start the frontend server and

API server respectively. These scripts are defined in the server’s package.json

configuration file:

"start": "react-scripts start",
"start-api": "cd api && flask run --no-debugger",
.
.
.
"proxy": "http://localhost:5000",

Listing 15: Frontend/API Server Configuration

Also of note in package.json is the instruction to proxy the API server,

which is running on port 5000. This achieves the automatic forwarding of
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API requests to the API server described above. Since API requests are

proxied through the same address serving the frontend webapp, there are no

issues with cross-origin requests.

7.4 The API Server

The API server is implemented using Flask. The server program consists of

handlers for the various API routes and instances of two classes which com-

municate with the database and/or Kubernetes API: TranslationPodManager

and UserManager. The full structure of the API Server program, api.py is

shown below:

Figure 11: Structure of the API Server

Care was taken to abstract as much as possible in the design of the API

server and the classes it instantiates. The two classes instantiated by api.py,

TranslationPodManager and UserManager, each instantiate another class

which interacts with the database, DatabaseController, as an instance vari-
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able. TranslationPodManager further instantiates the Kubernetes Core V1

Python API to communicate with the cluster in order to create/delete Pods.

This process of abstraction ensures that the database, underlying cluster

structure, and authentication methods can all change without significant

changes needing to be made to api.py.

The most significant improvement that could be made to this structure

would be to break the UserManager and TranslationPodManager instances

out into separate programs running on their own Pods in the cluster. This

would allow changes to be made in those classes, say to update the pro-

cess of deleting Pods, without needing to update the entire Frontend/API

Server Pod. For the time being, the relative simplicity of the API means that

the added complexity and overhead of implementing a method to commu-

nicate between dedicated TranslationPodManager and UserManager Pods

and Pods running the Frontend/API Server doesn’t seem worthwhile. This

may change in the future.

Currently supported API requests are as follows:

1. ’/login’: Logs in the user given by ’name’, or, (given the rather lax

development security) creates a user if none matching ’name’ exists.

Returns the name of the user.

2. ’/channel’: How users join RR Debug Sessions. Binds the user given

by ’name’ to an RR Debug Session Pod matching ’channel’ in the

database, if such a Pod exists. Returns the channel.
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3. ’/pods’: How the client gets a list of RR Debug Session Pods the user

is currently participating in. Returns the channels for all RR Debug

Session Pods who the user, given by ’name’, is currently bound to in

the database.

4. ’/examples: How the client gets a list of example RR Debug Session

Pod names. Returns all names of example RR Debug Session Pods

that exist in the database.

5. ’/new’: Creates a new RR Debug Session Pod based on the name

given by ’program’. Binds the user, given by ’name’, to the Pod.

Returns the channel of the Pod. This request is the most complex, and

is covered in more detail below.

6. ’/delete’: Deletes a binding between the user given by ’name’ and

the RR Debug Session Pod given by ’channel’. If there are no bindings

left between the Pod and users (if all the users have left the debug

session), deletes the Pod from the database and the cluster. Returns

True.

All the API request handlers listed above return an error message in the

case of an error occurring during the processing of an API request. Since most

errors that could occur would either be the result of unanticipated issues on

the part of the user, or of some unforeseen catastrophic internal error, inform-

ing users of error specifics is often unhelpful. Some TranslationPodManager
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and UserManager functions throw specific errors in the event of duplicate

usernames, channels that do not exist, etc. These errors are caught and

meaningful error messages are returned to the frontend webapp, which can

then pass them on to the user.

To examine the process of processing an API request, it makes sense

to look at the most complex example, creating a new RR Debug Session

Pod. This example shows the process for processing an API POST request,

interacting with the database, and dynamically creating a Pod. All API

requests follow a similar procedure.

7.4.1 Processing a POST Request—Extracting Information

Below is the route handler for the ’/new’ URL, as well as the instantiation

of TranslationPodManager and UserManager.

tpm = podmanager.TranslationPodManager(
url=’mongodb://database-load-balancer’,
port=27017)

um = usermanager.UserManager(
url=’mongodb://database-load-balancer’,
port=27017)

app = Flask(__name__)

@app.route(’/new’, methods=[’POST’])
def new():

try:
name = request.get_json()[’name’]
program = request.get_json()[’program’]
channel = tpm.create_pod([name], program)
return {’channel’: channel}

except:
return {’error’: ’Internal Error’}

Listing 16: API Server New RR Debug Session Event Handler
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All API routes only support POST requests. The route handler first

extracts the relevant information from the POST request body, in this case

name and program. name always corresponds the user who is making the

request’s username, and program corresponds to the name of the example

RR Debug Session image to be used.

new then calls TranslationPodManager’s create_pod function to create

a new RR Debug Session Pod. create_pod can bind multiple users to a Pod

when it is created, so name is passed inside a list.

7.4.2 The Database

Before drilling into create_pod, it may be helpful to examine the MongoDB

database which TranslationPodManager and UserManager interact with.

The database consists of three collections: users, pods, and examples. Be-

low is an example record from each collection:

Figure 12: Database Record Examples
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pods and users have a many-to-many relationship. Each user can be

bound to an unlimited number of pods, and vice versa. The DatabaseController

class includes functions to efficiently retrieve users and pods given one an-

other, and to create/destroy bindings between users and pods.

examples are independent of users and pods. The container registry

URLs of RR Debug Session example images are stored in the database so

that new images can be easily added to the collaborative debugger upon

creation.

MongoDB keeps _ids unique. In addition, the collaborative debugger de-

fines uniqueness constrains on users.name, pods.channel, and examples.name

when the database is created.

7.4.3 Processing a POST Request—Dynamic Pod Creation

To dynamically create a Pod, create_pod gets the container registry URL

of the image to base the Pod on, creates the new Pod, binds users to the

Pod, and returns the channel the Pod was created with. The first part of the

function is shown below:

def create_pod(self, names, program):
examples = self.get_examples()
image = None
try:
image = examples[program]

except:
raise NoSuchExampleError

Listing 17: Pod Creation 1

create_pod calls TranslationPodManager’s get_examples method to
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get a list of RR Debug Session example image names and container registry

URLs from the database. In the event that the user has somehow passed

a spurious image name or has passed a name when there are no images, an

exception is raised. Otherwise, a RR Debug Session Pod schema is created

using the image:

dep = {’apiVersion’: ’v1’,
’kind’: ’Pod’,
’metadata’: {’labels’:

{’purpose’: ’translate-rr’}},
’spec’: {’containers’:

[{’image’: image,
’name’: ’rr-test-container’,
’command’: [’sh’],
’args’: [’startup.sh’],
’securityContext’:
{’capabilities’:
{’add’: [’SYS_PTRACE’]}}}],

’restartPolicy’: ’OnFailure’}}

Listing 18: Pod Creation 2

This schema, represented as a dictionary in Python, is identical to the

YAML representation of the RR Debug Session Pod creation schema shown

in (5.3.2) with the exception of args which will be updated further in a later

step. Finally, create_pod does the work necessary to dynamically create a

Pod:

channel = self.dbc.add_pod(
self.dbc.get_userids_by_name(names))

dep[’metadata’][’name’] = channel
dep[’spec’][’containers’][0][’args’].append(channel)
resp = self.v1.create_namespaced_pod(

body=dep, namespace=’default’)
# Wait to return the channel until the pod is live
# and read to recieve incomming communication
status = self.v1.read_namespaced_pod_status(

channel, ’default’).status.container_statuses
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while status == None or status[0].state.running == None:
time.sleep(1)
status = self.v1.read_namespaced_pod_status(

channel, ’default’).status.container_statuses
return channel

Listing 19: Pod Creation 3

First, DatabaseController’s add_pod method is called to insert a new

pods record into the database. add_pod randomly generates a new five digit

channel for the Pod, using the uniqueness constraint imposed on pods.channel

to ensure an unused channel is generated. If no channels are open an er-

ror is raised. Otherwise, the users passed to add_pod are bound to the new

Pod in the database, and channel is returned. This process has the effect

of limiting the number of simultaneous RR Debug Sessions that can be in

use at the same time to 89,999, and of slowing as more channels are used.

Given the few current users, the likelihood of a collision when generating a

new channel is low enough that a more advanced method is unnecessary.

Next, the name of the container is updated to channel. In addition, the

startup arguments are updated to include channel. This is how channel is

passed to the startup.sh script and eventually used to join a channel on

the RR Message Server in rrtranslation.py (6.2.2 & 6.2.3).

The Kubernetes API is then finally used to create the Pod. The Pod

is created in the default namespace. This could be changed to logically

isolate dynamically and statically created Pods with minimal hassle, since

Kubernetes’ DNS resolution can connect Pods across namespaces. If Pod

creation fails, an error will be thrown. Otherwise, a loop is used to wait
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until rrtranslation.py is running inside the Pod. Once the Pod is ready,

channel is returned.

7.4.4 Processing a POST Request—Returning a Response

Most request handlers, ’/new’ included, simply return a JSON serializ-

able dictionary containing whatever results the API Server’s instance of

TranslationPodManager or UserManager returned, or an error message.

The ’/new’ handler returns ’channel’: channel so that the frontend we-

bapp’s socket.io client can join the channel corresponding to the RR Debug

Session Pod that was just created.

7.5 Considerations

The Frontend/API server connects all components of the collaborative debug-

ger together. It authenticates users through the database, joins the frontend

and Kubernetes cluster through the dynamic creation of Pods, and starts the

interaction between users and the programs they wish to debug. Care has

been taken to make it modular and extensible within reason, and additional

authentication or Pod creation features should be easy to add.

The experience provided by invisible components such as the Frontend/API

Server is just as important as that provided by the frontend webapp. All com-

ponents of the collaborative debugger hopefully come together to provide an

experience that facilitates the teaching and learning of debugging.

67



8 Next Steps

8.1 Features to Add

The current iteration of the collaborative debugger successfully enables col-

laboration between students. Significant effort has been taken to design the

debugger in a way that makes collaboration seamless. The collaborative

debugger hopefully fulfills it’s first requirement—to encourage collaboration.

Though the collaborative debugger makes it easy for teachers to design

and distribute debugging lessons, more work is necessary to fully fulfill the

second goal—that of enhancing students’ understanding of debugging and of

programs being debugged.

The most significant addition towards this goal would be that of frontend

visualization tools. A simple visualization of the stack and registers would

greatly expand students’ understanding of the program being debugged in

all three example sessions currently included with the collaborative debug-

ger. gdb/mi supports commands which give structured output of both these

aspects of the execution space, and the frontend has been designed to make

adding visualizations of them simple. Adding visualization features will bring

the collaborative debugger much closer towards hopefully fulfilling its second

requirement.
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8.2 Testing Efficacy

Though a review of the research seems to indicate that a tool like the col-

laborative debugger should help make students more effective at debugging,

further study is needed to draw conclusions. First, more research is neces-

sary to determine definitively if teaching debugging collaboratively is more

effective than teaching it individually. Second, the collaborative debugger

needs to be thoroughly tested to determine whether it is an ideal platform

for collaborative debugging.

A study similar to those undertaken in [23], [26], and [27] could be done to

test both of these aspects. Students participating in an introductory systems

programming class could be split into three groups. Group one could study

debugging individually, using rr by themselves to progress through debug-

ging sessions designed by the instructor. Group two could study debugging

in pairs, relying on existing tools such as video-conferencing software to fa-

cilitate collaboration. In the final group, pairs would use the collaborative

debugger to work together on the same debugging sessions as groups one and

two. Students’ individual and pair performance in debugging both unseen

and self-generated programs could then be tested.

8.3 Conclusions

The collaborative debugger aims to encourage collaboration and build stu-

dents’ knowledge of debugging through careful design. Many components
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of a distributed system come together to create a platform that hopefully

benefits both teachers and students. Through deliberate design, the collab-

orative debugger can conceivably be the ideal platform to teach and learn

debugging, both remotely and in-person.
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