
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Fall 2019 Bard Undergraduate Senior Projects

Fall 2019

Rhythm Quest: Creating a Music Video Game Rhythm Quest: Creating a Music Video Game

Tanner Daniel Cohan
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_f2019

 Part of the Game Design Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Cohan, Tanner Daniel, "Rhythm Quest: Creating a Music Video Game" (2019). Senior Projects Fall 2019.
51.
https://digitalcommons.bard.edu/senproj_f2019/51

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_f2019
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_f2019?utm_source=digitalcommons.bard.edu%2Fsenproj_f2019%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1133?utm_source=digitalcommons.bard.edu%2Fsenproj_f2019%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_f2019/51?utm_source=digitalcommons.bard.edu%2Fsenproj_f2019%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Rhythm Quest:
Creating a Music Video Game

Senior Project Submitted to
The Divisions of Science, Mathematics, and Computing and Arts

of Bard College

by

Tanner Cohan

Annandale-on-Hudson, New York
December 2019

Acknowledgements

Special thanks to Keith O’Hara, Matthew Sargent, and Jennifer Triplett for helping me get
through this project in one piece, I couldn’t have done it without their support, assistance, and
much more. Thanks to all of my friends and family who supported me even when I needed to
delay the completion of my project, and special thanks to those friends who tested my game and
allowed me to bounce ideas off of them. I couldn’t have done this without support from all those
around me.

Table of Contents

Abstract 1

Chapter I - Introduction 2

Chapter II - Previous Work 4

Chapter III: Tools 17

Chapter IV - Game Design 19

Chapter V - Conclusion 39

Chapter VI - Source Code 41
CameraMover 41
PlayerControl 42
enemyspawner 60
Battle_Menu_Control 64
MusicControl 72
HorizReseq 73
VertRemixer 77
ArmAnimator: 79
Instructor_Move 80
DialogueManager 90
Dummy 92
Spot 93
FollowArrow 95
SpecialHeader 95
DialogueBox 96
DialogueTrigger 97
SpecialAttack 98
Tutorial Cutscene Guide 104

Chapter VII - Bibliography 107

Cohan 1

Abstract

This project was the creation of a music-centric video game named ​Rhythm Quest.

Rhythm Quest​ is a combination of two very distinct video game genres, in a way that has not yet

been done in the mainstream, particularly taking inspiration from the rhythm game ​Rhythm

Heaven​ and the turn-based roleplaying-game (RPG) ​Paper Mario ​. It was a joint project between

the computer science and music divisions, and involved the creation of all assets necessary to

create a video game, including sprite creation, software development, writing, music, and sound

effects. The game’s tutorial, as well as the battle system, is complete.

Cohan 2

Chapter I - Introduction

Two of the most well-known and often acclaimed genres of video games, music games

and turn based RPGs have been around since the late 20th century. However, very little has been

done to bridge the gap between the two genres. The closest game in mainstream to try a similar

genre combination is ​Crypt of the Necrodancer ​, a rhythm game crossed with another popular

video game genre: the “roguelike,” a type of video game involving exploring dungeons and

collecting items. However, very few video games have attempted to combine turn based combat

with rhythm and, as a composer and programmer, I wanted to create a game that could help

showcase my pieces of music. Because of this, the rhythm genre seemed like the perfect choice.

After all, rhythm games are all about paying attention to the music and performing actions in

rhythm. But at the same time, I wanted to create an adventure, something akin to the beloved

Final Fantasy ​ series of games, in which you play a party of adventurers exploring and defeating

creatures. Thus, the idea for a turn-based RPG rhythm game was created. This unexplored

territory would be my first major venture into game development. Armed with video game

developer software Unity, music software Logic, a working knowledge of the C# programming

language, and a vision, I set off to create a video game.

As an avid lover of music, whether it's listening to it, playing it, or studying its theory,

rhythm games have always held a special place in my heart. While they’re extremely fun,

colorful, and entertaining, amidst all over the color and spectacle, deep down they’re a form of

music education. Rhythm games encourage players to perform actions to the beat of the music,

Cohan 3

which can help practice keep rhythm, an instrumental skill for any musician. In a way, the

controller becomes something akin to an instrument. Combining rhythm games with other

genres is a great way to teach music and rhythm without the player necessarily realizing it, which

is one of the main reasons I decided to create ​Rhythm Quest​. Sure, it focuses on being a fun

experience for the player, but it also helps develop rhythmic skills in an entertaining, video game

format.

Cohan 4

Chapter II - Previous Work

My game is a cross between two longrunning genres of video games. One of those

genres is the rhythm game genre, the other being the roleplaying game genre. Rhythm games

(also known just as “music games”) are games where the main objectives revolve around

performing a series of actions in time with music. The genre has a long history that dates back to

the 1970s, most people citing the popular game ​Simon​ as the pioneer of the genre. Simon was a

small electronic game that was, while not quite a video game, considered the first electronic

music game. The toy was created by Ralph Baer, who is also known for creating the first video

game console (Smithsonian). He took inspiration from the Atari game “Touch Me,” an old

rhythm game that, according to Baer, was a great idea with a terrible execution (Smithsonian).

With this in mind, in 1978, Baer created ​Simon​, a circular toy with four colored buttons. ​Simon

is a memory game in which a player must press the buttons in a particular sequence. Each

subsequence sequence was the same as the previous one, with one new one added to the end of

it. The buttons would light up for the player, who would then press the buttons in the order they

had previously lit up. A couple decades later, in 1996, ​PaRappa the Rapper ​was released on the

Sony Playstation, and is often referred to as the first true rhythm video game. Like ​Simon ​before

it, ​PaRappa the Rapper ​also utilized a call-and-response style of gameplay, where players would

spend part of the game watching the computer demonstration, then press buttons in

synchronization with the beat (Digital Game Museum). ​PaRappa the Rapper ​sold quite well and

helped popularize the genre of rhythm games, spawning spin-off titles, a sequel, and even a TV

Cohan 5

series (Digital Game Museum). The game was also the 7th best selling game of 1997 in Japan

(The-Magicbox). The year after ​PaRappa the Rapper ​released, video game company Konami

released the arcade game ​Beatmania​, developed by their brand new Games and Music division

(Digital Game Museum). The game used a unique controller; a keyboard with 4 white keys and

3 black keys, as well as a turntable-like controller. Unlike ​Simon ​and ​PaRappa ​before it,

Beatmania ​did not use a call-and-response system, but instead had players press buttons on the

keyboard as they appeared on screen. ​Beatmania ​was also the first rhythm game to use licensed

music, which would become a trend throughout the genre. Due to the game’s success, Konami’s

music game division changed their name to “Benami.”

1​ 2
(Left) the toy “Simon,” created by Ralph Baer. The four colored panels light up in a

specific order and afterwards the user must press them in the same order. (Right) the controller
for the Konami game “Beatmania,” featuring a turntable on the left and keyboard-like buttons

on the right.

3
Screenshot of “PaRappa the Rapper” (1996 Sony Entertainment). The bar at the top of

the screen dictates what button the player has to play when.

Cohan 6

Beatmania​ was a major success, but, like ​PaRappa the Rapper​, most of its success was

contained to Japan. The first internationally popular rhythm game would also release in 1998,

known as ​Dance Dance Revolution​. Arguably the most well-known of the entire genre, ​Dance

Dance Revolution (​often shortened to ​DDR) ​was developed by Benami. Due to the success of

Beatmania​, Benami started to experiment with different controllers for rhythm games, including

DDR’s ​well-known floor pad. A dancing game, ​DDR’s​ controller was on the floor, and

primarily consisted of 4 buttons, one for each directional input. The screen displayed a series of

arrows, and players would have to press the corresponding buttons with their feet. ​Dance Dance

Revolution ​is credited as being the first rhythm game that had marginal success outside of Japan,

and, even though American arcades were skeptical at first, the game soon found its way into

arcades all over the country (Digital Game Museum). There have been countless rereleases of

the rhythm game since its initial release in 1998, on practically every video game console

imaginable, and the game is even recognized as an official sport in Norway (Digital Game

Museum).

4 5
The controller and gameplay of Konami’s “Dance Dance Revolution.” The pad on the

left features four arrow keys that the player must press with their feet, which corresponds to the
arrows on the screen on the right.

Cohan 7

Due to the resurgence of popularity of rhythm games worldwide, American video game

company Harmonix started to experiment in the genre, starting out creating games inspired by

Parappa the Rapper. ​They released the game ​Frequency ​in 2001 for the Playstation 2 and,

despite being enjoyed by critics, the game didn’t sell particularly well (Digital Game Museum).

Around this time, RedOctane, a company whose main business relied on selling ​Dance Dance

Revolution ​pads, had an idea for a game that used a guitar as the main controller, but needed a

software company to develop it with. Together, Harmonix and RedOctane developed ​Guitar

Hero ​in 2005, which was almost an instant success (Digital Game Museum). Player would wield

a guitar-shaped controller consisting of five colored buttons in the place of frets and a “strum

bar” at the base. Players would have to press the correct colored button and strum the strum bar

at the same time to successfully play a note. The game used a large tracklist filled with different

western rock and roll songs, and featured an adjustable difficulty level for each one. The game

spawned multiple sequels, and by 2008 the series had made over one billion dollars in revenue

(Edge). Harmonix also went on to develop ​Rock Band,​ a similar game, but with more peripheral

controllers. Released in 2007, ​Rock Band ​was a multiplayer game in which players would each

use a different instrument-themed controller, including a lead guitar, bass guitar, drum set, and

microphone. Like ​Guitar Hero ​, ​Rock Band ​also sold well, producing another one billion dollars

in revenue (RockBand.com). ​Rock Band ​was so influential that, in 2008, ​Time Magazine ​listed

Rock Band creators Alex Rigopulos and Eran Egozy as two of their top 100 most influential

people of the year, crediting the two as having “saved classic rock for years to come” (van

Zandt). While ​Guitar Hero ​and ​Rock Band ​were two of the most popular franchises of the late

Cohan 8

2000s, both dwindled in popularity shortly after the turn of the decade. ​Guitar Hero ​publisher

Activision closed its ​Guitar Hero ​division in 2011, and Rock Band’s most recent game was in

2015 (Digital Game Museum). While both franchises still exist, their sales aren’t nearly as high

as they had been between 2005 and 2008.

6 7
Various controllers and Gameplay of Harmonix’s “Guitar Hero”. The colored buttons

on the controller’s neck correspond to the colored discs on the right, and the player must press
the correct key as it lines up with the circles near the bottom of the right picture.

While the popularity of Rhythm games in the US were primarily contained to ​Guitar

Hero ​and ​Rock Band​, in Japan the genre was diverse, with many series of rhythm games

maintaining popularity. Notable series include Nintendo’s ​Rhythm Heaven​, a collection of short

rhythm games revolving around simple controls, iNiS’s ​Elite Beat Agents, ​a Nintendo DS game

where the player used the touch screen to keep the beat, and Namco’s ​Taiko no Tatsujin, ​a series

where a Japanese Taiko drum is used to keep rhythm. All franchises remain liked

internationally, but sales indicate that each series is mostly popular in Japan.

Cohan 9

8 9
(Left) “Rhythm Heaven Fever,” (2009) developed by Nintendo SPD. In this minigame, the

player (the monkey on the clock hand) must press buttons in time with the music to high-five the
other monkeys. (Right) “Taiko no Tatsujin: Drum n Fun!” (2018) developed by Bandai Namco.
In this game, the player must press buttons as the red circles approach the left side of the screen.

Rhythm games were losing popularity in the United States, but one game series remained

popular throughout the 2010s, particularly Ubisoft’s ​Just Dance ​franchise. In 2009, the first ​Just

Dance ​game released on the Nintendo Wii, featuring songs from a wide array of popular artists

of the time. The game was not well critically received, with an aggregate review score of 49 out

of 100 (Metacritic). However, the game was still a commercial success, selling 4.3 million units

by 2010. The series continues to have an annual release, the most recent game being ​Just Dance

2020, ​which was released on November 5th, 2020, with 30 games total in the franchise. The

game is motion based, and players participate by mimicking the dancers as they move on the

screen.

Cohan 10

10
“Just Dance 2020” (2019), developed by Ubisoft Paris. As with other entries in the series, the

players must dance in time with the music.

With the exception of the ​Just Dance ​ franchise, rhythm games in the 2010s started to

become more experimental, sometimes combining with other genres. Indie company “Brace

Yourself Games” released ​Crypt of the Necrodancer ​in 2015, a combination of the rhythm game

genre and the “roguelike” genre. Roguelikes are games that involve players exploring

procedurally created dungeons and fighting enemies, typically based off of the fantasy genre.

Crypt of the Necrodancer ​ is a roguelike where the player explores dungeons while moving

around and attacking to the beat of whatever music is playing. In 2016, developer “Drool”

released ​Thumper, ​a highly acclaimed rhythm horror game, the game’s developer calling it a

“Rhythm Violence Game” (Walker). The game features notes as physical obstacles the player

encounters, and is available to play in virtual reality.

Cohan 11

11
Brace Yourself Games’ “Crypt of the Necrodancer” (2015). The tiles on the floor switch

colors, and the player must jump between them in time with the music.

12
“Thumper” (2016) by Drool. The player controls the metallic creature at the bottom of

the screen, and goes along the path, encountering rhythmic obstacles along the way.

Cohan 12

While Rhythm games remain a staple for people who enjoy casual gaming, the other

genre my game is based on, the turn based role-playing game genre, has a very different

demographic. Role-playing games (or RPGs) are fantasy games in which the player assumes the

role of another character, typically in a fantasy setting. RPGs aren’t necessarily just video

games, as the well-known tabletop game ​Dungeons and Dragons ​is also an RPG. Turn-based

RPGs are a subset of role playing games where, when players enter combat with an enemy, the

game shifts into a system where the player and enemy take turns performing actions in

competition with each other, often with the goal of defeating each other. The first RPG on a

video game console is often credited to the 1982 Atari 2600 game ​Dragonstomper, ​developed by

Starpath (Vestal). It included many staples that turn based RPGs would have in the future, such

as a money system, random enemy encounters, and, most importantly, turn based combat. While

Dragonstomper ​was the first RPG, it remains relatively unknown to this day.

13
Gameplay of “Dragonstomper” (1982), developed by Starpath. The player controls the

white dot in the top-right corner

Cohan 13

In 1986, Enix published ​Dragon Quest ​for the Nintendo Entertainment System (NES),

which is considered one of the most important RPGs of the entire genre. Developed by game

designer Yuji Horii, ​Dragon Quest ​drew influence from several story based games before it,

particularly the murder mystery game ​The Portopia Serial Murder Case. Portopia Serial

Murder Case ​ was developed by Horii in 1983, and was eventually ported to the NES in 1985,

and this port is was mainly inspired ​Dragon Quest ​. The original version of ​Portopia ​was on a

system with a keyboard, so when porting it over to the NES, a console that had a limited

controller with only a few buttons, Horii and team had to create a completely different control

scheme, and what they developed is what inspired the control scheme for ​Dragon Quest

(1up.com). The NES itself also served as a large inspiration for ​Dragon Quest​. Since before the

NES most video games were played in arcades, they were designed for shorter style gameplay.

However, when the NES came out, a system that was meant to be played in a household where

games could be long and spanning, Horii wanted to make a game that required more of a time

commitment and a more complicated system (1up.com). The game had a turn-based battle

system, as well as an overworld map where the player could freely explore. While the game was

not initially successful worldwide, the game sold very well in Japan, which allowed for the series

to continue. ​Dragon Quest ​would go on to be one of the most prolific video game franchises,

particularly in Japan, with 11 games in the main series, plus numerous spinoffs.

Cohan 14

14 15
(Left) “The Portopia Serial Murder Case” (1983 Chunsoft). It features a screen showing

the current scene, as well as text featuring options of things the player can do. (Right) A battle
from “Dragon Quest” (1986 Enix). The enemy appears in a window in the center of the screen,

with several options for the player in a menu on the left.

16
“Dragon Quest XI” (2017 Square Enix). The battle system remains similar to the first

game in the series, with the enemy in the center of the screen, with options for the player on the
bottom right.

Cohan 15

The next major influential RPG was a game developed by Square in 1987 known as ​Final

Fantasy ​. Final Fantasy had a lot in common with ​Dragon Quest ​, but it started a few trends that

would become mainstream in turn-based RPGs, such as customizable playable characters, and

the layout of the battles themselves. While in ​Dragon Quest ​ you face the enemy head on without

seeing the playable character on screen, in ​Final Fantasy ​ the player stands on one side of the

screen, while the enemy is on the other. This style of battle is the type that I based mine on.

Final Fantasy ​, like ​Dragon Quest, ​is a long-running franchise, with 16 entries in the main series.

In fact, ​Dragon Quest​ company Enix and ​Final Fantasy ​company Square merged in 2003, so

both major turn based RPGs belong to the same developer company.

17 18
Battle screens from various games in the “Final Fantasy” series. The left is “Final

Fantasy” (1987 Square), and the right is “Final Fantasy VI” (1994 Square). Both battles
feature players on side and enemies on the other, facing each other.

Aside from hardware improvement, the core gameplay of turn based RPGs has not

changed much since its creation in the 1980s. However, one other RPG would prove to be a

major inspiration for my game in particular, and that’s Intelligent System’s 2000 turn based

Cohan 16

RPG, ​Paper Mario ​. ​Paper Mario​ is a spinoff game from the prolific Mario series in which the

titular plumber battles classic enemies in a turn-based RPG setting. While RPGs before this

game simply had players selecting attacks from a menu and watching them carry through, ​Paper

Mario​ was a bit more complex. Not only did one have to select their attack, but the player had to

perform some sort of procedure to make sure the attack was successful, such as pressing buttons

at exactly the right time, or pressing one button as many times as they could in a short amount of

time. This added much more interactivity into the battles and gave the player more things to do,

and this idea is something I incorporated into my game, adding the stipulation that the actions

that needed to be performed had to be in time with a specific rhythm.

19 20
(Left) A boss battle from “Paper Mario” (2000 Intelligent Systems). The battle system

has Mario and one ally on the left facing an enemy on the right, with multiple options to choose
between. (Right) Mario performing a hammer attack in “Paper Mario: The Thousand Year

Door” (2004 Intelligent Systems). To successfully perform the attack, the player must hold the
control stick to the left while the three dots on the left side of the screen light up, and release it

when the bigger dot lights up.

Cohan 17

Chapter III: Tools

For the creation of my project, I used Unity for the majority of game development. Unity

is a game engine developed by Unity Technologies that uses C# and GUI to create games and

other audio/visual projects. Unity allows the user to create a list of game objects that each have a

list of properties and components that can be applied to them. Each object automatically has a

“transform” component that controls its position in the game, as well as its scale, rotation, and

anything else pertaining to its location. Other examples include an audio source, which allows

you to attach an audio source to the object to produce music or sound effects, a sprite renderer,

which manages the appearance of in-game sprites, and animator controller, which manages an

object’s animation. Arguably more important is the ability to create your own object

components by writing scripts in C#. This is where the bulk of game creation is done.

Another important aspect of Unity’s user interface is the animator, which is where sprite

animation is handled. Each object with an animator controller has an animator, which is

represented by a flowchart of different boxes, starting with a box labeled “entry.” from there, one

simply drags a set of png images into the game object to create a new animation, which

manifests as another box in the animation flowchart. Transitions can be created as arrows

between the boxes that can be triggered in scripts attached to the game object, or could have an

animation transition after an animation had performed exactly once. This built in animation

system was a crucial part of the game design, as having objects undergo animation was a

necessary way of polishing the game.

Cohan 18

Unity’s animator. Each rectangle is a different animation, with the arrows being transitions

between them.

For music, I used two programs: ​Logic Pro X​ and ​Audacity​. ​Logic Pro X ​ is a music

development software with tools for composing and producing music. ​Logic ​ has several

synthesizers that can be used to create personalized instruments, as well as an expansive library

of software instruments. ​Audacity​ is a free audio editing software. For the game’s sprites, I used

the free pixel art creation software ​Piskel ​. ​Piskel​ includes canvas in which a user can create

pixel art, with options for creating sprite animations.

Cohan 19

Chapter IV - Game Design

Rhythm Quest ​is a game set in a fantasy world about a bard who’s always wanted to go

on an adventure finally getting an opportunity when a music-based enemy starts to attack the

world. The player controls Wolfgang, a somewhat lazy guitarist from a small town of Preludia,

which resides in the middle of a deep forest, who’s grown up in the shadow of his brother, a

world-renowned adventurer. However, once his music teacher disappears, Wolfgang sets out on

a musical adventure, fighting enemies to the rhythm of the music. Once he finds his instructor,

she tells him of a rhythmic demon named Cacophony, and that the only way to be able to even

approach him would be to gather a choir of four specific singers, as well as their composer. The

rest of the game involves Wolfgang traveling around the world to find the singers, visiting

musically titled places such as Groveture Grove, Bandoneon Bay, Dixie’s Land Casino, Minuet

Manor, and the Temple of Tempo. The game is composed of 6 chapters, each with a boss at the

end. Chapter one is the prologue, where Wolfgang rescues his music instructor (and soprano

member of the choir) from a spider named Ella and a mouse called Micetro. Chapter two is on

the oceanside where Wolfgang rescues the group’s composer from a group of pirated called The

Bandoneon Bandits. In chapter 3, Wolfgang travels up a mountain to a casino, where he battles

King Swing and rescues the group’s bass singer. In chapter 4, Wolfgang goes to a haunted

mansion to fight a ghost named Spiritoso to rescue the group’s alto, and chapter 5 he fights a

demigod Atempol to save the group’s tenor. Finally, chapter 6 has Wolfgang travel to a dark

world where he finally faces off against Cacophony.

Cohan 20

There are two parts to the game: the overworld and the battle system. The overworld is

where the bulk of the story happens, and has the player moving from area to area. There are

non-playable characters to talk to, as well as paths to navigate. Often, enemies will appear and,

if one comes in contact with the player character, the player enters into the battle system.

Figure 1: Game Flow

The battle system of ​Rhythm Quest ​is similar to many other turn based RPGs, particularly

Paper Mario ​, with the addition of rhythm elements that the player must complete. In each battle,

the player gets a drop down menu with different actions they can perform. “Attack” allows the

player to perform a physical attack on a single enemy, “Items” allows the player to use an item

from their inventory with varying effects depending on the chosen item (this feature has yet to be

implemented), “Special” allows the player to perform special attacks that they can learn

Cohan 21

throughout the game with varying effects, and “Other” includes various choices, like running

from battle. Each menu brings the player to a subsection of menus where further choices can be

made. For example, once the attack menu is selected, the player can then select which enemy

they want to attack. Creating the menu system was not too much of a challenge, mostly just

involving assigning unique integers to menu choices and keeping track of which ones were

picked. The screen is split into two connecting parts, with the bottom right connecting to the top

left. The player stands in the bottom portion of the battle arena, while the enemies stand on the

top. This is unorthodox for an RPG, as usually there’s only one screen showing the player on

one side and the enemy on the other, but I split it up into two parts to distinguish between the

player’s defending area and the enemy’s defending area.

Rhythm Quest’s battle menu, featuring four options on a piece of sheet music.

Cohan 22

When the player selects which enemy they plan on attacking, the player character runs to

the bottom right side of the screen, waiting at the point where the battlefield loops around to the

top. This is to make sure that, when the player does attack, the attack starts at the same time the

next measure of music does to ensure that everything is synchronized. Once the player is

waiting on the left side of the screen, a countdown timer appears and counts down from three,

just to give the player a warning about when they’ll be attacking. Once it reaches zero, the

player starts to run into the enemy section of the battlefield and will approach where the enemy

they picked is standing. The trick is that when the player reaches the enemy, they must attack in

synchronization with the music. Enemies can stand in any 4 spots on the battlefield, each spot

corresponding to a beat. The spot closest to the player is the first beat, second closest is the

second beat, etc. Depending on where the chosen enemy is standing, the player must hit the

enemy on that beat, as it takes the player character one full measure to run across the screen.

The player must press the ‘X’ button to perform the attack, but they can also press the ‘Z’ button

to do a jump attack. To successfully perform the jump attack, the player must press ‘Z’ exactly

one beat before the player hits ‘X’. For example, if the enemy is standing in the 3rd spot, the

player must hit ‘Z’ during the second beat and ‘X’ during the third beat. The player also could

decide to use a special attack on their turn. Special attacks are based on musical instruments, and

there are 6 attacks in total. However, the section of the game that’s completed only has one

instrument unlocked, so there’s currently one special attack available. The attack has the player

character pull out their guitar, while 4 strings fall down over the enemy places. Circles will

Cohan 23

randomly fall down the strings and overlap with the enemies. When they do, the player must

press a button corresponding with each enemy spot.

(Left) the player selecting which of the 3 enemies to hit. Currently, the enemies are

standing in attack spots one, three, and four. (Right) the player waiting to perform an attack on
the selected enemy. The player waits at the bottom right of the screen until the countdown in the

center reaches zero.

Once the player finishes their attacks, the enemy’s turn begins. During this phase, each

enemy currently in the battle gets the chance to perform an attack. When an enemy gets ready to

attack, they wait at the top left part of the screen, right at the part where the screen loops down to

the bottom. Like with the player, this is to make sure the enemy’s attack is synchronized during

the music. While the enemy is attacking, the player can move in 4 different directions. If the left

arrow key is pressed, the character moves to the left for a few seconds, if the right arrow key is

pressed, the character moves to the right, if the down arrow key is pressed the character ducks,

and if the up arrow key is pressed, the character jumps. These are the four ways in which the

player can dodge the enemy attacks. However, which way the player needs to dodge depends

completely on the enemy. If the enemy attacks from above, for example, the player would need

Cohan 24

to either dodge to the left or right. The player would also have to press the dodge button at the

right time, and the key to doing that is visual clues from the enemy and audio clues from the

music. Once the enemy phase ends, the player’s turn begins again, and this repeats until either

the enemies die or the player does.

Figure 2: Battle Flow

Cohan 25

The player controls the battles game with various buttons on the keyboard. The player

makes all menu selections (including clicking through text) with the ‘Z’ key, and makes all

deselections with the ‘X’ key. These two keys are also used in the enemy attacks, where ‘X’ is

used to hit the enemy and ‘Z’ is used to jump beforehand. The arrow keys are also used in the

battle, as the four inputs are the four directions that the player can dodge an enemy’s attack.

Each chapter of the game has features that make the battle system for that specific

chapter unique. While chapter one has only four available spots for the enemy to stand, chapter

two introduces “offbeats” as a game mechanic. Here, instead of only being able to stand in spots

“one two three four,” enemies can stand in “one and two and three and four and,” making for a

more challenging timing. Taking place in a jazz-themed casino, chapter 3 changes the tempo

slightly to account for swing. This offsets the enemies even further and offers a greater

challenge. Chapter 4 eliminates one of the beats altogether. While the rest of the battles have

music with 4 beats per measure, chapter 4 has only 3 beats per measure and uses a 3/4 time

signature. Chapter 5 has the player dealing with a constantly shifting tempo, and chapter 6

features more arrhythmic music, to offer an even greater challenge. Besides the chapter

differences, there are also status affects that can harm the player’s ability to successfully time

their attacks. For example, if a player is blinded by an enemy, the entire screen goes dark and

their forced to rely completely on audio cues with no visual cues. If the player is deafened, the

opposite is true, and the player will not be able to hear any music or sound cues, and must rely on

visual cues. Finally, an item the player can purchase for use is the metronome, which adds a beat

to the background of the music that can help the player successfully land attacks.

Cohan 26

The visuals of the game were original, which was a challenge considering I am a very

inexperienced artist. I did all of the sprites and backgrounds using the program “Piskel,” a

simple pixel art creating program. Animations for the main player character were one of the

most time consuming parts of the project, and I have over 100 different frames of animations for

that character alone. Enemies also needed a fair amount of animation. Each one needed an idle

animation, walking animation, an animation for each attack, and an animation for taking damage.

Though they were bigger, the backgrounds were considerably easier to make than the rest of the

sprites, as they were only static images that required no animation.

(Left) Piskel, the program used to create sprites. (Right) a spritesheet. This particular

one is for the animation of the player character taking out his guitar in order to play it.

Another aspect of the game I created was the music. Since I was creating a music game,

the composition of the songs in the game was an important aspect. I did the composition in

Logic Pro X, ​while doing music editing in ​Audacity​. I’ve written roughly 45 minutes of music

for the game, 29 songs averaging around 90 seconds each. I used a mix of pre-existing software

Cohan 27

instruments in Logic Pro, as well as some instruments I created myself, mostly instruments made

to sound like 8-bit instruments. I used a synthesizer called “ESP” to create the majority of my

instruments, particularly the ones made to sound like old nintendo games. I also used a

synthesizer called “ES2” to create the voice synth used in a few songs, particularly in the choir

piece. My composition strategy was to experiment with as many different styles of music as I

could, while always keeping “old Nintendo music” as my base. Almost every song uses at least

one instrument I created to sound like an old Nintendo game. Often times I’d use them at the

beginning of a piece to give the impression of the song being purely retro-style, before adding in

more software instruments, often a mix of synthesizers and classical instruments. Some songs

only use a little bit of old Nintendo style music, while some songs (like the main battle theme)

are almost completely composed of it. Some examples of styles and genres I tried to incorporate

were Swing in the song “Swing Fling with King Swing,” Old West Folk in the song “Folk

Ranch,” Funk in the song “Claviscious,” and Sea Shanty in “Bandoneon Bay,” and “Bend a

Knee to the Bandoneon Bandits.” For a lot of songs I used tropes affiliated with the theme of the

area they’re played in. For example, in the theme for the snowy town, I used a lot of bells, as

well as a percussive jingle bell in the background. For the fight in a church, I had a harp playing

in the background as a reference to the depiction of angels playing harps, as well as a section

primarily featuring the Organ and choir, common amongst musical performances during a

church sermon.

Cohan 28

I did the bulk of my musical editing in Audacity, which mostly just involved

cutting the clips of music to make sure they were exactly the correct length, as this was important

for keeping the music and gameplay completely synchronized.

Logic Pro X, the program used to compose and produce music.

One of the first obstacles I had to overcome in game design was properly synchronizing

time with the game’s visuals and gameplay. For a rhythm game, the main gameplay centers

around pressing buttons in time with the music, so keeping the rhythm constantly in synch with

the gameplay was a crucial detail and, without it, the game simply wouldn’t work. The entirety

of the time-keeping is done within the script for the player character, as the player’s movements

are closely tied with the rhythm. The first attempt I made was to use Unity’s built-in time

function, which would return how much time had passed since the game had started, to keep

Cohan 29

track of time. My goal was to have a variable set equal to that time, and have that reset when the

music reached the end of the current measure. My first attempt seemed alright at first, but the

music would quickly get out of synchronization with the rest of the game. My first thought was

that the tempo could be creating problems. The main issue was that the time function was not as

orderly as I needed it. I was calling it in update (a function that runs every frame), but the

framerate of the game is inconsistent. With update’s inconsistency, it would’ve been extremely

difficult to successfully manage time and rhythm. However, Unity had another built-in function

that would make it work: the fixed update. Unlike update, which ran every single frame, fixed

update would only run every .02 seconds, giving it a consistent framerate. With fixed update, I

was able to have a place where I could run my time keeping function consistently. However,

even with this fix, the music was getting out of sync with the in-game actions. To correct this, I

used a new variable called “biggerTime,” which would act as a time reset. The music didn’t

desynchronize noticeably immediately, and, for a few seconds at a time, it wouldn’t be

noticeable at all. Because of this, my “biggerTime” fix worked. Essentially, “biggerTime”

would reset itself and all of the other timekeeping tools whenever it reached a whole number.

In the end, my timeTracker function worked entirely in Fixed Update, except for a few

checks during the start function, a function that only runs once during the game at the very

beginning. The user of my script puts in what the tempo is through the Unity A.I, and the script

handles the rest, the tempo becoming the variable “bpm.” in the start function, more variables are

assigned. A list of beats are determined, each one being a quarter of the bpm. For example, beat

one was 60/bpm, beat two was 60/bpm * 2, and so on. However, technically this is a misnomer,

Cohan 30

as each beat is actually set to the value which is the end of the beat. While beat 1 technically

begins at the beginning of the measure (or rather, 0 seconds after the measure begins) its set to

equal the time 1/4th of the way through the measure, which is when beat 1 ends and beat 2

begins. Also in this part of the code, the variable “bigBeatTop” is assigned. This variable is the

whole number that “biggerTime” must reach before it resets. “bigBeatTop” is first set equal to

beat 4 (which is the full length of the measure). Then it gets put through a while loop where,

until the remainder of “bigBeatTop” is 0, it keeps adding beat 4 to it. This is to ensure that

“bigBeatTop” is equal to a whole number, which is needed to successfully reset time later on. In

the 180 beats per minute example, “bigBeatTop” is equal to 4.

Figure 3: Determining bigBeatTop

After the start function, in fixed update, an if statement is used to check whether or not

the time since the program has begun is 0, and if so, to start running both the music and the time

tracker function at the same time. This is done to help keep the time function and the music in

Cohan 31

complete synchronization. Everything else is done within the time tracker function, which is

called every .02 seconds. This function manipulates 4 variables, all of which assist in keeping

track of time, namely “oneBeat,” which tracks the length of one beat of music, “timeCounter,”

which keeps track of the length of one measure of music, “biggerTime,” which keeps track of

music up until a whole number of seconds has passed, and “segmentCounter,” which keeps track

of 8 measures of the music before resetting. Unlike the other variables, “segmentCounter”

doesn’t keep track of music specifically, but rather how many measures have passed before

resetting after the 8th. At the beginning of the time tracker function, the first thing done is

updating the first three variables. .02 is added to each of them, in accordance with the function

being updated every .02 seconds. This is done with the round function, to make sure that the

resulting number only has 2 decimal places. After that are a series of if statements to check to

see the variables need to be reset. First “oneBeat” is checked to see if its equal to beat 1 and, if it

is, its reset back to 0. Then an if statement is used to check whether “timeCounter,” is greater

than or equal to “beat4” (the end of the measure) and if it is, “timeCounter” resets and segment

counter is incremented. After that, “biggerTime” checks to see if it's greater than or equal to

“bigBeatTop.” if it is, it resets “timeCounter” and “biggerTime” back to 0, as well as

incrementing “segmentCounter”. Finally, the function checks to see if “segmentCounter” is

greater than 8, and if it is, it resets it back to 1. That’s the entirety of the time tracker function,

and with it, the game is able to keep time and action completely in synchronization.

Cohan 32

Figure 4: the TimeTracker function.

For the music aspect of the game, there were two classes I had to create first: the

Horizontal Resequencer and the Vertical Remixer. The easier of the two is the vertical remixer.

The vertical remixer’s purpose is to control which audio layers are playing at the same time. For

example, if there’s a bassline in the audio and a melody line, they could both play at the same

Cohan 33

time, or one could play while the other doesn’t, or et cetera. The vertical remixer would control

this, turning certain layers on and off in accordance of what’s needed. This is done with a

relatively simple script, starting by creating a struct called “audio layer.” this contains each audio

clip, a double for the clip’s duration, and a float to control the starting volume of the clip. All

audio layers start playing at the same time, but with differing volumes. The most important part

of the script is the function “VertShift,” which actually performs the vertical remixing. The

function takes an audio source and a desired volume and set said audio source to whatever the

desired volume is. This function helps add some life to the game and keeps the music

interesting. One of the main places its used is during battles, while navigating menus. During

each battle, a specific melody line plays over the rest of the music. However, in the special

menu section of the menu, each menu option is a different instrument, and depending on which

instrument you’re highlighting, the melody line will change to a line played by the currently

highlighted instrument. This exists purely for aesthetic reasons, but helps add some life to the

music while doing a monotonous task such as navigating menus.

Unlike the vertical remixer, the horizontal resequencer is a more complicated class.

While the vertical remixer dealt with single tracks of music on top of each other, the horizontal

resequencer deals with reordering segments of music. Just like the vertical remixer, the

horizontal resequencer starts by making a struct, this one called “AudioSegment,” containing

each audio clip, a double for the clip’s duration, and an int called “nextSegment” which let’s the

script know which numbered segment should be played after it. The important function here is

“ChangeScheduledTime,” which takes two integers, each a reference to different segments in the

Cohan 34

list of audio segments. The function changes the current segment to the audio segment the first

int references, and makes the next segment the audio segment the second int references. Like the

vertical remixer, the horizontal resequencer exists just to keep the music more dynamic and

interesting. One example of it being used is the tutorial battle, where the music starts off as just

a single woodblock keeping track of the beat, and every time the player does something

successful in the battle, the music is advanced to something more interesting, usually adding

more instruments along the way.

Cohan 35

Figure 5: Horizontal Resequencing

Outside of the time tracking and music manipulation, the rest of the game’s coding

mainly controls object movement and in-game menu management. Most of the events that

happen in battled are controlled by two scripts: BattleControl, which is contained within the

game object for the menu cursor, and PlayerControl, which is the script for the player object. In

Cohan 36

the case of the tutorial battle, however, a third script holds vital importance: the script contained

inside of the “Instructor” object, the non-playable character who guides the player through the

tutorial.

In the script for Battle Control, the basic structure for how the battles are run is kept,

mostly through the use of state machines. Not only does it keep track of the specific menus, but

also whether it's the player’s turn, the enemy’s turn, etc. While the Battle Control controls the

basics of the battle, the Player Control controls almost everything pertaining to the player, as

well as a few extras, including the time tracker. The Player Control controls where the player

characters moves when, as well as what happens when the payer press any buttons while the

menu isn’t active, including doing damage to the enemy and performing a dodge during the

enemy attack. The code for the Instructor is important because it houses the state counter that

keeps the tutorial running. Since the tutorial is a scripted fight, a state machine was needed to

keep everything running smoothly. The instructor code also manages a lot of when the dialogue

is triggered.

Name Description Methods Other classes used

CamerMover Causes the camera to shake CameraShake none

PlayerContol Controls how the player
moves, and houses the time
tracker function

timeTracker,
AttackRun,
Jump,
JumpAttack,
JumpBack,
Fall,
HitResolve,
Dodge, Move,

Battle_Menu_Contr
ol, ArmAnimator,
CameraMover,
enemyspawner,
MusicControl,
HorizReseq,

Cohan 37

PlayerTurnRed

enemyspawner Creates enemies for the
player to fight, as well as
controls their actions and
attributes

enemyMove,
EnemyTurnRed

PlayerControl,
HorizReseq

Battle_Menu_Control Controls the in-game battle
menus

MainMenu,
AttackMenu,
SpecialMenu,

VertRemixer,
DialogueBox,
SpecialHeader,
enemyspawner

MusicControl Plays the game's music playMusic none

HorizReseq Manages the game's
horizontal resequencing

ChangeSchedul
edSegment

PlayerControl,
VertRemixer,

VertRemixer Manages the game's vertical
remixing

VertShift PlayerControl,
HorizReseq

ArmAnimator Manage's Wolfgang arms
when they're a separate
object from his body

none none

Instructor_Move Not only manages the
movements of the instructor,
but also controls the tutorial's
dialogue

Move HorizReseq,
PlayerControl,
Dummy,
Battle_Menu_Contr
ol,
DialogueManager,

DialogueManager Controls the text that appears
when a character is speaking

startDialogue,
DisplayNextSet
entence,
EndDialogue

MusicControl,
DialogueBox,
Battle_Menu_Contr
ol

Dummy Control's the enemy used in
the tutorial

Move none

Spot Controls the spot light that
occasionally appears over
objects

Darken,
Lighten

Battle_Menu_Contr
ol

FollowArrow Makes the enemy name
follow the arrow while the
player selects which enemy

SetEnemyNam
eText

none

Cohan 38

to attack

SpecialHeader Displays the text depending
on what part of the special
menu is selected

none none

DialogueBox Controls the appearance and
disappearance of the dialogue
box

Appear,
Disappear

none

DialogueTrigger Controls what happens if a
new piece of dialogue is
triggered

none Instructor_Move,
DialogueBox

SpecialAttack Manages the player's special
attacks

Fall, Rise,
CheckSuccess

Battle_Menu_Contr
ol, PlayerControl,

Figure 6: Classes

Cohan 39

Chapter V - Conclusion

Although I had to cut down on my goals, I’m still happy with the work I’ve done.

I created a working system for a rhythm game that can be expanded upon into a fully fledged

game. While I’m missing many key details, the core is present, and the most important aspects

of the game are in tact. I plan on continuing work on ​Rhythm Quest​, as I’ve only started to

scratch the surface of what I believe I can create. I’ve developed skills that I believe will help

me if I continue to pursue video game development, whether as an independent creator or as part

of a larger team. I’m especially happy with the pieces of music I’ve created for this game to

varying levels, even if there’s still a few songs missing from the game’s final tracklist. Overall,

I’m content with what I’ve managed to accomplish, though there are still quite a few missing

elements.

Despite this, there is still much work to be done until the game could be

considered fully finished. The track list is near complete, but a few necessary songs have yet to

be completed. Much of the game’s story and dialogue has also yet to be written, and many

enemies need sprites created for them. Most importantly, the coding for the overworld needs to

be completed. While the code for the battle is almost near completion, that’s only half the game.

The other half is a top down overworld that brings the player from battle to battle, allows them to

talk to non-playable characters (NPCs), and so forth. As far as the battle system goes, the only

thing left to complete is the item system, as well as individual enemy attacks. The game ideally

should have around 30-80 unique enemies, and each one would need its own set of attacks.

Cohan 40

Aside from a few other smaller things, however, the battle portion of the game is essentially

finished.

Game development was a deceptively strenuous project, but I’m happy to have

gotten to the other side with a few things to show for myself. The video game industry has been

growing and growing for decades, and I’m happy to have some experience in a field full of

passionate creators, coders, and artists.

Cohan 41

Chapter VI - Source Code

Source code is presented in the order it runs during the game’s battle.

CameraMover

1. //Moves the camera in different ways

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ CameraMover : MonoBehaviour {

8.

9. ​//public Camera camera;

10. ​public ​ ​float​ cameraX;

11. ​public ​ ​float​ cameraY;

12. ​public ​ ​float​ cameraZ;

13. ​public ​ ​float​ cameraSize;

14. ​public ​ ​float​ shakeValueX;

15. ​public ​ ​float​ shakeValueY;

16. ​public ​ ​bool ​ shakeState;

17. ​public ​ ​bool ​ cameraShake;

18. ​public ​ ​int ​ shakeCounter;

19.

20. ​// Use this for initialization

21. ​void​ Start () {

22. ​//cameraCamera =

23.

24. }

25.

26. ​// Update is called once per frame

27. ​void​ Update () {

28. }

29.

30. ​public ​ ​void ​ CameraShake() {

31. ​if ​ (shakeCounter < 30) {

32. ​if​ (shakeState == ​false​) {

33. shakeValueX = Random.Range (-.5f, .5f);

34. shakeValueY = Random.Range (-.5f, .5f);

35. cameraX = cameraX + shakeValueX;

36. cameraY = cameraY + shakeValueY;

Cohan 42

37. shakeState = ​true ​;

38. } ​else ​ {

39. cameraX = cameraX - shakeValueX;

40. cameraY = cameraY - shakeValueY;

41. shakeValueX = 0;

42. shakeValueY = 0;

43. shakeState = ​false​;

44. }

45.

46. transform.position = ​new ​ Vector3 (cameraX, cameraY, cameraZ);

47. shakeCounter++;

48. ​//print (shakeCounter);

49. ​//if (shakeCounter == 29) {

50. ​// shakeCounter = 0;

51. ​// player.cameraShake = false;

52. ​//}

53. } ​else​ {

54. shakeCounter = 0;

55. cameraShake = ​false​;

56. }

57. }

58. }

PlayerControl

1. //Controls most of the battle. The timer is in this script, as well as everything

controlling the character

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ PlayerControl : MonoBehaviour

8. {

9.

10. ​public ​ DialogueBox box;

11.

12. ​public ​ Battle_Menu_Control battleMenu;

13. ​public ​ ​float​ playerX, playerY, playerZ;

14. ​public ​ ​bool ​ timedMovement; ​//If the player's movement has to be precise, this helps
run it in 'Fixed Update'

15. ​public ​ ​float​ staticX, staticY;

16. ​public ​ Vector3 playerPos = ​new​ Vector3(0f, 0f, 0f);

17. ​public ​ ArmAnimator arms;

18. ​public ​ ​bool ​ drawArms;

Cohan 43

19.

20. ​public ​ Vector4 playerColors;

21. ​public ​ ​bool ​ red, darken, lighten;

22.

23. ​//for the animator:

24. ​private​ Animator animator;

25. ​public ​ ​string ​ currAnim, idleCheck;

26.

27. ​//animator transition hashes

28. ​int ​ attackHash = Animator.StringToHash(​"Attack"​);

29. ​int ​ waitingHash = Animator.StringToHash(​"Waiting" ​);

30. ​int ​ attackRunHash = Animator.StringToHash(​"AttackRun"​);

31. ​int ​ jumpHash = Animator.StringToHash(​"Jump" ​);

32. ​int ​ attackJumpHash = Animator.StringToHash(​"JumpAttack" ​);

33. ​int ​ attackLandHash = Animator.StringToHash(​"AttackLand" ​);

34. ​int ​ attackJumpBackHash = Animator.StringToHash(​"AttackJumpBack" ​);

35. ​int ​ jumpToStartHash = Animator.StringToHash(​"JumpToStart" ​);

36. ​int ​ jumpAttackFailHash = Animator.StringToHash(​"JumpAttackFail" ​);

37. ​int ​ upHash = Animator.StringToHash(​"Up"​);

38. ​int ​ downHash = Animator.StringToHash(​"Down" ​);

39. ​int ​ leftHash = Animator.StringToHash(​"Left" ​);

40. ​int ​ rightHash = Animator.StringToHash(​"Right"​);

41. ​int ​ guitarGrabHash = Animator.StringToHash(​"GuitarGrab" ​);

42. ​int ​ guitarPlayHash = Animator.StringToHash(​"GuitarPlay" ​);

43.

44. ​//animator state hashes

45. ​int ​ idleHash = Animator.StringToHash(​"PlayerIdle" ​);

46.

47. ​public ​ ​int ​ specialSuccessCount;

48.

49. ​public ​ ​bool ​ unpause;

50. ​public ​ ​bool ​ attackRun;

51. ​public ​ ​float​ attackDistance;

52.

53. ​public ​ ​bool ​ keyPress;

54.

55. ​public ​ CameraMover cam;

56.

57. ​//info on the beats. This changes depending on the bpm

58. ​public ​ ​float​ bpm, beat1, beat2, beat3, beat4, bigbeatTop;

59. ​public ​ Vector4 beats;

60. ​public ​ ​float​ leniency; ​// the offset for how correct the player has to be when
hitting a beat

61.

62. ​//For the attack countdown

63. ​public ​ GameObject Countdown;

Cohan 44

64. ​public ​ Animator countdownAnim;

65. ​public ​ ​float​ countDownX;

66. ​public ​ ​float​ countDownY;

67. ​public ​ ​float​ countDownZ;

68. ​public ​ ​bool ​ displayCountdown;

69. ​public ​ ​int ​ frameCounter;

70. ​public ​ ​float​ countdownVolume;

71. ​public ​ ​int ​ animHash = Animator.StringToHash(​"AttackCountdown" ​);

72.

73. ​//For time synchronization

74. ​public ​ ​float​ oneBeat;

75. ​public ​ ​float​ timeCounter;

76. ​public ​ ​float​ biggerTime;

77. ​public ​ ​int ​ segmentCounter;

78.

79. ​public ​ enemyspawner other;

80.

81. ​//for music and sound effects

82. ​public ​ MusicControl music;

83. ​public ​ AudioClip countdownSound, guitarHit, guitarSwing, attackJump, thud,
attackFail;

84. ​private​ AudioSource sfxSource;

85. ​public ​ HorizReseq horizReseq;

86.

87. ​//For the jump

88. ​public ​ ​float​ jumpRateOfChange = .06f;

89. ​public ​ ​bool ​ jumpTrue, jumpDown;

90. ​public ​ ​float​ jumpFactor;

91. ​public ​ ​float​ jumpHeight = 1.4f;

92.

93. ​//For the jump attack

94. ​public ​ ​bool ​ jumpAttackTrue, jumpAttackUp, jumpAttackDownSuccess, jumpAttackFail;

95. ​public ​ ​float​ jumpAttackFactorX, jumpAttackFactorY;

96. ​public ​ ​float​ jumpAttackX1Deriv, jumpAttackY1Deriv; ​//rate of change for the jump
attack

97. ​public ​ ​float​ jumpAttackX2Deriv, jumpAttackY2Deriv;

98.

99. ​//For the jump back

100. ​public ​ ​bool ​ jumpBackTrue, jumpBackDown;

101. ​public ​ ​float ​ jumpBackFactor;

102. ​public ​ ​float ​ jumpBackRateOfChange;

103. ​public ​ ​float ​ jumpBackHeight;

104.

105. ​//For a fall

106. ​public ​ ​bool ​ fallTrue;

107.

Cohan 45

108. ​//For a succesful attack

109. ​public ​ ​int ​ successHit;

110. ​public ​ ​int ​ successPause;

111.

112. ​//For a failed attack

113. ​public ​ ​int ​ failHit;

114.

115. ​//For the damage of the attack

116. ​public ​ ​int ​ damage;

117.

118.

119. ​//For dodging

120. ​public ​ ​bool ​ dodgeTrue, shortDodge, dodgeSuccess;

121. ​public ​ ​bool ​ enemyHit;

122. ​int ​ dodgeCounter, pauseCounter;

123. ​float​ addX, addY, maxX, maxY;

124. KeyCode currentKey;

125.

126. ​//For the chosen enemy

127. ​public ​ ​float ​ enemyPos;

128. ​public ​ ​float ​ enemyX;

129.

130. ​// Use this for initialization

131. ​void​ Start()

132. {

133.

134. playerColors = ​new ​ Vector4(1, 1, 1, 1);

135. darken = ​true ​;

136. lighten = ​false​;

137.

138.

139. dodgeSuccess = ​true ​;

140. beat1 = (60 / bpm);

141. beat2 = (60 / bpm) * 2;

142. beat3 = (60 / bpm) * 3;

143. beat4 = (60 / bpm) * 4;

144. beats = ​new​ Vector4(beat1, beat2, beat3, beat4);

145. bigbeatTop = beat4;

146. ​while ​ (bigbeatTop % 1 != 0) bigbeatTop = bigbeatTop + beat4;

147. leniency = .14f;

148.

149. box = FindObjectOfType<DialogueBox>();

150. animator = GetComponent<Animator>();

151. Vector3 countDownPos = ​new​ Vector3(countDownX, countDownY, countDownZ);

152. Countdown.transform.position = countDownPos;

153. countdownAnim = Countdown.GetComponent<Animator>();

Cohan 46

154. sfxSource = GetComponent<AudioSource>();

155. jumpAttackX1Deriv = .02f;

156. jumpAttackY1Deriv = .02f;

157. jumpAttackX2Deriv = .002f;

158. jumpAttackY2Deriv = .002f;

159. keyPress = ​false ​;

160. jumpBackHeight = .8f;

161. jumpBackRateOfChange = .06f;

162.

163.

164. }

165.

166. ​void​ FixedUpdate()

167. {

168. ​if ​ (Time.time == 0)

169. music.playMusic();

170. timeTracker();

171. ​if ​ (timedMovement == ​true ​)

172. {

173. Move(.2f);

174. }

175.

176. ​if ​ (oneBeat == 0 && currAnim == idleCheck)

177. {

178. animator.Play(idleHash, 0, 0);

179. }

180. }

181.

182.

183. ​// Update is called once per frame

184. ​void​ Update()

185. {

186. ​//print(battleMenu.specialStateCount);

187. ​if ​ (red == ​true ​) PlayerTurnRed();

188.

189.

190. ​//gets the name of the current animation every frame for comparison to
other animation states

191. currAnim = animator.GetCurrentAnimatorClipInfo(0)[0].clip.ToString();

192.

193. ​//Along with the short snippet of code below, this manages Wolfgang
grabbing the guitar

194. ​if ​ (battleMenu.cutsceneCounter > 9)

195. {

196. animator.SetBool(guitarGrabHash, ​false​);

197. }

Cohan 47

198.

199. ​//During the tutorial cutscene, makes wolfgang show off his guitar

200. ​if ​ (battleMenu.cutsceneCounter == 9)

201. {

202. animator.SetBool(guitarGrabHash, ​true​);

203. battleMenu.cutsceneCounter++;

204. }

205.

206. ​//manages what the player does during the enemy portion of the battle

207. ​if ​ (other.enemyPhase == ​true ​)

208. {

209. dodgeSuccess = ​true​;

210. ​if​ (Input.GetKeyDown(KeyCode.DownArrow) ||
Input.GetKeyDown(KeyCode.UpArrow) ||

211. Input.GetKeyDown(KeyCode.LeftArrow) ||

Input.GetKeyDown(KeyCode.RightArrow))

212. {

213. print(​"time of dodge: " ​ + timeCounter);

214. dodgeTrue = ​true ​;

215. }

216. ​if​ (enemyHit == ​true ​ && dodgeSuccess == ​true ​)

217. {

218. ​if​ (Input.GetKey(KeyCode.LeftArrow)) dodgeSuccess = ​true​;

219. ​else​ dodgeSuccess = ​false​;

220. }

221. ​if​ (dodgeSuccess == ​false​)

222. {

223. red = ​true ​;

224. cam.cameraShake = ​true ​;

225. other.enemyPhase = ​false​;

226. }

227. }

228. ​if ​ (dodgeTrue)

229. {

230. Dodge();

231. }

232. ​if ​ (drawArms == ​true​)

233. {

234. arms.transform.position = ​new​ Vector3(playerX, playerY, playerZ - .5f);

235. }

236. ​else

237. {

238. arms.transform.position = ​new​ Vector3(100, 100, playerZ - .5f);

239. }

240. animator.speed = 1f;

241.

Cohan 48

242. ​//Sets the player position from the bottom of the screen to the top of the
screen

243. ​if ​ (playerX >= 15f && playerY < 0)

244. {

245. playerX = -15f;

246. playerY = 7.5f;

247. }

248. ​else ​ ​if​ (playerX > 16f && playerY > 0)

249. {

250. playerX = -11f;

251. playerY = -0.87f;

252. }

253.

254.

255. ​//Makes the player run across the screen

256. ​if ​ ((battleMenu.cutsceneCounter == 22 || battleMenu.cutsceneCounter == 30
|| battleMenu.cutsceneCounter == 39) &&

257. battleMenu.attackBool == ​true ​ && (playerX < 13f || unpause == ​true​) &&

258. attackRun == ​false ​ && successHit == 0 && failHit == 0)

259. {

260.

261. animator.ResetTrigger(waitingHash);

262. animator.SetTrigger(attackHash);

263. playerX = playerX + .2f;

264. ​if​ (unpause == ​true​)

265. {

266. arms.transform.position = ​new ​ Vector3(playerX, playerY, playerZ -
.5f);

267.

268. }

269.

270. ​//Makes the player wait if they're on the right half of the screen

271. }

272. ​else ​ ​if​ (playerX >= 13)

273. {

274. animator.ResetTrigger(attackHash);

275. animator.SetTrigger(waitingHash);

276. ​//Displays the counter on the correct beat

277. ​if​ (timeCounter == 0.00f && unpause == ​false ​)

278. {

279. displayCountdown = ​true ​;

280. countdownAnim.Play(animHash, 0, 0);

281. sfxSource.PlayOneShot(countdownSound, countdownVolume);

282. ​//Takes the counter away on the right beat

283. }

284. ​else ​ ​if​ (timeCounter > beat3 && displayCountdown == ​true ​)

Cohan 49

285. {

286. displayCountdown = ​false​;

287. unpause = ​true ​;

288. attackRun = ​true ​;

289. animator.ResetTrigger(waitingHash);

290. animator.SetTrigger(attackRunHash);

291. drawArms = ​true​;

292. staticX = -9f;

293. staticY = 7.45f;

294. }

295. }

296.

297. ​//print(battleMenu.specialAttackStart);

298. ​if ​ (battleMenu.specialStateCount == 1)

299. {

300. horizReseq.ChangeScheduledSegment(8, 7);

301. animator.SetInteger(guitarPlayHash, 1);

302. }

303. ​//Makes the player wait until the end of the beat to begin the special
attack

304. ​if ​ (battleMenu.specialStateCount == 1 && segmentCounter == 4 && timeCounter
== 0.00f)

305. {

306. displayCountdown = ​true ​;

307. countdownAnim.Play(animHash, 0, 0);

308. sfxSource.PlayOneShot(countdownSound, countdownVolume);

309. }

310. ​else ​ ​if​ (timeCounter > beat3 && displayCountdown == ​true ​)

311. {

312. displayCountdown = ​false ​;

313. battleMenu.specialStateCount = 2;

314. }

315. ​if ​ (battleMenu.specialStateCount == 2 && timeCounter == 0.00f)

316. {

317. battleMenu.specialStateCount = 3;

318. battleMenu.vert.VertShift(battleMenu.vert.audioSources[0], ​false​);

319. animator.SetInteger(guitarPlayHash, 2);

320. }

321. ​if ​ (battleMenu.specialStateCount == 12)

322. {

323. battleMenu.vert.VertShift(battleMenu.vert.audioSources[0], ​true​);

324. animator.SetInteger(guitarPlayHash, 0);

325. battleMenu.specialStateCount++;

326. }

327.

328. transform.position = ​new ​ Vector3(playerX, playerY, playerZ);

Cohan 50

329. ​if ​ (cam.cameraShake == ​true ​) cam.CameraShake();

330. ​//print(Time.time % (1f+(1f/3f)));

331.

332. ​//Manages the location of the countdown

333. ​if ​ (displayCountdown == ​true ​)

334. {

335. countDownX = 0f;

336. countDownY = 4;

337. }

338. ​else

339. {

340. countDownX = -100;

341. }

342. Vector3 countDownPos = ​new​ Vector3(countDownX, countDownY, countDownZ);

343. Countdown.transform.position = countDownPos;

344. ​if ​ (attackRun == ​true ​) AttackRun();

345. ​else ​ ​if​ (successHit > 0 || failHit > 0) HitResolve();

346.

347. }

348.

349.

350. ​//keeps track of the beat and rhythm, dependant on how much time has passed

351. ​public ​ ​void ​ timeTracker()

352. {

353. biggerTime = Mathf.Round((biggerTime + .02f) * 100f) / 100f;

354. timeCounter = Mathf.Round((timeCounter + .02f) * 100f) / 100f;

355. oneBeat = Mathf.Round((oneBeat + .02f) * 100f) / 100f;

356. ​if ​ (oneBeat == beat1) oneBeat = 0;

357. ​if ​ (timeCounter == 0 || timeCounter == beat4)

358. {

359. timeCounter = 0;

360. segmentCounter++;

361. }

362. ​if ​ (biggerTime >= bigbeatTop)

363. {

364. timeCounter = 0;

365. biggerTime = 0;

366. }

367. ​if ​ (segmentCounter > 8)

368. {

369. segmentCounter = 1;

370. }

371. ​//print (oneBeat+" "+timeCounter+" "+biggerTime+" "+segmentCounter);

372. }

373.

374.

Cohan 51

375.

376.

377.

378. ​//Manages the running part of the attack

379. ​void​ AttackRun()

380. {

381. enemyX = (other.GetEnemyStats(other.enemyList[battleMenu.enemyChoice])[0]);

382.

383.

384. ​//Determines the current enemies position

385. ​if ​ (enemyX == battleMenu.enemyPlaces[0]) enemyPos = 1;

386. ​else ​ ​if​ (enemyX == battleMenu.enemyPlaces[1]) enemyPos = 2;

387. ​else ​ ​if​ (enemyX == battleMenu.enemyPlaces[2]) enemyPos = 3;

388. ​else ​ ​if​ (enemyX == battleMenu.enemyPlaces[3]) enemyPos = 4;

389.

390. ​if ​ (Input.GetKey(KeyCode.Z) && jumpTrue == ​false ​ && jumpAttackTrue == ​false
&& battleMenu.cutsceneCounter > 10)

391. {

392. timedMovement = ​false ​;

393. ​if​ ((enemyPos == 2 && (timeCounter > beat4 - leniency || timeCounter <
0 + leniency)) ||

394. (enemyPos == 3 && (timeCounter > beat1 - leniency && timeCounter <

beat1 + leniency)) ||

395. (enemyPos == 4 && (timeCounter > beat2 - leniency && timeCounter <

beat2 + leniency)) ||

396. (enemyPos == 1 && (timeCounter > beat3 - leniency && timeCounter <

beat3 + leniency)))

397. {

398. sfxSource.PlayOneShot(attackJump, .5f);

399. damage++;

400. jumpAttackTrue = ​true​;

401. jumpAttackX1Deriv = jumpAttackX1Deriv * (((5 -

battleMenu.enemyChoice) + 1) - .5f);

402. jumpAttackUp = ​true ​;

403. animator.SetTrigger(attackJumpHash);

404. animator.ResetTrigger(attackRunHash);

405. drawArms = ​false​;

406. arms.transform.position = ​new ​ Vector3(-100, -100, -10);

407. }

408. ​else

409. {

410. drawArms = ​false​;

411. attackRun = ​false ​;

412. sfxSource.PlayOneShot(attackFail, 2f);

413. failHit++;

414. }

Cohan 52

415. }

416. ​else ​ ​if​ (Input.GetKey(KeyCode.X))

417. {

418. timedMovement = ​false ​;

419. sfxSource.PlayOneShot(guitarSwing, 1f);

420. print(​"time of hit: " ​ + timeCounter);

421. ​//If the hit is succesful...

422. ​if​ ((enemyPos == 1 && (timeCounter > beat4 - leniency || timeCounter <
0 + leniency)) ||

423. (enemyPos == 2 && (timeCounter > beat1 - leniency && timeCounter <

beat1 + leniency)) ||

424. (enemyPos == 3 && (timeCounter > beat2 - leniency && timeCounter <

beat2 + leniency)) ||

425. (enemyPos == 4 && (timeCounter > beat3 - leniency && timeCounter <

beat3 + leniency)))

426. {

427. sfxSource.PlayOneShot(guitarHit, 1f);

428. animator.ResetTrigger(attackRunHash);

429. damage++;

430. other.hitEnemy(other.enemyList[battleMenu.enemyChoice], damage);

431. damage = 0;

432. cam.cameraShake = ​true ​;

433. attackRun = ​false ​;

434. successHit++;

435. ​if​ (jumpAttackTrue == ​true ​)

436. {

437. jumpAttackDownSuccess = ​true​;

438. animator.SetBool(attackJumpHash, ​false​);

439. animator.SetBool(attackLandHash, ​true​);

440. }

441.

442. }

443. ​else

444. {

445. ​if​ (jumpAttackTrue == ​true ​) jumpAttackFail = ​true ​;

446. ​else

447. {

448. drawArms = ​false ​;

449. attackRun = ​false​;

450. sfxSource.PlayOneShot(attackFail, 2f);

451. failHit++;

452. }

453. }

454. }

455.

Cohan 53

456. ​if ​ ((((enemyPos == 1 && (timeCounter > 0 + leniency && timeCounter <
beat1)) ||

457. (enemyPos == 2 && timeCounter > beat1 + leniency) ||

458. (enemyPos == 3 && timeCounter > beat2 + leniency) ||

459. (enemyPos == 4 && timeCounter > beat3 + leniency)) ||

460. jumpAttackFail == ​true ​) && jumpAttackTrue == ​true ​)

461. {

462. jumpAttackFail = ​false​;

463. timedMovement = ​false ​;

464. jumpAttackTrue = ​false​;

465. attackRun = ​false​;

466. drawArms = ​false​;

467. sfxSource.PlayOneShot(attackFail, 2f);

468. jumpAttackFactorX = 0f;

469. jumpAttackFactorY = 0f;

470. jumpAttackX1Deriv = .02f;

471. jumpAttackY1Deriv = .02f;

472. failHit++;

473. }

474. ​if ​ (playerX > enemyX + .5f && playerY > 0)

475. {

476. timedMovement = ​false ​;

477. drawArms = ​false​;

478. attackRun = ​false​;

479. sfxSource.PlayOneShot(attackFail, 2f);

480. failHit++;

481. }

482. ​if ​ (jumpAttackTrue) JumpAttack();

483. ​else

484. {

485. ​//Update the player's location

486. timedMovement = ​true ​;

487. ​//playerX = playerX + .2f;

488. playerY = playerY + jumpFactor;

489. }

490. }

491.

492.

493.

494.

495.

496. ​//What happens if the player jumps

497. ​void​ Jump()

498. {

499. ​//turns jumpDown on if the difference between the Y before the jump - the Y
after the jump is of a certain height

Cohan 54

500. ​if ​ (playerY - staticY > jumpHeight) jumpDown = ​true ​;

501. ​//If the player's current Y is back to the same level as the original Y
before the jump, reset everything and stop jumping

502. ​if ​ (playerY < staticY + .04f && jumpDown == ​true ​)

503. {

504. jumpDown = ​false​; ​//Stop jumping down

505. animator.ResetTrigger(jumpHash); ​//Bring animation back to a run

506. jumpFactor = 0f; ​//Reset the rate of change

507. jumpTrue = ​false​; ​//Get out of this small jump function

508. }

509. ​//Change the value by which Y is increased

510. ​if ​ (jumpDown == ​true​)

511. {

512. jumpFactor = jumpFactor - jumpRateOfChange;

513. }

514. ​else ​ ​if​ (jumpTrue == ​true ​)

515. {

516. jumpFactor = jumpFactor + jumpRateOfChange;

517. }

518. }

519.

520.

521.

522.

523.

524. ​//What happens if the player jumps at the right time for an attack

525. ​void​ JumpAttack()

526. {

527.

528.

529. playerX = playerX + jumpAttackFactorX;

530. playerY = playerY + jumpAttackFactorY;

531.

532. ​if ​ (playerY - staticY > jumpHeight && jumpAttackUp == ​true​)

533. {

534. jumpAttackUp = ​false​;

535. jumpAttackFactorX = 0;

536. jumpAttackFactorY = 0;

537. }

538. ​if ​ (jumpAttackUp == ​true ​)

539. {

540. jumpAttackFactorX = jumpAttackFactorX + jumpAttackX1Deriv;

541. jumpAttackFactorY = jumpAttackFactorY + jumpAttackY1Deriv;

542.

543. jumpAttackX1Deriv = jumpAttackX1Deriv - jumpAttackX2Deriv;

544. jumpAttackY1Deriv = jumpAttackY1Deriv + jumpAttackY2Deriv;

Cohan 55

545. ​//print (playerX + " " + playerY + " " + jumpAttackFactorX + " " +
jumpAttackFactorY + " " + jumpAttackX1Deriv + " " + jumpAttackY1Deriv);

546. }

547. ​else

548. {

549. ​if​ (jumpAttackDownSuccess == ​true ​)

550. {

551. animator.ResetTrigger(attackJumpHash);

552. animator.SetTrigger(attackLandHash);

553. jumpAttackFactorX = .3f;

554. jumpAttackFactorY = -.3f;

555. ​if​ (playerY < staticY + .04 && jumpAttackDownSuccess == ​true ​)

556. {

557. jumpAttackDownSuccess = ​false​; ​//Stop jumping down

558. animator.ResetTrigger(attackLandHash); ​//Bring animation back
to a run

559. jumpAttackFactorX = 0f; ​//Reset the rate of change

560. jumpAttackFactorY = 0f;

561. jumpAttackX1Deriv = .02f;

562. jumpAttackY1Deriv = .02f;

563. jumpAttackTrue = ​false ​; ​//Get out of this small jump function

564. jumpTrue = ​false ​;

565. }

566. }

567. }

568. }

569.

570. ​void​ JumpBack()

571. {

572. playerX = playerX - .15f;

573. playerY = playerY + jumpBackFactor;

574. ​//turns jumpDown on if the difference between the Y before the jump - the Y
after the jump is of a certain height

575. ​if ​ (playerY - staticY > jumpBackHeight) jumpBackDown = ​true ​;

576. ​//If the player's current Y is back to the same level as the original Y
before the jump, reset everything and stop jumping

577. ​if ​ (((playerY < staticY + .04 && jumpBackDown == ​true ​ && successHit < 3))
|| ((playerY < .5f) && jumpBackDown == ​true​))

578. {

579. jumpBackDown = ​false​; ​//Stop jumping down

580. animator.ResetTrigger(attackJumpBackHash); ​//Bring animation back to a
run

581. jumpBackFactor = 0f; ​//Reset the rate of change

582. jumpBackTrue = ​false​; ​//Stop running this function

583. successHit++;

584. ​if​ (playerY < 1)

Cohan 56

585. {

586. playerX = -7.75f;

587. playerY = -0.87f;

588. playerZ = -3f;

589. }

590. }

591. ​//Change the value by which Y is increased

592. ​if ​ (jumpBackDown == ​true ​)

593. {

594. jumpBackFactor = jumpBackFactor - jumpBackRateOfChange;

595. }

596. ​else ​ ​if​ (jumpBackTrue == ​true​)

597. {

598. jumpBackFactor = jumpBackFactor + jumpBackRateOfChange;

599. }

600. ​if ​ (playerY > 10)

601. {

602. playerZ = -.2f;

603. }

604. }

605.

606.

607.

608.

609. ​void​ Fall()

610. {

611. ​if ​ (fallTrue)

612. {

613. playerY = playerY - .2f;

614. }

615. ​if ​ (playerY < (staticY + .04f))

616. {

617. fallTrue = ​false​;

618. sfxSource.PlayOneShot(thud, .5f);

619. failHit++;

620. }

621. }

622.

623. ​void​ HitResolve()

624. {

625. timedMovement = ​false​;

626. ​if ​ (jumpAttackTrue) JumpAttack();

627. ​else ​ ​if​ (successHit == 1)

628. {

629. jumpBackHeight = .8f;

630. jumpBackRateOfChange = .06f;

Cohan 57

631. animator.ResetTrigger(attackLandHash);

632. drawArms = ​false​;

633. animator.SetTrigger(attackJumpBackHash);

634. jumpBackTrue = ​true​;

635. }

636. ​if ​ (jumpBackTrue)

637. {

638. JumpBack();

639. }

640. ​else ​ ​if​ (successHit == 2)

641. {

642. successPause++;

643. ​if​ (successPause == 10)

644. {

645. successHit++;

646. sfxSource.PlayOneShot(attackJump, .5f);

647. }

648. }

649. ​else ​ ​if​ (successHit == 3)

650. {

651. successPause = 0;

652. animator.SetTrigger(jumpToStartHash);

653. jumpBackRateOfChange = .1f;

654. jumpBackHeight = 5;

655. jumpBackTrue = ​true​;

656. animator.ResetTrigger(attackHash);

657. }

658. ​else ​ ​if​ (successHit == 4)

659. {

660. animator.ResetTrigger(jumpToStartHash);

661. battleMenu.attackBool = ​false​;

662. battleMenu.menuBool = ​true ​;

663. battleMenu.turnCounter++;

664. successHit = 0;

665. unpause = ​false ​;

666. ​if​ (battleMenu.cutscene == ​true​) battleMenu.cutsceneCounter++;

667. }

668.

669. ​if ​ (failHit == 1)

670. {

671. animator.ResetTrigger(attackJumpHash);

672. animator.SetTrigger(jumpAttackFailHash);

673. fallTrue = ​true ​;

674. }

675. ​if ​ (fallTrue)

676. Fall();

Cohan 58

677. ​else ​ ​if​ (failHit == 2)

678. {

679. successHit = 1;

680. failHit = 0;

681. animator.ResetTrigger(jumpAttackFailHash);

682. }

683. }

684.

685. ​public ​ ​void ​ Dodge()

686. {

687.

688. ​if ​ (Input.GetKeyDown(KeyCode.LeftArrow) && dodgeCounter == 0)

689. {

690. addX = -.5f;

691. maxX = playerX - 1.5f;

692. animator.SetTrigger(leftHash);

693. currentKey = KeyCode.LeftArrow;

694. }

695. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.DownArrow) && dodgeCounter == 0)

696. {

697. animator.SetTrigger(downHash);

698. currentKey = KeyCode.DownArrow;

699. }

700. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.RightArrow) && dodgeCounter == 0)

701. {

702. addX = .5f;

703. maxX = playerX + 1.5f;

704. animator.SetTrigger(rightHash);

705. currentKey = KeyCode.RightArrow;

706. }

707. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.UpArrow) && dodgeCounter == 0)

708. {

709. currentKey = KeyCode.UpArrow;

710. addY = .60f;

711. maxY = playerY + 1.8f;

712. animator.SetTrigger(upHash);

713. }

714.

715.

716.

717.

718. ​if ​ (dodgeCounter >= 5)

719. {

720. ​if​ (Input.GetKey(currentKey) && pauseCounter != 12)

721. {

722. dodgeCounter--;

Cohan 59

723. pauseCounter++;

724. }

725. ​else

726. {

727. playerX = playerX - addX;

728. playerY = playerY - addY;

729. }

730. }

731. ​else ​ ​if​ (playerX != maxX && playerY <= maxY)

732. {

733. playerX = playerX + addX;

734. playerY = playerY + addY;

735. }

736. ​if ​ (dodgeCounter == 7)

737. {

738. dodgeCounter = 0;

739. playerY = -0.82f;

740. animator.ResetTrigger(downHash);

741. animator.ResetTrigger(upHash);

742. animator.ResetTrigger(leftHash);

743. animator.ResetTrigger(rightHash);

744. addX = 0f;

745. addY = 0f;

746. maxX = 0f;

747. maxY = 0f;

748. dodgeTrue = ​false​;

749. pauseCounter = 0;

750. }

751. ​if ​ (dodgeTrue == ​true ​)

752. {

753. dodgeCounter++;

754. }

755.

756. }

757.

758. ​public ​ ​void ​ Move(​float​ speed)

759. {

760. playerX = playerX + speed;

761. }

762.

763. ​public ​ ​void ​ PlayerTurnRed()

764. {

765. SpriteRenderer spriteRenderer = ​this ​.GetComponent<SpriteRenderer>();

766. ​if ​ (spriteRenderer.color[1] > 0 && darken == ​true​)

767. {

768. playerColors[1] = playerColors[1] - .2f;

Cohan 60

769. playerColors[2] = playerColors[2] - .2f;

770. }

771. ​else ​ ​if​ (spriteRenderer.color[1] < 1 && lighten == ​true​)

772. {

773. playerColors[1] = playerColors[1] + .2f;

774. playerColors[2] = playerColors[2] + .2f;

775. }

776. ​if ​ (darken == ​true ​ && spriteRenderer.color[1] < .1f)

777. {

778. darken = ​false​;

779. lighten = ​true ​;

780. }

781. ​else ​ ​if​ (lighten == ​true ​ && spriteRenderer.color[1] > .9f)

782. {

783. lighten = ​false ​;

784. darken = ​true​;

785. red = ​false​;

786. }

787. spriteRenderer.color = playerColors;

788.

789. }

790.

791. }

enemyspawner

1. //Script controls all of the enemies in the battle. First it spawns them,

2. //and then controls their individual actions on their turn. It also manages their

placement, turn order, etc

3.

4. using​ System.Collections;

5. using​ System.Collections.Generic;

6. using​ UnityEngine;

7.

8. public ​ ​class​ enemyspawner : MonoBehaviour {

9.

10. ​public ​ GameObject enemy01;

11. ​public ​ GameObject enemy02;

12. ​public ​ GameObject currentEnemy;

13. ​public ​ Transform enemyParent;

14. ​public ​ PlayerControl player;

15. ​public ​ ​float​ test = 6.3f;

16. ​public ​ List<GameObject> enemyList = ​new ​ List<GameObject>();

17. ​public ​ List<​string ​> enemyNameList = ​new ​ List< ​string ​> ();

18. ​public ​ List<​string ​> tempEnemyNameList = ​new ​ List< ​string ​> ();

Cohan 61

19. ​public ​ List<​float ​> startingX = ​new ​ List< ​float​> ();

20. ​public ​ ​bool ​ enemyPhase;

21. ​public ​ ​int ​ enemyTurn;

22. ​public ​ ​int ​ attackPhase;

23. ​public ​ ​int ​ randomEnemyType;

24. ​public ​ ​int ​ randomEnemy;

25. ​public ​ ​int ​ enemiesGone;

26. ​public ​ Vector4 enemyColors;

27. ​public ​ ​bool ​ red, darken, lighten;

28. EnemyAnimate enemyAnimate;

29.

30. ​public ​ ​bool ​ specialBattle; ​//Determines whether enemies are spawned in the typical
way

31. ​public ​ GameObject specialEnemy;

32.

33. ​public ​ ​int ​ currEnemy;

34.

35. ​//number of enemies

36. ​public ​ ​int ​ enemyCount;

37.

38. ​//for enemy attack

39. ​public ​ ​bool ​ run;

40.

41. ​//for the enemy attack's hit time

42. ​public ​ ​float​ enemyHit;

43.

44. ​//for individual enemies

45. ​public ​ ​float​ enemyX, enemyY, enemyZ;

46.

47. ​//for triggering enemy music

48. ​public ​ HorizReseq horizReseq;

49.

50. ​// Use this for initialization

51. ​public ​ ​void ​ Start () {

52. enemyColors = ​new ​ Vector4(1, 1, 1, 1);

53. darken = ​true ​;

54. lighten = ​false​;

55. ​if ​ (specialBattle == ​false​) {

56. List<GameObject> enemyBase = ​new ​ List<GameObject>();

57. enemyBase.Add(enemy01);

58. enemyBase.Add(enemy02);

59. ​int ​ numberOfEnemies = UnityEngine.Random.Range(1, enemyCount);

60.

61. ​for ​ (​int ​ i = 0; i < numberOfEnemies; i++)

62. {

63. ​int ​ randomEnemyType = UnityEngine.Random.Range(0, enemyBase.Count);

Cohan 62

64. GameObject addedEnemy = enemyBase[randomEnemyType];

65. ​string ​ enemyName = addedEnemy.name;

66. ​float ​ newX = (6.5f - (​float​)(i - 1) * 3f);

67. enemyList.Add(

68. Instantiate(

69. addedEnemy,

70. ​new ​ Vector3(

71. newX,

72. 7.5f,

73. -1),

74. Quaternion.identity,

75. enemyParent)

76.);

77. enemyList[i].name = enemyName;

78. enemyNameList.Add(enemyList[i].name);

79. }

80. }

81.

82. ​else ​ {

83. enemyList.Add(specialEnemy);

84. enemyNameList.Add(specialEnemy.name);

85. }

86.

87. }

88.

89. ​// Update is called once per frame

90. ​void​ Update () {

91. ​if ​ (red == ​true ​) EnemyTurnRed(specialEnemy);

92. ​if ​ (enemyPhase == ​true ​ && specialBattle == ​false ​) {

93. enemyAttack (currentEnemy);

94. }

95. }

96.

97.

98.

99.

100. ​//Return a list of the enemies stats. [Xpos, Ypos]

101. ​public ​ List< ​float​> GetEnemyStats (GameObject enemy) {

102. List< ​float​> enemyStats = ​new ​ List< ​float​>();

103. enemyStats.Add (enemy.transform.position.x);

104. enemyStats.Add (enemy.transform.position.y);

105. ​return ​(enemyStats);

106. }

107.

108. ​public ​ ​void ​ hitEnemy (GameObject enemy,​int ​ damage) {

109. ​//EnemyAnimate enemyAnimate = enemy.GetComponent<EnemyAnimate>();

Cohan 63

110. ​//enemyAnimate.hit = true;

111. ​//enemyAnimate.takeDamage (damage);

112. red = ​true ​;

113.

114. }

115.

116. ​public ​ ​void ​ enemyAttack (GameObject enemy) {

117. enemyAnimate = enemy.GetComponent<EnemyAnimate>();

118. ​if ​ (attackPhase == 1) {

119. enemyAnimate.attack = ​true ​;

120. ​if​ (player.segmentCounter == 8) {

121. run = ​true ​;

122. }

123. ​if​ (run == ​true ​) {

124. enemyMove (enemy);

125. enemyAnimate.walk = ​true​;

126. }

127. } ​else​ ​if​ (attackPhase == 2) {

128. ​float​ enemyX = GetEnemyStats(enemy)[0];

129. ​float​ enemyY = GetEnemyStats(enemy)[1];

130. enemyAnimate.attack2(enemyX, enemyY);

131. }

132. }

133.

134. ​public ​ ​void ​ enemyMove (GameObject enemy) {

135. enemyAnimate = enemy.GetComponent<EnemyAnimate>();

136. ​float ​ enemyX = GetEnemyStats(enemy)[0];

137. ​float ​ enemyY = GetEnemyStats(enemy)[1];

138.

139. ​//Making the enemy loop around on the screen, from the top to the bottom

140. ​if ​ (enemyX < -12.1f && enemyY > 3) {

141. enemyX = 12f;

142. enemyY = -0.87f;

143. } ​else​ ​if​ (enemyX > 12.1f && enemyY < 3) {

144. enemyX = -12f;

145. enemyY = 7.5f;

146.

147. } ​else​ ​if​ (enemyAnimate.attack == ​true​) {

148. ​if​ (enemyX <= -9 && player.segmentCounter != 8) {

149. horizReseq.ChangeScheduledSegment (6, horizReseq.nextSegment);

150. run = ​false ​;

151. } ​else ​ ​if ​ (player.segmentCounter == 8) {

152. enemyX = enemyX - .08f;

153. } ​else ​ ​if ​ (player.segmentCounter == 1) {

154. run = ​false ​;

155. attackPhase = 2;

Cohan 64

156. } ​else ​ {

157. enemyX = enemyX - .2f;

158. }

159. } ​else​ {

160. ​if​ (enemyX >= enemyAnimate.startingX && enemyY > 3) {

161. enemyAnimate.goBack = ​false​;

162. } ​else ​ {

163. enemyX = enemyX + .6f;

164. }

165. }

166. enemy.transform.position = ​new ​ Vector3 (enemyX, enemyY, -1);

167. }

168.

169. ​public ​ ​void ​ EnemyTurnRed(GameObject enemy){

170. SpriteRenderer spriteRenderer = enemy.GetComponent<SpriteRenderer>();

171. ​if ​ (spriteRenderer.color[1] > 0 && darken == ​true​){

172. enemyColors[1] = enemyColors[1] - .2f;

173. enemyColors[2] = enemyColors[2] - .2f;

174. }

175. ​else ​ ​if​ (spriteRenderer.color[1] < 1 && lighten == ​true​){

176. enemyColors[1] = enemyColors[1] + .2f;

177. enemyColors[2] = enemyColors[2] + .2f;

178. }

179. ​if ​ (darken == ​true ​ && spriteRenderer.color[1] < .1f) {

180. darken = ​false​;

181. lighten = ​true ​;

182. }

183. ​else ​ ​if​ (lighten == ​true ​ && spriteRenderer.color[1] > .9f){

184. lighten = ​false ​;

185. darken = ​true​;

186. red = ​false​;

187. }

188. spriteRenderer.color = enemyColors;

189.

190. }

191. }

Battle_Menu_Control

1. //This controls the menu and the flow of the battle. its essentially the backbone of

the battle

2.

3. using​ System.Collections;

Cohan 65

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6. using​ UnityEngine.UI;

7.

8. public ​ ​class​ Battle_Menu_Control : MonoBehaviour {

9.

10. ​//The following varialbes detemine where in the series of menus the player is

11. ​public ​ ​bool ​ mainMenuBool;

12. ​public ​ ​bool ​ menuBool;

13. ​public ​ ​int ​ attackMenu;

14. ​public ​ ​bool ​ attackBool;

15. ​public ​ ​int ​ specialStateCount;

16.

17. ​public ​ VertRemixer vert;

18.

19. ​public ​ ​bool ​ cutscene; ​//Controls when the battle starts

20.

21. ​public ​ ​int ​ itemMenu;

22. ​public ​ ​int ​ specialMenu;

23. ​public ​ ​int ​ otherMenu;

24.

25. ​public ​ ​float​ turnCounter;

26.

27. ​//For scripted battles, this controls what scriped actions happen when

28. ​public ​ ​int ​ cutsceneCounter;

29. ​public ​ ​int ​ lastCutsceneCounter;

30. ​public ​ DialogueBox box; ​//This turns off player control when the dialogue box is on
screen

31.

32. ​//For the main menu

33. ​public ​ GameObject menu;

34. ​int ​ menuNum = 0;

35. ​public ​ ​int ​ mainMenuItems = 4;

36. ​public ​ Vector3 menuPos;

37. ​public ​ ​float​ menuAttackY;

38. ​public ​ ​float​ menuItemY;

39. ​public ​ ​float​ menuSpecialY;

40. ​public ​ ​float​ menuOtherY;

41.

42. ​//For the special menu

43. ​public ​ GameObject special;

44. ​public ​ Vector3 specialPos;

45. ​public ​ SpecialHeader specialHeader;

46.

47.

48. ​//For the pointer

Cohan 66

49. ​public ​ Vector3 arrowPos;

50. ​public ​ AudioClip sfxClip, menuSelect, menuCancel;

51. ​private​ AudioSource sfxSource;

52. ​public ​ ​float​ audioVolume;

53. ​public ​ ​int ​ arrowLocation; ​//What number enemy the arrow is pointing at

54. ​public ​ enemyspawner spawn;

55.

56. ​//For the special menu curser

57. ​public ​ GameObject curser;

58. ​public ​ Vector3 curserPos;

59. ​public ​ ​int ​ curserLocation;

60.

61. ​//For the enemy name paper

62. ​public ​ FollowArrow enemyName;

63. ​public ​ EnemyTextPosition enemyText;

64. ​public ​ ​float​ yOffset = 2.5f;

65. ​float​ enemyNameX;

66. ​float​ enemyNameY;

67. ​public ​ ​int ​ numberOfEnemies;

68. ​public ​ ​int ​ attackMenuCounter;

69.

70. ​//Enemy positions

71. ​public ​ Vector4 enemyPlaces;

72.

73. ​public ​ ​bool ​ activate;

74.

75. ​public ​ ​int ​ enemyChoice;

76.

77. ​// Use this for initialization

78. ​void​ Start () {

79. enemyNameX = -20;

80. enemyNameY = -20;

81. box = FindObjectOfType<DialogueBox>();

82. menuPos = ​new ​ Vector3(-100, -100, menu.transform.position[2]);

83. specialPos = ​new ​ Vector3(30, -2, special.transform.position[2]);

84. arrowPos = ​new ​ Vector3(-100, -100, ​this ​.transform.position[2]);

85. curserPos = ​new ​ Vector3(100, 0, 0);

86. arrowLocation = 1;

87. cutsceneCounter = 0;

88. sfxSource = GetComponent<AudioSource> ();

89.

90.

91.

92.

93. }

94.

Cohan 67

95.

96. ​// Update is called once per frame

97. ​void​ Update () {

98. ​//print(cutsceneCounter);

99. ​//print(specialStateCount);

100. menu.transform.position = menuPos;

101. special.transform.position = specialPos;

102. ​this ​.transform.position = arrowPos;

103. curser.transform.position = curserPos;

104. ​if ​ (mainMenuBool == ​true ​) MainMenu();

105. ​if ​ (box.dialogueSession == ​false​ && (cutsceneCounter == 19 ||
cutsceneCounter == 29 ||

106. cutsceneCounter == 38 ||

cutsceneCounter == 78)

107. && menuBool == ​true​) mainMenuBool = ​true ​;

108. ​if ​ (attackMenu > 0) AttackMenu();

109. ​else ​ ​if​ (specialMenu > 0) SpecialMenu();

110.

111. ​if ​(specialStateCount == 14){

112. specialStateCount = 0;

113. menuBool = ​true ​;

114. cutsceneCounter++;

115. }

116.

117. ​if ​ (cutscene == ​false​)

118. {

119.

120. List<​int ​> menuNums = ​new ​ List< ​int ​>();

121. menuNums.Add(attackMenu); menuNums.Add(itemMenu);

menuNums.Add(specialMenu); menuNums.Add(otherMenu);

122.

123. ​//Starts the enemy attack phase of the battle

124. ​if​ (turnCounter >= 2 && activate == ​true ​)

125. {

126. spawn.enemyPhase = ​true ​;

127. spawn.currentEnemy = spawn.enemyList[0];

128. spawn.run = ​true ​;

129. activate = ​false​;

130. }

131.

132. ​if​ (turnCounter >= 2 && spawn.currEnemy > spawn.enemyNameList.Count)

133. {

134. spawn.currEnemy = 0;

135. spawn.attackPhase = 1;

136. turnCounter = 0;

137. attackMenu = 0;

Cohan 68

138. arrowLocation = 1;

139. menuNum = 0;

140. spawn.enemyPhase = ​false​;

141. activate = ​true​;

142. }

143.

144.

145. ​if​ (menuNums[0] > 0 || cutscene == ​true​) mainMenuBool = ​false​;

146. ​else ​ ​if​ (menuBool == ​true​ && turnCounter < 2) mainMenuBool = ​true ​;

147. ​else ​ ​if​ (menuNums[0] > 0) AttackMenu();

148.

149. ​//Move the enemy paper to the correct spot

150. Vector3 enemyNamePos = ​new ​ Vector3(enemyNameX, enemyNameY,
enemyName.transform.position[2]);

151. enemyName.transform.position = enemyNamePos;

152.

153. ​//Move the enemy text to the right spot

154. Vector3 enemyNameTextPos = ​new​ Vector3(enemyNameX + .8f, enemyNameY +
-.2f, -9);

155. enemyText.transform.position = enemyNameTextPos;

156.

157. ​//Create the arrow

158. transform.position = arrowPos;

159. }

160. ​//how the battle menu should function in the case of a cutscene

161. ​else ​ {

162.

163. Vector3 enemyNamePos = ​new ​ Vector3(enemyNameX, enemyNameY,
enemyName.transform.position[2]);

164. enemyName.transform.position = enemyNamePos;

165.

166. ​//during part 12, the menu finally appears

167. ​if​ (cutsceneCounter == 12 || cutsceneCounter == 71)

168. {

169. MainMenu();

170. arrowPos[1] = 3.5f;

171. cutsceneCounter++;

172. }

173.

174.

175. }

176.

177.

178.

179.

180.

Cohan 69

181. }

182.

183. ​void​ MainMenu()

184. {

185. specialPos[0] = 100;

186. menuPos[0] = 0;

187. menuPos[1] = 0;

188. arrowPos[0] = -5.75f;

189. enemyNameX = -20;

190. enemyNameY = -20;

191.

192. ​if ​ (box.dialogueSession == ​false​)

193. {

194. ​if​ (Input.GetKeyDown(KeyCode.UpArrow) && menuNum > 0)

195. {

196. menuNum--;

197. sfxSource.PlayOneShot(sfxClip, audioVolume);

198. }

199. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.DownArrow) && menuNum < mainMenuItems
- 1)

200. {

201. menuNum++;

202. sfxSource.PlayOneShot(sfxClip, audioVolume);

203. }

204. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.Z))

205. {

206. ​if​ (menuNum == 0) attackMenu++;

207. ​else​ ​if​ (menuNum == 2)

208. {

209. specialMenu = 1;

210. specialPos[0] = 7;

211. curserLocation = 1;

212. curserPos[0] = specialPos[0] - 2;

213. curserPos[1] = specialPos[1] + 1;

214. }

215. sfxSource.PlayOneShot(menuSelect, audioVolume);

216. }

217. }

218.

219. ​//Move the arrow to the right spot

220. List< ​float​> menuOptionYs = ​new ​ List< ​float​> ();

221. menuOptionYs.Add(menuAttackY); menuOptionYs.Add(menuItemY);

menuOptionYs.Add(menuSpecialY); menuOptionYs.Add(menuOtherY);

222. arrowPos[1] = menuOptionYs[menuNum];

223.

224. }

Cohan 70

225.

226. ​void​ AttackMenu () {

227.

228. numberOfEnemies = spawn.enemyList.Count;

229. arrowPos[1] = 7.3f;

230.

231.

232. ​if ​ (Input.GetKeyDown (KeyCode.LeftArrow) && arrowLocation > 1) {

233. arrowLocation--;

234. sfxSource.PlayOneShot (sfxClip, audioVolume);

235. } ​else​ ​if​ (Input.GetKeyDown (KeyCode.RightArrow) && arrowLocation <
numberOfEnemies) {

236. arrowLocation++;

237. sfxSource.PlayOneShot (sfxClip, audioVolume);

238. } ​else​ ​if​ (Input.GetKeyDown (KeyCode.X)) {

239. attackMenu--;

240. attackMenuCounter = 0;

241. sfxSource.PlayOneShot (menuCancel, audioVolume);

242. }

243. menuPos[0] = 500;

244. enemyNameX = (spawn.GetEnemyStats (spawn.enemyList

[numberOfEnemies-arrowLocation]) [0])-1.5f;

245. enemyNameY = arrowPos[1] + yOffset;

246. enemyName.SetEnemyNameText ((spawn.enemyNameList

[numberOfEnemies-arrowLocation]).ToString());

247.

248. ​//Move the arrow to the correct spot

249. arrowPos[0] = (spawn.GetEnemyStats (spawn.enemyList

[numberOfEnemies-arrowLocation]) [0])-1.5f;

250. attackMenuCounter++;

251.

252. ​if ​ (Input.GetKeyDown (KeyCode.Z) && attackMenuCounter > 10) {

253. enemyChoice = numberOfEnemies-arrowLocation;

254. attackMenu=0;

255. attackMenuCounter = 0;

256. menuBool = ​false​;

257. enemyNameX = -20;

258. enemyNameY = -20;

259. arrowPos[0] = -100;

260. mainMenuBool = ​false​;

261. sfxSource.PlayOneShot (menuSelect, audioVolume);

262. attackBool = ​true ​;

263. ​if​ (cutsceneCounter == 19 || cutsceneCounter == 29 || cutsceneCounter
== 38) cutsceneCounter++;

264. }

265.

Cohan 71

266. }

267.

268. ​void​ SpecialMenu() {

269. specialPos[0] = 7;

270. arrowPos[0] = 100;

271. specialHeader.curMenuItem = curserLocation;

272.

273. ​if ​ (curserLocation == 1)

274. {

275. vert.VertShift(vert.audioSources[0], ​false​);

276. vert.VertShift(vert.audioSources[1], ​true ​);

277.

278. }

279. ​else

280. {

281. vert.VertShift(vert.audioSources[0], ​true ​);

282. vert.VertShift(vert.audioSources[1], ​false​);

283. }

284.

285. ​if ​ (Input.GetKeyDown(KeyCode.LeftArrow) && curserLocation != 1 &&
curserLocation != 4){

286. curserLocation--;

287. curserPos[0] = curserPos[0] - 2;

288. }

289. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.RightArrow) && curserLocation != 3 &&
curserLocation != 6){

290. curserLocation++;

291. curserPos[0] = curserPos[0] + 2;

292. }

293. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.DownArrow) && curserLocation < 4){

294. curserLocation = curserLocation + 3;

295. curserPos[1] = curserPos[1] - 2;

296. }

297. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.UpArrow) && curserLocation > 3){

298. curserLocation = curserLocation - 3;

299. curserPos[1] = curserPos[1] + 2;

300. }

301. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.X)){

302. attackMenuCounter = 0;

303. vert.VertShift(vert.audioSources[0], ​true ​);

304. vert.VertShift(vert.audioSources[1], ​false​);

305. specialMenu--;

306. curserPos[0] = 100;

307. sfxSource.PlayOneShot(menuCancel, audioVolume);

308. }

309.

Cohan 72

310. ​if ​ (Input.GetKeyDown(KeyCode.Z) && attackMenuCounter > 10)

311. {

312. menuPos[0] = 500;

313. specialPos[0] = 500;

314. curserPos[0] = 100;

315. specialMenu = 0;

316. attackMenuCounter = 0;

317. menuBool = ​false​;

318. vert.VertShift(vert.audioSources[0], ​true ​);

319. vert.VertShift(vert.audioSources[1], ​false​);

320. curserPos[0] = 100;

321. mainMenuBool = ​false​;

322. sfxSource.PlayOneShot(menuSelect, audioVolume);

323. specialStateCount = 1;

324. }

325. attackMenuCounter++;

326.

327. }

328. }

MusicControl

1. using​ System.Collections;

2. using​ System.Collections.Generic;

3. using​ UnityEngine;

4.

5. public ​ ​class​ MusicControl : MonoBehaviour {

6.

7.

8. ​public ​ AudioSource musicSource;

9. ​public ​ PlayerControl player;

10.

11. ​// Use this for initialization

12. ​void​ Start () {

13. }

14.

15. ​// Update is called once per frame

16. ​void​ Update () {

17.

18. }

19.

20. ​public ​ ​void ​ playMusic() {

21. musicSource.Play ();

22. }

23. }

Cohan 73

HorizReseq

1. using​ System.Collections;

2. using​ System.Collections.Generic;

3. using​ UnityEngine;

4.

5. // Namespace for audio

6. using​ UnityEngine.Audio;

7.

8. public ​ ​class​ HorizReseq : MonoBehaviour {

9.

10. [Header(​"Target AudioMixerGroup."​)]

11.

12. ​public ​ AudioMixerGroup myOutputMixerGroup;

13.

14. ​public ​ PlayerControl player;

15. ​public ​ VertRemixer vertRemixer;

16. ​private​ ​bool​ vertChecker;

17.

18. ​public ​ ​bool ​ musicChange;

19.

20. ​// First let's make a custom struct

21. ​// which will allow us to group several variables together

22.

23. ​// Tagging it with System.Serializable allows us to see this in the inspector

24. [System.Serializable]

25.

26. ​// We'll call the struct "AudioSegment" to be different from AudioClip and
AudioSource

27. ​public ​ ​struct ​ AudioSegment {

28.

29. ​// each audio segment will contain a clip

30. ​public ​ AudioClip clip;

31.

32. ​// it will also contain a double-precision duration

33. ​// allowing us to have audio-sample level time accuracy

34. ​public ​ ​double ​ duration;

35.

36. ​// we'll also have an integer that represents which segment to play next

37. ​// (assuming we'll be using a list or array of these later)

38. ​public ​ ​int ​ nextSegment;

39. }

40.

Cohan 74

41. [Header(​"The following is an array of AudioSegments that can be sequenced in any
order. "​)]

42. [Header(​"Each AudioSegment has a Clip, a Duration, and a Next Segment."​)]

43. [Header(​"Clip: the audio file to be triggered."​)]

44. [Header(​"Duration: the duration in seconds before the next segment is triggered." ​)]

45. [Header(​"Next Segment: this is the segment to go to next." ​)]

46. [Header(​"Note that the Next Segment is specified by its Element number."​)]

47.

48. ​// Now let's create an array of these segments

49. ​// Arrays are just places to store multiple variables of the same type,

50. ​// which you can access by index

51. ​// The size of the array must be known in advance!

52. ​public ​ AudioSegment[] audioSegments = ​new ​ AudioSegment[4];

53.

54.

55. ​// we also want a variety of integers to control various things:

56. ​public ​ ​int ​ nextSource, curSource, nextSegment, curSegment;

57.

58. ​// this public int will be our polyphony

59. ​// or the number of AudioSources we want to use

60. [Header(​"Number of voices to use (minimum is 2)"​)]

61. [Range(2,16)]

62. ​public ​ ​int ​ polyphony = 4;

63.

64. [Header(​"Initial delay in seconds to give the computer time to spool audio off the
hard drive." ​)]

65. ​public ​ ​double ​ initialDelay = 1;

66.

67. ​// A list is like an Array but you don't need to know the length of a list in
advance.

68. ​// We want the user to specify polyphony dynamically, so we'll use a list instead
of an array

69. ​private​ List<AudioSource> audioSources = ​new​ List<AudioSource>();

70.

71. ​// let's declare a double (64-bit high precision number)

72. ​// to specify the absolute dsp time when the next audio segement comes in

73. ​public ​ ​double ​ scheduledTime;

74.

75. ​// bool for an initialization flag

76. ​private​ ​bool​ doOnce;

77.

78. ​// When start is called

79. ​void​ Start() {

80.

81. vertChecker = ​true ​;

82. ​// we'll use a while loop to add audio sources to our horiz reseq player

Cohan 75

83. ​// start at 0

84. ​int ​ i = 0;

85.

86. ​// then keep adding audio sources while i is less than the number of sources we
want

87. ​while ​ (i < polyphony) {

88.

89. ​// audioSources is our List, and we add to it each of

90. ​// the AudioSources that we add using AddComponent

91. audioSources.Add (​this​.gameObject.AddComponent<AudioSource> ());

92.

93. ​// increment counter

94. i++;

95. }

96.

97. ​foreach ​ (AudioSource audioSource ​in​ audioSources) {

98. audioSource.outputAudioMixerGroup = myOutputMixerGroup;

99. }

100.

101. ​// Set the scheduled event time to NOW (as soon as Start() is done)

102. scheduledTime = AudioSettings.dspTime;

103.

104. }

105.

106. ​// each video frame

107. ​void​ Update() {

108.

109. ​//print(curSegment);

110.

111. ​// we check and see if we've reached the scheduled event time

112. ​if ​ (AudioSettings.dspTime >= scheduledTime) {

113.

114. ​if​ (curSegment > 0 && vertChecker == ​true ​){

115. vertRemixer.vertBool = ​true​;

116. vertChecker = ​false​;

117. }

118.

119. musicChange = ​true ​;

120.

121. ​// if so, and this is the first time this happens (no clip playing
already)

122. ​if​ (!doOnce) {

123.

124. ​// Delay this slightly into the future to give the CPU time

125. ​// to start streaming audio off the hard drive

126. scheduledTime = scheduledTime + initialDelay;

Cohan 76

127.

128. ​// Assign the next clip to be scheduled

129. audioSources [nextSource].clip = audioSegments [nextSegment].clip;

130.

131. ​// schedule the next audio source to play at a point in the future

132. audioSources [nextSource].PlayScheduled (scheduledTime);

133.

134.

135. ​// flag that we've done this initialization

136. doOnce = ​true ​;

137.

138. ​// if we've reached the scheduled event time and we've already done our
initialization

139. } ​else ​ {

140.

141. player.timeCounter = 0f;

142. player.biggerTime = 0f;

143. player.oneBeat = 0f;

144. player.segmentCounter = 1;

145.

146.

147. ​// Assign the next clip to be scheduled

148. audioSources [nextSource].clip = audioSegments [nextSegment].clip;

149.

150. ​// calculate when to play it based on current clip duration

151. scheduledTime = audioSegments [curSegment].duration +

scheduledTime;

152.

153. ​// schedule the next audio source to play at a point in the future

154. audioSources [nextSource].PlayScheduled (scheduledTime);

155.

156. }

157.

158. ​// get the next curSegment from nextSegment

159. curSegment = nextSegment;

160.

161. ​// get the next nextSegment by looking it up in the segment array

162. nextSegment = audioSegments[nextSegment].nextSegment;

163.

164. ​// get the current source from the old next source

165. curSource = nextSource;

166.

167. ​// update next source

168. nextSource = (nextSource + 1) % polyphony;

169. }

170.

Cohan 77

171. }

172.

173. ​public ​ ​void ​ ChangeScheduledSegment (​int ​ segment, ​int​ next) {

174.

175. ​// Future (t + 1)

176. ​// Change the currently scheduled segment based on input

177. curSegment = segment;

178.

179. ​// Find the segment that follows that

180. nextSegment = next;

181.

182. ​// stop the audio source that is scheduled to play the currently scheduled
segment

183. audioSources [curSource].Stop ();

184.

185. ​// assign its new target clip

186. audioSources [curSource].clip = audioSegments [curSegment].clip;

187.

188. ​// set play time (time to play next is still accurate

189. ​// because it is based on a clip already playing).

190. audioSources [curSource].PlayScheduled (scheduledTime);

191.

192. }

193.

194.

195. }

VertRemixer

1. using​ System.Collections;

2. using​ System.Collections.Generic;

3. using​ UnityEngine;

4.

5. using​ UnityEngine.Audio;

6.

7. public ​ ​class​ VertRemixer : MonoBehaviour

8. {

9.

10. ​public ​ AudioMixerGroup myOutputMixerGroup;

11. ​public ​ ​int ​ nextSource, curSource;

12. ​public ​ PlayerControl player;

13. ​public ​ HorizReseq horizReseq;

14. ​public ​ ​bool ​ vertBool;

15.

16.

Cohan 78

17. ​// Tagging it with System.Serializable allows us to see this in the inspector

18. [System.Serializable]

19.

20. ​// We'll call the struct "AudioSegment" to be different from AudioClip and
AudioSource

21. ​public ​ ​struct ​ AudioLayer

22. {

23.

24. ​// each audio segment will contain a clip

25. ​public ​ AudioClip clip;

26.

27. ​// it will also contain a double-precision duration

28. ​// allowing us to have audio-sample level time accuracy

29. ​public ​ ​double ​ duration;

30. ​public ​ ​float​ vol;

31. }

32. ​public ​ AudioLayer[] audioLayers = ​new​ AudioLayer[4];

33.

34. [Header(​"Number of voices to use (minimum is 2)"​)]

35. [Range(2, 16)]

36. ​public ​ ​int ​ polyphony = 4;

37.

38. ​public ​ List<AudioSource> audioSources = ​new ​ List<AudioSource>();

39. ​public ​ ​double ​ scheduledTime;

40.

41. ​// Start is called before the first frame update

42. ​void​ Start()

43. {

44. ​int ​ i = 0;

45.

46. ​// then keep adding audio sources while i is less than the number of sources we
want

47. ​while ​ (i < audioLayers.Length)

48. {

49.

50. ​// audioSources is our List, and we add to it each of

51. ​// the AudioSources that we add using AddComponent

52. audioSources.Add(​this ​.gameObject.AddComponent<AudioSource>());

53. audioSources[i].clip = audioLayers[i].clip;

54. audioSources[i].loop = ​true ​;

55. audioSources[i].volume = audioLayers[i].vol;

56.

57. ​// increment counter

58. i++;

59. }

60.

Cohan 79

61. ​foreach ​ (AudioSource audioSource ​in​ audioSources)

62. {

63. audioSource.outputAudioMixerGroup = myOutputMixerGroup;

64. }

65.

66. ​// Set the scheduled event time to NOW (as soon as Start() is done)

67. scheduledTime = AudioSettings.dspTime;

68. }

69.

70. ​// Update is called once per frame

71. ​void​ Update()

72. {

73.

74. ​if ​ (Input.GetKeyDown(KeyCode.P)) VertShift(audioSources[0], ​true​);

75. ​if ​ (Input.GetKeyDown(KeyCode.O)) VertShift(audioSources[0], ​false​);

76.

77. ​if ​ (vertBool == ​true​)

78. {

79. ​foreach​ (AudioSource audioSource ​in​ audioSources)

80. {

81. audioSource.Play();

82. }

83. }

84. vertBool = ​false ​;

85.

86.

87.

88. ​// get the current source from the old next source

89. curSource = nextSource;

90.

91. ​// update next source

92. nextSource = (nextSource + 1) % polyphony;

93. }

94.

95. ​public ​ ​void ​ VertShift(AudioSource audioSource, ​bool ​ on){

96. ​if ​ (on == ​true​) audioSource.volume = 1f;

97. ​else ​ audioSource.volume = 0f;

98. }

99. }

ArmAnimator:

1. //Manage's Wolfgang arms when they're a separate object from his body

2.

3. using​ System.Collections;

Cohan 80

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ ArmAnimator : MonoBehaviour {

8.

9. ​public ​ Animator animator;

10. ​public ​ ​int ​ waitHash = Animator.StringToHash(​"Wait" ​);

11. ​public ​ AudioClip guitarSwing;

12. ​//private AudioSource sfxSource;

13.

14. ​// Use this for initialization

15. ​void​ Start () {

16. animator = GetComponent<Animator>();

17. }

18.

19. ​// Update is called once per frame

20. ​void​ Update () {

21. animator.ResetTrigger (waitHash);

22. ​if ​ (Input.GetKeyDown (KeyCode.X)) {

23. Vector3 armPos = ​new ​ Vector3 (transform.position [0], 0, -10);

24. ​if​ (transform.position [1] > 0) {

25. AudioSource.PlayClipAtPoint (guitarSwing, armPos, 20f);

26. animator.SetTrigger (waitHash);

27. }

28. }

29. }

30. }

Instructor_Move

1. //Not only manages the movements of the instructor, but also controls the tutorial's

dialogue

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ Instructor_Move : MonoBehaviour

8. {

9.

10. ​public ​ HorizReseq horizReseq;

11. ​public ​ PlayerControl player;

12. ​public ​ Battle_Menu_Control menuControl;

13. ​public ​ Dummy dummy;

14. ​public ​ ​float​ walkSpeed;

Cohan 81

15. ​public ​ Vector3 instructorPos;

16. ​public ​ ​int ​ dialogueCount; ​//determines which dialogue to run

17. ​public ​ DialogueManager dialogue;

18. ​public ​ Animator animator;

19. ​public ​ SpriteRenderer spriteRenderer;

20. ​public ​ ​bool ​ successfulHit, noJump; ​//these are for checking what the player does
during the attack

21. ​public ​ ​string ​ idleCheck, runCheck, kick1Check, currAnim; ​//These strings are for
animation states

22. ​public ​ ​int ​ moveHash = Animator.StringToHash(​"Move" ​);

23. ​public ​ ​int ​ pickUpHash = Animator.StringToHash(​"PickUp"​);

24. ​public ​ ​int ​ kickHash = Animator.StringToHash(​"Kick" ​);

25.

26. ​public ​ ​int ​ idleHash = Animator.StringToHash(​"Instructor_Idle" ​);

27.

28. ​public ​ ​float​ offsetX, offsetY; ​//This is the offset between the professor and the
dummy when the professor is holding the dummy

29. ​private​ ​int ​ count; ​//for counting what part of the scripted movements need to be
brought up.

30. ​// Start is called before the first frame update

31. ​void​ Start()

32. {

33. walkSpeed = .25f;

34. instructorPos = ​new ​ Vector3(6, -.5f, ​this​.transform.position[2]);

35. animator = GetComponent<Animator>();

36. spriteRenderer = GetComponent<SpriteRenderer>();

37. idleCheck = animator.GetCurrentAnimatorClipInfo(0)[0].clip.ToString();

38.

39.

40. }

41.

42. ​private​ ​void​ FixedUpdate()

43. {

44. ​if ​ (player.oneBeat == 0 && currAnim == idleCheck) {

45. animator.Play(idleHash, 0, 0);

46. }

47.

48. }

49.

50. ​// Update is called once per frame

51. ​void​ Update()

52. {

53.

54. currAnim = animator.GetCurrentAnimatorClipInfo(0)[0].clip.ToString();

55. ​//if (currAnim == idleCheck && player.oneBeat == 0)
animator.ForceStateNormalizedTime(0);

Cohan 82

56. ​if ​ (dummy.dummyFollow == ​true​) {

57. dummy.dummyX = instructorPos[0] + offsetX;

58. dummy.dummyY = instructorPos[1] + offsetY;

59. }

60. count = menuControl.cutsceneCounter;

61. ​//In count 1, the instructor moves from the bottom of the screen to enemy
position one

62. ​if ​ (count == 1)

63. {

64. Move(walkSpeed, ​true ​);

65. runCheck = animator.GetCurrentAnimatorClipInfo(0)[0].clip.ToString();

66. ​if​ (instructorPos[0] > menuControl.enemyPlaces[0] && instructorPos[1] > 0)

67. {

68. instructorPos[0] = menuControl.enemyPlaces[0];

69. spriteRenderer.flipX = ​false​;

70. menuControl.cutsceneCounter++;

71. animator.SetInteger(moveHash, 2);

72. dialogueCount = 1;

73. }

74. }

75.

76. ​//In count 3, the instructor moves to enemy position four

77. ​else ​ ​if​ (count == 3)

78. {

79. Move(walkSpeed, ​true ​);

80. ​if​ (instructorPos[0] > menuControl.enemyPlaces[3] && instructorPos[1] > 0)

81. {

82. instructorPos[0] = menuControl.enemyPlaces[3];

83. spriteRenderer.flipX = ​false​;

84. menuControl.cutsceneCounter++;

85. animator.SetInteger(moveHash, 2);

86. dialogueCount = 2;

87. }

88. }

89. ​//In count 5, the instructor goes offstage

90. ​else ​ ​if​ (count == 5)

91. {

92. Move(walkSpeed, ​true ​);

93. ​if​ (instructorPos[0] > 16f)

94. {

95. spriteRenderer.flipX = ​false​;

96. menuControl.cutsceneCounter++;

97. dialogueCount = 3;

98. }

99. }

100. ​//In count 7, the Instructor takes the dummy to enemy position one

Cohan 83

101. ​else ​ ​if​ (count == 7)

102. {

103. Move(walkSpeed * -1, ​false​);

104. dummy.dummyFollow = ​true ​;

105. ​if​ (instructorPos[0] < menuControl.enemyPlaces[0] - offsetX &&
instructorPos[1] > 0)

106. {

107. instructorPos[0] = menuControl.enemyPlaces[0] - offsetX;

108. dummy.pos = 1;

109. spriteRenderer.flipX = ​false​;

110. menuControl.cutsceneCounter++;

111. ​//menuControl.cutsceneCounter = 35;

112. ​//horizReseq.ChangeScheduledSegment(0, 5);

113. animator.SetInteger(moveHash, 2);

114. dialogueCount = 4;

115. dummy.animator.SetTrigger(​"DropHandle"​);

116. }

117. }

118.

119. ​//Continues the instructor's dialogue after Wolfgang shows off his guitar

120. ​else ​ ​if​ (count == 10)

121. {

122. horizReseq.ChangeScheduledSegment(1, 1);

123. dialogueCount = 5;

124. menuControl.cutsceneCounter++;

125.

126. }

127.

128. ​else ​ ​if​ (count == 13)

129. {

130. dialogueCount = 6;

131. menuControl.cutsceneCounter++;

132. }

133.

134. ​else ​ ​if​ (count == 16)

135. {

136. dialogueCount = 7;

137. menuControl.cutsceneCounter++;

138. }

139.

140. ​else ​ ​if​ (count == 20)

141. {

142. dialogueCount = 8;

143. menuControl.cutsceneCounter++;

144. }

145.

Cohan 84

146. ​else ​ ​if​ (count == 23 && player.playerY < 0)

147. {

148. ​if​ (successfulHit == ​true​)

149. {

150. dialogueCount = 9;

151. }

152. ​else ​ dialogueCount = 10;

153. menuControl.cutsceneCounter++;

154. }

155.

156. ​else ​ ​if​ (count == 25 || count == 34 || count == 43 || count == 67)

157. {

158. successfulHit = ​true ​;

159. dummy.animator.ResetTrigger(​"DropHandle" ​);

160. dummy.animator.SetBool(​"PickUpHandle"​, ​true ​);

161. animator.SetBool(pickUpHash, ​true ​);

162. menuControl.cutsceneCounter++;

163. }

164.

165.

166. ​//Moves the instructor and dummy to enemy position 4, but only after the
last animation has played out.

167. ​//This is done by comparing the current state of animation to the run state

168. ​else ​ ​if​ (count == 26 || count == 68)

169. {

170. dummy.pos = 4;

171. animator.SetBool(pickUpHash, ​false​);

172. animator.SetInteger(moveHash, 1);

173. ​if​ (currAnim == runCheck) Move(walkSpeed, ​true ​);

174. dummy.dummyFollow = ​true ​;

175. ​if​ (dummy.dummyX > menuControl.enemyPlaces[3] && instructorPos[1] > 0)

176. {

177. spriteRenderer.flipX = ​false​;

178. menuControl.cutsceneCounter++;

179. animator.SetInteger(moveHash, 2);

180. dummy.dummyFollow = ​false​;

181.

182. }

183.

184. }

185.

186. ​else ​ ​if​ (count == 27 || count == 69)

187. {

188. dummy.dummyX = menuControl.enemyPlaces[3];

189. instructorPos[0] = dummy.dummyX - offsetX;

190. dummy.animator.SetBool(​"PickUpHandle"​, ​false ​);

Cohan 85

191. dummy.animator.SetBool(​"DropHandle" ​, ​true ​);

192. ​if​ (count == 27) dialogueCount = 11;

193. ​else ​ ​if​ (count == 69) dialogueCount = 24;

194. menuControl.menuBool = ​true ​;

195. menuControl.cutsceneCounter++;

196. }

197.

198. ​else ​ ​if​ (count == 31)

199. {

200. ​if​ (successfulHit == ​false​) dialogueCount = 12;

201. ​else

202. {

203. dialogueCount = 13;

204. horizReseq.ChangeScheduledSegment(2, 2);

205. }

206. menuControl.cutsceneCounter++;

207. }

208.

209. ​else ​ ​if​ (count == 33)

210. {

211. ​if​ (successfulHit == ​false​)

212. {

213. menuControl.cutsceneCounter = 29;

214. }

215. ​else

216. {

217. menuControl.cutsceneCounter++;

218. }

219. successfulHit = ​true ​;

220. }

221.

222. ​else ​ ​if​ (count == 35)

223. {

224. dummy.pos = 3;

225. animator.SetBool(pickUpHash, ​false​);

226. animator.SetInteger(moveHash, 1);

227. ​if​ (currAnim == runCheck) Move(walkSpeed * -1, ​false​);

228. dummy.dummyFollow = ​true ​;

229. ​if​ (dummy.dummyX < menuControl.enemyPlaces[2] && instructorPos[1] > 0)

230. {

231. menuControl.cutsceneCounter++;

232. animator.SetInteger(moveHash, 2);

233. dummy.dummyFollow = ​false​;

234.

235. }

236.

Cohan 86

237. }

238.

239. ​else ​ ​if​ (count == 36)

240. {

241. dummy.dummyX = menuControl.enemyPlaces[2];

242. instructorPos[0] = dummy.dummyX - offsetX;

243. dummy.animator.SetBool(​"PickUpHandle"​, ​false ​);

244. dummy.animator.SetBool(​"DropHandle" ​, ​true ​);

245. dialogueCount = 14;

246. menuControl.menuBool = ​true ​;

247. menuControl.cutsceneCounter++;

248. }

249.

250. ​else ​ ​if​ (count == 40)

251. {

252. ​if​ (successfulHit == ​false​) dialogueCount = 15;

253. ​else ​ ​if​ (noJump == ​true ​) dialogueCount = 16;

254. ​else

255. {

256. dialogueCount = 17;

257. horizReseq.ChangeScheduledSegment(3, 4);

258. }

259. menuControl.cutsceneCounter++;

260. }

261.

262. ​else ​ ​if​ (count == 42)

263. {

264. ​if​ (successfulHit == ​false​ || noJump == ​true ​)
menuControl.cutsceneCounter = 38;

265. ​else ​ menuControl.cutsceneCounter++;

266. successfulHit = ​true ​;

267. noJump = ​true​;

268. }

269.

270. ​else ​ ​if​ (count == 44)

271. {

272. animator.SetBool(pickUpHash, ​false​);

273. animator.SetInteger(moveHash, 1);

274. ​if​ (currAnim == runCheck) Move(walkSpeed * -1, ​false​);

275. dummy.dummyFollow = ​true ​;

276. ​if​ (dummy.dummyX < -13 && instructorPos[1] > 0)

277. {

278. menuControl.cutsceneCounter++;

279. animator.SetInteger(moveHash, 2);

280. dummy.dummyFollow = ​false​;

281.

Cohan 87

282. }

283. }

284.

285. ​else ​ ​if​ (count == 45){

286. player.other.enemyPhase = ​true ​;

287. dummy.animator.SetBool(​"PickUpHandle"​, ​false ​);

288. dummy.animator.SetBool(​"DropHandle" ​, ​true ​);

289. Move(-.2f, ​false​);

290. ​if​ (instructorPos[0] <= -11.7f){

291. instructorPos[0] = -11.7f;

292. animator.SetInteger(moveHash, 2);

293. ​if​ (player.timeCounter == player.beat3)

294. {

295. animator.SetBool(kickHash, ​true​);

296. menuControl.cutsceneCounter++;

297. }

298. }

299. ​else ​ Move(-.2f, ​false ​);

300. }

301.

302. ​else ​ ​if​ (count == 46 || count == 47 || count == 56 || count == 57){

303. kick1Check = animator.GetCurrentAnimatorClipInfo(0)[0].clip.ToString();

304. ​if​(player.timeCounter == 0) menuControl.cutsceneCounter++;

305. }

306.

307. ​else ​ ​if​ (count == 48 || count == 58){

308. animator.SetBool(kickHash, ​false​);

309. ​if​(currAnim != kick1Check) {

310. dummy.animator.SetInteger(dummy.attackHash, 1);

311. ​if​ (player.timeCounter > 0 && player.timeCounter < player.beat1)
dummy.dummySpeed = -.375f;

312. ​else​ ​if​ (player.timeCounter > player.beat1 && player.timeCounter <
player.beat2) dummy.dummySpeed = -.2f;

313. ​else​ ​if​ (player.timeCounter > player.beat2 && player.timeCounter <
player.beat3) dummy.dummySpeed = -.1f;

314. ​else​ ​if​ (player.timeCounter > player.beat3) {

315. dummy.dummySpeed = 0;

316. menuControl.cutsceneCounter++;

317. dummy.animator.SetInteger(dummy.attackHash, 2);

318. }

319. dummy.Move(dummy.dummySpeed);

320. }

321. }

322.

323. ​else ​ ​if​ (count == 49 || count == 50 || count == 59 || count == 60){

324. dummy.dummySpeed = -.375f;

Cohan 88

325. ​if​(player.timeCounter >= .14f && player.timeCounter < player.beat1/2 &&
dummy.dummyY < 1){

326. player.enemyHit = ​true ​;

327. ​if​ (count == 49 || count == 59) menuControl.cutsceneCounter++;

328. }

329. ​else ​{

330. player.enemyHit = ​false ​;

331. ​if​ (count == 50 || count == 60) menuControl.cutsceneCounter++;

332. }

333. }

334.

335. ​else ​ ​if​ (count == 51){

336. ​if​ (player.dodgeSuccess == ​false​) dialogueCount = 18;

337. ​else ​ dialogueCount = 19;

338. horizReseq.ChangeScheduledSegment(5, 6);

339. player.other.enemyPhase = ​false​;

340. menuControl.cutsceneCounter++;

341. }

342.

343. ​else ​ ​if​ (count == 53 || count == 63){

344. dummy.animator.SetInteger(dummy.attackHash, 3);

345. dummy.Move(dummy.dummySpeed*-1f);

346. ​if​(dummy.dummyY > 1 && dummy.dummyX >= -13.25f){

347. dummy.dummyX = -13.25f;

348. dummy.animator.SetInteger(dummy.attackHash, 4);

349. ​if​ (count == 53) dialogueCount = 20;

350. menuControl.cutsceneCounter++;

351. }

352. }

353.

354. ​else ​ ​if​ (count == 55){

355. player.other.enemyPhase = ​true ​;

356. ​if​ (player.timeCounter == player.beat3)

357. {

358. animator.SetBool(kickHash, ​true ​);

359. menuControl.cutsceneCounter++;

360. }

361. }

362.

363. ​else ​ ​if​ (count == 61){

364. ​if​ (player.dodgeSuccess == ​false​) dialogueCount = 21;

365. ​else

366. {

367. dialogueCount = 22;

368. menuControl.vert.VertShift(menuControl.vert.audioSources[0], ​true​);

369. }

Cohan 89

370. player.other.enemyPhase = ​false​;

371. menuControl.cutsceneCounter++;

372. }

373.

374. ​else ​ ​if​ (count == 64){

375. ​if​ (player.dodgeSuccess == ​false​) menuControl.cutsceneCounter = 55;

376. ​else ​ {

377. dialogueCount = 23;

378. menuControl.cutsceneCounter++;

379. }

380. }

381.

382. ​else ​ ​if​ (count == 66){

383. Move(.2f, ​false ​);

384. ​if​(instructorPos[0] >= dummy.dummyX - offsetX){

385. instructorPos[0] = dummy.dummyX - offsetX;

386. animator.SetInteger(moveHash, 2);

387. menuControl.cutsceneCounter++;

388. }

389. }

390.

391. ​else ​ ​if​(count == 72){

392. dialogueCount = 25;

393. menuControl.cutsceneCounter++;

394. }

395.

396. ​else ​ ​if​ (count == 75){

397. dialogueCount = 26;

398. menuControl.cutsceneCounter++;

399. }

400.

401. ​else ​ ​if​ (count == 79){

402. ​if​ (player.specialSuccessCount == 0) dialogueCount = 27;

403. ​else ​ ​if​ (player.specialSuccessCount < 4) dialogueCount = 28;

404. ​else ​ ​if​ (player.specialSuccessCount < 8) dialogueCount = 29;

405. ​else ​ dialogueCount = 30;

406. menuControl.cutsceneCounter++;

407. }

408.

409. ​else ​ ​if​ (count == 81){

410. ​if​ (player.specialSuccessCount < 4) menuControl.cutsceneCounter = 78;

411. ​else

412. {

413. dialogueCount = 31;

414. menuControl.cutsceneCounter++;

415. }

Cohan 90

416. player.specialSuccessCount = 0;

417. }

418.

419.

420. ​if ​ (instructorPos[0] > 15f && instructorPos[1] < 0)

421. {

422. instructorPos[0] = -15f;

423. instructorPos[1] = 7.7f;

424. }

425.

426. ​if ​ (player.failHit > 0) successfulHit = ​false ​;

427. ​if ​ (player.jumpAttackTrue == ​true ​) noJump = ​false​;

428.

429. transform.position = instructorPos;

430. }

431.

432. ​public ​ ​void ​ Move(​float​ speed, ​bool ​ right){

433. animator.SetInteger(moveHash, 1);

434. instructorPos[0] = instructorPos[0] + speed;

435. ​if ​ (right == ​true​) spriteRenderer.flipX = ​true​;

436. }

437.

438.

439. }

DialogueManager

1. using​ System.Collections;

2. using​ System.Collections.Generic;

3. using​ UnityEngine;

4. using​ UnityEngine.UI;

5.

6. public ​ ​class​ DialogueManager : MonoBehaviour

7. {

8.

9. ​public ​ MusicControl music;

10. ​public ​ DialogueBox box;

11. ​public ​ AudioClip dialogueNoise;

12. ​private​ AudioSource sfxSource;

13. ​public ​ Battle_Menu_Control menuControl;

14. ​public ​ ​bool ​ ender;

15.

16.

17. ​public ​ Text nameText;

18. ​public ​ Text dialogueText;

Cohan 91

19.

20. ​public ​ Queue<​string ​> sentences;

21.

22. ​void​ Start()

23. {

24. sentences = ​new ​ Queue< ​string ​>();

25. sfxSource = GetComponent<AudioSource>();

26.

27. }

28.

29. ​void​ Update()

30. {

31. ​if ​ (Input.GetKeyDown(KeyCode.Z))

32. {

33. DisplayNextSentence();

34. }

35. }

36.

37. ​public ​ ​void ​ startDialogue(Dialogue dialogue, ​bool ​ end)

38. {

39.

40. nameText.text = dialogue.name;

41.

42. ender = end;

43.

44. sentences.Clear();

45.

46. ​foreach ​ (​string ​ sentence ​in​ dialogue.sentences)

47. {

48. sentences.Enqueue(sentence);

49. }

50.

51. DisplayNextSentence();

52. }

53.

54. ​public ​ ​void ​ DisplayNextSentence()

55. {

56. ​if ​ (sentences.Count == 0)

57. {

58. ​if​ (box.dialogueSession == ​true​) EndDialogue();

59. ​return ​;

60. }

61. ​string ​ sentence = sentences.Dequeue();

62. StopAllCoroutines();

63. StartCoroutine(TypeSentence(sentence));

64. }

Cohan 92

65.

66. IEnumerator TypeSentence(​string ​ sentence) {

67. dialogueText.text = ​" " ​;

68. ​foreach ​ (​char ​ letter ​in​ sentence.ToCharArray()){

69.

70. dialogueText.text += letter;

71. ​//sfxSource.PlayOneShot(dialogueNoise, .2f);

72. yield ​return ​ ​null ​;

73. }

74. }

75.

76. ​public ​ ​void ​ EndDialogue() {

77. ​if ​ (ender == ​true​) box.Disappear();

78. ender = ​false ​;

79. menuControl.cutsceneCounter++;

80.

81. }

82. }

Dummy

1. //Script for controlling the tutorial enemy

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ Dummy : MonoBehaviour

8. {

9. ​public ​ Animator animator;

10. ​public ​ SpriteRenderer spriteRenderer;

11. ​public ​ ​int ​ dropHandle = Animator.StringToHash(​"DropHandle" ​);

12. ​public ​ ​int ​ pickUpHandle = Animator.StringToHash(​"PickUpHandle"​);

13. ​public ​ ​int ​ attackHash = Animator.StringToHash(​"Attack"​);

14. ​public ​ ​float​ dummyX, dummyY, dummyZ;

15. ​public ​ ​float​ dummySpeed;

16. ​public ​ ​bool ​ dummyFollow;

17. ​public ​ ​int ​ pos;

18.

19.

20. ​// Start is called before the first frame update

21. ​void​ Start()

22. {

23. animator = GetComponent<Animator>();

24. spriteRenderer = GetComponent<SpriteRenderer>();

Cohan 93

25. }

26.

27. ​// Update is called once per frame

28. ​void​ Update()

29. {

30.

31. ​if ​ (dummyX > 15f && dummyY < 1)

32. {

33. dummyX = -15f;

34. dummyY = 8.2f;

35. }

36. ​else ​ ​if​ (dummyX < -15f && dummyY > 1){

37. dummyX = 15f;

38. dummyY = 0;

39. }

40.

41. transform.position = ​new ​ Vector3(dummyX, dummyY, dummyZ);

42.

43. }

44.

45. ​public ​ ​void ​ Move(​float​ speed){

46. dummyX = dummyX + speed;

47. }

48. }

Spot

1. //Controls the spotlight that occasionally appears over objects

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ Spot : MonoBehaviour

8. {

9.

10. ​public ​ Battle_Menu_Control menuControl;

11. ​public ​ ​int ​ counter;

12. ​public ​ Vector3 spotPos;

13. ​public ​ ​float​ transparency;

14. ​public ​ ​bool ​ darkenBool;

15. ​public ​ ​bool ​ lightenBool;

16. SpriteRenderer spriteRenderer;

17.

18. ​// Start is called before the first frame update

Cohan 94

19. ​void​ Start()

20. {

21. spotPos = ​new ​ Vector3(0, 0, ​this​.transform.position[2]);

22. spriteRenderer = ​this ​.GetComponent<SpriteRenderer>();

23. transparency = 0;

24. darkenBool = ​false​;

25. lightenBool = ​false ​;

26. }

27.

28. ​// Update is called once per frame

29. ​void​ Update()

30. {

31. counter = menuControl.cutsceneCounter;

32. ​if ​ (darkenBool == ​true ​) Darken();

33. ​else ​ ​if​ (lightenBool == ​true ​) Lighten();

34. ​if ​ (counter == 15) {

35. spotPos[0] = -1;

36. spotPos[1] = -.6f;

37. darkenBool = ​true ​;

38. menuControl.cutsceneCounter++;

39. }

40.

41. ​if ​ (counter == 18) {

42. lightenBool = ​true ​;

43. menuControl.cutsceneCounter++;

44. }

45.

46. ​if ​ (counter == 74){

47. spotPos[0] = -1;

48. spotPos[1] = -6.5f;

49. darkenBool = ​true ​;

50. menuControl.cutsceneCounter++;

51. }

52.

53. ​if ​ (counter == 77){

54. lightenBool = ​true ​;

55. menuControl.cutsceneCounter++;

56. }

57.

58. ​this ​.transform.position = spotPos;

59. spriteRenderer.color = ​new​ Vector4(255, 255, 255, transparency);

60.

61. }

62.

63. ​public ​ ​void ​ Darken(){

64. ​if ​ (spriteRenderer.color[3] < .75f) transparency = transparency + .1f;

Cohan 95

65. ​else ​ darkenBool = ​false​;

66. }

67.

68. ​public ​ ​void ​ Lighten(){

69. ​if ​ (spriteRenderer.color[3] > 0) transparency = transparency - .1f;

70. ​else ​ lightenBool = ​false​;

71. }

72.

73. }

FollowArrow

1. //Makes the enemy name follow the arrow while the player selects which enemy to attack

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6. using​ UnityEngine.UI;

7.

8. public ​ ​class​ FollowArrow : MonoBehaviour {

9.

10. ​public ​ Text enemyNameText;

11. ​public ​ ​float​ enemyNameX = -100;

12. ​public ​ ​float​ enemyNameY = -100;

13. ​public ​ ​float​ enemyNameZ;

14.

15. ​// Use this for initialization

16. ​void​ Start () {

17. enemyNameZ = -2;

18. Vector3 startingPos = ​new​ Vector3 (enemyNameX, enemyNameY, enemyNameZ);

19. transform.position = startingPos;

20. }

21.

22. ​public ​ ​void ​ SetEnemyNameText (​string ​ nameText) {

23. enemyNameText.text = nameText;

24. }

25. }

SpecialHeader

1. //Displays the text depending on what part of the special menu is selected

2.

3. using​ System.Collections;

Cohan 96

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6. using​ UnityEngine.UI;

7.

8. public ​ ​class​ SpecialHeader : MonoBehaviour

9. {

10.

11. ​public ​ Text specialMenuTitle;

12. ​public ​ Text specialMenuDesc;

13. ​public ​ ​int ​ curMenuItem;

14.

15. ​// Start is called before the first frame update

16. ​void​ Start()

17. {

18. curMenuItem = 1;

19. }

20.

21. ​// Update is called once per frame

22. ​void​ Update()

23. {

24. ​if ​ (curMenuItem == 1)

25. {

26. specialMenuTitle.text = ​"Steel String Swipe"​;

27. specialMenuDesc.text =

28. ​"press a string's key when the falling button overlaps the still one.
It'll be either z, x, c, or v."​;

29. }

30. ​else

31. {

32. specialMenuTitle.text = ​"???"​;

33. specialMenuDesc.text = ​"??????????????????????" ​;

34. }

35. }

36. }

DialogueBox

1. //Manages the dialogue box

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ DialogueBox : MonoBehaviour

8. {

Cohan 97

9.

10. ​public ​ ​bool ​ dialogueSession;

11.

12. ​private​ ​void​ Start()

13. {

14. dialogueSession = ​false​;

15. }

16. ​public ​ ​void ​ Appear(​float​ x, ​float​ y, ​float​ scaleX, ​float​ scaleY) {

17. transform.position = ​new ​ Vector3(x, y, transform.position[2]);

18. transform.localScale = ​new​ Vector3(scaleX, scaleY, 1);

19. dialogueSession = ​true ​;

20. }

21.

22. ​public ​ ​void ​ Disappear()

23. {

24. ​this ​.transform.position = ​new ​ Vector3(-1000, -1000, transform.position[2]);

25. dialogueSession = ​false​;

26. }

27. }

DialogueTrigger

1. using​ System.Collections;

2. using​ System.Collections.Generic;

3. using​ UnityEngine;

4.

5. public ​ ​class​ DialogueTrigger : MonoBehaviour

6. {

7. ​public ​ Instructor_Move instructor;

8. ​public ​ DialogueBox box;

9. ​public ​ Dialogue dialogue;

10. ​public ​ ​int ​ dialogueNumber;

11. ​public ​ ​bool ​ first, last;

12.

13.

14. ​void​ Start()

15. {

16. instructor = FindObjectOfType<Instructor_Move>();

17. box = FindObjectOfType<DialogueBox>();

18. }

19. ​void​ Update()

20. {

21. ​if ​ (dialogueNumber == 0 && Input.GetKeyDown(KeyCode.S)) {

22. box.Appear(0f, -7f, 1.7f, 1.5f);

23. TriggerDialogue();

Cohan 98

24. }

25. ​else ​ ​if​ (dialogueNumber > 0 && dialogueNumber == instructor.dialogueCount) {

26. TriggerDialogue();

27. instructor.dialogueCount = 0;

28. }

29. }

30.

31.

32. ​public ​ ​void ​ TriggerDialogue()

33. {

34. ​if ​(first){

35. box.Appear(0f, -7f, 1.7f, 1.5f);

36. }

37. FindObjectOfType<DialogueManager>().startDialogue(dialogue, last);

38. }

39. }

SpecialAttack

1. //Manages the player's special attacks

2.

3. using​ System.Collections;

4. using​ System.Collections.Generic;

5. using​ UnityEngine;

6.

7. public ​ ​class​ SpecialAttack : MonoBehaviour

8. {

9. ​private​ List<GameObject> strings = ​new​ List<GameObject>();

10. ​private​ List<GameObject> buttonOffs = ​new ​ List<GameObject>();

11. ​private​ List<GameObject> buttonOns = ​new ​ List<GameObject>();

12. ​private​ ​float​ offset = 1.46f;

13. ​public ​ GameObject string1;

14. ​public ​ GameObject string2;

15. ​public ​ GameObject string3;

16. ​public ​ GameObject string4;

17. ​public ​ GameObject buttonOff1;

18. ​public ​ GameObject buttonOff2;

19. ​public ​ GameObject buttonOff3;

20. ​public ​ GameObject buttonOff4;

21. ​public ​ GameObject buttonOn1;

22. ​public ​ GameObject buttonOn2;

23. ​public ​ GameObject buttonOn3;

24. ​public ​ GameObject buttonOn4;

25. ​public ​ GameObject currentBeat;

26. ​public ​ Battle_Menu_Control battleMenu;

Cohan 99

27. ​public ​ PlayerControl player;

28. ​public ​ Vector3 stringPos, onPos, offPos;

29. ​public ​ ​float​ stringYDown = 8.36f;

30. ​public ​ ​float​ stringYUp = 14.2f;

31. ​public ​ ​float​ fallingY;

32. ​public ​ ​bool ​ stringFall, stringRise;

33. ​public ​ ​bool ​ downCheck, upCheck;

34. ​public ​ ​bool ​ keyDown;

35. ​public ​ ​int ​ audioCounter;

36. ​public ​ ​int ​ count;

37. ​public ​ ​bool ​ success;

38. ​public ​ ​bool ​ fail;

39. ​public ​ ​bool ​ buttonFall;

40. ​public ​ ​float​ buttonHeight;

41.

42. ​public ​ AudioSource sfxSource;

43. ​public ​ AudioClip failClip;

44. ​public ​ List<AudioClip> successSound = ​new ​ List<AudioClip>();

45.

46. ​// Start is called before the first frame update

47. ​void​ Start()

48. {

49. sfxSource = GetComponent<AudioSource>();

50. strings.Add(string1);

51. strings.Add(string2);

52. strings.Add(string3);

53. strings.Add(string4);

54. buttonOffs.Add(buttonOff1);

55. buttonOffs.Add(buttonOff2);

56. buttonOffs.Add(buttonOff3);

57. buttonOffs.Add(buttonOff4);

58. buttonOns.Add(buttonOn1);

59. buttonOns.Add(buttonOn2);

60. buttonOns.Add(buttonOn3);

61. buttonOns.Add(buttonOn4);

62. buttonHeight = 13;

63.

64. stringPos[1] = stringYUp;

65. stringPos[2] = string1.transform.position[2];

66. offPos = ​new ​ Vector3(0, stringPos[1] - offset,
buttonOn1.transform.position[2]);

67. onPos = ​new ​ Vector3(0, stringPos[1], buttonOff1.transform.position[2]);

68.

69. ​for ​ (​int​ i = 0; i < 4; i++)

70. {

71. stringPos[0] = battleMenu.enemyPlaces[i];

Cohan 100

72. strings[i].transform.position = stringPos;

73. onPos[0] = stringPos[0];

74. offPos[0] = stringPos[0];

75. buttonOffs[i].transform.position = offPos;

76. buttonOns[i].transform.position = onPos;

77. }

78. }

79.

80.

81.

82. ​void​ FixedUpdate()

83. {

84.

85. count = battleMenu.specialStateCount;

86. ​if ​ (battleMenu.specialStateCount == 1 && downCheck == ​false​) stringFall = ​true​;

87. ​if ​ (stringFall == ​true ​) Fall();

88. ​if ​ (count == 3)

89. {

90. currentBeat = buttonOns[UnityEngine.Random.Range(0, 4)];

91. battleMenu.specialStateCount++;

92. fallingY = buttonHeight;

93. }

94. ​if ​ (count > 3 && count < 12)

95. {

96. ​float​ time = player.timeCounter;

97. Vector4 beats = player.beats;

98. ​if​ (((time >= 0 && time < beats[0] + player.leniency) ||

99. (time >= beats[1] && time < beats[2] + player.leniency)) && success ==

false​) fallingY = fallingY - .2f;

100. currentBeat.transform.position = ​new
Vector3(currentBeat.transform.position[0], fallingY, onPos[2]);

101. ​if​ ((time > beats[0] + player.leniency && time < beats[1])

102. || (time > beats[2] + player.leniency)) success = ​false​;

103. ​if​ (success == ​false​ &&

104. ((time > beats[0] - player.leniency && time < beats[0] +

player.leniency) ||

105. (time > beats[2] - player.leniency && time < beats[2] +

player.leniency)))

106. {

107. fail = ​true ​;

108. CheckSuccess();

109. }

110. ​else ​ ​if​ (fail == ​true ​){

111. currentBeat.transform.position = ​new
Vector3(currentBeat.transform.position[0], stringYUp,

currentBeat.transform.position[2]);

Cohan 101

112. fallingY = 12;

113. sfxSource.PlayOneShot(failClip);

114. audioCounter++;

115. battleMenu.specialStateCount++;

116. ​if​ (audioCounter > 3) audioCounter = 0;

117. fail = ​false​;

118. currentBeat = buttonOns[UnityEngine.Random.Range(0, 4)];

119. }

120.

121. }

122. ​else ​ ​if​ (count == 13){

123. ​if​ (upCheck == ​false​) stringRise = ​true​;

124. ​if​ (stringRise == ​true​) Rise();

125. ​if​ (upCheck == ​true​) battleMenu.specialStateCount++;

126. }

127.

128.

129. ​for ​ (​int​ i = 0; i < 4; i++)

130. {

131. stringPos[0] = battleMenu.enemyPlaces[i];

132. strings[i].transform.position = stringPos;

133. offPos[1] = stringPos[1] - offset;

134. buttonOffs[i].transform.position = ​new
Vector3(buttonOffs[i].transform.position[0], offPos[1], offPos[2]);

135. }

136.

137. }

138.

139. ​void​ Update(){

140.

141. print(player.specialSuccessCount);

142. ​if ​ (Input.GetKeyDown(KeyCode.Z) && keyDown == ​false ​)

143. {

144. TurnColor(buttonOffs[0], ​"red" ​);

145. keyDown = ​true ​;

146. }

147. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.X) && keyDown == ​false​)

148. {

149. TurnColor(buttonOffs[1], ​"red" ​);

150. keyDown = ​true ​;

151. }

152. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.C) && keyDown == ​false​)

153. {

154. TurnColor(buttonOffs[2], ​"red" ​);

155. keyDown = ​true ​;

156. }

Cohan 102

157. ​else ​ ​if​ (Input.GetKeyDown(KeyCode.V) && keyDown == ​false​)

158. {

159. TurnColor(buttonOffs[3], ​"red" ​);

160. keyDown = ​true ​;

161. }

162.

163. ​if ​ (Input.GetKeyUp(KeyCode.Z))

164. {

165. TurnColor(buttonOffs[0], ​"white" ​);

166. keyDown = ​false ​;

167. }

168. ​else ​ ​if​ (Input.GetKeyUp(KeyCode.X))

169. {

170. TurnColor(buttonOffs[1], ​"white" ​);

171. keyDown = ​false ​;

172. }

173. ​else ​ ​if​ (Input.GetKeyUp(KeyCode.C))

174. {

175. TurnColor(buttonOffs[2], ​"white" ​);

176. keyDown = ​false ​;

177. }

178. ​else ​ ​if​ (Input.GetKeyUp(KeyCode.V))

179. {

180. TurnColor(buttonOffs[3], ​"white" ​);

181. keyDown = ​false ​;

182. }

183. }

184.

185. ​public ​ ​void ​ Fall()

186. {

187. ​if ​ (string1.transform.position[1] >= stringYDown) stringPos[1] =
stringPos[1] - .2f;

188. ​else

189. {

190. stringPos[1] = stringYDown;

191. stringFall = ​false ​;

192. downCheck = ​true​;

193. upCheck = ​false ​;

194. }

195. }

196.

197. ​public ​ ​void ​ Rise()

198. {

199. ​if ​ (string1.transform.position[1] <= stringYUp) stringPos[1] = stringPos[1]
+ .2f;

200. ​else

Cohan 103

201. {

202. stringPos[1] = stringYUp;

203. stringRise = ​false ​;

204. upCheck = ​true ​;

205. downCheck = ​false​;

206. }

207. }

208.

209. ​public ​ ​void ​ CheckSuccess()

210. {

211. ​if ​ ((Input.GetKeyDown(KeyCode.Z) && currentBeat == buttonOns[0] && keyDown
== ​false​) ||

212. (Input.GetKeyDown(KeyCode.X) && currentBeat == buttonOns[1] && keyDown

== ​false​) ||

213. (Input.GetKeyDown(KeyCode.C) && currentBeat == buttonOns[2] && keyDown

== ​false​) ||

214. (Input.GetKeyDown(KeyCode.V) && currentBeat == buttonOns[3] && keyDown

== ​false​))

215. {

216. currentBeat.transform.position = ​new
Vector3(currentBeat.transform.position[0], stringYUp,

currentBeat.transform.position[2]);

217. fallingY = buttonHeight;

218. sfxSource.PlayOneShot(successSound[audioCounter]);

219. audioCounter++;

220. battleMenu.specialStateCount++;

221. ​if​ (audioCounter > 3) audioCounter = 0;

222. success = ​true ​;

223. fail = ​false ​;

224. currentBeat = buttonOns[UnityEngine.Random.Range(0, 4)];

225. player.specialSuccessCount++;

226.

227. }

228. }

229.

230. ​public ​ ​void ​ TurnColor(GameObject button, ​string​ color){

231. SpriteRenderer spriteRenderer = button.GetComponent<SpriteRenderer>();

232. ​if ​ (color == ​"red"​) spriteRenderer.color = ​new​ Vector4(1, 0, 0, 1);

233. ​if ​ (color == ​"white"​) spriteRenderer.color = ​new​ Vector4(1, 1, 1, 1);

234. }

235.

236. }

Cohan 104

Tutorial Cutscene Guide

Throughout the script for the tutorial battle, there are quite a few steps for completing the scene, all controlled by the
variable "cutscene counter". This document is to function las a glossary for the variable, and to detail what happens
at each value. The value always increases by one unless its otherwise specified.

Value of "Cutscene
Counter"

What class it
operates in

How it operates

0 DialogueTrigger Controls the first section of dialogue. Variable is increased
in DialogueManager's "EndDialogue" function.

1 Instructor makes the instructor move to enemy position one, then
increases the counter

2 DialogueManager Controls dialogue

3 Instructor The instructor moves to enemy position four

4 DialogueManager Controls dialogue

5 Instructor The instructor goes offstage in search of the dummy

6 DialogueManager Controls dialogue

7 Instructor The instructor returns onstage with the dummy, and takes
it to enemy position one.

8 DialogueManager Controls dialogue

9 PlayerControl Trigger's the player animator, having him pick up his
guitar.

10 Instructor Changes the music to part 2 of the tutorial theme and
triggers the next dialogue

11 DialogueManager controls dialogue

12 Battle_Menu_Contro
l Makes the battle menu appear

13 Instructor Triggers the next dialogue

14 DialogueManager controls dialogue

15 Spot makes the spotlight appear over the attack button

16 Instructor Triggers the next dialogue

17 DialogueManager controls dialogue

18 Spot makes the spotlight disappear

Cohan 105

19 Battle_Menu_Contro
l

Lets the player control the battle menu for the first time.
Only increases when the player selects attack.

20 Instructor manages the next bit of dialogue

21 DialogueManager controls dialogue

22 Player Active while the player performs their first attack

23 Instructor manages the next bit of dialogue. Different depending on
whether the last attack hit or missed

24 DialogueManager controls dialogue

25 Instructor Instructor picks up the dummy, using both the intrusctor
and dummy's animators

26 Instructor Instructor takes the dummy to enemy position 4

27 Instructor handle drops and dummy's exacy position is set

28 DialogueManager controls dialogue 11

29 Battle_Menu_Contro
l let's the player manipulate the menu for the second attack

30 Player Active while the player performs their second attack.

31 Instructor controls dialogue. Different depending on attack success

32 Dialogue Manager controls dialogues 12 and 13

33 Instructor sets the counter back to 29 if the last attack was a failure.

34 Instructor does the same thing as count 25

35 Instructor Similar to count 26, the instructor picks up the dummy and
takes it to spot 3

36 Instructor Drops the dummy's handle and triggers dialogue 14

37 Dialogue Manager controls dialogue 14

38 Battle_Menu_Contro
l let's the player manipulate the menu for the third attack

39 Player Active while the player performs the third attack.

40 Instructor Triggers either dialogue 15, 16, or 17 depending on the
player's action

41 Dialogue Manager controls dialogues 15, 16, and 17

42 Instructor Sends the player back to step 38 if they didn't do the last
attack correctly

43 Instructor same step as 25 and 34

Cohan 106

44 Instructor Similar to 35, the instructor picks up the dummy and takes
it to the enemy attack position

45 Instructor The instructor moves into position to kick the dummy
towards the player.

46 and 47 Instructor

this step is run twice because of issues with the animator.
In order to set "kick" to the proper animation state, I
needed to run it twice, as it doesn't set it properly the first
time. The instructor doesn't start the kick until the third
beat.

48 Instructor
Makes the dummy start its attack, but only after the
Instructor's kick animation is finished. During this step,
the dummy slows down slightly every beat.

49 and 50 Instructor
Manages when the dummy's hit is active. When it first
activates, it inceases the timer to 51, then increases again
when it deactivates.

51 Instructor If the player fails to dodge, it runs dialogue 18. If the
player does does, it runs dialogue 19

52 Dialogue Manager controls dialogues 18 and 19

53 Instructor the dummy comes back to the enemy attack position and
sets up dialogue 20

54 Dialogue Manager controls dialogue 20

55 Instructor has the instructor wait until beat 3 before kicking the
dummy again

56, 57, 58, 59, and 60 Instructor the same as 46, 47, 48, 49, and 50

71 Battle Menu Control same as 12

72 Instructor triggers dialogue 25

73 Dialogue Manager controls dialogue 25

74 Spot Makes the spotlight appear over the special button

75 Instructor triggers dialogue 26

76 Dialogue Manager controls dialogue 26

77 Spot Makes the spotlight disappear

78 Battle Menu Control same as 19. Also manages the entire special attack

79 Instructor triggers either dialogue 27, 28, 29, or 30

80 Dialogue Manager controls either 27, 28, 29, or 30

Cohan 107

Chapter VII - Bibliography

Digital Game Museum. "Rhythm Games." ​Digital Game Museum ​, 2018,
www.digitalgamemuseum.org/rhythm/. Accessed 18 Nov. 2019.

"East and West, Warrior and Quest: A Dragon Quest Retrospective." ​1up.com​, IGN
Entertainment, 2011,
web.archive.org/web/20121108214936/http://www.1up.com/features/dragon-quest-retros
pective?pager.offset=1. Accessed 19 Nov. 2019.

Edge Staff. "Guitar Hero Breaks $1 bln." ​Edge​, Future Publishing Limited, 21 Jan. 2008,
archive.ph/20120906082152/http://www.next-gen.biz/news/guitar-hero-breaks-1-bln.
Accessed 18 Nov. 2019.

Metacritic ​. CBS Interactive, www.metacritic.com/. Accessed 18 Nov. 2019.
"1997 Top 30 Best Selling Japanese Console Games." ​The-Magicbox​, 2008,

the-magicbox.com/Chart-BestSell1997.shtml. Accessed 18 Nov. 2019.
Nutt, Cristian. "Ubisoft: Just Dance Passes 4 Million, Katy Perry Joining the Party." ​Gamasutra ​,

Informa, 6 Oct. 2010,
www.gamasutra.com/view/news/121534/Ubisoft_Just_Dance_Passes_4_Million_santi%
20house%20friday%20approved%20Katy_Perry_Joining_The_Party.php. Accessed 18
Nov. 2019.

"Rock Band® Franchise Officially Surpasses $1 Billion Dollars in North American Retail Sales,
According to the NPD Group Over 40 Million Paid Individual songs Via Download to
Date On Rock Band® Platform." ​RockBand.com ​, MTVnetworks, 26 Mar. 2009,
web.archive.org/web/20090328174823/http://www.rockband.com/news/one_billion_doll
ars. Accessed 18 Nov. 2019.

Smithsonian National Museum of American History. "Simon Electronic Game, 1978."
Smithsonian National Museum of American History​ , Smithsonian,
americanhistory.si.edu/collections/search/object/nmah_1302005. Accessed 18 Nov. 2019.

Van Zandt, Steven. "Alex Rigopulos & Eran Egozy." ​Time​, Time USA, 12 May 2008,
content.time.com/time/specials/2007/article/0,28804,1733748_1733752_1735901,00.htm
l. Accessed 18 Nov. 2019.

Vestal, Andrew. "The History of Console RPGs." ​Gamespot​, CBS Interactive,
web.archive.org/web/20090802000558/http://www.gamespot.com/features/vgs/universal/
rpg_hs/index.html. Accessed 19 Nov. 2019.

Walker, John. "How Thumper Made a Lot of People Very Uncomfortable." ​Rock Paper Shotgun​,
Gamer Network, 9 Mar. 2015,
www.rockpapershotgun.com/2015/03/09/how-thumper-made-a-lot-of-people-very-unco
mfortable/ ​.

http://www.rockpapershotgun.com/2015/03/09/how-thumper-made-a-lot-of-people-very-uncomfortable/
http://www.rockpapershotgun.com/2015/03/09/how-thumper-made-a-lot-of-people-very-uncomfortable/

Cohan 108

Image Credits

1. Taylor, Wilton. ​Simon Says Memory Game ​. 28 Sept. 2012. ​flickr​, SmugMug, 10 Feb. 2004,
https://live.staticflickr.com/8322/8050771801_87b4e448a0_b.jpg. Accessed 8 Dec. 2019.
2. Tmkn. ​Beatmania IIDX controller for PlayStation​. 3 Dec. 2006. ​Wikimedia Commons​,

Wikimedia Foundation, 19 Nov. 2019,
https://upload.wikimedia.org/wikipedia/commons/e/e7/Beatmania_IIDX_controller_for_
PlayStation.jpg. Accessed 8 Dec. 2019.

3. "Parappa the Rapper (PSX) - Perfect All Stages Playthrough (Tool-Assisted) by Sabih."
YouTube​, uploaded by DarkFulgore, 5 June 2015,
www.youtube.com/watch?v=IbYdRZ8FiuA. Accessed 8 Dec. 2019.

4. RadioActive. ​Dance Dance Revolution Solo Bass Mix arcade machine stage​. 15 Mar. 2005.
Wikimedia Commons ​, Wikimedia Foundation, 19 Nov. 2019,
https://upload.wikimedia.org/wikipedia/commons/8/88/Dance_Dance_Revolution_Solo_
Bass_Mix_arcade_machine_stage.jpg. Accessed 8 Dec. 2019.

5. "Dance Dance Revolution - Butterfly." ​YouTube ​, uploaded by Xortex Estados Unidos, 4 Sept.
2012, www.youtube.com/watch?v=4tsDb3CeFp4. Accessed 8 Dec. 2019.

6. Y2kcrazyjoker4. ​Guitar Hero series controllers ​. 31 July 2007. ​Wikimedia Commons ​,
Wikimedia Foundation, 19 Nov. 2019,
https://upload.wikimedia.org/wikipedia/commons/8/80/Guitar_Hero_series_controllers.jp
g. Accessed 8 Dec. 2019.

7. "Guitar Hero (PS2 Gameplay)." ​YouTube​, uploaded by GXZ95, 20 June 2012,
www.youtube.com/watch?v=BVyWcUHPWUU. Accessed 8 Dec. 2019.

8. "[Rhythm Heaven Fever] ~ Monkey Watch (Perfect)." ​YouTube​, uploaded by Pablo Acevedo,
13 Feb. 2012, www.youtube.com/watch?v=kBIg7LEHs-0. Accessed 8 Dec. 2019.

9. "Taiko no Tatsujin | Taiko Drum N Fun - 33 Minutes of English Gameplay (Nintendo Switch)
[HD]." ​YouTube​, uploaded by Scott E, 1 Nov. 2018,
www.youtube.com/watch?v=v_CCI6PVqAQ. Accessed 8 Dec. 2019.

10. "Just Dance 2020 - Launch Trailer - Nintendo Switch." ​YouTube​, uploaded by Nintendo, 7
Nov. 2019, www.youtube.com/watch?v=9BrAT_o7yWA. Accessed 8 Dec. 2019.

11. "Crypt of the Necrodancer Gameplay @1080p60fps (No Commentary)." ​YouTube​, uploaded
by Austin Dunn, 27 June 2016, www.youtube.com/watch?v=Rs4Sc6-PjQI&t. Accessed 8
Dec. 2019.

12. "Thumper Gameplay Level 1." ​YouTube​, uploaded by SirJames I Gamerfuzion, 11 Oct.
2016, www.youtube.com/watch?v=3CDw4i09ZN4. Accessed 8 Dec. 2019.

13. "dragonstomper walkthrough." ​YouTube ​, uploaded by Yizhak shachar, 16 Feb. 2016,
www.youtube.com/watch?v=9jdB_1iavW0. Accessed 8 Dec. 2019.

14. "Portopia Renzoku Satsujin Jiken (FC)." ​YouTube​, uploaded by Nenriki86, 4 May 2011,
www.youtube.com/watch?v=hcQhnJxP7qU. Accessed 8 Dec. 2019.

15. "Dragon Warrior Part 11: Metal Slime Hunting." ​YouTube​, uploaded by NintendoCapriSun,
6 Jan. 2014, www.youtube.com/watch?v=3aIl1YM90B8. Accessed 8 Dec. 2019.

Cohan 109

16. "DRAGON QUEST XI - English Walkthrough Part 1 - Prologue (Full Game) PS4 PRO."
YouTube​, uploaded by Shirrako, 13 Sept. 2018,
www.youtube.com/watch?v=QmjSoL5y4YA. Accessed 8 Dec. 2019.

17. "Final Fantasy 1 Battle Music (FDS Remix)." ​YouTube ​, uploaded by DeltaDragonoid225, 4
Oct. 2015, www.youtube.com/watch?v=fOx9h0ymKHs. Accessed 8 Dec. 2019.

18. "SNES Final Fantasy VI (III US) Full Gameplay 1080p." ​YouTube ​, uploaded by
Yoshiyukiblade, 30 Dec. 2013, www.youtube.com/watch?v=XF2cski7Q7M. Accessed 8
Dec. 2019.

19. "Paper Mario (N64) Boss Battle #1: Koopa Bros." ​YouTube​, uploaded by William Dearth, 1
Feb. 2014, www.youtube.com/watch?v=oWFyHwEoN6A. Accessed 8 Dec. 2019.

20. "Paper Mario: The Thousand Year Door (Full Game Walkthrough, 10 HP challenge,
Everything)." ​YouTube ​, uploaded by NintendoMovies, 19 Dec. 2018,
www.youtube.com/watch?v=LPAbaR6guM8. Accessed 8 Dec. 2019.

	Rhythm Quest: Creating a Music Video Game
	Recommended Citation

	tmp.1575871155.pdf.2HPQC

