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Abstract

The purpose of this paper is to expand the dictionary of values related to parameterized su-
persymmetry values. These values, represented by Adinkras, are some of the most fascinating
explanations of theoretical supersymmetry that exist. My goal was to approach and define an
equivalance class on a specific value that had yet to be defined. I was able to do this, and in
doing so, present information on a larger equivalence class in the field surrounding Adinkras.
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Introduction

Humans have sought symmetry in the world since the existence of the species. Most of how
humans interact with the world is based on observation of symmetry or lack thereof. As hunters
we sought disturbances in the symmetry of nature that would signify prey or predator. As farm-
ers we strive to create symmetry in crops to maximize efficiency of space. In mathematics we

build symmetric models, and seek lack of symmetry to give us clues to what we do not yet know.

As physicists look at the universe, symmetry offers beautiful and elegant relationships that
make very difficult problems simpler. This symmetry in the universe is appealing as humans
themselves find symmetry fascinating and beautiful. It is possible that this is why physics is so
concerned, especially in theory, in symmetric models of complex structures. Supersymmetry is

just one of these models.

Preceeding supersymmetry, there were many theories in physics proposing symmetries between
particles. Often these were incomplete models as it does not give a complete view of the parti-
cles in systems. Generally limitations were fermions were not well represented in these models.
Supersymmetry in a modern form was first proposed by Hironari Miyazawa in 1966 [12], and has

been developed deeply through the course of the 50 years leading us to today. Supersymmetry
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Figure 1.0.1. Example of west african Adinkra symbols

still very much exists in a theoretical space. The transformations proposed by supersymmetry
require very high energy levels, possibly higher than even seen in the Large Hadron Collider, and
so we have not seen much direct evidence for the validity of Supersymmetry. Despite this, many

physicists and mathamaticians are very interested in these theories, and continue to develop it.

In an article proposed by Professors Jim Gates Jr, (University of Maryland) and Micheal Faux,
(Suny Albany), a new way of dealing with supersymmetry was developed. This idea was repre-
senting supersymmetry with an Adinkra [?, ?]. An Adinkra is“a symbol that represents concepts
or aphoris” (Wikipedia, Adinkra). Adinkras originated in crafts and textiles from west africa.
These Adinkras were used by Gates and Faux to build a graphical representation of these very
complicated supersymmetry equations in order to simplify the problems in supersymmetry. The
long term goal is that the graphical representation given by Adinkras will help us understand

how supersymmetry would work in a very general way.
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The goal of my work and research was to determine the relationship between a specific value
of Adinkras and its cousin permutations and negations. I was able to determine a previously
unknown relationship (hopefully!), and will continue to try to determine more information about
these relationships. The next step of this project is to attempt to continue to develop it and
publish it as a stand alone piece of work, or attach it to one of my advisors papers. It has been

an absolute pleasure to be involved in this work.
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2
The Physics Behind it All

We are using Adinkras to try to help our understanding of the “Off-Shell Supersymmetry prob-

lem”. We seek to explore the algebra

{Qr,Qu} = 2i61,0,
Where 8“ - (87'7 aacv ayv aZ)

This is the supersymmetry algebra in 4 dimensions. When we work with Adinkras we are
doing a reduction from 4 dimensions to 1 dimension. This means that the gradient J,, must be
reduced to a one-dimensional form. The equation for J,, has four parts, partials with respect
to time, and three “spatial” dimensions. In this case we choose to work with a derivative with

respect to time. This is the framework of the 0-brane reduction.

With @'s being supercharges, “that act non-trivially on both propagating and auxilary fields”
[?, ?]. From this algebra we can generate many of the Adinkras with a number of reductions. In
this project, I have done a number of these reductions, on a (0-brane) and a vector multiplet.
Included will be those reductions as well as how those reductions are applied to the adinkras we

work on.
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I will later explain the math, but it turns out that when we reduce a susy algebra from four
dimensions to one, we get this result. 9, = A,0; (See section 2.2, one dimensional parameteri-

zation)

The general equations for the Adinkras will then be...

{Q[7 QJ} = 2i51J87

Where the 9, from the first equation has been parameterized to 0.

2.1 One-Dimensional Parameterization

In order to move from 4 dimensions to 1 dimension, we proceed as follows: four dimensional

space is projected onto the one-dimensional line paramaterized by:

Ay = cosaly, + sinasin B cosyX,, + sinasin BsinvY), + sinacos BZ,

Here X,,,Y, and Z, are spacial dimension gradiants. 7}, is the time dimension component.

For our particular purposes we choose a paramerization to be solely in the time direction.

To do this, we choose to set a = 0 and this results in...

A =T, =(1,0,0,0)

and when we do the dot product of the gamma matrices with the lambda parameterization we

get

7”-)\“:7“-(1,0,0,0):70
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2.2 Clifford algebra and gamma matrices

In supersymmetry fermions are represented with spinor fields. To represent this we need use
the Clifford Algebra as it has the anti-commuting property we need for spinors. There are 4
original gamma matrices that I am addressing in this paper. We have 7°,~v!,+2,~3. We also
have 75 = i7%91y2~3 These matrices anti-commute, and this ensure that they generate a matrix

representation of the Clifford Algebra.

It is very important to note that these gamma matrices can have many different representa-
tions, depending on which basis is selected. I will stick with the basis I give chosen to represent
susy algebra in this paper. The properties remain the same, and this is what is important. We
need to follow the Clifford Algebra, and the rules that come with it. The gamma matrices ensure

this.

The transformations used to create Adinkras require specific use of gamma matrices. By plugging
into specific equations we can do transformations into just one dimension, the time dimension.
One type of this reduction is called the 0-brane reduction. There are a number of different trans-

formations we can do on the susy equations.

To do this will have to define gamma matrices which will remain the same through all equations.

Note: 0" corresponds to the pauli matrices.

These gamma matrices are as follows, as defined for our susy models by Professor Gates. [9]

0 1 0 O
-1 0 0 O

O\a _ 3 2\b __
(PY) _Z<J ®U )a_ 0 0 0 —1
0 01 O
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01 00
1 0 0O

1ya __ 1\6 __
(FY)b_(I2®O—)a_ 00 0 1
0010
[0 0 0 —1]
0 01 o0

2\a __ 2 2\b _
(V)b_(a ®J)a_ 0 1 0 0
-1 0 0 0]
[1 0 0 O]
0O -1 0 O

3\a __ 3\b _
(’Y)b_(12®a)a_ 0 0 -1 0
0 0 0 1]
0 0 0 1
0 0 -1 0

5 _ _ (1 2\b _
-1 0 0 O

2.3 Chiral Multiplet

“The 4D, N’ = 1 Chiral Multiplet is very well known to consist of a scalar A, a pseudoscalar B, a
Majorana fermion a, a scalar auxiliary field F', and a pseudoscalar auxiliary field G. A convenient
way to express the supersymmetry variation of these component fields is by first regarding them
as the lowest component of a superfield (denoted by the same symbol) and then expressing
the action of the superspace covariant derivative Da acting on each. As we have included the
auxiliary fields F and G, necessarily it is the off-shell theory under consideration.” (6, Gates,
Geonomics).

We have 4 equations we build these matrices from.

1.Dg A = 1,
2.DuB = i(7%)a s
3.D.F = (v N dey,

4.D,G = i(’y57 . l)abdﬂ/)b
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For equation 1) We need to simply define the indices. This means that our , indices are as-
signed values on both sides of the equation. This makes these sets of equations very simple and

easy to work on. For equation 1:

D1 A =1y
Dy A =)o
D3A =13
DoA =1y

For the next set of equations we match our , indices, and our 4 indice corresponds to the row in

~°that indice , selects.

DoB = iy
Dy B = —its
DyB = ity
D3B = —iyn

In the next equation we have the 0,, which means we need to do a reduction from 4 dimensional

space to 1 dimensional space we discussed at the beginning of this chapter. Again our A is:

A = cos(a)7, + sinasin B cos X, + sinasin BsinyI', + sin a cos B2,

Each gamma and lambda function has a part in equation 3, v#,\,, is associated together in
the dot product. So for each matrix, we get the lambda piece with it.

These are each the reperamaterizations of the line in 1 dimension along each of particular one
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dimensional directions, which were originally framed in the d,, gradient.
Ao = p = cos(a)T,
A1 = z = sin(«) sin(B) cos(v) X,
Ao = w = sin(a) sin(B) sin(y)T,,

A3 = f = sin(a) cos(8)Z,

0 p 0 0
p 00 0
0 00 —p
0y
Y=g 0, 0
0 2 0 0
000
TA= 0 0 0 2
00 2 0
[0 0 0 —w
0 0 w 0
A
Y=g w0 o
—w 0 0 0
f 0 0 0
0 —f 0 0
3y,
YR= g 0 —f o
0o 0 0 f

We have to add all of these together to continue to develop the computations, and we get a

final matrix. Reading across, we can get values for each equation,

DoF = fvo + (p+ 2)1 — w(is)
DiF = (—p+ 2)to + fi1 + wips
DoF = wipy — fibg + (=p + 2)v3
DsF = —wipo + (p + 2)tb2 + [

In order for us to reduce to the 0 brane, we reduce everything down to @ = 0 from our gauge.

In the the lambda equations, this sets everything but Ay = 1, and all others to 0. This reduction
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looks like.
DoF = 4n
D F = —1y
DoF = —a)3
D3F =)o

Each gamma and lambda function has a part, v*, A%, is associated together in the dot product.
So for each matrix, we get a lambda piece with it. A\g = cosa as each other piece of the lambda

function goes to 0. So for each of these 4!, A\; are the set dot product.... and so on and so forth.
The final product is DG = i(y°7 - )\)abéﬂpb

Again here, we have a reduction from 4 dimensions onto 1 dimension, specifically onto 0,
which means that A requires that 0, is the only element which is satisfied by o = 0. This sets

out (v>y)to be only (v°4°)

We have to compute each product matrix, which gives us

0 0 1 0
0 0 01
5,0\
0 -1 0 0]
[0 0 1 0]
0 0 0 -1
541y
=11 0 0 o
0 -1 0 0 |
[—1 0 0 0]
0 -1 0 0
542\
I=10 o 10
| 0 0 0 1]
[0 0 0 -1
0 0 -1 0
5~3) —
-1 0 0 0
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Again we just pair off a lambda to each of the gamma product matrices. The summation of

these matrices adds up to,

—w 0 (p+2) -—f

0 w —f (p—=z
(—p+z2) —f w 0

- (=p—2) 0 w

and the individual computations just take the summation of each row. I will display the row
and then the 0-brane reduction. This reduction occurs along the same parameters through the
paper. In order to reduce J, to 0; we can only have \g which sets v to +°. Therefore, like the

above equations, we can remove everything but p.

DoG = —withg + i(p + 2)th2 — if1)3
Andbysubstitutingback fromthepreviousequations.

DyG = —isin(a)sin(B) sinyo + 0 + i(cos(a) + sin(«) sin(B) cos(y

reduces to i
D1\G = —iwiy +ifipa +i(p — 2)¢3
reduces to 13
DoG = i(—p+ 2)Yo — if1h1 + wipy + 0
reduces to —ig
D3G = —if +i(—p—z) +iw
reduces to —iy
4 sets of results can reduce down to a singular matrix, as an expression of rows from v, and
columns from D A, B, F,G
These matrices are,

D,A=14

O R O O
|
S~

OO O =
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0 10 0
~100 0
Da'=140"9 0 -1
(0 01 0]
[0 0 1 0]
0 0 01
DaG=1_1 9 0 0
0 -1 0 0]

Each of these matrices gives us the information on the action of 4 transformations on a particle
represented by A, B, F,G. This paper is more interested in the matrix transformations them-
selves. By taking the list of entries from the first through fourth row we can build these new

matrices. They are represented as such.

1 0 0 0
000 1
Li=10 1 0 0
0010
0 1 0 0]
0 0 -1 0
La=|_1 0 0 o
L0 0 0 1]
0 0 1 07
0 1.0 0
Ls=10 0 0 -1
-1 0 0 0]
0 0 0 1]
-1 0 0 0
Ly = 0 10
0 -1 0 0

These are the matrix _representations from particle to particle according to our susy physics for

the chiral multiplet.

2.4 Vector Supermultiplets

We want to do a similar analysis on the vector supermultiplets

Starting with 9, = \,0r
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The starting equations for the vector supermultiplet are, (A, is a fermion)

Di(v*y9)20, 05 = i(759*)2 1,0, A Because the reduction sets a = 0 in the lambda equation

and the i(y>y#)\,)

2)(i)24y is selected by the specific gage we choose for this reduction which is the calumn
gage. This sets ¢ = 1,2, 3 to the appropriate gamma matrice matched to the equation, and for
1 = 0 we get all an equation that reduces to 0. Because in the lambda, we choose to set These
vector supermultiplets are defined by the equations as given, I wish to sort out the defined re-

lationships, similar to the one from above.

After the 0 brane reduction we get these equations for the bosons.

1.DgAi = (i) 00

2.D,d = i(’yf”y“Tu)ab(Sb

And for the fermions

3. Dgdp = _%(h T, D) ab(0r Ai) 4 (7°) ab(97d)

Tau in this comes from the already broken down equations from above. We set « to be 0, and

7=(1,0,0,0).

Again the calumn gage selects only i = 1,2, 3
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la.DaAr = (Ve ¥y
16.Dg A2 = (v)a b

le.DgAs = (7)o by

We can quickly compute DyA; terms from our gamma matrices we listed above.

DoAy =19 D1 Ay =1 DAy =1y D3Ay =13
DAy = —1py D1As = 13 Dy Ay = 1pp D3As = —q

DoAs =1 D1Az = =9 DaAz =3 D3Az = —1)4

So now we have the D,d equation to operate on.

We need to solve this by computing (v°y#7,)

The only non-zero matrix here is if the selected gamma matrix is 7°

This allows us to compute i('y5’yo)

We now need to do matrix multiplication across the gamma matrices,

0 0 i 0
0 0 0 i
0 —i 00

This gives us these equations...

15
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Dod = —13
Dyd = —14
Dad = 4
D3d =

2. THE PHYSICS BEHIND IT ALL

We have now a new set of matrices that represent the operations of these actions. These ma-

trices are again L1, Lo, L3, Ly

Ly =

Ly =

Ly =

L, =

0 1
0 0
10
0 0
10
0 0
0 -1
0 0
[0 0
0 1
0 0
10
[0 0
-1 0
0 0
0 1

0

o O

|
—_

O = O O

O O = O

o O O

o O O

0

These four matrices represent the actions from bosons to fermions from the vector multiplet.

The third equation at the beggining of the Chapter,

Doy = _%([’7 T, ’Yi])ab(aTAi) + (75)ab(a‘1‘d)
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This equation maps the fermions to bosons, and we could solve, which is in the appendix. How-
ever It is simpler to note that, for now, these matrices will simply be the transpose of the first

we created.

2.4.1 Base Change

In my work, I decided that the results coming from the Chiral and Vector multiplets were over-
complicated. By changing the basis for the matrices, I can rewrite both the Chiral and Vector
multiplets in a more convient form. This is the form that I chose to stick with throughout the
course of my research. This is also the standard form used in papers today to represent these

specific multiplets.

0 0O 1 0 01 00
. ) 0 0 0 1 1 0 0O
The Vector Multiplet is.... Dy = 1 0 00 , D1 = 00 0 1
0 -1 00 0 01 0
0O 0 0 -1 1 0 0 O
0O 01 O 0 -1 0 0
Da=1g 10 o= o 0 1 0
-1 0 0 O 0 0 0 -1

The Chiral Multiplet is

DA=1,
[0 0 0 1]
0 0 -1 0
DaB=1¢3 1 0 o
-1 0 0 0]
0 10 0]
~100 0
Da'=1"0"9 0 -1
0 01 0]
[0 0 1 0]
0 0 01
DG=1_ ¢ ¢ ¢
0 -1 0 0]
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Here are the changes of the matrices that still satisfy the physics and naturally, the properties

required for susy parameters.



3
A small chapter on graph theory

To begin this project, it is important to discuss, what is graph theory and how do we use it?

Graph theory is a branch of mathamatics informally developed in 1736 by Leonard Eulor. Since
then it has proved itself a valuable tool that is used in many different applications. These graphs
are mathematical structures used to define the relationships between objects. When we talk

about Adinkras in this paper, we need to define a few terms.

The whole idea behind supersymmetry is that we have some energy state transformation be-
tween Bosons and Fermions. It is then a sensible approach to represent these transformations
graphically. In a picture we can represent these transformations in a much simpler way then we
would be able to with a list of many equations. The picture also allows us to get a much different

understanding of the supersymmetry then we would get from just calculations.

In this chapter I will give terms to the graphs are Adinkras. Adinkras are the special graphs
that we use to represent Supersymmetry. These Adinkras were created by Professor Jim Gates

and Micheal Faux in 2004. [7]
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Figure 3.0.1. 6 dimensional Adinkra

3.1 The Adinkra

What is a graph?

In mathamatics a graph is a structure amounting to a set of objects in which some pairs of the
objects are in some sense "related” [15]

In the following sections I will go about explaining and naming all of the components of the

Adinkra graph in order to use common terminology throughout the paper.

3.1.1 Nodes

In my research, these nodes will represent the points on the graph. There are two seperate kinds
of nodes, bosons, and fermions. The bosons and fermions are colored differently in the Adinkra
Graph. bosons are solid filled in points, and Fermions are unfilled points on this graph. Having

two different sets of nodes is what we call Bipartite, in graph theory.

3.1.2  Fdges

Between bosons and fermions we may have a colored line, These represent the susy (short for

supersymmetry) transformations between a boson and a fermion. There are many different col-
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ored edges, but each edge of the same color represents the same transformation mathamatically.

Together the nodes and edges will create an Adinkra-which we use to represent the supper-
symmetry. The Adinkra is a graph that has a number of properties.I will give the reader abasic

understanding of adinkras before diving deeper into the physics and math behind this project.

3.2 Adinkra Graph Theory Properties

Figure 3.2.1. The 3 dimensional labeled Adinkra

e
P o1 O (110)
Q. (o11) d ) )
(001) @ (010) &

.(U()U]
I will now go through some of the mathamatical properties of the Adinkra. These terms are

mostly terminology but have mathamatical propties that we will use down the road.

Definition 3.2.1. Simple-Adinkras are simple: This means that no edges go from a node to
itself. Another way of saying this is that we have no loops. Secondly for any two nodes, at most
one edge connects them. No two edges connect the same node pair. Attached are some examples

of simple graphs.
Wolfram Alpha has excellent visual representation of this concept.

Definition 3.2.2. Connected-The types of Adinkras we will be looking at are called connected

graphs. A connected graph means that there is a path between any two nodes. This also means
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that no node is unreachable from another node. It turns out that some Adinkras are not con-

nected, but this occurs when we create a new Adinkra by ”adding” two Adinkras together.

Definition 3.2.3. Bipartite-Bipartite graphs means that there are two distinct sets of nodes.
These sets we defined earlier in this chapter as the set of bosons, written in as a solid point, and
Fermions, the unfilled point. No two nodes in the same set (bosons, fermions) are connected by
an edge. This means no edge goes from a boson to a boson, and no edge goes from a Fermion
to a Fermion. There are certainly types of symmetries defined in physics that do this, but this

is one of the main parts of Supersymmetry.

Definition 3.2.4. Finite-This name is self explanatory. These Adinkras do not contain infinite
edges or nodes. We have a maximum of 32 dimensions in our graphs, which means that we
have a limited number of possible nodes. 32 dimensions in these Adinkras means that we have
32 different types of edges., and since these graphs are connected, this means we have a finite

number of nodes.

It turns out that the number of possible Adinkras is massive, at this point still uncounted.

We do however know that these too are not possibly infinite.

Definition 3.2.5. Regular-Adinkras are regular, which means that each node (n) has exactly
(i) edges incident to the node. (incident means attached).This is the case in all Adinkras. It also

works out that each node (n) has only 1 of each color of edge incident to it.

Definition 3.2.6. Colored- Adinkras have colored edges, these edges will indicate which trans-
formation action is occuring between boson and fermion. These edges are colored in different
shades. The colours of the edges are represented by the transformations in the previous chapter
on the physics. The physical equations give us a matrices that represent the action of certian

transformations. The nodes are colored black and white to represent the bipartite structure.

Definition 3.2.7. Nodes-We label nodes with binary code of length N. When we la-
bel nodes, the length of each word is consistent in any Adinkra. We should consider

these binary codes Zs @& Zo @ Zs.... ® Zo A three dimensional Adinkra will have nodes,
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(000), (001), (010), (100), (110), (011), (101), (111). In an unqotiented Adinkra, the number of 1’s
in the binary determines the weight of the node, and we call this weight "odd” or ”even”. This

all changes when we quoteint the group of our nodes.

3.3 Adinkra Identities

Dimension-The dimension of an Adinkra is defined by the number of colored edges in the
Adinkra. It is also equivalent to the amount of Zs groups in the total group product. Mathemat-
ically, the dimension of the adinkra is the number of susy generators in the Adinkra. Even and
Odd Nodes-Even Nodes in the Adinkra are the bosons. The Odd Nodes in the Adinkra are
the Fermion Nodes. We always differentiate the Even and Odd sets as the bosons and fermions.

This is how we mathamatically differentiate between the different sets.

Here is a quick theorem to proove that there are an equal number of odd and even weighted
nodes in any dimensional set we choose. This is a quick small direct proof I developed for the

math majors out there.

Theorem 3.3.1. The complete set of all values Zo@® ZoB Zs...® Za, has binary values with weight
h. h is an integer, and therefore is either odd or even. If we call define a function f(x) = x +
(0000.....001) where x is an even weighted binary code, we know that z has an even valued h. Since
(0000...0001), has weight 1, we f(x) has weight h+1 if z has final value Zy value 0, and f(x) has
weight h—1 if x has final value Zs has value 1. Therefore f(x) has an odd weight. f(x) is unique
because = + (000...0001) = y + (0000...0001) and (000...00001) + (0000...00001) = (000...00000),
and x =y Therefore f(x) is unique. Therefore we have a bijection between f(x) and x which are

even and odd weighted values. Thus the set of odd and even modes are the same size.

This theorem is actually necessary to show that the nodes adhear to the bipartite, complete,

and full, structure of the graph.

Dashedness-We can incorporate dashedness into these Adinkras, however the mathamatical
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reasons we do so are going to be in a later chapter. For this introduction we should simply
consider a cycle of edges around 4 nodes. We define a 4 cycle as traveling by 2 colors, calling
these colors z and a. We travel along color z than a than z than a. This will return us to our
origional node. We must have odd dashedness through the 4 cycle...this means that for every 4

edges that start at node i, and return to node i, we must have an odd amount of dashes.

[h]
Figure 3.3.1. The 4 Cycle

(@]

The Adinkra-We can now look at a full Adinkra. In a moment I will walk through drawing one
from scratch, but for now, to define the terms I use, let’s look at the 4 dimensional hypercube.
Below is a full adinkra. if we look at this figure we can see a number of important relationships.
As discussed in the previous writings. First we have a node structure in the binary code. It
should be noted that these nodes are at four different heights. (000) is at the lowest height.
(100),(010),(001) are all at the second height, and (110)(101)(011) are at the third height, and
(111) is at the fourth height. At first glance this figure looks like a cube but it serves us greater
usage to look at it as a 2 dimensional picture with 4 different heights. We can also clearly see
that the weight of the bits corresponds to the height region of the cube. When we organize

adinkras this is the typical method of doing so.

Please examine the color lines from (000) to (100),(010),(001). As we can quickly see there

are three lines of color green, red, and orange that extend. Green extends from (000) to (100),
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Figure 3.3.2. 4d Adinkra

orange extends from (000) to (010), red extends from (000) to (001). We can also quickly see

that regardless of dashing we have three actions corresponding to color.

Remembering that these binary codes are a Zy @ Zy @ Zo, a transfer along a green line cor-
responds to adding (100), a transfer along orange corresponds to adding (010) to any bit code,
and a red edge corresponds to add (001) to any bit code. We can use this universally, if we want
to get from (010) to (001) we would travel along orange, and then a red line, and this would
take us along this path. We can also travel along a red line, and then an orange. One can quickly
see that this works by doing the arithmetic, (010) + (010)(orange) + (001)(red) = (001). This
works for any transformation we would like to make. There is a lot more nuance to why this is
and where these edges come from in the physical realm, but that will be in a separate chapter

that deals with the physics of all of this.
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From here we have constructed the basic hyper cube. The Adinkra that this paper is most
concerned with, and that will be referenced the most is the 4 dimensional Adinkra. The 4

dimensional Adinkra will have a hypercube form that ranges from bitstring (0000)....(1111)

Definition 3.3.2. height and orientation- In Adinkras there exists a way to define a direction
to edges and a corresponding hieght assignment to nodes. although we are not particularly con-
cerned with this in my research, the assignment is a property of Adinkras. When we assign
direction to an edge, we define height as a directional edge going from vertex b to vertex a has

hgt(b) = hgt(a) + 1[13]

The Height has a meaning in the physics as well. When we have an increase in hieght, we
are making a change in the engineering dimension defined by 0, by differentiation. When he

have a reduction in height assignment, we are integrating on the engineering dimension.
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Quotenting and the Valise

It was shown in Codes and Supersymmetry in One Dimension that every connected Adinkra

can be obtained by Quotienting the N-cube by a doubly evening code. [4]

Definition 4.0.1. For a group G and a normal subgroup N of G, the quotient group of N in G
written G/N, is the set of cosets of N in G. The elements of G/N are written aN,a € G form

a group under the normal opperation of the group G on the coefficent a.

Definition 4.0.2. . A n-dimensional chromotopology is a finite connected simple graph A. such

that. 1. A is n-regular and bipartite(same number).

Definition 4.0.3. A pretopology is a n-regular finite connected multigraph. A prechromotopol-
ogy is a generalization of a chromotopology where the corresponding graph can be a pretopology

rather than just a topology

[13] “Consider the n-cubical chromotopology Z!' . For any linear code L C Z§ , the quotient
Zy /L is a Zgs-subspace. Using this, we define the map pr, which sends Z7 to the following
prechromotopology, which we call the graph quotient (or quotient for short) Z7'/L: let the ver-
tices of I7'/L be labeled by the equivalence classes of Z3'/L and define pr,(v) to be the image of
v under the quotient Z% /L. When L is an (n, k)-code, the preimage over every vertex in IJ'/L

contains 2¥ vertices, so I/ L has 2"* vertices” [16]



28 4. QUOTENTING AND THE VALISE

For the 4 cube we have only one doubly even subgroup and that is

{(1111)(0000)} = ((1111)). Let’s now consider the quotient group generated by G/N. This group
is

{{(0000), (1111)}, {(1000), (0111)}, {(0100), (1011)}, {(0010), (1101)}}

{(0001), (1110)}, {(1100), (0011)}, {(1010), (0101)}, {(1001), (0110)}

We form an equivelence relation by setting all nodes in a coset to be equal. By setting these nodes
equal we are left with only 8 nodes. The even weight nodes are bosons and odd nodes are fermions.
We have [0000], [1010], [1100], [1001] as a list of bosons which have all been set in an equivalance
relation with the other even nodes in Z%', we also have the nodes [1000], [0100], [0010], [0001] are

matched with the other odd nodes. This process in ensured by an even code quotienting process.

A valise Adinkra is an Adinkra where all bosons have the same engineering dimension, and
all fermions have the same engineering dimension. These valise Adinkras are the main focus of

this paper. Through a number of operations, any Adinkra can be put in valise form.

When a valise is created, and we match the nodes as in the example from above, we are physi-
cally moving the nodes of the Adinkra, to match each other in the equivalence classes generated
by the Quotienting. Zhang gives us a mathematical description of moving these nodes as well.
It is entitled the ”Hanging Garden Theorem” and is an essential piece of the math of Adinkras.
This theorem is given by C. Doran in one of his papers, but is well explained in Adinrkas for

Mathematicians by Zhang.

Fix a chromotopology A. Let S C V(A) and hS : S — Z satisfy the following properties:
1. hS takes only odd values on bosons and only even values on fermions, or vice-versa

2. For every distinct s1 and s2 in S, we have distance defined by D(sl, s2) > |hs(s1) — hs(s2)|.
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Then, there exists a unique ranking of A, corresponding to the rank function h, such that h
agrees with hS on S and As set of sinks is exactly S. By symmetry, there also exists a unique
ranking of A whose set of sources is exactly S. In other words, any ranking of A is determined by
a set of sinks (or sources) and the relative ranks of those sinks/sources. We can think of such a
choice as the following: pick some nodes as sinks and pin them at acceptable relative ranks, and
let the other nodes naturally hang down. Thus, Theorem 6.2 is also called the Hanging Gardens
Theorem” [3]

When we draw the valise we consider the equivalence class generated from the quotient group.
When we set all elements of each coset equal to one another, we can match nodes graphically in
an Adinkra. When we quotient by a doubly even code we notice that edge color matches up in
pairs, and dashing also remains consistent (although this process is far more complicated and

not relevant to this paper). This allows us to build an Adinkra valise consistently.

A few things that are different about this valise from the original Adinkra is that we have only
two height assignments. These two height assignments are the bottom and top of the valise.
The height assignments remain in the same definition from above. The bottom height assign-

ment is the boson nodes, where the top height node are the representations of the fermion nodes.

We can create valise Adinkras for Adinkras with larger susy generators as well. For the 6 susy
generator Adinkra example we have 2 different permutation equivalance classes. The G,(quotient
group), can be ((110011)) and ((111100), (001111)). To make this valise, we would go through

the same process as with the 4 susy generator example.

4.1 The Adjusted Adjacency Matrix

A large consideration in this paper is the notion of the adjacency matrix. The term “adjacency

matrix” in normal graph theory means something different than how I am using the term here.
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It is important that I am using notation that I will define, but is different than what is used
normally in graph theory.

As far as adjacency matrices go, everything that follows will depend on this concept. The
point of the adjacency matrix is to encode the Valise Adinkra as a set of matrices. I will build

an adjacency matrix that will first represent an Adinkra valise, and explain how this works.

The two matrices below are the valise matrices representing the chiral multiplet, and the vector
multiplet that we derived above. We were able to build 4 matrices L;, representing the action
of each generator of the susy on the bosons in these multiplets. To build a valise from the quo-
tienting in the section above, we start with 4 nodes on the bottom (bosons) which all are in
an equivalance class with other bosons from the 4-cube, and the 4 nodes on the top (fermions)

which are all in an equivalance class with other fermions for the 4-cube.

Figure 4.1.1. Chiral Multiplet
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Figure 4.1.2. Vector Multiplet

C

From here we take each of the matrices generated from one of each of the susy generators. In
the case of the Chiral and Vector Multiplets there are 4. This gives the valise the 4 susy trans-
formations on the bosons. Taking the first matrix of the Chiral Multiplet, I,. Now we consider
each boson reading from left to right, We label these bosons, boson 1, boson 2, boson 3, boson
4. The same labeling is done with the fermions. Each matrix in the Chiral Multiplet has N rows
and N columns. Our row 1, column 1 has a 1 entry, for row 1, column 2-4, we have zeroes.
When we draw a valise,row i corresponds from the ith boson. We use column j to denote the
jth fermion. When we see a 1 in row i and column j, we draw a colored edge from boson i to
fermion j. In the matrices we use dashedness to denote a -1 in the matrix, with a dashed line.

Each matrix in a multiplet set is associated with its own color.

By doing this for all matrices in a multiplet we can draw a complete valise. These matrices
are called the L;. These L matrices are all associated with the matrix representations of edges
from boson to fermion and represent the action of the ith susy generator on the bosonsm i.e.

define a map on the space of the bosons to the space of the fermions. The matrix representation
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of edges from fermion to boson are called the R matrices. In the R matrix the fermions are

labeled in the rows, and bosons are in the columns. This is equivalent to saying R = LT

Each boson and fermion will have N edges attached, where NN is the original number of susy
generators of the full Adinkra. These edges will all be different colors, as each susy generator

sends every boson to a unique fermion.

We have a few identities...

identity 4.1.1

L=RT

Definition 4.1.1. “The transpose AT of a matrix A can be obtained by reflecting the elements
along its main diagonal. Repeating the process on the transposed matrix returns the elements
to their original position. In linear algebra, the transpose of a matrix is an operator which flips
a matrix over its diagonal, that is it switches the row and column indices of the matrix by
producing another matrix denoted as A’ It is achieved by any one of the following equivalent
actions:

reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain A7,

write the rows of A as the columns of AT,

write the columns of A as the rows of AT

[15] A transpose flips a matrix over its diagonal, or switches the row and column value of
the matrix. Because the L matrix, sends boson(row) to fermion (column). The R matrix sends

fermions(row) to bosons (columns).

We denote bosonic nodes as row entries in the adjusted adjacency matrix reading from left
to right. The top nodes, the fermions we denote as column entries, reading from left to right.

This means that if we have a z-colored line from boson 1 to ferion 3,the L matrix denoting the
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action of z-color will have a non-zero entry in row 1 column 3. identity 4.1.2 L; R, =1

It is obvious to see this graphically. An L; matrix denotes an action from a boson to a fermion
along a specific colored edge, of which there is only one edge of this color incident to any specific
node. The R; matrix sends a fermion to a boson along this same colored edge. The result will

always send a node back to itself. This graphically proves the identity.

4.2 The L matrix

When we consider any of the L matrices in a multiplet we can consider a specific property es-

sential to any of these individual matrices. Let’s look at for example a matrix from the Chiral

Multiplet.
0 1.0 O
-1 0 0 O
Dol = 0 0 0 -1
0 01 O

Which is one of the matrices in the chiral multiplet example. We can rewrite this matrix as

the product of two matrices...

0 1.0 O 1 0 0 0]|01 0O
-100 O (0 -1 0 Off1 00O
0O 00 -1 |0 0 =1 0[]0 0 O 1
0 01 O 0 0 0 1/]]0 01 0

In this product we can see that we have a singular permutation matrix, and another matrix
that operates on the permutation matrix to negate certain rows. This will be important in later

notes.

We can write this in another way, in this first set of matrices that the negation matrix negates

the rows aligned with the places where the identity matrix has -1 values.
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0 1 0 O 010 0[|-1 00 O
-1 0 0 O 1 000 0 1.0 O
Dok = 0 00 -1 |00 0 1 0 01 0
0 01 0 0 010 0 0 0 -1

In this case the negation matrix operates on the columns of the permutation matrix, this is

another way to write the singular adjacency matrix as a product of two matrices.

4.3 Valise and Matrix Representation

The valise can be built without the direct process of quotienting. Specifically we can use the
Valise to represent the Chiral Multiplet, and Vector Multiplet. These is because the Chiral and
Vector Multiplet generate unique adinkras. We have 4 matrices associated with the action of
the 4 transformations created by the Multiplets. Like the adjacency matrices are derived from

the Visual representation of a valise, we can build a valise from a set of adjacency matrices.

The first is the valise built from the Chiral Multiplet. Remember, the equations have a domain of
bosons and a range of fermions. This means that when we build a valise from matrices, we must

go from boson to fermion. With this all said, The first representation is the the Chiral Multiplet.

We can see here that the gold lines represent the first matrix D, A, The green line represents

D, F, the orange line represents D,G, and the Blue line represents D, B.

We also have a valise representation for the Vector Multiplet that we defined in Chapter 3.

Again we can quickly map out the Adinkra transformations from this valise. The orange edges

corresponds to D, As, blue corresponds to D, A1, Yellow corresponds to D,d, Green corresponds

to DaAQ,
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The abstract point here is that for any matrix set you get that has a symmetry representa-
tion, you can make a valise out of any set of matrices, as long as you follow the form set by the

adjacency matrices.

4.4 The Node Flip

There are a few values that we are very interested in graphically when we are studying adinkras.
One of these is what occurs when we flip all the dashedness from a single boson or fermion
in a valise. This means that the dashedness of every edge incident to a node flips. The ques-

tion is, what happens to the adjacency matrix when we perform this action on a particular valise.

When we flip a node, we are flipping any solid edges to dashed edges incident to a node, and
any dashed edges to solid edges. Put simply the action on any edge incident to the flipped node

would be to change the dashedness.

In the adjacency matrix representations what occurs is a denoted “1” becomes “-1’ and de-
noting a “-1” to a “1”. The question is generally, what occurs to a specific set of adjacency
matrices representing a valise, when a node is "flipped”. To answer this we must remember that
we are working off a specific node, which means that we are negating one entry in each row of
an L matrix (assuming we flip a boson). This is because the edges incident to each boson are
represented by one row or column in either the L or R matrices. Whichever oson or Fermion
we select then, we must simply negate the corresponding row or column of each L matrix. The
node flip of boson (i), will affect the ith row of all L. matrices. The node flip on a boson will
affect the columns of an R matrix.

Figure 4.2 is the example of the Chiral Multiplet with a Node flip done on the second boson.

Rewriting the adjacency matrices attached to this valise we get.



36 4. QUOTENTING AND THE VALISE
1 0 00 0 0 01
. 0 -1 0 0 . 0 010
Gold lines=L; = o 0 1 ol Blue Lines=Lsy = 0 10 0
0 0 01 -1 0 0 0
010 O 0 0 1 0
. 100 0 . 0 0 0 -1
Green Lines=L3 = 000 —1l|° Orange Lines=L4 = 1 0 0 0
001 O 0 -1 0 0
What we can see here is that every node in row 2 for all L matrices is negated. Row 2 represents

every edge incident to our 2nd boson. If we take the transpose of this same oepration we get
the R matrices. It is obvious that in this situation every entry in column 2 has been negated. Is

there a way to represent this action with matrix notation.

Figure 4.4.1. Chiral Multiplet: boson 2 node Flip

Definition 4.4.1. To represent a node flip on the set of L; or R;, we can multiply a matrix N
to our whole set of matrices. N is an identity matrix with a negation in row i. Negating boson i

is represented by NL;, and R;N. If we negate fermion i we can represent this as L; N and N R;.

We can adjust the second piece of this definition. We can rewrite L; N as N L; where the N
has a negative in column j, where boson i acts on L;. (If node flip is fermion 2, and this L; has

”1” in row 2 column 3, N has -1 in row 2, and N has -1 in row 3) To show that this works in a
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general case, we can write an L matrix will be the general form.

3 L o
=N~ > Q.

O T o

a
e
]

|m

The N « L product is then

1 0 00 a b c d a b c d
0 -1 0 «le f g hl_|-e —f —g —h
0 0 10 T B T N R J k l
0 0 01 m n o p m o n o p

4.5 The Node Swap

Another value that we are very interested in is what occurs when we flip the ith and jth Bosonic
node in the valise Adinkra. Below is a picture of the node flip of the 2nd and 3rd node of chiral

multiplet valise.

Figure 4.5.1. Chiral Multiplet: boson 2 and 3 swapped

We want to define what occurs when we flip the two nodes in the adjacency matrices.

Definition 4.5.1. flipping two bosons, i and j, can be represented by multiplying matrix PL;,

and R; P, where P is a permutation matrix with an i and j row swap.
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When we swap the ith and jth nodes of a boson, we multiply the adjacency matrix,by a per-
mutation matrix, that swaps the identity matrix ith and jth row, P*L . We can do the same
when we flip fermions, however, we must multiply by the permutation matrix, L*P. This P is a
permutation matrix, and the L is the Adjacency matrix.

These matrices act in the same way that the negation matrices act above.
Consider ith node and jth node. ith node works in row a. jth node works in row b. If we swap
these two nodes, we are swapping the rows that these nodes operate on. Ath node now works in

row b and Bth node works in row a. This by inspection is obvious.

We can observe this in general, as it obeys this law. For any n * n matrix, we can simply

swap rows of the identity matrix. For instance, to permute (13)(24)(31)(42)...

We swap rows 1 and 3 and 2 and 4 of the L matrix, if the L matrix is

3 =0 o
3 WL o
O T o

BT IS ST

This transformation would look like this on the matrix,

o 2 3 -
- o 3 .
Q@ o o
A —~

We can quickly show that the permutation matrix

0010 a b ¢ d vt g k1
0 00 1f,fe f g hf |m n o p
1 0 00 i j k I| |a b c d
01 00 m n o p e f g h

We can see here the general form of the permutation matrix operating on the L matrices.
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4.6 Valise Matching

There is a huge number of potential multiplets that can be built from symmetry and super-
symmetry equations in many dimensions. When two of these give matrix representations, it is
interesting too physicists and mathematicians alike too determine whether under a certain set
of rules, one can be made into the other. These rules are as following.

1. Any Node Flip, boson and fermion

2. Any Node Swap, boson and fermion

3. Negating the value of any one matrix

In the case of the Chiral and Vector multiplet, here is how we can make the Vector multi-

plet into the Chiral multiplet under these set of rules.

The Chiral Multiplet, as defined under a basis change from our chapter in physics. We will

01 00
' ‘ ' . ) 1 0 0
rename the matrices in this particular section C; C1 = 000 1
0 01 0
0O 0 0 -1
0O 01 O
Cy = 0 1 0 0
-1 0 0 O
1 0 0 0
0O -1 0 O
CG=1o 0o -1 of’
0 O 0 1
00 -1 0
00 0 -1
CGi=11 0 0 o0
01 O 0

The other set is the vector multiplet, also under a change of basis from the physics. We will
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name these W;.

Wi=1
0 0 0 1]
0 0 —1 0
Wa=1¢9 1 0 o
-1 0 0 0]
0 1 0 07
-1 00 0
Ws=10 0 0 -1
0 01 0]
0 0 1 0]
0 0 0 1
Wa=1_1 o 0 o
[0 -1 0 0]

I want to try to transform our second set of matrices into our first set, so that I can set make
our first matrices our second. I can flip all edges, incident to a specific node. Exchange any two
nodes, and flip all edges of any one type. These transformations convert to the matrices. Flipping
all nodes incident to one edge, is the same as negating a row or column, of each matrix. The
node exchange, in matrix form is the same as changing the rows. Finally, the flip of one edge,

swaps the sign of every unit in the matrix.

Here’s How...

Flip the 2nd and 4th matrices of the vector multiplet

0 0 0 —1
0 0 1 0
Wa=1o 10 o0
1 0 0 0]
0 0 —1 0]
00 0 -1
Wa=11 0 0o o
01 0 0]
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Flip the 1st matrix of the chirla multiplet.

Now swap nodes 1-3 and 2-4 of the vector multiplet

0010
000 1
Mi=11 00 0
0100
0 -1 0 0]
1 0 0 0
W2=10 0 0 -1
0 0 1 0]
0 0 0 —1
0 01 0
Ws=10 10 o
-1 0 0 0]
1 0 0 0]
01 0 0
Wa=1g 0 -1 o
00 0 -—1]

Now we negate our third row...or flip the edges incident to our third node.

0 010
0 00 1
Mi=149 900
(0 1 0 0]
0 —1 0 0]
1 0 00
Wa=10 0 01
0 0 1 0
0 0 0 —1
0 0 1 0
Ws=10 10 o
-1 0 0 0
1 0 0 0
010 0
Wa=10 01 o
00 0 -1

And finally we flip the second column, which is essentially swapping the nodes incident to

the second fermion.
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0 0 10
0 0 01
Mi=1_1 0 00
|0 -1 0 0
[0 1 0 0
10 00
W2=10 0 0 1
0 0 1 0
[0 0 0 -1
0 01 0
Ws=10 10 o0
-1 0 0 O
1 0 0 O
0 -1 0 0 . . .
Wy = 00 1 0 These operations make these multiplets equivalent to each other. I
0 0 0 -1

believe there is a general way to make any of these matrices, into each other. I will use my

method on the next set of matrices and explain the idea.

It should be noted that this solution is not unique, the difference between solving out these

matrices in order to get a new specific set, is solved in the same general method.
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My Results, Specific Values of Adinkras

Adinkras are values that take a 4 dimensional supersymmetry transformation and parameterize
the value down to 1 dimension. We demonstrated this in chapter 2. The problem of transforming
a 4 dimensional object down to 1 dimension is fairly intuitive, and is neither a new nor difficult
one to solve with proper tools. The problem of restoring 1 dimension to 4 is much more difficult.
Part of what Physicists and Mathematicians hope to gain from the use of adinkras is an under-
standing of how various transformations in 1 dimensional supersymmetry affects supersymmetry
in 4 dimensions. The task of my senior project has been to evaluate one of these values, that
was considered to be invariant under certain transformations by a number of physicists. It was

however not.

When we evaluate %(LiRj — L;R;) it is helpful to consider it in the case where N' = 4, (the case
of 4 susy generators), as discussed before. This case will give us a general understanding of what
I am trying to prove in the future. To understand the particulars of the problem, there are a

few properties that will help the reader understand the math I have done at a later point.
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5.2 Possible Permutations

In the N = 4, K = 1 case there are only a few possible structural forms of the matrix. As dis-
cussed in section 4.2, any of the L matrices can be represented as the product of a Permutation

matrix and a Row or Column Negation Matrix.

The first question in evaluating the %(LiRj — LjR;) is, what possible permutation forms can
exist. The Negation matrix will not have any part in this, so the question is %(\LiRj — L;R;)

has which values?

It turns out that in the case of the basis selected, for the vector and chiral multiplet, can
only have the following forms, |L;|. This is not the only set of adjusted adjacency matrices we
can have in our multiplets, but what will be consistent is that for any basis there will be only 4

forms, and they will all be permutations of the following.

1. 1y
0100 0 0 01 0010
9 1 0 00 3 0 010 4 0 001
10 0 0 1|77 |0 1 0 0" "1 0 0 O
0 010 1 0 00 0100

We can rewrite these matrices in cyclic notation:
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These are all of the possibilities.

This means that we can quickly and simply evaluate |L;R;| as a product of any two adjacency

matrices in a simple permutation form.

5.3 The Permutation Matrix Group

I will now define very specific group that I will call the Permutation Matrix Group. This group
is made up of the identity matrix with all possible permuted rows and columns. The L; matrices

are a subgroup of this group.

1. The inverse of any permutation matrix is itself
2. The group holds under multiplication.

3. T is in this group

Theorem 5.3.1. Let Q,, P, € Permutation group

Let Z,, = Q. P, Since the group is closed under multiplication, Z,, is a permutation matric.

I=1
I =Z,Zy, by 1.

I =(QnPp)(@QnPy)
Pn = (QnPnQn)
PoQn = QnPy

Then this group is commutative under multiplication.

Recognizing that the permutations from our L matrices are group elements themselves, in-
dependently (this can be shown under simple computation), is important in understanding the

deeper aspects of this paper. Although this does not have direct implications in my work, it
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shows some of the thought process of working with multiplicative combinations of L and R

matrices.

5.4 The Permutation Form L;R;

We want to find the general permutation form of the product %(LiRj — L;R;) in a simple gen-
eralized way.

1)L;R; = I. Because L; = RZ-_1

Therefore L;R; — L;R;, =1 —-1=0

2) We can rewrite the matrices in cycle notation as (ab)(ij). In the case of the identity ma-
trix, a = b and ¢ = j. However, it will serve us better to simply write I as (a)(b)(7)(j) All of

these matrices are in this form.

3) The Garden Algebra that acts on the L matrices guarentes that L;Rj=-L;R;

This will be the most important result.

The Garden Algebra states that LiL?; + L JL? = 20;j#. The Kroenecker delta is 1 when i = j.
For all other cases it is 0. This means that for the case where i # j we get LiL;fF = —LijIF This

identity will be key.

There are a few important properties of this identity. Remember we can write any of the special
adjacency matrices as the product of two matrices, a permutation matrix and a negation matrix.
We also know that the product of any two adjacency matrices here is another matrix with the
same properties. Namely, that the rows and columns are linearly independent, and the entries
other then 0 are 1, or -1.Let’s call the product of LiLJT:Si. We can rewrite S; as a permutation

matrix 7T; and a negation matrix N;:
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S; = —L;LT From the Garden Algebra, we can immediatly see that —S; = L; LT

5.5 The permutation of §(L;R; — L;R;)

I want to consider the relationship between L;R; — L;R; and what occurs when we do both a

flip on any particular node, and a swap on any two nodes, i and j.
For simplicity sake let’s define three values, L;R; — L;R; = v

Let’s then define the same value, with a node flip. We have defined the operation of a node flip

with adjacency matrices above. Let’s call a node flip on i, x, We wish to evaluate K L;xRj—k Lk R;

We need to be careful when considering how to evaluate x on the R adjacency matrices where
we need to transpose. When we do a node flip on a boson, we are negating the columns of the
R adjacency matrices as defined in chapter 4. I now propose that we denote N; as the negation

matrix from chapter 4, flipping boson i. This means we can write the second value as such.
N;L;R;N; — N;L;R; N;

Flipping fermion ¢ yields
L;N;N;R; — L;N;N; R;.

This is in accordance with the matrix properties defined in section 4.4.

Finally we want to consider the third value, and this is the most complicated and most in-
teresting. We know that a permutation matrix multiplied by a adjacency matrix, represents a
node flip. We need to be very very careful with these values. let’s call this swap £. Like above,
we need to compute these values after a node flip. The same action must be considered from the

nodes above.
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Considering the action of £ on the special value I am examining in this chapter, define a per-
mutation matrix representing the flip of nodes i and j as F;;. From section 4.5, the matrix
representation (L;R; — L;R;), under the action of a node swap of bosons i and j can be written
as, P L;R;P;; — P;j; L;R;P;;. On the action of swapping two fermions i and j, we can write,

5.6 First Big Proof

The susy models based on the dirac matrices can always be written as a product of two,2-cycles
in permutation notation. First simply choose your cycles. These can represent the permutation
of L; in the basis, provided that L; is not the identity. I wish to evaluate L;R;. However if I
cannot represent L; in this permutation form, then I can evaluate L;R;, since it is the negation

of L;R; and invariant under the absolute value.

The form of the V matrix given by 3(L;R; — L;R;) will be given by the result of the first LZ(L]T)
This follows, because we know from the Garden Algrebra that (L;)(L;){T) = —(L;)(L;)" since
form only refers to the absolute values. If we let our first L; = (ai)(bj), we know that L; can
equal (ai)(bj), (ab)(ij), or, (aj)(bi). These are all of our unique permutations multiplets, other
than the identity.

We can build a small set of equivalance relations from these values

There are four cases:

1 The L; and L]T are the same matrix.

(ai)(bg)
(ai)(bj)(ai)(bj) = I =W

Now to flip the I and J node
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(i7)(at)(bj)(ai)(bj)(i7)

(ibja)(agbi) =1 =V,

Therefore Vi = V; 2 Let us now consider the permutation where the second matrix is (ab)(ij)

Then

(ai)(bj)(ab)(ij) = (aj)(ib) = V2
And with the swap
(ij)(ai)(bj) = (ibja)
(ab)(ij)(ij) = (ab)(i)(j)
(ibja)(ab) = (ia)(bj) = Vs

Va = (ji)(ab) V2
Sincej#ianda#b‘/&#,‘};3
The third matrix option of the second matrix (aj)(bi)
(ai)(bj)(ab)(ij)
(aj)(ib) = V3
With the i and j swap,
(ij)(ai)(bj) = (ibja)
(aj)(bi)(ij) = (aibj)
(ibja)(aibj) = (if)(ab) = V3
We can see that V3 = ffg 4

and finally, the second matrix is an identity
(ai)(bj) = (a2)(bj) = Va
and with a node swap

(7)(a2)(bj) = (ibja)

1(ij) = (i)
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(ibja)(ij) = (ib)(ja) = Vi

Vi = (ab)(if)Va

Vi#Va

Therefore the set of results can be displayed as such

{V1,V2, V3, Va} = {V4, (i0) (bj) V2, V3, (ab) (i) Vi }

The second set can be written as {/Vvl, Lj(l)%, /V;, Lj(2)/VZ}

In the case where the first matrix L; is an identity, we can use our rules to evaluate L; LZ.T instead.

Remember, because of the Garden Algebra, LZ-JJT — LjL;fF =0ifi=j

5.7 The Bigger Proof

Given any set of V;, as the result of the computation %(LiRj — LjR;) = V; for ANY set of L;
following the physics defined in the paper, and the Garden Algebra as defined in this section, we

can determine what will occur to V; under the case of a node flip, or node exchange of bosons

alone:

s(Lil] — L;L]) = V;
3(8i = (=5) = Vi
S =V

Under the case of a node exchange, (ij) we have shown we can represent this node exchange as

a permutation matrix which we will call P;;

We have also shown how this permutation will act on the values.
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In the case of a node exchange of bosons,

S (POLLT(Py) = (P LT (Pi) = Vi

S(PISI(Py) = (Py) (=8 (Py) =V
S(P)(S(Py) — (P-1)(S)(Py) = Ti
S(P(S)(Py) — (~1)(P)(S)(Py) =T

(P(S:)(Pyy = Vi

And so we have a general formula for a node exchange on any nodes in the Valise Adinkra.

Now for the node flip. Again we know that we can represent a node flip by multiplying the
values by a negation matrix N with a negative in the row or column corresponding to the

flipped node.

That looks exactly the same

We can simply replace the P;; matrix with IV; where i is the flipped node

For a node flip on any boson. %(Nz)(Sl)(NZ) — (N;))(=S;))(Ny) =V;

(Ni)(Si)(N:) =V;

by the exact same calculation.

5.8 Fermion Invariance
Operating on %(LZRj — LjR;) by a permutation of two fermions was perviously shown to be

5(LiPijPyjRj — LjPy Py R;).

We know that the product of the same two permutations is the identity, as they are a member

of the permutation group from Section 5.2.
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PPy =1

Therefore swapping the nodes of two fermions yields, %(LiRj — L;jR;). Therefore swapping two
fermions is invariant on the value.

We also know that the product of the same two negation matrices is the identity. This means
that the negation of a fermion in the Adinkra yeilds, %(LiNiNZ-Rj — LijN;N;R;) = LiR; — L R;.

The is equivalant to negating a fermion is invariant in our value.

These are essential results, as they are far different than the process of swapping or negating a

boson.

5.9 Future Work

I believe that this general proof has not yet been done in the mathematical fields of Adinkras. I
have no reason to not believe it. This is therefore the culmination of my senior project. There is
a lot more to do, and I would like to have some of my worked published if I can, and hopefully,

after graduation I can take steps to do so.

There are certainly more questions, some of which I believe I have answers too, but have not been
able to prove solidly without more work. One interesting problem is, can we do some negation
on these value and some permutation, and get the same thing? Is this even possible? If so, under
what rules. This is another challenging problem I will hopefully attempt in the future. There are
many other challenges in the work that I am doing, and there is much more to know. Trying to
find large solutions for other values than the one I explored in my project is essential to the pro-

cess of moving from 1 dimension back to 4. In the future years, these results will come out quickly.

My hope is that I will be involved in this process, as I continue my education.
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Thankyou
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