
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Fall 2017 Bard Undergraduate Senior Projects

Fall 2017

Dynamic Difficulty Adjustment in Procedural Content Generation Dynamic Difficulty Adjustment in Procedural Content Generation

Charles Joseph Calder
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_f2017

 Part of the Game Design Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Calder, Charles Joseph, "Dynamic Difficulty Adjustment in Procedural Content Generation" (2017). Senior
Projects Fall 2017. 39.
https://digitalcommons.bard.edu/senproj_f2017/39

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_f2017
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_f2017?utm_source=digitalcommons.bard.edu%2Fsenproj_f2017%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1133?utm_source=digitalcommons.bard.edu%2Fsenproj_f2017%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_f2017/39?utm_source=digitalcommons.bard.edu%2Fsenproj_f2017%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Dynamic Difficulty Adjustment in
Procedural Content Generation

Senior Project submitted to

The Division of Science, Mathematics, and

Computing of Bard College

By Charles Calder

Annandale-on-Hudson, New York

December, 2017

Abstract

The world of game development has gone through many chapters since its birth. Many

complex techniques, designed to give every player a personal game experience, have been

developed by those who love to create. This project explores modern Procedural Content

Generation and Dynamic Difficulty Adjustment techniques. The algorithm developed in the

course of this project is designed to increase developer and player quality of life. Through

adaptive generation, this project will explore how players engage with games and what

developers can do to add to the player experience.

ii

Acknowledgements

I would like to thank Robert McGrail for advising me through this project

and Keith O’Hara for sparking my interest in computer science.

I would also like to thank my parents and my brothers

for their constant and reliable love and support.

iv

Dedication

I dedicate this to my best friends, Jasmine Clarke and Elias Posen.

vi

Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

1 Introduction 1

1.1 Background . 1

1.2 Procedural Content Generation . 3

1.3 Dynamic Difficulty Adjustment . 6

1.4 Unity . 8

1.5 Previous Research . 10

2 Methods 11

2.1 Design of game . 11

2.2 Code Overview . 21

viii

2.3 DDA Data Cycle . 24

3 Experiment 33

3.1 Design of Experiment . 33

3.2 Experiment Results . 35

4 Conclusion 42

4.1 Summary of Thesis Achievements . 42

4.2 Applications . 43

4.3 Future Work . 43

Bibliography 44

Appendix 45

ix

List of Figures

1.1 Screenshot of Rogue Procedural Dungeon Generation 4

1.2 Cuphead Artwork . 9

2.1 Ramp Interactable (Level 1 Example) . 13

2.2 Speed Interactable (Level 2 Example) . 14

2.3 Wall Interactable (Level 1 Example) . 15

2.4 Spike Interactable (Level 0 Example) . 16

2.5 User Interface . 19

2.6 Layer Architecture . 21

2.7 DDA Data Cycle . 25

3.1 Total Points Histogram . 36

3.2 Number of Deaths Histogram . 37

3.3 Number of Flips Histogram . 38

3.4 Preference Evaluation . 40

x

Chapter 1

Introduction

1.1 Background

This paper explores three topics. The first two topics are Dynamic Difficulty Adjustment

and Procedural Content Generation. The third topics discussed in this paper is the effect

that difficulty adjustment algorithms have in procedurally generated environments and how

that adaption affects player engagement and skill. There has been a large amount of research

into elements of all three of these fields independently.

As games have become more complex there has been a growing amount of research into

the algorithms that control the continuous generation and adaption of game environments.

There has not, however, been much research into the combinations of these fields. Analyzing

player engagement and skill in virtual environments is a thoroughly explored topic in the

world of game research, although it is extremely broad and difficult to define. This paper

describes the process of expanding the world of research on these topics.

The topic of Dynamic Difficulty Adjustment using Mihaly Csikszentmihalyi’s Flow theory

1

recently has been a powerful concept in the video game research world [3] [1] [5]. Active

Dynamic Difficulty Adjustment provides players with conscious choices to help them directly

customize unique and optimal video game experiences. The implementation of difficult ad-

justment in this form is closer to a game design element than a data analysis element.

Instead, this research concentrates on passive difficulty adjustment, which involves devel-

oping a data analysis algorithm that focuses on gathering, analyzing, and utilizing in-game

player data. This paper will grow the concept of Dynamic Difficult Adjustment algorithms

by incorporating them into procedural generation and how this affects player engagement.

Defining Procedural Content Generation as a game design element is also a common research

topic [7] [2]. In many research papers, adaptive or player-driven procedural generation is

also commonly explored. There has not been, however, much explortion further into games

with deterministic adaptive Procedural Content Generation on a second-to-second scale.

This is most likely because doing so requires building a game designed around this concept,

considering there are no popular examples of this to draw from. Although exploration of

Procedural Content Generation algorithms has been done in depth, modern research most

often focuses on defining what is and what is not Procedural Content Generation, and thus

the effect that Adaptivity in Procedural Content Generation has on player engagement or

skill has not been discussed thoroughly. This paper will extend the definition of Procedural

Content Generation by introducing new design elements that have not been looked at closely

in a research environment.

The research around analyzing player engagement has had more time to develop than the

other two, but is a little more difficult to pin down [6] [4] [5]. The concept of forming a fully

realized model of player engagement in games is often done by monitoring some number of

elements of user interaction with games. Common types of tracking variables are concen-

tration, challenge, skills, control, clear goals, feedback, immersion, etc. The problem with

analyzing engagement is that each player interacts with a game in their own way and trying

2

to simplify that into understandable data can be very difficult. Most modern research looks

into monitoring engagement very generally, but not into monitoring engagement through

the context of specific genre or game style. This paper will help define engagement analysis

by building a player model through the context of players engaging only with game Flow in

Procedural Content Generation using Dynamic Difficulty Adjustment.

This paper details the process of combining all three of these concepts through a single

project. This is done by exploring each of these concepts independently, then bringing them

together to build a game. The Procedural Content Generation in this game is designed

based on descriptions outlined in “What is Procedural Content Generation? Mario on the

Borderline” [7]. The Dynamic Difficulty Adjustment used is designed based on the Data

Cycle concept, which is detailed in “Flow in Games” [1]. Finally, the engagement analysis

is based around the Sweetser and Wyeth concept model for evaluation engagement and

enjoyment in games [4]. The following sub-sections define in detail and discuss the theory

behind a few of these topics.

1.2 Procedural Content Generation

Procedural Generation is a generation technique that involves infinite, automatic, and

artificial creation of content using simple algorithms. Procedural Content Generation

(PCG) in games is the process of generating game content using these procedural generation

algorithms. The most well-known forms of PCG in games are the cave or dungeon PCG in

Rogue (AI Design 1980) (Figure 1.1), which inspired generations of games with similar PCG

techniques, the PCG technique to distribute weapons, armor, and other items throughout

the game area in PlayerUnknown’s Battlegrounds (Bluehole 2017), and the environment and

enemy PCG used in MineCraft (Mojang 2011).

3

Figure 1.1: Screenshot of Rogue Procedural Dungeon Generation

Those who know these games will immediately see that PCG is an extremely broad term

and there is no way to define it exactly. There are many differing opinions on multiple

aspects of the definition of PCG. People in different fields of Computer Science might not

even agree on what “content” is, and would probably agree even less on which generation

techniques are considered procedural generation [7]. Content generated can also vary widely

in its affect on games, from simple texture generation, that has no direct effect on user-

game interaction, to item or map generation, which can control every step of the player’s

navigation through a game. For the purposes of this project, however, we will now take a

moment to specify elements of language that will be used for the rest of this paper. First,

the term PCG will refer specifically to PCG in games, second, we will use the definitions laid

out in [7] as the standard for what constitutes a correct form of PCG, and third, the term

4

Interactable Object (InOb) will refer to any game content generated by the procedural

generation algorithm developed for this project.

Modern PCG research often attempts to untangle the complex question: What is and what

is not PCG? We will start with an easy definition. PCG is not player or designer created

content, online or offline. This refers to anything designed by a user or game designer and

statically placed in the game environment for players to interact with. This is an obvious

but necessary first step in the definition of PCG. Next, the concept of randomness and

how it relates to PCG. To say that a game is generated randomly does not mean random

in the pure sense that most people imagine, complete and uniform randomness. Instead,

random generation in the context of games refers to generation that follows some set of rules

defining which types of content can be generated when and where. At each iteration of

generation a random, Prefabricated Item (Prefab) is chosen from a set of items allowed

by pre-determined rules. This is the most commonly accepted form of PCG across fields.

The process of PCG within this definition can still vary widely, but is enough to satisfy the

definition of PCG for the context of this project.

A very important definition in the context of this paper is that of adaptive or parameterized

PCG, specifically deterministic and continuous adaptive PCG. This, as the name implies,

is PCG that adapts based on parameters given by the player, passively or actively. Unfor-

tunately, there are no usable examples of PCG with deterministic continuous adaptivity in

recent research. This hole in the genre of PCG research is where the this paper comes in.

Through the definitions of PCG laid out by Julian Togelius, Emil Kastbjerg, David Schedl,

and Georgios N. Yannakakis, a common language can be used to look deeper into what

goes into adaptivity in PCG. In the following chapters this paper will extend their research

into PCG by exploring the possibility of creating a game that brings to life their imagined

example of a game with adaptive PCG.

5

1.3 Dynamic Difficulty Adjustment

Dynamic Difficulty Adjustment (DDA) is defined in multiple researcher papers and is

a relatively new concept being explored in games [1] [5]. DDA in games is a rather simple

concept to describe abstractly. The use of DDA often is as follows, games should increase or

decrease in difficulty to match the player’s skill level, eventually finding an equilibrium level

of difficulty that fits the player’s ability. DDA is built heavily on Mihaly Csikszentmihalyi’s

theory of Flow. Flow describes a general feeling of total immersion in the current activity,

brought about by a perfectly balanced sense of challenge and accomplishment. DDA is

a design element that game developers and researchers have explored heavily in order to

automatically control a game’s Flow around the actions of a player.

There are many examples of games that use DDA, some of the most popular examples

are Crash Bandicoot (Sony Computer Entertainment 1996), a platformer that used passive

DDA as a design element to aid weaker players without changing the game for more advanced

players, flOw (Sony Computer Entertainment 2006) who’s application of active DDA pop-

ularized the concept of incorporating mental immersion into gameplay, and Fallout: New

Vegas (Bethesda Softworks 2010) which used a combination of active and passive DDA to

generate tougher variants of enemies or enemies with higher statistics and better weapons

as the player performed better in the game.

DDA can be used is a very wide variety of applications. To describe DDA in a more tangible

sense, there are two basic forms that all DDA implementations can be categorized into.

Active DDA usually falls along these lines: Over some iteration (level-to-level, room-to-

room, etc.) the player is given choices with clear difficulty distinctions. Most often these

different choices are paired with different rewards relative to the level of difficulty. This style

of DDA is always built on a discrete scale rather than a continuous one, simply by virtue of

the fact that players must make decisions that directly affect the current game’s difficulty.

6

Through active DDA, designers are able to give the player direct control over their own

Flow. Perfect active DDA gives the player the chance to make choices to affect the games

rate of difficulty, and gives the player these choices very frequently. Through discrete, active

DDA, designers often produce concepts that allow games to mimic continuous, passive DDA

without involving background algorithms. This implementation allows the player to feel a

sense of control over the product and the designer to have full control over the game design

without having otherwise necessary knowledge of more complex algorithms.

The second category of DDA is Passive DDA, which usually falls into one type of pattern.

In this paper, this pattern will be referred to as the Data Cycle. In games, the Data Cycle

is a method of data analysis in which raw data is gathered on a player while they play, the

data is processed in the background, the processed data is used to affect something in the

game, and the cycle repeats. This style of DDA is chosen such that the players are never

aware of the game adjusting itself, and thus are allowed to become fully immersed in a game

without having to guide the Flow of the game. In the context of this project, the Data

Cycle will be used as a tool to bridge between PCG and DDA. Through the Data Cycle

methodology, DDA will gather in-game data and use it to adjust content generation.

This project will also use the Rubber Band AI [5] methodology to structure the effect of the

Data Cycle adjustment. Rubber Band AI is an Artificially Intelligent difficulty adjustment

technique which, in concept, virtually holds the player and the player’s AI opponents together

by a rubber band as the player interacts with the game. If the player pulls in any direction,

the ‘rubber band’ makes sure that the opponents are pulled in the same direction. Rubber

Band AI is most often associated with racing games or sports games, in which there are

AI opponents that the player is facing off against. In these games, the ‘rubber banding’ is

implemented by dynamically updating the ability of the AI so that the player constantly feels

as though they are only just beating the AI. In this project, the DDA method is designed to

use Rubber Band AI as the platform for the Data Cycle. The player will ‘pull’ the rubber

7

band until they find an equilibrium that satisfies their style of play. This way, there are no

discrete adjustments according to pre-defined categories of player types.

In many games that use passive DDA there is often an alpha phase of the game development

cycle, in which the game is play-tested and the difficulty is manually adjusted to be just

right. From this, the game holds a baseline player style to which all players of the game

are then compared to. Although this does require an extra round or two of play-testing

and fiddling with the game design, it is a simple and effective solution to the concept of

simultaneous player data analysis and game adjustment. Through this initial modeling, the

Data Cycle and Rubber Band AI methods have a way to compare the current player’s game

data. This method of finding an initial non-preferential model was used in this project in

order to expedite the development process.

The form of DDA that will be used in this project is influenced by [5], [3], and [7]. The

DDA created for this project is a passive DDA built on the Data Cycle and Rubber Band

AI concepts with an initial round of play-testing to create a model of pre-established data

to which players can be compared. This project will build on the current research of DDA

by incorporating all of these concepts to influence PCG.

1.4 Unity

A Game Engine is an Integrated Development Environment built for game developers and

designers that allows them to create games and release them to many different platforms.

There are many free game engines that exist for beginner to advanced game designers. It is

also possible for game developers to build their own game engine as they build their game.

This process, however, usually takes a much longer time than was available to build a game

and run tests on it for this project. It would have also been over-kill to design an entire

8

game engine around a game as simple as the one created for this project.

Unity is a cross-platform game engine developed by Unity Technologies and initially re-

leased in June of 2005. Unity is primarily used to develop video games and simulations for

computers, consoles and mobile devices. It supports both 2-dimensional and 3-dimensional

game development and is written in C#. Unity is known for its ease of use and quick devel-

opment cycle, but there are many big titles that have come out of Unity, including, Cuphead

(StudioMDHR 2017) (Figure 1.2), Hollow Knight (Team Cherry 2017), and Kerbal Space

Program (Squad 2015).

Figure 1.2: Cuphead Artwork

The game developed for this project was built in Unity. All assets and scripts were created or

written by the researchers for the purpose of exploring the concepts laid out in this chapter

with the exception of a single object model. The game was developed for and built in the

macOS environment and not for any other platform.

9

1.5 Previous Research

In [8], Ricardo Lopes, Elmar Eisemann, and Rafael Bidarra write on topics that are extremely

relevant to this project. Their research was published in March of 2017 and focuses on

adaptivity in procedurally generated environments. This project is mainly inspired by the

algorithms created for the player modeling and generation adaption in [8] because they were

able to demonstrate that PCG could be used in a more player-centric manner. There are a

couple of different issues with their paper that this project attempts to reconcile. First, the

authors of that project decided to categorize players into only two categories. This project

attempts to show that, even though the accuracy of the model is inversely proportional

to the number of categories, using only two categories over simplifies the data and can

cause underfitting. Second, the authors built the game to use non-dynamic player modeling,

meaning that modeling does not occur while the player interacts with the game, only in

between play-sessions. This project attempts to show that through dynamic modeling and

adaption in PCG, player engagement is much more likely to stay at a high, constant level.

10

Chapter 2

Methods

2.1 Design of game

Overview

This section details the overall design of the game. The user experience, the user interface,

and the general game play of the project are inspired by the infinite-runner and stunt-driver

genres. Most of the following game elements designed independently of the test, which will

be detailed in the next chapter. The following sub-sections describe how the PCG and DDA

were implemented into Unity.

Player Controls

The player controls a car. While the car has all four wheels on the ground, the player can

accelerate forwards or backwards, turn left or right, hand-brake (for tight turns), and jump.

While the car is in the air, the player can manipulate the car’s rotation. The player can

11

control car’s pitch, causing the car to flip forward or backward, and control the car’s yaw,

causing the car to spin. These in-air controls are how the player performs tricks. A full

rotation around either the car’s Z or X axis gives extra points to the player. These are all

of the actions available to the player to advance through the game.

This control setup is very simple for two reasons. First, using a simple control layout

means that there is less time spent by testers learning the game and more time playing at a

competent level. This way more data that reliably reflects the growth of the player’s skill at

the game can be extracted in a shorter period of time. Second, simple controls means that

there are fewer dimensions of data that need to be tracked. The more dimensions of data

that need to be watched, the more difficult it is to evaluate the data, and the more difficult

it is to implement the DDA Data Cycle. Thus, in order to hit the Data Cycle’s qualifiers of

low dimensionality and high reliability in the data extracted from play sessions, the game is

designed with simple, easy to learn controls that still allow for the player’s skill and personal

style to be represented through the gameplay.

The concept that the controls are simple and easy to learn was reflected by the testers of

the game. Testers were asked in questionnaires after playing the game to rate on a scale

from zero to ten how easily they learned the controls. The mean of the answers is 7.78 and

the standard deviation is 2.44 meaning that many more testers found the controls easy than

difficult.

Interactables

There are twelve InObs, and thirteen unique objects overall that can be generated by the

game. For an object to be an InOb means that it is designed specifically for the player to

interact with and gain points from it. There are two ways of gaining points from object

interactions, performing tricks and collecting Orbs, which are small spherical objects placed

12

Figure 2.1: Ramp Interactable (Level 1 Example)

in the Prefabs of each InOb. The non-InOb that can be generated is a spike strip and is

only designed to ‘kill’ the player, by removing all InObs from the currently generated game

area and reseting the players position back to (0, 0, 0).

There are four classes of InObs called Types. Each Type allows for a different kind of

interaction with the player. The Ramp Types (Figure 2.1) are self-explanatory, they are

ramps up which the player can drive to collect Orbs and, if their car is going fast enough,

get enough time in the air to perform tricks. The Speed Boost Types (Figure 2.2) can be

described as gates through which the player can drive. When a player drives through a

Speed Boost, they collect Orbs and their car is given a big boost of forward speed. The

Destructible Wall Types (Figure 2.3) are large walls that the player can drive through,

knocking them into pieces and collecting Orbs in return. The Spike Pit Types (Figure 2.4)

are similar the the spike strip except that they are smaller and have Orbs floating above

them. The player can jump over the Spike Pit Types to collect the Orbs and, if they have

time, perform a trick.

Each Type contains three subclasses, called Levels. Each Level is more difficult and re-

13

Figure 2.2: Speed Interactable (Level 2 Example)

warding than the previous. The different Levels are used in combination with the Rubber

Band design of the DDA to control game Flow. The Type and Level categorization of these

different InObs is designed to aid exploration of PCG and DDA.

In all modern games in which players must use quick reactions and pattern memorizing in

order to progress, gain points, and avoid death/damage, there must be classes of object or

enemies that are generated as obstacles for the player to overcome. This is essential to game

Flow because the balance of keeping a player engaged involves always simultaneously giving

the player new, challenging obstacles while also allowing them to learn, understand, and

overcome previous challenges that they have seen multiple times before. By creating these

classes and subclasses of InObs to which the player must learn how to react, the influence

that controlling the game’s Flow has on a player’s ability to learn these classes and subclasses

can be isolated and captured. In order to procedurally generate anything, there must be

a Prefab version waiting in the game assets to be called upon. In order to fully explore

modern PCG techniques this project was tested using multiple generation styles until the

finding best style for the game’s variation of Prefab assets. When using DDA, there must

14

Figure 2.3: Wall Interactable (Level 1 Example)

be predetermined classes that the generation can guide to control game Flow, or else there

is no order added to the randomness.

Procedural Content Generation

The main interaction between the game and the player takes place on an infinitely generating

plane. This infinite plane is actually an Object Pool of thirty, two-dimensional Unity game

objects. An Object Pool is space saving game development technique for controlling the

states of duplicate objects. To save space, the Z position of these objects is simply updated

based on the position of the player, a more detailed description of how this is done will be

given in the next subsection. As the player drives forward, road tiles are continuously and

infinitely generated in front of them. The player can also drive the opposite direction, but

they will be shown a large ‘WRONG WAY’ sign if they do and no InObs will be generated

for them. There are also invisible walls that prevent the player from driving too far to the

left or right. With each road tile that gets generated as the player drives forwards, there is

a chance that a game object will be generated as well.

15

Figure 2.4: Spike Interactable (Level 0 Example)

The game is designed to use DDA techniques to influence the different Type’s rate of gener-

ation. The game is also designed to use PCG techniques to create these objects and control

their placement on their respective tile. The objects are always randomly generated some

distance from the center of their tile. The PCG is controlled by a seed value, which is always

the epoch time at the beginning of the game. This way, no two play throughs are the same

and players are able to drive forward infinitely.

This style of generation means that the player must make decisions about which objects to

interact with as they drive by steering themselves towards the chosen object. Thus, the player

is explicitly and implicitly taught to only drive forward and must purposefully steer towards

specific InObs to gain points. Through this, modern PCG techniques can be explored in a

controlled system. The specific areas of code that relate to PCG will be explained in detail

later.

16

Engagement, Skill, and Preference Values

Each time a player interacts with a game object, there are four main statistics that are

recorded. There are thirty-five variables that are also tracked by scripts in the background

during play. The four main statistics recorded for each interaction are raw values that relate

to how well the player interacted with the object. For each interaction these values track

the number of frames spent in the air, the number of total points gained, the speed upon

exiting the interaction, and the number of tricks performed while in the air. The total

points gained and the number of tricks performed together also implicitly record a fifth raw

statistic that is the number of points gained from Orb collection. Recording the raw number

of Orbs collected does not tell us much considering there are different classes of Orbs that give

different amounts of points. The raw data that comes from every interaction allows the Data

Cycle to create a model of the player. This is done by processing the data and comparing the

player’s performance between different Types and Levels to generate Preference Values,

which represent the player’s ability or preference towards specific Types and Levels. Using

Preference Values the rates of generation can be influenced, creating the DDA Data Cycle.

Dynamic Difficulty Adjustment

The DDA used in this project is designed around the Data Cycle concept. In order to

understand the Preference Values of the current player, the Data Cycle uses pre-determined

values that represent a non-preferential style of play. This allows the Data Cycle to influence

the rate of Type and Level generation towards the preferences of the player. For example, If

the player shows that they are capable of interacting with higher Level InObs, the DDA will

guide generation towards InObs of higher Levels. The Data Cycle outputs generation rates

at a speed of once per interaction, which is the highest possible iteration frequency available

based on the frequency of raw data input. This means that every time the player interacts

17

with an object, the raw data is used to update the Preference Values, which are stored and

compared to influence rates of generation, and then the cycle repeats.

There are design elements in the game that are used intentionally to aid in the implemen-

tation, execution, and evaluation of the Data Cycle in this project. Each Type is designed

to create a different kind of interaction with the player. These interactions, however, are

not all built to be equally enjoyable. The Spike Type, for example, is designed to have

a high ratio of danger to point gain built into the kind of interaction that the player can

have with it. This is done simply by not giving the player the opportunity to gain more

points through tricks as the Levels increase. Instead, only the difficulty increases, thereby

implicitly guiding the preference of the player towards other Types. Thus, if testers express

post-play that they did not enjoy interacting with the Spike Type and this same attitude

is expressed through the Preference Values, then the player model and the Data Cycle are

correctly evaluating the preferences of players based on how they interact with the game. A

simple PCG technique was chosen to aid in the implementation and execution of my DDA

Data Cycle. Having only four classes of object and three subclasses allowed the system to

both have a manageable amount of data to process with each interaction and a solid number

of different categories to move the player around in. With each class or subclass added, the

amount of data processed through the Data Cycle grows proportionally, and the less precise

the Preference Values become. Having too few classes, however, forces players into categories

that are not necessarily representative.

Player Goal

There is an inherent assumption made in the implementation of the PCG and the DDA that

the main goal of the player is to gain points at the highest rate possible. This assumption

is a valid one to make because of two reasons, the in-game User Interface (UI) and the

18

available player inputs.

The UI is designed to implicitly guide the player towards this goal of points and speed. The

Figure 2.5: User Interface

UI is composed of four text objects (Figure 2.5), not including the ‘WRONG WAY’ sign

that is displayed when the player drives in the incorrect direction. Each UI object is used to

control the player goal. Arguably the most important UI component, is the points monitor

(Figure 2.5.1). The points monitor updates and displays the player’s score in large, colorful

numbers in the top left corner of the screen. There is also an animation (Figure 2.5.3),

which occurs each time a player gains points, displaying a number showing exactly how

many points the player gained for the action they performed (collecting Orbs or performing

tricks). The score monitor and the score animation are both used to tell the player that

the most important part of the game is gaining points. There is a UI element displayed at

the top-center section of the screen that displays how much time is left (Figure 2.5.2). This

timer starts at 10 minutes and counts down to zero. This simple design tells the player that

19

they must try to do what they are doing as quickly as possible before the time runs out.

The last UI element is a speedometer (Figure 2.5.4). The speedometer is simply a ring that

both grows radially and changes color according to the speed of the player. This tells the

player that it is very important to the game to drive fast. Thus the design of the in-game

UI is geared specifically to teach the player that they must gain points as quickly as possible

while driving as fast as possible and they only have a limited amount of time to do so.

Although the background design concepts of the game, PCG and DDA, are often linked to

genres like roguelikes, roguelites, and RPGs, the actual player-game interaction is closer to

a platformer or an infinite-runner. In roguelikes, for example, the player is often faced with

numerous, multifaceted decisions at each turn of the game. In infinite runners, however, the

decisions that the player must make at each moment are simple and instinctual. The inputs

in this game are limited to driving, jumping, and flipping in the air. The game is fast-paced

and reaction-based. There is no available game play for anything other than driving quickly

and trying to collecting points.

Through the design of the in-game UI and the available user actions, the player is implicitly

controlled to interact with the game in only one kind of way. Because of this, the Preference

Values used in the Data Cycle, and therefore, the DDA in general, can make the assumption

that higher points, air time, numbers of tricks, etc. relate directly to a player’s higher

preference for the Type and Level of the object with which they interacted.

20

2.2 Code Overview

Layer Architecture

There were twenty-seven C# scripts written and used for this project. These scripts can be

sorted into one of three categories. These categories are designed in a framework composed

of layers (Figure 2.6). Higher layers are more responsible for collecting data and displaying

information back to the player. Lower layers are more responsible for data processing. Each

script in these layers relies on scripts in the layers above and below in order to function.

Figure 2.6: Layer Architecture

21

Thirteen of the scripts can be categorized as Cosmetic. The Cosmetic category is the

top layer. These scripts were mainly written to enhance the user experience and display

information to the user about their current state of play. Some of the scripts in the Cosmetic

layer also contain small, essential design elements for the game.

Eight of the scripts can be categorized as Interactive. The Interactive category is the middle

layer. These scripts are designed to control aspects of the game that the player interacts

with directly, and transfer the essential data to the Cosmetic layer in order to be displayed.

Examples of this include the Car Controller script or the UI Controller script. While these

types of scripts are vital to the user experience, they still must be built on top of a lower,

more essential layer in order to be fully functional.

This last category is called the Background category and it is the lowest level layer. There

are six scripts in this layer, all of these scripts control the game from the background.

Examples of scripts in this category are the PCG controller, the DDA controller, and the

Car Stabilizer scripts. The six scripts in this category also send information to the Interactive

layer in order to control interactive elements of the game or to be sent further up to the

Cosmetic layer for displaying information directly to the player. All three layers have their

required jobs, and each works in tandem with the others to complete the jobs.

Descriptions of Essential Scripts

The most essential script is MasterController.cs. This script is in the Background layer

because there is no direct interaction between the player and this script. The goal of this

script is to continuously update and organize all valuable and trackable information about

the player’s interaction with InObs. This script is also responsible for calculating Preference

Values for all of the Types and Levels, which is the most important step in the DDA Data

Cycle. An even more in depth evaluation of the Preference Value calculation can be found

22

in the next subsection.

The GenerateInfiniteFull.cs script is responsible for generating the entire environment that

the player can interact with. This script is in the Background category because, although it

takes into account the player’s Preference Values, there is no direct player-script interaction.

There are two integral things that this script is in charge of. While tracking the motion of the

player, this script constantly recycles the road tile Object Pool to keep the player centered in

the game area. The script is also responsible for choosing and generating the InObs for the

player so that the game can be played. InOb generation is decided in a top-down manner.

The Preference Values for each Type and Level are stacked, then two random numbers are

generated and wherever these random values fall decides which object is generated next. A

more detailed description of the choosing process is described in the next subsection.

The script that is used to log and store values related to testing is called StatJSON.cs. This

script is also in the Background category because the player does not interact with it directly.

StatJSON.cs is used to gather all of the recorded data taken from the tests and log them for

later data analysis. This script creates four files at the end of each play session. The ID file

contains unique identifiers for the test including a timestamp, the generation seed, the date,

and an indicator of whether the test used adaptive generation or not. The Timed Data file

contains snapshots of the game, which are taken every 30 seconds. These snapshots contain

data that changes over time, like Preference Values, total points, and total tricks performed.

The Final Data file is a final evaluation of player statistics when the test is over. This file

contains information about the statistics that the player tallied up over the course of play.

The last file it creates is the Interactions file. This file is a log of each time the player touched

an InOb and the four main statistics of the interaction that were recorded.

An extremely important script for player engagement is the CarController.cs script. This

script is in the Interactive category. This is because, although it is also involved in essential

data collection, it takes direct inputs from the player and translates them to car movements

23

in the game. This script is what allows the player to accelerate, reverse, handbrake, jump,

and rotate in the air. It is also responsible for gathering data on the state of the player in

each frame and sending that data to MasterController.cs. Data taken from this script is

used to evaluate Preference Values, engagement, and skill progression throughout the game.

Lastly there are two scripts that work together to control a large part of the game play.

InteractController.cs and OrbController.cs are both responsible for tracking player-object

interaction and notifying the MasterController.cs script of points gained by the player. These

scripts are in the Interactive category. InteractController.cs is attached to each InOb and

OrbController.cs is attached to each Orb in the game. Both scripts keep track of the Type

and Level of the Prefab they are attached to. These scripts send this unique identifying in-

formation to MasterController.cs for interaction evaluation when the player’s collider enters

their collider.

2.3 DDA Data Cycle

Overview

As described in a previous subsections, Preference Value calculation is an essential step in

the DDA Data Cycle. These values represent the game’s current evaluation of the user’s

style of play and are used to control the rates of generation for each InOb. The following is

a description of the Data Cycle process that occurs after each interaction.

Types And Levels

As stated earlier, there are four Type categories: Ramp, Speed Boost, Destructible Wall,

and Spike Pit. The MasterController.cs script contains classes that are abstract references

24

Figure 2.7: DDA Data Cycle

to each of these Types. These four classes hold the information about every player-object

interaction with that specific Type category.

The InOb Type categories each have three sub-categories called Levels. The Level categories

are L0, L1, and L2. MasterController.cs also contains an abstract class referencing each of

these Levels as well, where all four Type classes in the script each have three Level subclasses

that store information about every InOb interaction for that specific Type-Level. Type-

Levels is a keyword that will reference one of the twelve different combinations of Type

and Level categories. As an example, if the player interacts with an object of Type-Level

Destructible Wall L0, the L0 subclass of the Destructible Wall class records, processes, and

stores the information about that interaction. In this example, the Destructible Wall class

also processes the gathered information for it’s own Preference Value calculations.

25

ExpectedValues

ExpectedValues is a three dimensional matrix (four by three by four). The first dimension

relates to the four different Type classes. The second dimension relates to the three Level

classes for each Type. The third dimension relates to the four different kinds of statistics that

are recorded for each Type-Level. The values for the ExpectedValues matrix were calculated

in the initial rounds of the game development. The ExpectedValues were filled in by recording

multiple test play throughs, then analyzing the resulting values to find the statistics that

most directly represented a simple, low-risk, and, most importantly, non-preferential style

of play. From this analysis the ExpectedValues could now be used to inform the player

modeling step of the Data Cycle in the DDA.

The ExpectedValue matrix is static, meaning that all players will be compared to the same

values. For Preference Value calculation the most important factor in analyzing the player’s

statistics is that the expected raw statistics are programmed to represent the same type of

play across all Type-Levels. Because of this, the skill level (magnitude of points gained, tricks

performed, etc.) represented by the ExpectedValues does not matter, only the relationship

between the values for different Type-Levels matters. Preference will be shown through the

difference in the magnitude of recorded statistics between one Type-Level and another.

As a final note, because the ExpectedValue matrix is designed to represent non-preferential

play, setting the values uniformly would not be effective. This is because the expected raw

value of frames spent in the air after going off of a Ramp L2 should inherently be different

than that of frames in the air after going through an Destructible Wall L2.

In summary, the different physical elements of the InObs produce different player-object

interactions and thus the only way to evaluate the player’s preferences through these inter-

actions is to code the ExpectedValues to be non-preferential. Thus, the only way to correctly

understand the play style of a player at any given time is by comparing their performance

26

to a non-preferential player model.

StatSum

The StatSum matrix is the intermediate step between the raw statistical values recorded

from InOb interactions and the final Preference Values. The StatSum matrix is a four by

three nested array in which the first dimension correlates to the four Types and the second

dimension correlates to the three Levels for each Type. This matrix is designed to store

the processed information about the statistics for each Type-Level. The calculation of each

entry of the StatSum matrix is the first player modeling step in the DDA Data Cycle.

The entries are calculated by comparing raw data recorded through play to the raw values in

the ExpectedValue matrix. Equation 2.1 shows the process for calculating StatSum values.

This equation is used at the start of the game and after each interaction. If the number

of interactions is zero and the average mean value of the statistics is equal to that of the

ExpectedValue for each Type-Level, the resulting StatSum value is going to be equal to

the sum of the weights for each kind of statistic. This means that at the beginning of the

game, since there have not been any interactions, the player is believed to have a completely

non-preferential play style. Because of this, each StatSum value will be completely uniform

until the first interaction.

n = numberofstats− 1

CT = currentType

CL = currentType-Level

value =
n∑

i=0

CL.averageStats[i]

ExpectedV alue[CL.ID,CT.ID, i]
×Weights[i] +

√
Cl.numInteractions

(2.1)

27

Below are the weights for each type of statistic and their total sum.

Frames in the air = 0.4

Number of tricks = 0.5

Speed upon exiting = 0.4

Number of points gained = 0.8f

Thus based on the value of the weights plugged into the above equation, each spot in the

StatSum matrix before any interactions have taken place is equal to 2.1.

(1× 0.4 + 0) + (1× 0.5 + 0) + (1× 0.4 + 0) + (1× 0.8 + 0) = 2.1

There are two arrays and one floating point value that store valuable elements of information

related to the StatSum matrix. The calculations for each of these is shown in equation 2.2.

TotalSum is the sum of all StatSum values. This number is used to compare Preference

Values between different Types. The TypeSum array is an array of size four in which each

index relates to one of the Types. The value of each index in the TypeSum array is the sum

of the StatSum values of the Levels for each index’s related Type (the sum of each column

in the StatSum matrix). These are used to compare Preference Values between Levels of the

same Type. Third, the LevelSum array is an array of size three in which each index relates

to one of the three Levels. The value of each index is equal to the sum of the StatSum values

of all the Types for each each index’s related Level (the sum of each row in the StatSum

matrix). The values in this array are used to compare Preference Values Types-Levels of the

same Level.

28

n = numberoftypes− 1

m = numberoftypes− 1

CL = currentType-Level

CT = currentType

value = value calculated from equation (1)

At the start of the game:

TotalSum =
n∑

level=0

m∑
type=0

StatSum[type, level]

LevelSum[level] =
n∑

level=0

StatSum[type, level]

TypeSum[type] =
m∑

type=0

StatSum[type, level]

After each interaction:

TotalSum = TotalSum + (value− StatSum[CL.ID,CT.ID])

TypeSum[CT.ID] = TypeSum[CT.ID] + (value− StatSum[CL.ID,CT.ID])

LevelSum[CL.ID] = LevelSum[CL.ID] + (value− StatSum[CL.ID,CT.ID])

(2.2)

Preference Value

Preference Values are essential to the DDA Data Cycle because they are used to control

generation. The calculation of the Preference Values are based on the relative magnitude of

the StatSum values. Each Type class in the MasterController.cs script has its own preference

variable that keeps track of the player’s preference for that Type. Each Type-Level in the

MasterController.cs script also contains its own preference variable. This results in sixteen

different Preference Values that are re-calculated after each interaction. The creation of the

Preference Values is the final player modeling step in the DDA Data Cycle.

29

The Preference Values for Types and Type-Levels are created in different ways. For Types,

they are calculated by comparing the magnitude of the TypeSum for that Type to the

TotalSum variable. This way, all Types are evaluated by how well the player performed with

that Type in comparison to the rest of the Types (each column is compared to the whole

matrix). The Type-Level preferences are calculated by comparing their relative StatSum

values to the LevelSum value for their Level (each square is compared to the whole row in

which it lies).

The pseudo-top-down fashion of this design for calculating Preference Values is chosen for

a very specific reason. A straight forward top-down fashion would pick the most preferred

Type, then the most preferred Level in that Type. The problem with this design is that

it would always lean towards the higher Level items. Through analysis of game play it

was found that as a player becomes more comfortable with the controls and they begin to

take more risks, not only will get higher points than the ExpectedValues, but this difference

in value grows exponentially as the Level of objects goes up, resulting in StatSum values

that always lean toward higher Levels, even if that is not reflected in their gameplay. By

comparing Type-Levels to other Type-Levels across Levels instead of through Types, the

algorithm is able to remove this bias in the StatSum matrix. The methods for the calculation

of Preference Values are shown in equation 2.3.

Types = List of the four Type classes in MasterController.cs

Levels = List in each Type class of its three Level subclasses in MasterController.cs

Types[type].P reference = 100× TypeSum[type]

TotalSum

Types[type].Levels[level].P reference = 100× StatSum[type, level]

LevelSums[level]

(2.3)

30

Procedural Content Generation

The generation of the terrain and the InObs are both handled by the GenerateInfiniteFull.cs

script. The first check in the main update loop of the script is done on the position of

the player. If the player is found to have traveled further than the size of a single road

tile, then the code for recycling the terrain and generating a new InObs is called. The

GenerateInfiniteFull.cs script is responsible for the third and fourth steps of the DDA Data

Cycle.

As stated earlier, the infinite road is a simple Object Pool. When the player moves forward

the amount of distance equal to the size of one tile, the list of road tiles is treated as a stack.

The tile at the top of the list is popped, the position of the tile is updated, and the tile is

added back to the end of the list. This way, the list of road tiles mimics the real-space line

up of the road tiles and the player is kept on the tile in the center of the stack throughout

gameplay. If the player is moving backwards through the game, the list of road tiles is treated

as a queue. The same recycling process is undergone, only with LIFO recycling instead of

FIFO. This method allows the player to drive forward forever and is common practice in

infinitely generated games because of its low computational cost.

The generation of the InObs is more complicated. The GenerateInfiniteFull.cs creates objects

at the same frequency that terrain tiles are recycled, but since the InObs are all created from

different prefab models, they cannot be treated as an Object Pool and cannot be recycled

in the same way. The list of InObs is treated as a FIFO queue. Whenever a new object is

created, the object at the top of the queue is destroyed and the new object is placed at the

end of the queue.

GenerateInfiniteFull.cs uses the Preference Values calculated by the MasterController.cs

script to pick the Type and Level of the next InOb. GenerateInfiniteFull.cs holds a cumu-

lative list of Type preferences and the Type-Level preferences, which are updated after each

31

interaction. The processes of updating these two cumulative Preference Value lists is the

third step of the DDA Data Cycle. The process of picking the next object is the fourth step

in the DDA Data Cycle.

The fourth step in the DDA Data Cycle begins with generating two random numbers. Both

of these numbers are generated between zero and the total cumulative value of the Type

and the Type-Level preferences respectively. These random numbers define which object

will be created. The randomly generated numbers are compared to their respective lists of

cumulative values. The first value that is larger than or equal to the random number tells

us which Type or Type-Level to generate. This method of deciding Types and Type-Levels

is done in a top-down manner. This means that the Type is picked first, then the Level is

picked out of that Type. This is how the game uses random number generation to control

the generation of content.

At the beginning of the game, since each Type has a uniform Preference Value of twenty

five, a random number would be generated between zero and the cumulative value of each

Type Preference, one-hundred. In this example let us assume the random number generated

is thirty-seven. This would result in the game picking the second value in the cumulative list

of Preference Values, fifty. The Type picked will be the Type with the static ID that relates

to the index of that Preference Value, which is one. Thus, the InOb generated would have

a Type of Speed Boost.

This method of InOb selection is also done in order to allow some noise into the rate of object

generation. Generating objects simply by picking the Type and Level with the largest Pref-

erence Value would create a positive feedback loop where the same InOb would constantly be

generated and the game would not have the data to evaluate any other type of player-object

interaction. By adding some randomness into the generation, the user’s gameplay style can

organize the random noise into a coherent pattern based on Type and Level preferences,

which can be understood by the game and later recreated through recorded data.

32

Chapter 3

Experiment

3.1 Design of Experiment

In order to test the ability of the DDA in PCG, experiments were run on the finished product

of the game that was detailed in the previous chapter. Participants were recruited to run

these experiments, under the guidance and approval of the IRB. In order to isolate relevant

data, participants were split into two groups, a control group and an experimental group.

The control group was given a version of the game that uses complete random generation,

while the experimental group received the full experience of the DDA.

The experiment was designed as follows: Each participant is given a packet with three items,

the consent form, the instructions and controls sheet, and the questionnaire. Regardless of

group, each participant plays for a maximum of 40 minutes. Each tester must first play a

tutorial, which is a maximum of ten minutes long. In the tutorial, players are shown each of

the twelve InObs, one-by-one. Players are given the chance to learn the controls by driving

through, on, and over these InObs, starting with all of the L0 InObs and finishing with all

of the L2 InObs. After this, players are placed in a game-area that contains two copies of

33

each InOb to interact with. They are allowed to spend the rest of the tutorial time playing

in this area or they can move on to the next section if they feel ready to do so.

The next section of the experiment is where the two groups differ. The participants in group

A, the experimental group, are first given two rounds of the adaptive version of the game, then

a final round of the non-adaptive version. Group B participants, the control group, simply

receive three rounds of non-adaptive gameplay. Each round of gameplay is ten minutes long.

The game only generates L0 InObs until the player has gained two-hundred points overall,

in order to give the game time to evaluate the player’s Preference Values. Finally, after the

participant goes through all three rounds of the experimental phase of the test, she is then

asked to fill out the questionnaire form.

During each of the three rounds that both groups play, there are many different variables

that are tracking the player’s Preference Values, skill level, and engagement level. These

variables are recorded and logged to text files for later extraction. During the non-adaptive

versions of the game, the game moves through each step of the Data Cycle except for the

generation adjustment phase. This way data is calculated and saved the same way no matter

which group the participant is in.

The test is designed to isolate the data that is be most relevant to this paper. These

experiments are attempting to extract data that relates to how adaptivity can affect a

player’s skill progression through a game. The participants were each given the chance to

learn the game in separate environments, then were placed in the same environment for one

final round. The data analyzed in this experiment is taken only from the final play through.

If this paper’s hypothesis is correct, participants in the experimental group should show signs

of having learned the game better than those in the control group through higher point gain

and more positive interactions with InObs. Through capturing snapshots of the participant’s

progression through the game, the way each participant interacted with the game can be

recreated and compared based on the group in which the participant was placed.

34

3.2 Experiment Results

Skill Progression and Engagement

Overall fourteen people participated in the experiment, seven in the experimental group

and seven in the control group. Because there is only a limited amount of data that can be

extracted from this number of participants, a statistical technique called Bootstrapping was

used to artificially expand the data set. Bootstrapping is a technique used on small sample

sizes in statistical analysis. The idea behind Bootstrapping is that in order to increase the

number of values for analysis, new values can be created by finding the difference between

two values randomly selected from each group. By repeating this process many times over,

the data available for analysis can be expanded. The results of this technique can be used

to show bias in the data. For example, if the experimental group all gained much higher

points on average, then the histogram of the Bootstrapped data would clearly show a mean

larger than zero and a variance that kept a majority of the data above zero. Analysis of

participant’s skill progression and engagement both relied heavily on this technique.

In this project, all Bootstrapped data is created by randomly selecting values from the

experimental group and subtracting them by random values from the control group. This

means that if, for example, the mean value of some Bootstrapped data is positive, the

experimental group had higher values on average for that data type.

The first data type analyzed was the statistic that most directly relates to skill and engage-

ment, the total number of points gained. This variable is intertwined with both engagement

and skill. Players with low skill level but high engagement can produce similar statistics

to players with high skill level but low engagement. Because both skill and engagement

are related to this variable, analyzing it can show, very generally, how players in the differ-

ent groups performed. To analyze this statistic, a histogram of the Bootstrapped data was

35

created (Figure 3.1).

Figure 3.1: Total Points Histogram

The mean of this data is -104.209, while the standard deviation is 987.389. As can be seen by

this information and through Figure 3.1, the values span almost exactly over zero. This tells

us that this game’s implementation of the DDA Data Cycle did not make any perceivable

difference in the growth in skill or the engagement level of the participants.

Total points represents a combination of skill and engagement level and thus only gives a

surface level glance into the meaning behind the data extracted from this experiment. In

order to confirm what the above data shows, it is important to analyze variables that can

compare individually either the skill or engagement level of participants.

To do this, the next type of data analyzed is the number of deaths. The number of deaths

overall is a variable that can tell us specifically the skill level of the player. This statistic is

updated each time the player runs into a spike object with the body of their car. Most often

36

this occurs when the player does not correctly time a jump over the Spike Type or when

the player goes off a ramp and lands on a spike further down the play area. Players with

higher skill levels will be able to anticipate these two dangers and find techniques to die as

infrequently as possible. Players of lower skill will die at a higher rate according to their skill

level regardless of how engaged they are in the game. The Bootstrapping technique was also

used on the number of deaths, and the histogram of the results are displayed in Figure 3.2.

Figure 3.2: Number of Deaths Histogram

The mean of Bootstrapped data is -3.294 and the standard deviation is 4.426. This mean

shows that (based on an artificial population created from the experiment’s sample data)

the control group died more times on average than the experimental group. Unfortunately,

the percentage of data that is negative is too small to call this data conclusive in any way.

The results of this analysis can only point to the fact that the adaptive version of the game

had minimal to no affect on the skill of the player during the third play session.

37

The third and final piece of data analyzed, is the number of flips performed by the players.

This variable directly relates to the participant’s level of engagement. A flip is a very simple

and easily performed interaction with the game. Performing a flip correctly requires little

skill, the player must simply control the pitch of the car while in the air to complete a full

rotation. This does require a level of engagement, however, because players must still make

a conscious decision to perform a flip each time they interact with an object. Since all tricks

are calculated based on the length of time that a player turns the car on a specific axis, the

player cannot accidentally perform tricks. Tricks can only occur through active engagement

with the controls. Thus, if data shows that player A performed tricks more often than player

B, it is fair to assume that player A was more willing to take action to gain higher points

with each interaction and thus was more engaged in the game. Again, since there were only

Figure 3.3: Number of Flips Histogram

seven participants in both groups, the Bootstrapping technique was used to perform the

analysis of the data that related to flips performed. The histogram that resulted from the

38

Bootstrapping can be found in Figure 3.3.

The mean of this Bootstrapped data is 8.339 and the standard deviation is 44.586. This

data tells the same story that the other two variables told. While the mean is slightly

on the positive side, meaning that the experimental group performed more flips than the

control group on average, almost all of the data is evenly split into negative and positive.

This means the implementation of the DDA had no conclusive effect on the outcome of the

player’s overall engagement level.

These three data types best represent the skill and engagement levels of participants, and

they all tell us that the implementation of this game brought an inconclusive answer to this

paper’s hypothesis.

Data Cycle Accuracy

The data gathered from the experiments shows no signs of the game having affected player

skill or engagement level through the DDA Data Cycle. This section focuses on the steps in

the Data Cycle that were and were not responsible for this inconclusive data. The Data Cycle

was split into four steps, gather raw data, create current model of player, adjust generation

rates, and generate new content.

The accuracy of the first step, data gathering, is difficult to call into question in the context

of this project. Since both the creation of the game space and collection of game data are

performed simultaneously within the same simulation, the accuracy of the data cannot be

inaccurate. Since the data must be accurate, the accuracy of the player model must be

analyzed. To do this, an in depth analysis of the Preference Values was performed.

In order to evaluate the accuracy of the Preference Value calculation, each participant was

asked in the questionnaire (after completing forty minutes of game play) to rank the four

39

Types in order of preference. The final Preference Values were also extracted from each

participant’s third play session and the two data evaluations were compared. Data from the

questionnaire is in list format while the in-game Preference Values are integer values. To

bring these two different types of data into a comparable format, a simple scoring system

was used for the questionnaire answers. The final results of this questionnaire data were:

Speed: 47, Ramp: 43, Wall: 35, Spike: 17. The Preference Values from each participant

were summed and the results of this evaluation were: Speed: 4063, Ramp: 3834, Wall: 3325,

Spike: 2603. The magnitude of each of these values is only relevant for comparisons within

the evaluations. Thus, Figure 3.4 shows the normalized versions of these two scoring system.

Figure 3.4: Preference Evaluation

The ability of the Data Cycle’s Preference Values to match the participant’s preferences is

very accurate. With only seven participant’s data, the normalized in-game preferences scores

above are, on average, within 96.50% of the normalized questionnaire preference scores. With

40

more participants and more ExpectedValue adjustments the data from the two different

sources would most likely converge on each other. Because of this evaluation, it can be

concluded that the first two steps of the DDA Data Cycle are not responsible for the game’s

inability to significantly affect player skill level or engagement.

The GenerateInfiniteFull.cs script is responsible for both of the last two steps of the DDA

Data Cycle, adjusting generation rates and generating new content. The generation adjust-

ment is most likely not the reason behind the failure of the DDA Data Cycle. This project’s

design of the generation rate adjustment is directly inspired by the Rubber Band AI system.

The ‘rubber banding’ used in this project can be understood by thinking of the player being

placed in the center of four pegs (representing the four Types) with a rubber band surround-

ing all of the pegs. If the player moves in the direction of one of the pegs, the rubber band

is stretched in the direction of that Type, and thus the other three Types are concurrently

pulled away. This system is a very common style of adjusting game variables and, since it is

directly influenced by the player model, which we know to be accurate, it is not because of

this step that the Data Cycle failed to affect the player’s engagement.

This leaves just the final step of the cycle, the generation of new content. This is most likely

where the Data Cycle failed. It is probable that the process of generating random numbers

and applying them to the generation rates added too much noise into the generation of

objects, which threw off the rest of the Data Cycle. The content itself is also likely to have

added to the problem. While the game was able to pick which Types players preferred the

most with a high level of accuracy, the Types may not have been different enough to affect

player engagement. The difficulty adjustment was also not handled as well as was hoped

by the different Levels within each Type. As the player became more comfortable with the

controls, the level of difficulty did not rise high enough to meet the player’s skill through

increasingly difficult InObs.

41

Chapter 4

Conclusion

4.1 Summary of Thesis Achievements

The purpose of this paper was to explore PCG, DDA, and how their combination could

be used to affect player engagement. The data produced by the in-game variable tracking

showed that this project’s use of adjusting generation rates in PCG had inconclusive effects

on player skill and engagement. This project was able to discover, however, the powerful

accuracy of the passive DDA Data Cycle when implementing a Rubber Band AI method, as

well as the methodology of creating and optimizing a PCG system.

Game Flow is something that must always be considered in game design and development,

this project highlighted something that game creators can use in order to increase quality of

life for both themselves and their consumers. Passive DDA is possible through modern AI

techniques and will most likely be seen more often in the world of game production.

42

4.2 Applications

The applications of the Data Cycle detailed in this paper could be reapplied to a wide range of

different fields. There are many genres of game that could benefit from the implementation

of the DDA Data Cycle. Advertising systems could also utilize a version of the player

modeling and rate adjustment steps of the Data Cycle to narrow down a user’s most likely

next purchase by profiling their preferences across multiple different kinds of products. The

system is designed to make guesses based on multiple, continuous variable tracking. There

are many places in which the application of this system could be beneficial.

4.3 Future Work

With a larger participants pool, more conclusive evidence could have been gathered on the

effects of DDA in PCG.

There are also a few parts of the game that could use redesigning. The game Flow is not

perfectly handled through the DDA. Removing the driving mechanics could allow the game

to control the players speed independently, thus isolating a very important aspect of the

game’s difficulty that the player currently has full control over. Another game design tweak

would be to increase the number of Levels per Type. Designing the game with even higher

levels of difficulty and reward would allow very skilled players to be held in Flow while

playing.

Further, the player modeling step of the Data Cycle could be optimized. The system could

be reworked so that it is not necessary to compare players to the ExpectedValue matrix. This

would be ideal in the advancement of the system because as games go through development

cycles, the expected play of users is likely to change with the game.

43

Bibliography

[1] Jenova Chen. “Flow in Games”. ACM (2007).

[2] Travis Fort. “Controlling Randomness: Using Procedural Generation to Influence Player

Uncertainty in Video Games”. HIM (2015).

[3] Alexander Zook and Mark O. Riedl. “A Temporal Data-Driven Player Model for Dynamic

Difficulty Adjustment”. AIIDE (2012).

[4] Penelope Sweetser and Peta Wyeth. “GameFlow: a model for evaluating player enjoy-

ment in games”. Comput. Entertain. (2005).

[5] Olana Missura and Thomas Gartner. “Player Modeling for Intelligent Difficulty Adjust-

ment”. Springer-Verlag, Berlin, Heidelberg (2009).

[6] Georgios N. Yannakakis, Pieter Spronck, Daniele Loiacono, and Elisabeth Andre. “Player

Modeling”. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2013).

[7] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis. “What is

Procedural Content Generation? Mario on the Borderline”. ACM (2011).

[8] Ricardo Lopes, Elmar Eisemann, Rafael Bidarra. “Gameplay semantics for the adaptive

generation of game worlds”. IEEE (2017).

44

Appendix

Questionnaire

Researcher’s Name: Charles Calder
Project Title: Adaptivity in Procedurally Generated Environments
Advisor’s Name: Robert McGrail

If you have any questions, please ask the researcher at any time.

WRITE GAME SEED HERE:
Do you enjoy playing video games?

On average, how many hours per week do you spend playing video games?

Of that time, how many hours do you spend playing games that rely on reaction-time based skill?
(e.g. bullet-hell, First-Person-Shooter, platformer, etc.)

Do you prefer games designed for keyboard/mouse or controller?

On a scale from 0 - 10, evaluate the following statements. 0 means completely disagree, 10 means
completely agree.

The game was frustrating

0 1 2 3 4 5 6 7 8 9 10

The game was difficult

0 1 2 3 4 5 6 7 8 9 10

The game was boring

0 1 2 3 4 5 6 7 8 9 10

The game was repetitive

45

0 1 2 3 4 5 6 7 8 9 10

I got used to the controls easily

0 1 2 3 4 5 6 7 8 9 10

Below, please list the InObs from the game [Ramp, Speed Boost, Destructible Wall, Spike Pit] in
order of preference. First is the most prefered, last is the least prefered.

46

Game Controls and Instructions Sheet

Researcher’s Name: Charles Calder
Project Title: Adaptivity in Procedurally Generated Environments
Advisor’s Name: Robert McGrail

Controls:

Action Keyboard Xbox Controller

In Game

Accelerate W Right Trigger
Reverse/Brake S Left Trigger
Turn Right D Right Analog Stick (Right)
Turn Left A Right Analog Stick (Left)
Jump Space A Button
Drift Right Option/Alt X Button
Reset Position (If Stuck) Delete Y Button
Flip Forward In Air Up Arrow Key Right Analog Stick (Up)
Flip Backward In Air Down Arrow Key Right Analog Stick (Down)
Turn Clockwise In Air Right Arrow Key Right Analog Stick (Right)
Turn Counterclockwise In Air Left Arrow Key Right Analog Stick (Left)

UI Controls

Up, Down, Left, Right Arrow Keys Right Analog Stick
Enter Return A Button

GROUP A GROUP B

Please read all Instructions before beginning the test. If you have questions at any time, ask
whomever is running the test for help.

Instructions:

• Find a computer that no one is using and turn it on.

• Go to the Applications folder and open the Adapt PCG application.

• In the opening screen you will see four buttons, Tutorial, Start A, Start B, and Quit. Check
the top of this page to see which group you are in (A or B).

• Prepare yourself by looking over the controls sheet. When you are ready, press the Tutorial
button.

• You will have a maximum of 10 minutes for the tutorial. During this time, you have the
opportunity to learn about the mechanics of the game and get used to the controls. When
the timer runs out, you will be returned to the main menu. When ready press the button
the relates to your group (A or B).

• Part one will be a 10 minute round. When the timer runs out, you will be prompted to start
part two. Press Yes to continue.

47

• Part two will also be a 10 minutes round. When the timer runs out, you will be prompted
to start part three. Press Yes to continue.

• Part three is the last part of the test and will also last for 10 minutes. When the timer
runs out, a number will be displayed on the screen. Please copy this number onto your
questionnaire exactly.

• You may now quit the game and fill out your questionnaire. When you are finished please
bring the questionnaire to whomever is running the test.

48

Consent Form

Researcher’s Name: Charles Calder
Project Title: Adaptivity in Procedurally Generated Environments
Advisor’s Name: Robert McGrail

I am a student at Bard College and I am conducting research for my Senior Project. I am studying
the effect of an adaptive algorithm on a player’s overall engagement and skill progression while
playing a game designed around PCG.

During this study, you will be asked to play the game I have designed, then answer some questions
about the game. The play time and questionnaire are designed to last approximately 35 minutes.
The testing will take place in an empty classroom at Bard College.

There are no direct benefits to the participant.

All participants will be entered into a lottery, the winner of which will receive a 50 dollar gift card
to Taste Budds in Red Hook.

Potential risks of participation include minor eye or finger strain from playing a videogame for 30
minutes. If at any point you feel uncomfortable, please tell me and we can stop the test and/or
you can skip the questionnaire. You will still be entered into the lottery for the gift card.

All the information you provide will be confidential. You will be asked to copy a number from the
screen onto your questionnaire in order to have unique identifiers. I will keep my data secure in a
password-protected file on my personal computer. Only my faculty adviser and I will have access
to this information.

Participant’s Agreement

I understand the purpose of this research. My participation in this test is voluntary. If I wish to
stop the test for any reason, I may do so without having to give an explanation.

The researcher has reviewed the individual and social benefits and risks of this project with me. I
am aware the information will be used in a Senior Project that will be publicly accessible at the
Stevenson Library of Bard College in Annandale, New York. I have the right to review, comment
on and withdraw information prior to January 1st, 2017.

The information gathered in this study is confidential with respect to my personal identity. I
understand that complete confidentiality cannot be guaranteed, since the researcher may be required
to surrender data if served with a court order.

The final project resulting from this study will be permanently and publicly available in the Bard
College library and online through the DigitalCommons.

If I have questions about this study, I can contact the researcher at cc9431@bard.edu or the faculty
adviser at mcgrail@bard.edu. If I have questions about my rights as a research participant, I can
contact the chair of Bard’s Institutional Review Board at irb@bard.edu.

49

I have been offered a copy of this consent form to keep for myself.

I am at least 18 years of age and I consent to participate in today’s test.

Participant’s signature

Date

Participant’s printed name

Researcher’s signature

If you would like to be included in the lottery for the 50 dollar Taste Budds gift card, please print
your email below. I will only use this information to randomly pick the winner and inform them
of their winning status. You do not have to fill this out if you do not wish to give away this
information. It will not affect the research in any way.

Participant’s Email

50

	Dynamic Difficulty Adjustment in Procedural Content Generation
	Recommended Citation

	tmp.1512933040.pdf.2RO4Z

