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Abstract 

Climate change has recently shifted focus to adaptation and mitigation strategies in coffee 

production. Shade coffee systems, already widely recognized for their contribution to 

biodiversity and soil conservation, are now drawing attention for their role in carbon storage. 

Researchers have generally assumed that high carbon storage must come at the expense of 

reduced crop yields, implying that farmers must choose between sustainability and profit. This 

study uses field inventories of 70 farms in Jinotega, Nicaragua to estimate this tradeoff in 

smallholder shade coffee systems. Field inventories were used to develop three typologies 

representing different shade management strategies in use in the region. SExI-FS modeling of a 

subsample of nine farms then illustrates potential carbon storage improvements through 

scenarios for altered shade management. Interviews with farmers and cooperative officials 

revealed attitudes toward potential management strategies, priorities and constraints regarding 

shade management, and interest in a potential carbon payment program. Sample farms supported 

aboveground carbon stocks ranging from 2.16 to 180.39 Mg/ha, with average aboveground 

carbon storage of 26.16 Mg/ha. When soil organic carbon at a depth of 0-50 cm was included, 

estimated carbon stocks rose to an average of 160.10 Mg/ha. SExI-FS modeling demonstrated 

that carbon storage is not strongly linked to shade cover, suggesting that carbon stocks can be 

enhanced without sacrificing crop yields. Management scenarios added an average of 13.92 

MgC/ha with no increase in estimated shade. Interview participants held a wide range of 

priorities regarding shade management, but all indicated that they would like to change their 

shade management if they had the financial and technical resources available. Thirteen of 14 

participants stated that they would be interested in participating in a carbon payment program if 

one were to be developed. My results suggest that while carbon stocks in Jinotega’s smallholder 

shade coffee systems are significant, they can be enhanced through changes in shade 

management. The additional carbon stocks would also attract higher carbon payments, leading to 

improved coffee cooperative revenues. With access to greater financial resources, these 

cooperatives could provide long-term credit and hire technicians to facilitate changes in shade 

management to improve carbon storage in smallholder shade coffee systems. 
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Executive Summary 

 
Coffee is Nicaragua’s largest agriculture export, annually contributing $375 million to the 

national economy and creating jobs for 42% of the nation’s rural labor force (Flores, Bratescu, 

Martinez, Oviedo, & Acosta, 2002; World Bank, 2015). In addition to its economic importance, 

coffee production is an emerging topic of environmental concern (Perfecto, Rice, Greenberg, & 

van der Voort, 1996; Jha et al., 2014). Coffee landscapes throughout Latin America fall within a 

range of tropical forest systems, which are recognized for their role in habitat preservation and 

carbon storage (Brown & Lugo, 1982; UN-REDD, 2010). Tropical forests are major biodiversity 

hotspots, and also support an estimated 50% of global carbon stocks (Brown & Lugo, 1982; UN-

REDD, 2010). However, as production expands and intensifies, it threatens to cause large-scale 

deforestation and degradation of tropical forest systems (UN-REDD, 2010). 

 As the environmental threat grows, so does the market for more sustainably produced 

coffee (Bacon, 2010). This demand has led to the establishment of several major certification 

initiatives (Ponte, 2004). Farmers who meet certification criteria, which govern a range of 

environmental and social aspects of production, are paid a higher per-pound price for their crop 

to compensate them for their efforts (Gobbi, 2000; Ponte, 2004). These initiatives rely on 

international consumers’ willingness to pay a price premium for specialty coffee (Philpott, 

Birchier, Rice & Greenberg, 2007; Ponte, 2004; Rijsbergen, Elbers, Ruben, & Njuguna, 2016). 

Although the specialty market is rapidly expanding, smallholders face significant barriers to 

participation (Bacon, 2015; Donovan, 2011; Philpott et al., 2007; Valkila & Nygren, 2010). 

When farmers have access to certified markets, studies show that these price premiums can 

produce improvements in smallholder livelihoods (Bacon, 2005; 2015; Donovan & Poole, 2014; 

Valkila & Nygren, 2010). Certification efforts have been much less successful, however, in 
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creating significant improvements in environmental quality (Blackman & Rivera, 2011; Hardt et 

al., 2005). 

 A second mechanism has developed to address environmental sustainability more 

directly: payment for ecosystem services (PES) programs provide cash incentives to land users 

who provide defined ecological services to the larger population (Cole, 2010). In practice, 

compensated services have included water purification, habitat for endangered species, and 

carbon storage (Gómez-Baggethun, de Groot, Lomes, & Montes, 2009). The United Nations 

Reducing Emissions through Deforestation and Degradation (REDD+) program provides a 

formal framework for international carbon payment initiatives (UN-REDD, 2010). Current 

REDD+ projects are focused on maintaining and enhancing forest carbon stocks rather than 

agroforestry systems (ASB, 2011). Shade coffee landscapes are not equivalent to undisturbed 

forest in either habitat value or carbon stocks, causing many in the conservation community to 

question direct compensation for coffee farmers (Bhagwat, Willis, Birks, & Whittaker, 2008; 

Hairiah, Sitompul, van Noordwijk & Palm, 2001). However, coffee systems with dense and 

diverse canopy cover are increasingly being recognized for their importance in global climate 

mitigation, leading to their increasing consideration for integration into future REDD+ or other 

PES programs (ASB, 2011; Hairiah et al., 2001; Jha et al., 2014; Perfecto et al., 1996). This 

study quantifies carbon storage in smallholder shade coffee systems in Jinotega, Nicaragua and 

explores the potential for enhancing carbon stocks without significantly affecting coffee yields 

and integrating these farms into a carbon payment scheme. 
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Methods and results 

Research methods proceed in four stages. The first stage utilizes field inventories to estimate 

carbon storage in living biomass and soil organic matter in 70 farm plots. Within 1000 m2 plots, 

we recorded the species, diameter at breast height (DBH), and approximate height of all shade 

trees. Diameter at 10 cm at height of coffee plants was measured in a 100 m2 subplot. Soil 

samples collected at five points within the larger plot were analyzed for organic matter content. I 

then used allometric equations representing documented relationships between DBH or coffee 

stem diameter and total biomass to estimate the living plant biomass in each plot. Assuming that 

carbon accounts for 50% of biomass, I found that plots supported an average of 26.16 MgC/ha in 

aboveground living biomass. Including soil carbon, plots store 160.10 MgC/ha. 

 The second stage uses the k-means clustering algorithm to assign sample plots to three 

clusters representing similar shade communities. While the literature has identified five general 

typologies for shade coffee production, all farms in the present sample fall into the category of 

commercial polyculture (Moguel & Toledo, 1999). To explore differences within this category, I 

created clusters representing subtypes in which shade canopy is dominated by Musa (banana) 

plants (n=28), by nitrogen-fixing Inga trees (n=25), or by diverse shade (n=17). The Musa-

dominated cluster was significantly lower in biodiversity than other clusters, but there were no 

significant differences in carbon storage due to large variation within each cluster. 

 In the third stage, I selected three farms from each cluster for detailed inventory, 

including geospatial mapping, and model generation. I then modeled scenarios for improving 

carbon storage in each cluster. For Clusters A (Musa-dominated) and B (Inga-dominated) I used 

the constraint that shade should not be increased above 50%, the level at which yields begin to 

decline (Soto-Pinto, Perfecto, Castillo-Hernandez, & Caballero-Nietoc, 2000). Farms in Cluster 
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C (diverse shade) already supported shade above 60%, so for these farms I maintained average 

shade at existing levels. For Scenario 1, I modeled replacing half of Musa with Inga trees in 

Cluster A. Scenario 2 modeled adding timber trees (Juglans olanchana) to Cluster B. Scenario 3 

modeled altering diverse farms from Cluster C to meet the strict ecological standards of 

Smithsonian Bird-friendly certification. The resulting improvements in carbon storage were 6.17 

Mg/ha in Cluster A, 26.45 Mg/ha in Cluster B, and 9.15 Mg/ha in Cluster C.  

 The fourth stage used stakeholder interviews to explore priorities and constraints in shade 

management. Coffee farmers (n=7) and cooperative officials (n=7) discussed a wide range of 

perceived benefits provided by shade trees; farmers tended to emphasize farm-level benefits such 

as improved growing conditions for coffee plants, while cooperative officials were more likely to 

mention broader ecosystem services provided by shade trees. All farmers interviewed stated that 

they were interested in altering their shade management, often to incorporate more diverse 

species, but felt that they lack the financial or technical resources necessary to make the change. 

Cooperative officials indicated that technical assistance to farmers is among the services they 

would like to provide to their members, but that they do not have the financial means to hire 

technicians. Thirteen of 14 interview participants stated that they were interested in participating 

in a carbon-focused PES program if one were to be developed. 

 

Policy recommendations and conclusion 

The results of this study suggest that farms store a significant amount of carbon, and that carbon 

storage could be meaningfully improved with minimal impact on coffee yields. Further, 

stakeholders are willing to make the necessary changes in shade management if they are 

provided with financing. This leads to the recommendation that a carbon payment program 
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should be initiated to compensate shade coffee farmers in the Jinotega region for the climate 

mitigation service provided by the agroforestry systems they manage. 

 Lessons from previous PES schemes in Nicaragua and around the world suggest that the 

voluntary market is the most appropriate arena for sale of carbon credits developed from this 

program. Under this model, coffee cooperatives should take advantage of established 

relationships with international investors to sell carbon credits as offsets to private buyers, such 

as businesses looking to maintain a “green” image. Utilizing existing cooperative infrastructure 

will reduce investment risk by providing a framework with demonstrated success in uniting 

smallholders in working toward a common goal. Cooperatives may provide technical support 

and reduce the cost of assessing and monitoring carbon stocks.  

Organizations are also an ideal recipient of group-level payments on the part of the 

farmers they represent, which would lower transaction costs and increase the value of carbon 

credit sales for participants. Cooperatives should put this additional income toward hiring 

technicians and providing long-term credit for smallholders who are interested in altering their 

shade management but do not have the financial means to do so. These two policies would 

significantly reduce farmers’ perceived barriers to improving carbon storage and increase the 

efficacy of a carbon payment program. The third barrier to improving carbon storage through 

shade management lies not in farmers’ perceptions, but in a general lack of awareness 

surrounding the issue of climate change. Although farmers recognized that climate change was 

negatively affecting their livelihoods, they had never received education about the connection 

between climate change and carbon as a greenhouse gas. Cooperatives should therefore dedicate 

a portion of proceeds to creating and operating workshops focused on helping farmers to 

understand the direct impact of their shade management choices on the future impacts of climate 
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change in the region. This will increase stakeholder engagement in efforts to enhance carbon 

stocks in shade coffee systems. 

I further recommend that a portion of carbon payments be directed to participating 

farmers as cash or in-kind payments at the discretion of each cooperative. In this way, carbon 

payments can serve as a tool for improving smallholder livelihoods in addition to increasing 

provision of ecosystem services. Cash payments for ecosystem services are controversial, but the 

literature suggests that this strategy can be successful in reducing poverty while preserving or 

improving ecosystem quality (Bulte, Lipper, Stringer, & Zilberman, 2008; Wunder, 2007; 2008). 

Food for work (FFW) programs represent a potential alternative strategy in which cooperatives 

use carbon payment funds to buy supplies of food, and households experiencing seasonal hunger 

receive this food as payment for labor in community infrastructure projects (Holden, Barret, & 

Hagos, 2006). These two potential policy choices would not only improve rural quality of life in 

the Jinotega region, but also reduce household reliance on low-carbon fruit trees, therefore 

creating increased opportunities to plant timber or other shade species that store comparatively 

high quantities of carbon. 

For farmers interested in improving carbon storage in their coffee parcels, I recommend 

providing a variety of strategies for practical alterations in shade management. Scenarios 

modeled in this study demonstrated that there are at least three strategies to add biomass carbon 

without increasing shade. Farmers have a wide range of baseline shade communities and a 

similarly wide range of priorities for determining which shade species to plant. Shade trees are a 

major investment, and a prescriptive approach for carbon improvement that does not incorporate 

each farmer’s individual situation is not likely to be successful in the long term. Future studies 
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should address the impact of additional strategies for altering shade to allow program developers 

to provide farmers with as many options as possible. 
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1.0 Introduction 
 

 

Tropical forests represent a significant yet vulnerable concentration of valuable ecosystem 

services (Costanza et al., 1997). These ecosystems have been estimated to contain nearly half of 

global carbon stocks, and are also recognized as biodiversity hotspots supporting unknown 

numbers of species (Brown & Lugo, 1982; UN-REDD, 2010). High altitude regions of tropical 

forests also provide ideal growing conditions for commercial production of coffee (DaMatta, 

Ronchi, Maestri, & Barros, 2007; Perfecto et al., 1996). As global coffee consumption increases, 

so too does consumer interest in protecting the rich ecosystems that produce the crop through 

promoting socially and environmentally responsible growing practices (Bacon, 2010; Flores, 

Bratescu, Martinez, Oviedo, & Acosta, 2002; Osorio, 2002). Agroforestry, covering a variety of 

methods through which trees are incorporated into agricultural landscapes, is a prevailing 

strategy for achieving the goal of sustainability in coffee production (ASB, 2011). Coffee farms 

with a dense and diverse shade canopy have the potential to provide high-quality wildlife habitat, 

sequester large quantities of carbon, and require lower rates of agrochemical application (Staver, 

Guharay, Monterroso & Muschler, 2001).  

When humans use forests for agricultural production, degradation is all but inevitable: 

conversion of tropical forest land is responsible for 17% of annual anthropogenic greenhouse gas 

emissions1 (IPCC, 2007). Agroforestry techniques could help to reduce this impact (ASB, 2011). 

Shade coffee can store up to 213.8 tons of carbon per hectare in plant biomass, leaf litter, and 

soil organic matter (Soto-Pinto, Anzueto, Mendoza, Ferrer, & Jong, 2010) This is significantly 

less than the carbon storage potential of intact tropical forests, which sequester carbon pools 

                                                           
1 By comparison, the entire transportation sector accounts for only 13% of anthropogenic emissions (IPCC, 2007). 
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ranging from 242 to over 350 tons per hectare, but represents major improvement from clearcut 

agricultural land, which stores less than 50 tons per hectare (Chave et al., 2005; Dossa, 

Fernandes, Reid, & Ezui, 2008; van Noordwijk et al., 2002). Coffee agroforestry may therefore 

be a viable strategy for protecting carbon stocks while creating sustainable rural livelihoods 

(ASB, 2011). 

Some 20 to 25 million families—about 125 million people across more than 50 

developing nations—are dependent on coffee production for more than half of their household 

income (Lewin, Giovannucci, & Varangis, 2004; Osorio, 2002). The United States spends more 

than $40 billion on coffee imports every year, but a mere 6 to 8% of the consumer price goes to 

the smallholders who produce the majority of coffee crops (Ponte, 2004; Lewin et al., 2004; 

Rijsbergen et al., 2016). Coffee consumption has increased dramatically in recent years, 

especially in the United States and Japan, and there has been a corresponding increase in 

consumer awareness of the social and environmental issues associated with coffee markets 

(Bacon, 2010; Flores et al., 2002; Osorio, 2002). This global interest has shaken the conventional 

coffee supply chain. Market demand for a more sustainable product has outpaced the 

communities’ ability to create instruments for defining and rewarding sustainability in coffee 

production (Ponte, 2004).  

Throughout these market shifts, two mechanisms have developed to promote socially and 

environmentally sustainable practices: certification that provides a price premium to farmers who 

meet certain production standards and direct payments for ecosystem services provided by 

diverse shade systems (ASB, 2011; Ponte, 2004). Coffee certification programs are international 

efforts to pay farmers a higher per-pound price for crops to make up for the additional resource 

requirements and reduced productivity of shade-grown coffee (Gobbi, 2000; Perfecto et al., 
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1996; Philpott et al., 2007). Direct payments are a second, emerging strategy for incentivizing 

shade tree maintenance (ASB, 2011). The United Nations Program for Reduced Emissions from 

Deforestation and Degradation (REDD+) offers a potential mechanism for these payments 

through placing an economic value on carbon stored in forest systems and offering cash 

incentives to conserve these carbon stocks (UN-REDD, 2010). While both mechanisms offer 

farmers more money in exchange for an environmental service, they also have shortcomings. 

Coffee certification communicates production methods through product labeling, and therefore 

relies on consumers’ awareness of and willingness to pay more for eco-friendly coffee; this can 

lead to uncertain results for farmers (Philpott et al., 2007; Ponte, 2004; Rijsbergen et al., 2016). 

Further, conservationists question the direct incorporation of heavily managed systems such as 

shade coffee farms into REDD+ because agroforestry systems are not equivalent to undisturbed 

forest in either habitat value or carbon stocks (Bhagwat et al., 2008; Hairiah et al., 2001). Yet, as 

trees located outside forest systems are increasingly recognized for their role in mitigating 

climate change, coffee systems with dense and diverse canopy cover are being considered for 

integration into future REDD+ programs (ASB, 2011; Hairiah et al., 2001; Perfecto et al., 1996).  

This thesis examines the potential for carbon storage in smallholder shade coffee systems 

in northern Nicaragua. Because a large percentage of primary forest across Nicaragua was 

removed during the twentieth century, land-sparing approaches often advocated for tropical 

regions are less viable there (Philpott & Dietsch, 2003; Westphal, 2008). In this setting, 

agroforestry represents an especially promising strategy to reduce greenhouse gas emissions. The 

research presented here investigates the potential role that complex shade coffee systems in 

Jinotega, Nicaragua play in carbon sequestration through carbon storage in aboveground plant 

biomass (AGB) and soil organic carbon (SOC) on coffee farms. Interviews with farmers and 
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cooperative officials are then used to explore attitudes and practices regarding certification and 

shade management in the region. The following chapter explores the unique history of 

Nicaragua’s coffee landscape, as well as the different certification efforts in place and the 

organizing role of coffee cooperatives in smallholder practices. Next, I discuss the ecosystem 

services afforded by shade coffee farms and methods for quantifying these services, with a focus 

on carbon storage. These chapters provide context and justification for exploring a carbon 

payment scheme as an alternative to the current market-driven strategies for incentivizing canopy 

maintenance among shade coffee farmers in the Jinotega region of Nicaragua. 

The methods chapter describes field measurements I utilized to estimate present levels of 

carbon storage and shade tree diversity. Then I describe the use of SExI-FS software to model 

potential changes in shade canopy management and the implications for the quantity of carbon 

stored. The methods chapter concludes with the approach used in interviews I conducted with 

coffee producers and cooperative officials to explore attitudes surrounding shade management, 

current certification programs, and future carbon payment initiatives. The results chapter 

summarizes shade canopy composition and carbon storage across sampled farms, and identifies 

differences across clusters and cooperatives. Finally, I present the results of the interviews 

regarding future shade management policies to increase carbon storage and openness to 

participation in a future carbon payment scheme.  The work closes with a discussion of the 

policy implications of the results. 
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2.0 Smallholder Coffee and Incentives in Nicaragua 

Coffee is Nicaragua’s largest agricultural export, contributing an annual $375 million to the 

national economy (World Bank, 2015). Flores et al. (2002) estimate that coffee production 

provides permanent employment to 70,000 people and temporary employment to 350,000 

seasonal workers each year. Approximately 42% of Nicaragua’s rural labor is in coffee 

production, nearly double the average for all of Central America (Flores et al., 2002). This places 

the economic influence of coffee farming just below livestock production, which employs an 

estimated 46% of the rural labor force2 (World Bank, 2015). However, Nicaragua’s coffee sector 

has not always created stable livelihoods for rural households (Bacon et al., 2014). Ninety-eight 

percent of Nicaragua’s approximately 48,000 coffee farms are managed by smallholders who 

farm fewer than 14 hectares (Flores et al., 2002). These smallholders are given little government 

support and have long been vulnerable to market volatility, despite their significant economic 

contribution (Bacon, 2005; 2010). Many national and international organizations have attempted 

to increase financial security and improve rural quality of life (Bacon, 2005; Westphal, 2008). 

Before exploring the current actors and structures influencing the Nicaraguan coffee sector, it is 

helpful to understand the history of the crop in the region. 

 

2.1 History and politics of coffee in Nicaragua 

Coffee was introduced to the Americas in the early eighteenth century (Perfecto et al., 1996; 

Samper, 1999). Early cultivation took place on a small scale in natural and artificial forest 

clearings (Samper, 1999). This method developed into the creation of large-scale dense, full-sun 

                                                           
2 There is likely overlap where surveyed households produce both coffee and livestock. The two sectors are of 

roughly equal economic importance and far outweigh the contribution of other crops such as sugar cane and peanuts 

(World Bank, 2015). 
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plantations surrounded by living windbreaks (Samper, 1999). By the late nineteenth century, 

however, farmers began to experiment with planting shade trees to protect coffee plants from the 

elements and adapt cultivation to a larger range of climatic conditions (Samper, 1999). Farmers 

also adopted the practice of planting coffee into the understory of existing forest patches, leaving 

the canopy intact (Moguel & Toledo, 1999). These rustic polyculture systems utilized high 

shade, supported diverse biotic communities, and provided habitat and landscape connectivity 

for tropical ecosystems (Hardt et al., 2015; Perfecto et al., 1996; Perfecto, Vandermeer, Mas, & 

Pinto, 2005). Coffee proliferated across Latin America under wide range of production intensity 

and shade diversity. The Jinotega region of Northern Nicaragua, a premontane tropical moist to 

wet forest zone, produced especially high quality beans (Khatun, Imbach, & Zamora, 2013; 

Rocha, 2001). 

Coffee management trends in Nicaragua have historically been closely linked to the 

nation’s political circumstances. Through the mid-twentieth century, coffee production was 

centralized into large-scale haciendas created by violently disenfranchising indigenous 

communities and smallholders (Bacon, 2005). The Somoza dictatorship of 1936 to 1979 

supported this consolidation of coffee lands into extensive tracts of private property owned by 

powerful political figures (O’Connor, 2005). This system gave landowners complete authority 

over crop management decisions, enabling major changes in intensity of cultivation. In the 

1950s, the influence of the Green Revolution reached coffee producers across Central America, 

inspiring a dramatic increase in the use of agrochemicals (Perfecto et al., 1996). The concurrent 

removal of shade trees promised producers higher coffee yields per unit land area (Perfecto et al., 

1996). This trend toward “modernization” gained momentum in the 1970s when producers 

observed increasing rates of a newly-introduced fungal disease known as coffee leaf rust 
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(Perfecto et al., 1996). Desire to control rust and other diseases, combined with the promise of 

increased crop yields, encouraged widespread conversion from agroforestry methods to high-

input sun farming systems (Perfecto et al., 1996).  

When the Nicaraguan people overthrew the Somoza dictatorship in 1979, the Socialist 

Sandinista regime seized the previous government’s assets, and rural land tenure reform became 

a political priority (Bacon, 2010). In the decade that followed, Sandinista agrarian reform 

affected a third of the area of Nicaragua and granted property rights3 to over 100,000 

smallholders (Bacon, 2010; Westphal, 2008). Coffee had previously been grown on a small 

number of very large farms, but through Sandinista land reforms it became an important crop for 

smallholders (Colburn, 1986; Bacon, 2010). Bacon (2010) estimated that 42% of coffee 

producers in Jinotega and the neighboring city of Matagalpa received their land titles during this 

period. Coffee landscapes that were previously consolidated into large plantations were 

converted to communal properties, and farmers were organized into operating cooperatives 

(Bacon 2010; Westphal, 2008). These cooperatives technically held property rights, but were 

overseen by government extension agents who controlled management decisions (Bacon, 2010; 

Colburn, 1986). 

In 1980, the Sandinista government launched the Comisión Nacional para la Renovación 

del Café (National Coffee Renovation Commission, CONARCA). The goal of CONARCA was 

to increase production and eradicate coffee leaf rust, but in practice it amounted to state-

sponsored slash-and-burn deforestation of coffee lands (Junta de Gobierno de Reconstrucción 

                                                           
3 Although clearly beneficial to many of the rural poor, land reform was often performed without properly 

transferring property rights to the state before redistributing the title, resulting in the majority of land transfer 

recipients never receiving formal titles (Liscow, 2013). Political corruption further undermined public trust in the 

program, and many land holdings were contested through the 1990s (Broegaard, 2005).  The land reform efforts 

notably excluded indigenous communities, who were not granted formal titles to communal land holdings 

(O’Connor, 2005). 
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Nacional, 1980; Westphal, 2008). The government undertook the renovation of 12,000 

manzanas4 (mz) of productive land through clearcutting existing plantations and replanting using 

the large, high-input full sun plantations prevalent in Brazil as a model (Colburn, 1986; 

Westphal, 2008). At the same time, government programs made agricultural credit more 

accessible and agrochemical inputs less expensive for new landholders, promoting a rapid 

conversion of agroforestry systems to sun coffee (Colburn, 1986). The result of these policies 

was the almost complete deforestation of Nicaragua’s agricultural land, a trend that continued 

until the Sandinista government lost power in the election of 19905 (Bacon, 2005; Liscow, 2013). 

The liberal government of the 1990s favored the free market, which led them to 

implement a series of legal reforms that shifted property rights from cooperatives to individuals 

(Bacon, 2010; Westphal, 2008). These laws parceled cooperative-held properties into small 

farms of less than 5 mz and granted individual land titles to the members of the cooperative 

(Bacon, 2010). Farmers were given much more autonomy in land management, which had 

previously been the purview of government extension agents (Liscow, 2013). Reforms also 

privatized the state bank and liberalized interest rates, making agricultural credit much more 

difficult for smallholders to obtain: between 1991 and 1992, there was a 72% decrease in the 

number of agricultural loans granted to coffee producers (Bacon, 2005; Broegaard, 2005). 

Credit-constrained smallholders no longer had access to the expensive agrochemicals necessary 

for high-input coffee production, and many turned back to more traditional management 

strategies (Bacon, 2005). Producers replanted shade trees in their farms, creating new canopy 

                                                           
4 The standard unit of measure for land holdings in Nicaragua, 1 manzana (mz) = 0.7 hectare (Westphal, 2008). 
5 The original Sandinista uprising did not result in a clean shift of power; civil war continued until 1990 (Liscow, 

2013). Armed conflict affected the influence of government programs such as CONARCA and patterns of 

deforestation across Nicaragua (Stevens, Campbell, Urquhart, Kramer, & Qi, 2011). In the North, conflict prevented 

major land conversion until the 1990s (Stevens et al., 2011; Zeledon & Kelly, 2009) 
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communities designed by farmers, composed of preferred species such as fruit or timber trees 

(Bacon, 2005).  

Despite this, rapid deforestation continued across Nicaragua throughout the 1990s, a 

phenomenon attributed to the eastward expansion of agricultural production from the Pacific 

region (Faris, 1999; Liscow, 2013; Zeledon & Kelly, 2009). In Jinotega, major conversion of 

forest to agricultural use occurred from 1987 to 1999 (Zeladon & Kelly, 2009). Nicaragua’s 

coffee producers increased the area under production by 28% between 1995 and 2001 to keep 

pace with increasing global demand (Flores et al., 2002). Between 1990 and 2001, Nicaragua 

reported a 93.1% increase in coffee production and a 56.9% increase in export volume, 

indicating greater production intensification during this period than any other nation in Central 

America (Varangis, Seigel, Giovannucci, & Lewin, 2003). By 2000, less than 8% of Nicaragua’s 

landscape was classified as intact forest (Potapov et al., 2017). In 2002, the coffee-producing 

area of Nicaragua covered approximately 108,300 hectares across the departments of Jinotega, 

Matagalpa, Las Segovias, Pacífico, and Boaco (Flores et al., 2002). The largest contributor, and 

the focal area of this thesis research, is Jinotega. One third of the department’s area is currently 

devoted to coffee farming, and Jinotega produces more than half of Nicaragua’s coffee harvest 

(Flores et al., 2002).  

The single-crop focus means that the region is at risk. This problem was highlighted 

during the Coffee Crisis6 at the turn of the twenty-first century, in which northern Nicaragua 

suffered enormously (Bacon, 2005). In Nicaragua, the coffee crisis was exacerbated by the 

destruction caused by Hurricane Mitch and three years of drought (Bacon, 2005). These 

                                                           
6The so-called “Coffee Crisis” was characterized by a significant decline in global coffee prices beginning in 1999 

(Bacon, 2010). In 2001, coffee prices dropped lower than they had in 30 years (Flores et al., 2002). Coffee prices 

continued to fall from $1.20/lb in 2001 to between $0.45 and $0.75/lb in 2005, causing widespread food insecurity 

and loss of employment as coffee producers worldwide could no longer meet their basic needs (Bacon, 2005; 2010). 
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economic and climatic factors combined to seriously undermine the Nicaraguan coffee sector 

(Flores et al., 2002; Varangis et al., 2003). Between 1999 and 2001, coffee exports fell by 14% 

and revenues from coffee exports fell by 50% (Varangis et al., 2003). The impact on Nicaragua’s 

coffee producers was significant: although the poverty rate in all rural households fell by 6% 

between 1998 and 2001, poverty increased by 2.4% for coffee farming families during that 

period (Flores et al., 2002).  

Coffee producers employed several strategies to reduce household-level impact. Many 

farmers dealt with the loss by converting their landholdings from traditional methods of coffee 

production to pasture for cattle ranching, effectively turning a humanitarian tragedy into an 

environmental crisis (Bacon, 2010; Philpott & Dietsch, 2003). Other farmers increased labor, as 

much as doubling their family’s labor time in an attempt to recoup sunk production costs and 

repay agricultural credits granted by cooperatives or local banks (Bacon, 2005). These farmers 

also avoided hiring seasonal laborers, leading to a 21% drop in seasonal employment across 

Central America (Bacon, 2005). Some farmers even abandoned non-coffee crops, sacrificing 

food crops for household consumption in order to dedicate all available resources to coffee 

production, leading to increased food insecurity and hunger (Bacon, 2005, 2010). The 

ramifications of the Coffee Crisis caused government agencies and NGOs to increase their focus 

on the alternative coffee market, which includes Fair Trade and eco-labeled products, as a 

potential solution to the low price of commodity coffee (Bacon, 2010).  

Certification efforts sought to decrease the abandonment and conversion of coffee farms 

across Latin America (Bacon, 2005; Philpott et al., 2007). Programs range from producer-

focused Fair Trade certification to efforts with more specific environmental standards including 

organic, Rainforest Alliance, and Smithsonian Bird-friendly. These certifications seek to provide 
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a price premium for biodiversity-friendly management of coffee farms, including agroforestry 

practices (Philpott et al., 2007; Raynolds, Murray, & Heller, 2007). Despite the intention of these 

certification programs to provide a price premium to farmers who maintain environmentally 

responsible practices, evidence for a positive impact on household income is mixed (Ponte, 

2004; Rijsbergen et al., 2016). The following sections outline the circumstances of smallholders 

and the grower cooperatives they operate in Nicaragua, as well as the outcomes of incentive 

programs designed to support the smallholder coffee sector. 

 

2.2 Crop diversification in the wake of the Coffee Crisis 

Income from coffee production is distributed unevenly throughout the year because both harvest 

and availability of temporary off-farm employment are seasonal (Bacon, 2004). This contributes 

to a lack of food security, which in turn influences coffee system management (Bacon, 2004). 

Approximately 93% of smallholders in northern Nicaragua report some degree of food 

insecurity, and over half of producers report that this insecurity is moderate or severe (Canto, 

Perez, Gonzalez, & Läderach, 2015). Nicaraguan coffee producers experience an average 3.15 

months of seasonal hunger each year (Bacon et al., 2014). Where farmers are heavily reliant on 

coffee as the sole cash crop, they are also vulnerable to shifts in commodity prices (Canto et al., 

2015; Flores et al., 2002; O’Connor, 2005). Shifts in coffee prices are difficult to predict or 

prepare for, but avoiding a monocrop focus may help farmers avoid hunger in the event of 

another Coffee Crisis (Flores et al., 2002; O’Connor, 2005; Osorio, 2002). Recognizing the 

household-level importance of diverse income streams for stability, the International Coffee 

Organization recommended crop diversification as a means of addressing the devastation of the 

Coffee Crisis (Osorio, 2002).  
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The majority of coffee producers in Jinotega also grow at least half of the food crops 

consumed by their household, including staple crops such as maize, beans, and bananas (Bacon, 

2005). Shade trees such as avocado, citrus, guava, and mango supplement household 

consumption and, rarely, household income (Bacon, 2005; Donovan, 2011). Bananas are the 

most commonly marketed of non-coffee crops, grown by 76% of smallholders and providing 

farmers with an average of $180 in additional income each year7 (Canto et al., 2015; Donovan, 

2011). During periods of seasonal hunger, families can subsist on a diet of almost exclusively 

bananas (Bacon et al., 2014). The importance of productive trees in coffee agroforestry systems 

clearly extends beyond simply affording a more beneficial climate for coffee plants. 

Coffee cooperatives and NGOs also recommend diversification as preparation for the 

shifting productivity of Nicaraguan farms as climate change affects the range of optimal coffee 

habitat (Bacon, 2014; O’Connor, 2005, Osorio, 2002). Philpott, Lin, Jha, and Brines (2008) 

suggest that more complex canopy cover can make coffee farms less vulnerable to the 

destructive impact of hurricanes. In a survey conducted by Tucker, Eakin, and Castellanos 

(2010), nearly a quarter of coffee producers identified extreme weather events as a serious 

concern. However, three times as many farmers perceived shifts in coffee markets as a threat 

(Tucker et al., 2010). This suggests that in the wake of the coffee crisis, coffee prices are the 

driving factor in influencing shade tree management. In light of this, coffee certifications that 

provide a price premium for responsibly-produced crops appear to be an appropriate starting 

point in efforts to incentivize shade in coffee systems. 

 

                                                           
7 Revenues vary widely based on banana plant density and farm size. Donovan (2011) reported a standard deviation 

of $489.06 across a sample of 292 producers. 
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2.3 Incentive programs for environmentally-responsible coffee production 

Market-based mechanisms to incentivize certain social or environmental standards have been 

developing since the mid-twentieth century, and the market is rapidly expanding: in 2012, 

specialty coffee accounted for 37% of coffee sales by volume and 50% of value in the United 

States (Bacon, 2005; Jha et al., 2014). However, the resulting programs still incorporate only a 

very small percentage of producers (Ponte, 2004). Bacon (2005) estimates that 80% of 

Nicaraguan coffee exports could hypothetically be sold in specialized markets including 

gourmet, Fair Trade, organic, shade, or other certification labels. Despite this massive potential, 

only 10-15% of Nicaraguan exports are presently sold as specialty coffee (Varangis et al., 2003). 

This gap represents potential for growth, but also highlights the limitations of certification 

programs in reaching the coffee producers they target.  

 Payments for ecosystem services (PES) programs represent an alternative to market-

based incentives. These programs are designed to create financial incentives for landowners to 

provide defined ecological services to the larger population (Cole, 2010). Monetary valuation of 

ecosystem services began in the 1960s, and the research area expanded rapidly through the 1990s 

(Gómez-Baggethun et al., 2009). Commodification of ecosystem services has since led to the 

creation of both straightforward PES initiatives and markets in which ecosystem service credits 

can be bought and sold (Gómez-Baggethun et al., 2009). The markets developed through the 

PES lens have incorporated services ranging from watershed protection, endangered species 

habitat provision, pollination services, and atmospheric sink functions for sulfur and carbon 

gases (Gómez-Baggethun et al., 2009). In the twenty-first century, policymakers are increasingly 

recognizing the importance of coffee systems in providing these ecosystem services, and the 
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benefits of incorporating shade coffee producers into future PES programs (Rosa, Kandel, & 

Dimas, 2004). 

 In PES initiatives, payments may be dispersed to individual households or to collective 

entities (Mahanty, Suich, & Tacconi, 2013). These collective recipients accept payments on the 

part of the community and put them toward creating local jobs or community infrastructure 

improvements (Mahanty et al., 2013). In practice, PES schemes have allowed for payments to be 

accepted by a collective entity and then distributed to individual participants (Mahanty et al., 

2013). This strategy generally lowers the transaction cost for the buyers (Carlson & Curran, 

2009). 

 Scherr, White, and Kaimowitz (2004, as cited in Milder, Scherr, & Bracer, 2010) 

identified four categories of buyers in PES schemes. The first is the public sector, government 

actors interested in maintaining ecosystem services for the public good. The second type consists 

of private sector actors who are legally required to pay ecosystem service providers as a means 

of mitigating their own polluting activities. The third group is voluntary private sector actors, 

which are businesses that buy ecosystem service credits to maintain an eco-friendly image, and 

NGOs and individual investors with an interest in supporting environmental quality. The fourth 

category is consumers of eco-certified products. In the case of coffee, these buyers agree to pay a 

price for the ecosystem services provided by shade coffee systems in addition to the price of the 

beans themselves (Ponte, 2004). At present, only this final category is active in the Jinotega 

region, but there has been interest on the part of public actors as well (Donovan & Poole, 2014). 

The future of coffee crop management is a priority for government agencies, NGOs, and 

local coffee cooperatives aiming to mitigate poverty, habitat loss, and climate change (Donovan, 

2011; Donovan & Poole, 2014). Since 1990, the Nicaraguan government has enacted 10 
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environmental laws and 13 decrees to promote conservation of natural resources (Suarez, 2002). 

The Nicaraguan government has demonstrated interest8 in developing a PES project for 

promoting shade coffee, and went so far as to involve coffee cooperative officials in 

informational workshops, but no national PES initiative for coffee producers has yet been 

formally implemented9 (Mendez, Bacon, Olson, Morris & Shattuck, 2010; Porras, Amrein, & 

Vorley, 2015). Further, land use designations and environmental laws are rarely and unevenly 

enforced in Nicaragua, implying that this area is not a high priority in the current policy agenda 

(Liscow, 2013). National Law 217, the General Environmental and Natural Resources Law, was 

approved in 1996, and a climate change commission was created under this directive, but the 

overall impact of the law has been minimal (Suarez, 2002). Liscow (2013) asserts that a top-

down approach to forest maintenance is not likely to be effective in Nicaragua. No specific 

legislation has been enacted to create legal infrastructure for PES programs (Porras et al., 2015; 

Suarez, 2002). A payment system to reward shade tree maintenance implemented in conjunction 

with the price premium offered by specialty markets could incentivize shade management more 

effectively than the weak existing legal framework (Jha et al., 2014; Suarez, 2002). In Jinotega, 

coffee cooperatives currently play a leading role in organizing certifications to distribute price 

premiums, and they are well positioned to take on an administration role if government agencies 

do not have the resources to do so (Bacon, 2005; 2015; Donovan, 2011; Suarez, 2002). 

The already well-developed coffee cooperative framework already in Nicaragua offers a 

potential network for facilitating carbon payments with minimal overhead. Many cooperatives 

                                                           
8 Nicaraguan interest in PES program development was likely inspired by Costa Rica, which initiated direct 

subsidies for landowners through amendments to the national forestry law in 1996. The program incorporated nearly 

315,000 ha of land, and subsidy payments of $0.60 per tree began in 2003 (Rosa et al., 2004). 
9 One NGO-led PES program has been initiated to promote reforestation of agricultural lands (Porras et al., 2015). I 

will discuss the example provided by this effort in section 2.6. 
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have experience receiving grants from international NGOs and investing those payments into 

technical or social development programs to benefit member farmers (Donovan, 2011; Bacon, 

2005). Due to constraints in monetary and human capital, cooperatives may lack the technical 

capacity, however, to accurately quantify carbon storage across participating farms (Donovan & 

Poole, 2014). In the following sections I provide background of cooperatives and current 

certification initiatives as context for the potential development of carbon payment programs.  

 

2.4 Grower cooperatives and certified coffee programs 

Though coffee cooperatives as communal property holders in Nicaragua were disbanded in the 

early 1990s, the model persists with a marketing function, filling an important role in the supply 

chain (Bacon, 2005). Independent smallholders are frequently unable to produce coffee in the 

quantities required by processors and exporters, which can lead to these smallholders being 

forced to sell to intermediary buyers at a much lower price (Donovan, 2011). Joining into local 

cooperatives allows an alternative strategy, guaranteeing producers a higher price per pound and 

allowing smallholders to reach larger international markets that would otherwise be inaccessible 

(Bacon, 2005; Ruben & Zuniga, 2011). Cooperatives vary widely in membership, from fewer 

than 100 members to over 2,000 (Donovan, 2011). Local cooperatives composed of anywhere 

from 15 to 100 households often unite under the umbrella of larger organizations for access to 

greater social and financial capital (Donovan & Poole, 2014). In a two-tier structure, small 

cooperatives associate under the umbrella of a larger organizing body that handles national and 

international marketing, processing, and credit provision (Donovan, 2011). Under this model, 

cooperative membership often represents a relatively large geographic scale, and members share 

a set of common values and a history of working toward common goals. 
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Cooperative membership influences farmers’ management decisions and provides 

resources necessary to put responsible practices into place (Bacon, 2010; Mendez, Shapiro, & 

Gilbert, 2009). Members often have greater access to technical assistance and to agricultural 

credit, allowing more intensive cultivation that leads to greater yields (Bacon, 2005; Donovan & 

Poole, 2014). Mendez et al. (2009) suggest that cooperative history and management style may 

influence the characteristics of member farms, potentially leading to different levels of 

ecosystem services across cooperative landscapes. Where cooperatives participate in certified 

coffee markets, farmers manage labor practices, plant selection, chemical application, and shade 

tree density differently from independent producers (Donovan & Poole, 2014; Ruben & Zuniga, 

2011) Presently, to support smallholders who maintain high value shade systems, coffee 

cooperatives are playing increasingly important roles in facilitating certification schemes such as 

Fair Trade and eco-labeling programs. 

 

2.4.1 Fair Trade 

Fair trade certification, which requires farmers to cooperate with a Market Access Partner, 

provides a framework for the potential implementation of carbon payments (Bacon, 2005; Fair 

Trade USA, 2014; Ponte, 2004). Fair Trade is prominent in Nicaragua, where it is administrated 

by grower cooperatives (Bacon, 2005; Donovan, 2011). After organic certification, Fair Trade 

accounts for the second highest volume of specialty coffee (Ponte, 2004; Raynolds et al., 2007). 

Program goals are primarily social: grower empowerment, inclusive participation, supply chain 

transparency, freedom from forced labor, protection of youth, and occupational health and safety 

(Fair Trade USA, 2014; Ponte, 2004). Recently, however, Fair Trade compliance criteria have 

expanded to include measures of environmental stewardship (Fair Trade USA, 2014). These new 
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measures include monitoring and promoting biodiversity, and are evaluated over a longer 

timeframe than other compliance criteria (Fair Trade USA, 2014). 

Fair Trade has been in practice since the 1980s, and the adoption and promotion of Fair 

Trade coffee by major companies such as Starbucks and Folgers helped the program achieve 

broad consumer awareness (Bacon, 2005; Raynolds et al., 2007). Higher per-pound prices 

offered and greater market access offered to producers by Fair Trade cooperatives provided 

greater income security during the coffee crisis, but the model requires cooperative membership 

and therefore excludes unassociated smallholders (Bacon, 2005; Donovan, 2011; Valkila & 

Nygren, 2010). A number of studies have investigated the impact of participation in Fair Trade 

cooperatives on farmer livelihoods, finding an overall positive effect on household savings and 

educational attainment (Bacon, 2005; Bacon, 2015; Donovan & Poole, 2014; Valkila & Nygren, 

2010).  

While there is a large body of evidence supporting a positive impact of Fair Trade, this is 

not always the case. Cooperatives are not always capable of maintaining a high price premium 

over time or delivering promised benefits to certified farmers (Rijsbergen et al., 2016). Further, 

the price premium associated with certification fluctuates with commodity coffee prices, and 

tends to decrease when the price for uncertified coffee increases (Ponte, 2004). Theoretically, the 

additional income from certification promotes sustainability indirectly by providing smallholders 

with a living wage that enables them to continue shade farming rather than converting their land 

to higher-revenue uses such as sun coffee, corn, or cattle grazing (Raynolds, Murray, & Heller, 

2007; Philpott & Dietsch, 2003). The greatest impediment Fair Trade faces in incentivizing 

agroforestry is that primary program standards govern labor standards, and environmental 
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criteria have only recently been developed (Fair Trade USA, 2014; Raynolds, Murray, & Heller, 

2007).  

Fair Trade cooperatives often hold environmental sustainability as a goal, recognizing the 

importance of healthy ecosystems in supporting human communities (Bacon, 2005; Donovan, 

2011). Cooperatives invest their additional revenue to advance social and environmental goals 

through development projects such as building latrines, improving roofing, and constructing less-

polluting coffee processing facilities (Donovan, 2011). Additional investments made possible by 

carbon payments that are not tied to commodity prices would reinforce the desirability of 

agroforestry methods and could advance community development. 

While their established roots in Nicaragua make them an attractive tool for potential 

distribution of carbon payments, Fair Trade cooperatives may not be the most appropriate 

vehicle. Fair Trade certification is not linked to any differences in quantity or diversity of shade 

trees, or in diversity of indicator animal species as compared with uncertified farms (Philpott et 

al., 2007). Since certified farms do not necessarily support more trees, it is not likely that they 

store significantly more carbon (Philpott et al., 2007). Other more recently initiated certification 

programs seek to directly address aspects of environmental integrity at the farm level. Though 

these goals also do not directly incorporate carbon storage, the high shade farms that these eco-

certification initiatives reward are likely to be strong candidates for incorporation into future 

carbon payment schemes. 

 

2.4.2 Eco-certification programs 

Eco-labeling schemes encompass a group of certifications based on environmentally sustainable 

management practices such as reduced agrochemical use and maintenance of dense and diverse 
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shade (Ponte, 2004). Organic certification, a market presence since 1967, is the most established 

eco-certification program (Ponte, 2004; Raynolds et al., 2007). Standards restrict the use of 

agrochemicals and require that producers undertake measures to conserve soil and water 

resources (Raynolds et al., 2007). However, organic standards do not include a baseline level for 

shade in participating farms; to this end, conservation NGOs have developed new certification 

efforts that implement additional requirements focused on structural diversity and habitat quality 

(Lewin et al., 2004; Ponte, 2004).  

Two programs, Rainforest Alliance and Smithsonian Institute (Bird-friendly) 

certifications, both founded in the mid-1990s, are active in promoting shade canopy maintenance 

in Central American coffee production (Lewin et al., 2004; Raynolds et al., 2008). Bird-friendly 

certification was designed to promote habitat conservation through rewarding smallholders who 

maintain structurally diverse coffee systems (Raynolds et al., 2008; Smithsonian, 2017). This 

focus resulted in the most stringent environmental standards of all major certification efforts 

(Raynolds et al., 2008). Rainforest Alliance ecological requirements are more flexible and place 

greater emphasis on social goals in addition to environmental impacts (Ponte, 2004). Certified 

farms must meet the comprehensive standard of the Sustainable Agriculture Network (SAN), 

which uses a three-tier compliance system (Rainforest Alliance, 2017; see SAN, 2017). SAN 

standards recognize a similar definition of appropriate shade in coffee systems10 as that promoted 

by Bird-friendly certification, but shade community is a third-tier criterion (SAN, 2017). 

Certified farms are required to create management plans and meet self-defined measures for 

                                                           
10 SAN defines appropriate shade in coffee systems as 40% canopy cover with a minimum of 12 species present 

(SAN, 2017). Smithsonian Bird-friendly standards require 40% canopy cover with a minimum of 10 woody species, 

with a backbone layer 12-15 meters in height accounting for roughly 60% of foliage volume (Smithsonian, 2017). 
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improvement; six years after attaining certification, farms are must meet only 50% of SAN’s 18 

different third-tier criteria (SAN, 2017). 

The impact of these certification efforts is the subject of debate (Blackman & Rivera, 

2011). Proponents point out that farms with Rainforest Alliance certification do exhibit greater 

habitat value than uncertified farms, and both types of eco-certification are associated with 

greater bird and butterfly species richness (Hardt et al., 2005; Mas & Dietsch, 2004). However, 

the direct environmental impact of certification is unclear, as critics claim that sustainable 

practices and diverse systems would exist regardless of certification (Blackman & Rivera, 2011; 

Hardt et al., 2005). Eco-certification does not appear to be a strong incentive for farmers to 

reverse unsustainable practices (Blackman & Rivera, 2011). And attaining certification is a 

demanding process even when farmers do not need to change their management practices to 

comply: farms take two to four years to achieve Rainforest Alliance certification, and farmers, or 

the cooperatives to which they belong, must pay for yearly visits from certification teams 

(Gobbi, 2000; Hardt et al., 2015). When the price premium11 for certified coffee is high, meeting 

the strict requirements of Smithsonian or Rainforest Alliance certification can lead to positive 

financial outcomes for farmers (Gobbi, 2000). However, the actual increase in farmers’ income 

is not always high enough to recoup the costs of certification (Philpott et al., 2007).  

Despite uncertain monetary impacts of the various certification schemes in which 

cooperatives participate, the proliferation of certified cooperatives across Central America 

demonstrates the flexibility of cooperative infrastructure in adapting to market demand for eco-

friendly products (Philpott et al., 2007; Ponte, 2004). In addition to paying participating farmers 

                                                           
11 Price premium varies widely, depending on certification type and conventional coffee prices (Ponte, 2004). 

Documented ranges for the per-pound price premium associated with the major eco-certifications are $0.10 to $0.80 

for organic, $0.04 to $0.20 for Rainforest Alliance, and $0.05 to $0.28 for Bird-friendly (Giovannucci, Byers, & Liu, 

2008). 
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slightly higher prices for coffee produced using environmentally-friendly practices, many 

cooperatives that participate in eco-certified coffee markets provide technical support to assist 

members in meeting cooperative goals (Donovan & Poole, 2014). Cooperative-employed 

technicians advise farmers on shade management as well as chemical application, weather 

adaptation, pruning, and other aspects of coffee production (Bacon, 2005; Donovan & Poole, 

2014; Frank, Eakin, & Lopez-Carr, 2011). Technicians are often unavailable to farmers who are 

not affiliated with these cooperatives (Donovan, 2011). Throughout the growing season, 

technicians are active in providing cooperative management with harvest estimates, soil 

assessments, and basic shade tree inventories (Donovan, 2011; Frank et al., 2011). These 

activities are limited by the low budgets many cooperatives work with, and they represent a 

potential growth area if cooperative revenues increase (Frank et al., 2011). 

Cooperatives are a strong social institution in northern Nicaragua (Bacon, 2005). These 

structures may form a basic framework useful for developing and distributing carbon-focused 

incentives, but they are not yet equipped with the legal or technical tools necessary to 

administrate such an initiative (Donovan, 2011). In the following section I explore the history 

and potential future of carbon-centered PES programs, with an emphasis on the integration of 

existing cooperative structures. 

 

2.5 Carbon markets and the future of sustainability incentives 

The United States government created the first large-scale market for atmospheric emissions 

through a 1990 amendment to the Clean Air Act (Bayon, 2004; Gómez-Baggethun et al., 2009). 

In an effort to address the problem of acid rain, this amendment created a sulfur dioxide 

emissions trading system in which polluters were issued tradable emissions permits (Bayon, 
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2004). The program’s success drew attention from policymakers around the world, who saw a 

potential application of this model to the emerging issue of climate change caused by carbon 

emissions (Bayon, 2004; Gómez-Baggethun et al., 2009). Carbon markets have their roots in the 

1997 Kyoto Protocol, in which 191 United Nations (UN) member states and the European Union 

agreed to address climate change through a global reduction in greenhouse gas emissions 

(Holloway & Giandomenico, 2009; Newell, Pizer, & Raimi, 2013). The Kyoto Protocol 

incorporated flexibility mechanisms designed to help industrialized nations meet their emissions 

reduction targets in a cost-efficient way; one of these was the Clean Development Mechanism 

(CDM), which allows developing nations to sell emission reduction credits generated through 

approved sustainable development projects (Kimura, Srinivasan, & Iyadomi, 2006).  

Although policymakers initially envisioned a unified global carbon market under the 

Kyoto framework, a number of smaller regional and national carbon markets in practice have 

developed instead (Newell et al., 2013). Small-scale CDM projects represent a major market for 

carbon: in 2011, CDM projects generated 300,000 tons of emissions credits (Newell et al., 2013). 

However, demand for these credits has fallen in subsequent years (UN-FCCC, 2016). At the 

same time, national and regional governments have initiated cap-and-trade programs such as the 

European Union Emissions Trading System, the Regional Greenhouse Gas Initiative in the 

Eastern US, and the New Zealand Emissions Trading Scheme (Newell et al., 2013). The final 

arena for trading in carbon credits is the voluntary market, representing a variety of structures 

under which individuals or businesses buy emissions reduction credits marketed by projects 

around the world (Newell et al., 2013). 

At the Bali Conference in 2007, the CDM concept of providing payments to developing 

nations for reducing carbon emissions through deforestation and degradation (REDD) was 
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formalized into the REDD Program (Clements, 2010; Holloway & Giandomenico, 2009). REDD 

became REDD+ in 2010, incorporating a focus on conserving and enhancing forest carbon stores 

(USAID, 2014). Donor nations, beginning with Denmark in 2008, Finland in 2009, and Spain in 

2010, contributed funding to initiate pilot programs in nine countries: Bolivia, the Democratic 

Republic of the Congo, Indonesia, Panama, Papua New Guinea, Paraguay, Tanzania, Vietnam, 

and Zambia (UN-REDD, 2010). The United Nations Framework Commission on Climate 

Change (UN-FCCC) established that a “forest” is an area greater than 0.5-1 hectare in area, with 

a minimum of 10-30% canopy cover and 2- to 5-meter tree height, although participating regions 

must individually define what constitutes a forest worthy of receiving payments (ASB, 2011). 

UN goals prioritize projects that create multiple benefits from REDD+ projects, including not 

only carbon storage but also indigenous rights, poverty reduction, and gender equity (USAID, 

2012). 

To examine the potential barriers to development of a carbon payment program in the 

Jinotega region, I turn to the lessons offered by an existing PES project in Nicaragua and by 

REDD+ pilot projects elsewhere in the world. The CommuniTree project managed by Canadian 

NGO Taking Root is the only reforestation project in Nicaragua financed exclusively through the 

sale of carbon offsets (Porras et al., 2015). Participating smallholders enter into a ten-year 

agreement in which they are granted financing to plant native forest species on portions of their 

farm properties and granted payments for the carbon stored by these plantings (Porras et al., 

2015). The program does not require farmers to repay loans in cash; the loan is instead deducted 

from future PES payments (Porras et al., 2015). Carbon credits are sold on the voluntary market 

by Taking Root or by independent resellers to customers including the Inter-American 

Development Bank, the corporation Tuff Gong Worldwide, and several private investors (Porras 
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et al., 2015). Between 2009 and 2014, the project gave out $152,498 in cash advances and 

$257,540 as PES (Porras et al., 2015). The CommuniTree project allows for trees to be planted in 

silvopasture12 systems, as boundary fences, or in mixed-species forest plantations (Porras et al., 

2015). The estimated net carbon benefits over a three-year project cycle are 191.9 MgC/ha, 

214.80 MgC/km, and 299.7 MgC/ha, repectively (Baker, Baumann, Gervais, & van Mossel-

Forrester, 2014). Payments over the ten-year period are delineated in each farmer’s contract; the 

2013 pricing structure guaranteed participants corresponding payments of $629.70 per hectare, 

$708.84 per km, or $983.44 per hectare (Porras et al., 2015). While these payments represent an 

increase in income for smallholders, the amount is relatively low when compared to the annual 

value of crops that could potentially be grown on this land13 (Beuchelt & Zeller, 2011). 

REDD+ pilot projects have not been any more successful in providing forest user groups 

with payments large enough to outweigh the cost of reduced forest use (Maraseni, Neupane, 

Lopez-Casero, & Cadman, 2014). This raises the question of how much money must be invested 

to make carbon payments profitable for Nicaraguan coffee farmers. Based on analysis of shade 

coffee production in Matagalpa, Nicaragua, Suarez (2002) suggested that annual payments of 

$16.10 per MgC would be required to make up for the opportunity cost of not pursuing the most 

profitable land use.14 However, payments of just $1.50 per MgC would be sufficient to maintain 

existing coffee management rather than convert to higher-input production under the current 

                                                           
12 Silvopasture refers to integrated systems of trees and forage crops for the production of timber, other tree 

products, and livestock (Klopfenstein et al, 1997). 
13 Beuchelt & Zeller (2011) documented that mean net income from coffee sales in Nicaragua in 2007 ranged from 

$489.90 per hectare for conventional to $716.10 per hectare for certified organic crops. While these numbers are 

subject to annual fluctuations, commodity prices have generally been even higher since 2007 (Jacks & Steurmer, 

2016). This clearly exceeds the roughly $60 to $100 per hectare offered by the CommuniTree PES program (Porras 

et al., 2015). 
14 Analysis performed by Suarez (2002) determined that growing chayote squash was the most profitable land use, 

leading to net present value of $2,236 per ha with carbon storage of 33.6 tC per hectare. Shade coffee farmland in 

the study had net present value of $52.27 and carbon storage of 146.8 tC per hectare. 
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land-use change scenario (Suarez, 2002). Even low-diversity15 coffee agroforestry systems 

sequester 53-57 more tons of carbon per hectare in aboveground biomass (AGB) than do sun 

coffee farms, implying that necessary payments would be roughly $80 per hectare (Jha et al., 

2014; Palm et al. 2005; Soto-Pinto et al., 2010). These payments are far outside the bounds of 

current REDD+ program development: in 2012, pilot projects in Nepal paid forest user groups 

between $2.98 and $9.23 per hectare (Maraseni et al., 2014). 

 The low market price of carbon is not the only barrier to REDD+ development. High 

institutional, monitoring, and transaction costs impede project implementation (Carlson & 

Curran, 2009; Merger, Held, Tennigkeit, & Blomley, 2012; UN-REDD, 2011). Institutional 

development, stakeholder engagement, and legal preparation activities account for 89-95% of all 

project costs (Merger et al., 2012). Ongoing institutional costs comprise another 1% of project 

expenses, and transaction costs comprise the remaining 4-10% (Merger et al., 2012). The 

majority of transaction costs stem from monitoring and verification of carbon stocks (Rendón-

Thompson et al., 2013). Cost and accuracy vary based on monitoring method (see Wertz-

Kanounnikoff & Verchot, 2008). In an assessment of 12 REDD+ projects in the Peruvian 

Amazon, Rendón-Thompson et al. (2013) estimated average transaction costs of $0.73 per 

hectare per year. The average per-hectare transaction costs decrease as project scale increases, 

since costs are spread over a larger geographic area16 (Merger et al., 2012). Monitoring 

inventories may also employ local community members rather than professional foresters, a 

                                                           
15 Assessments are based on coffee farms with 1-3 shade species (Palm et al., 2005; Soto-Pinto et al., 2010). Higher 

biodiversity is associated with higher levels of carbon storage, suggesting that more diverse shade systems would 

warrant even higher carbon payments (Wardle, Bardgett, Callaway, & Van der Putten, 2011). 
16 However, with increasing scale comes increased complexity and investment risk as projects begin to incorporate 

more diverse land users (Carlson & Curran, 2009). 



27 

 

strategy which lowers cost and improves livelihoods without a significant decrease in accuracy 

(Danielsen et al., 2011; Larrazábal, McCall, Mwampamba, & Skutsch, 2012). 

 In the previous section I have discussed the Nicaraguan context for shade coffee and 

outlined existing efforts to influence coffee management toward improving farmer livelihoods 

and advancing environmental goals. The following section explores these environmental goals in 

greater detail, beginning with the more established reasons that conservationists and 

humanitarian organizations have promoted shade coffee since the mid-1990s. I then focus on 

carbon storage in shade coffee landscapes and methods for carbon estimation to demonstrate 

both the value and the challenge of developing large-scale inventories of carbon storage in 

Nicaraguan smallholder coffee systems. 
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3.0 Services Provided by Shade Trees in Coffee Landscapes 

Coffee production today represents a range of management techniques that lead to a wide variety 

of shade cover and species richness (Perfecto et al., 1996). Rustic agroforestry systems, which 

most closely resemble intact forest, utilize high shade and support diverse biotic communities 

(Perfecto et al., 2005). Commercial full-sun coffee, on the other hand, is produced in a 

monoculture system that relies on high levels of agrochemical inputs (Perfecto et al., 2005). 

Smallholders across Central America tend to utilize traditional polyculture methods, producing 

structurally complex agroforestry systems that contribute a wide range of ecosystem services 

(Moguel & Toledo, 1999; Perfecto et al., 2005). Nicaragua’s coffee farms incorporate 

deliberately-planted functional shade such as fruit trees, timber species, or nitrogen-fixing Inga 

species (Suarez, 2002; Westphal, 2008). These farms represent a commercially-focused shade 

system, functionally inferior to intact forest but richer than open sun plantations. Canopy cover 

in this type of shade system ranges from as low as 10% to over 60% depending on the density of 

trees and execution of management techniques such as pruning (Moguel & Toledo, 1999; 

Perfecto et al., 2005).  

Shade trees are maintained in coffee farms because they are beneficial both for coffee 

management and for the broader environment. Shade coffee landscapes provide a wide range of 

ecosystem services, including reducing erosion, protecting water quality, providing wildlife 

habitat, and sequestering carbon (Albrecht & Kandji, 2003; Mendez et al., 2009; Montagnini & 

Nair 2004; Perfecto et al., 1996). In this chapter, I discuss the services provided by shade in 

coffee systems using the Common International Classification of Ecosystem Services (CICES) 

outlined in the Millennium Ecosystem Assessment (MEA, 2005). This framework divides 

ecosystem services into provisioning, cultural, and regulating and maintenance services. I expand 
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on these services, and then focus specifically on the ecosystem service of climate regulation 

through carbon sequestration. The chapter concludes with a summary of the questions and 

objectives developed from this background information that motivate the current research. 

 

3.1 Provisioning Services 

Provisioning services are the nutritional, material, and energetic outputs of the system (Haines-

Young & Potschin, 2011; MEA, 2005). These benefits are generally directly visible to coffee 

producers. Shade trees in coffee systems afford smallholders important benefits in all three 

categories of provisioning services. 

Nutritional benefits include production of food for household consumption and 

maintaining drinking water quality (Bacon et al., 2014; Cerdan, Rebolledo, Soto, Rapidel, & 

Sinclair, 2012; Jha et al., 2014). Fruit produced in diverse shade systems contributes to 

smallholders’ food security (Bacon et al., 2014). Shade coffee also protects water sources, as 

coffee is often cultivated on steep slopes high in the watershed, in areas prone to high rates of 

erosion (Perfecto et al., 1996; Varangis et al., 2003). Downstream water sources are often 

heavily impacted by sediment influx and agrochemical runoff (Rappole, King & Rivera, 2003; 

Perfecto et al., 1996). Shade trees can reduce the effects of erosion by retaining topsoil through 

root networks and production of leaf litter that forms a protective barrier over the soil, as well as 

through canopy interception of heavy rainfall (Cerdan et al., 2012; Perfecto et al., 1996).  

Shade trees also provide material benefits, including the production of timber and 

alternative crops for market (Bacon et al., 2014; Cerdan et al., 2012; Jha et el., 2014; Peeters, 

Soto-Pinto, Perales, Montoya, & Ishiki, 2003). These products provide an important source of 

additional revenue for smallholders when coffee prices are low (Beer, Muschler, Kass, & 
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Somarriba, 1998). In Southern Mexico, Peeters et al. (2003) estimated the total value of timber in 

traditional polyculture coffee systems to be over $18,000 per hectare. Farmers receive income 

from timber harvest once per cutting cycle. Sustainable harvest from forests is defined by cutting 

cycles of 25 to 60 years, but in coffee systems, timber from some species may be harvested after 

as little as eight years (Ramírez, Somarriba, Ludewigs & Ferreira, 2001; Sasaki et al., 2016). 

Bananas, the most commonly marketed secondary crop from coffee systems, are valued at 

approximately $100 per hectare per year in diverse shade systems (Suarez, 2002). 

Energetic outputs from shade coffee systems come primarily through production of 

fuelwood. In rural areas, fuelwood is important for cooking, boiling water for drinking, bathing, 

and heating the home (Rice, 2008). The common shade genus Inga is preferred for firewood, but 

many shade species are suitable for use as fuel (Peeters et al., 2003; Rice, 2008). Peeters et al. 

(2003) found that diverse shade systems in Mexico produce just as much fuelwood biomass as 

Inga-dominated systems, demonstrating that dense shade canopies provide this service regardless 

of composition. 

 

3.2 Cultural services 

Cultural services, defined as the overall recreational, spiritual, and symbolic value of the system, 

are more difficult to measure than provisioning services (Haines-Young & Potschin, 2011; MEA, 

2005). Shade coffee systems support species used in traditional medicines and handicrafts (Soto-

Pinto et al., 2000). In Peru, plants from shade coffee farms are used in some indigenous religious 

rituals (Jha et al., 2011).  

In a more abstract sense, shade coffee systems also support other cultural activities by 

providing livelihoods and promoting social identity formation. Cultural history is connected to 
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current coffee management practices (Moguel & Toledo, 1999, cited in Jha et al., 2011). Coffee 

farmers form strong connections among groups of smallholders using similar practices, and these 

social identities are strengthened through cooperative membership (Frank et al., 2011). When 

smallholders cannot support themselves through coffee farming, they may be forced to abandon 

traditional lands and livelihoods in order to migrate in search of work (Bacon, 2005; Jha et al., 

2011). Shade coffee farming therefore supports cultural connections between communities and 

their ancestral lands. 

 

3.3 Regulating and Maintenance Services 

Regulating and maintenance services comprise benefits that regulate ecosystems and maintain 

biological processes (Haines-Young & Potschin, 2011; MEA, 2005). Shade canopies in coffee 

systems regulate the on-farm ecosystem by improving the growing conditions for coffee plants, 

increasing pollinator diversity, and suppressing pest populations (Cerdan et al., 2012; Jha et al., 

2015; Siles, Armand & Vaast, 2010; Westphal, 2008). Diverse shade landscapes also regulate 

water and nutrient cycling and maintain habitat and genetic diversity (Perfecto et al., 2005; Jha et 

al., 2015). 

Both farmers and scientists recognize that shade trees improve the growing conditions for 

coffee (Cerdan et al., 2012; Siles et al., 2010; Westphal, 2008). Maintaining shade in coffee 

systems may create a more favorable microclimate for coffee flower and fruit production by 

reducing stress from high temperature and solar radiation, as well as by increasing relative 

humidity (DaMatta et al., 2007; Siles et al., 2010). In Brazil, average ambient temperatures in 

sun plantations are 5.4°C higher than in agroforestry systems (de Souza et al., 2012). Authors 

suggest that this makes shade maintenance a key strategy in adapting coffee production to 



33 

 

climate change. The higher relative humidity under shade also increases stomatal conductance of 

CO2, leading to higher rates of photosynthesis and growth in coffee plants (see DaMatta, 2004). 

There is evidence that shade reduces annual branch dieback in coffee plants, sustaining the 

increased growth over time (DaMatta et al., 2007). Overall, the literature suggests that the 

favorable climate provided by shade in coffee systems increases crop yields and reduces annual 

fluctuations in yield (Alemu, 2015; DaMatta et al. 2007; Jha et al., 2014; Siles et al., 2010). 

In addition to improving aboveground growing conditions, trees may also improve soil 

quality through production of leaf litter and nitrogen fixation (Jha et al., 2014). Leaf litter 

produced by shade species adds organic matter to, protects, and improves soil (Haggar et al., 

2011; Siles et al., 2010). This leaf litter also increases rates of nutrient cycling in coffee systems 

(Cuenca, Aranguran, & Herrera, 1983; Dossa et al., 2008; Haggar et al., 2011). Leguminous 

shade species, such as the commonly-cultivated Inga genus, increase soil nitrogen pools (Cerdan 

et al., 2012). Babbar and Zak (1994) documented annual nitrogen mineralization rates of 14.8 g 

per m2 under Erythrina shade, compared with 11.1 g per m2 in full sun plantations.17  

Increased availability of soil nitrogen means that agroforestry systems may require lower 

rates of fertilizer application, and where diverse shade reduces the impact of pests and disease on 

coffee crops, it also reduces the need for agrochemical application and the corresponding level of 

chemical runoff in downstream water sources (Alemu, 2015; Jose, 2009; Staver et al., 2001). 

Low-input shade systems offer reduced rates of pollution and ecosystem degradation (Fernandez 

& Muschler, 1999, cited in Haggar et al., 2011). Trees in agroforestry systems also reduce 

erosion by wind and precipitation, leading to lower concentrations of particulate matter in the air 

and in downstream water sources (Ataroff & Monasterio, 1997; Jose, 2009).  

                                                           
17 However, nitrogen mineralization is significantly higher in intact forest than in either agroforestry systems or full 

sun coffee farms (de Souza et al., 2012). 
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The improved growth and production of coffee plants finds complement in high 

populations of beneficial birds, bats, and insects supported by shade trees. Larger and more 

diverse communities of pollinating insects in shade systems improve coffee yields, a service 

valued at $1.7 billion annually (Jha & Vandermeer, 2010; Ricketts, Daily, Ehrlich, & Michener, 

2004). Shade systems also provide natural pest and disease control, which improves yields up to 

14% (Kellerman, Johnson, Stercho, & Hackett, 2008; Karp et al., 2013; Staver et al., 2001; 

Williams-Guillén, Perfecto, & Vandermeer, 2008). Pest and disease control is not a universally 

accepted benefit of shade in coffee systems; isolated studies have suggested that shade trees may 

increase the impact of pests and fungal disease (Beer, 1987; López-Bravo, Virginio-Filho, & 

Avelino, 2012). However, Soto-Pinto et al. (2002) found no evidence for higher levels of insect 

pests or plant disease in shade coffee farms. Further, multiple studies indicate that the 

microclimate produced by shade trees supports populations of beneficial insects such as 

parasitoid wasps, and the structural diversity in habitat provided by multistrata shade supports 

populations of birds and bats that prey on harmful insects (Borkhataria, Collazo & Groom, 2006; 

Jha et al., 2014; Kellerman et al., 2008; Karp et al., 2013; Staver et al., 2001; Williams-Guillén et 

al., 2008).  

The most widely recognized maintenance service provided by shade coffee systems is 

habitat provision and the corresponding protection of genetic diversity. Coffee-growing areas of 

Central America overlap a major biodiversity hotspot, and coffee farming often takes place in 

especially vulnerable high altitude regions (Varangis et al., 2003). Shade coffee farms initially 

drew attention from the conservation community because the diverse canopy in some 

agroforestry systems can provide valuable habitat for bird species (Perfecto et al., 1996; Mas & 

Dietsch, 2004). Perfecto et al. (1996) reported that shade coffee farms support a wide range of 
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forest birds including both generalists and specialists, but suggested that more significantly 

altered habitats are more suitable for neotropical migrants because these species have more 

flexible habitat requirements. Shade trees also provide fruit and nectar, supporting bird 

populations when insect populations drop during the dry season (Vannini, 1994). Levels of 

canopy cover present in Nicaragua’s reforested coffee farms are not likely to provide quality 

habitat for highly sensitive species, but response to canopy removal varies widely among taxa 

(Perfecto et al., 2005; Westphal, 2008). Greenberg, Bichier, and Sterling (1997) found that Inga-

monoculture and rustic shade systems support similarly high bird populations. This implies that 

even coffee farms with less dense and varied shade support species diversity. In general, shade 

coffee farms clearly support more wildlife than deforested monocrop farms (Greenberg et al., 

1997; Perfecto et al., 2005). 

Diverse canopy structure also makes shade coffee landscapes a high-quality habitat for 

bats, small mammals, and other vertebrates (Estrada, Coates-Estrada, & Merritt, 1993; Gallina, 

Mandujano, & Gonzales-Romero, 1992; Perfecto et al., 1996). Gallina et al. (1992) reported the 

presence of small cats and otters, species which are highly vulnerable to habitat disturbance. 

Shade coffee is not ideal habitat for all taxa, but can support up to half of snake species found in 

intact forest (Sieb, 1986, as cited in Perfecto et al., 1996). Inventories comparing agroforestry 

systems to full-sun plantations further demonstrated higher populations and diversity of reptiles, 

amphibians, and insects in shade coffee (Gordon, McGill, Ibarra-Nuñez, Greenberg, & Perfecto, 

2009; Lenart, Powell, Parmerlee, Lathrop, & Smith., 1997; Jha & Vandermeer, 2010; Mas & 

Dietsch, 2004; Perfecto et al., 2005). Agroforestry systems also increase landscape connectivity, 

which is especially important for tropical species (Hardt et al., 2015; Lovejoy et al., 1986).  
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The regulating and maintenance services provided by shade in coffee systems are 

increasingly important in the context of climate change. Shifting climatic patterns are predicted 

to negatively impact coffee production by increasing average temperatures in coffee production 

regions and increase the frequency of extreme weather events (Gay, Estrada, Conde, Eakin, & 

Villers, 2006; Philpott et al., 2008). Diverse shade can address this growing threat by creating 

coffee systems that are less vulnerable to extreme weather impacts from hurricanes and 

landslides (Philpott et al., 2008; Schroth et al., 2009). Shade also regulates the microclimate for 

coffee plants, protecting them from excessive heat (DaMatta, 2004; Schroth et al., 2009). This 

service will become more necessary as global temperatures continue to rise (Gay et al., 2006; Jha 

et al., 2014; Schroth et al., 2009). Maintaining shade reduces also overall rates of deforestation, 

which may help regulate rainfall patterns and mitigate the effects of climate change through 

carbon storage in shade tree biomass (DaMatta, 2004; Faris, 1999; IPCC, 2014; Jha et al., 2014; 

Noponen et al., 2013a; Soto-Pinto et al., 2010).  

 

3.4 Climate mitigation services: Carbon sequestration in shade coffee landscapes 

Coffee can grow to over two meters in height depending on cultivar, climate, and management, 

and dense coffee plantations may store significant carbon even when shade canopy is sparse 

(ASB, 2011). As a perennial plant, coffee serves as a relatively stable carbon sink throughout the 

productive lifespan, which can last up to 50 years (ASB, 2011; DaMatta et al., 2007). However, 

shade in coffee systems dramatically improves carbon stocks. 

  In general, higher biodiversity is associated with greater levels of carbon storage (Ruiz-

Benito et al., 2014; Strassburg et al., 2010). However, the dynamics of carbon storage in coffee 

plantations may be more complex. Soto-Pinto et al. (2010) found no significant difference in 
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carbon storage between polyculture plantations and Inga monoculture shade farms in Chiapas, 

Mexico. Still, both traditional and commercial polyculture shade systems maintain significantly 

higher biomass carbon stocks than sun coffee farms (Soto-Pinto et al., 2010). In an inventory of 

heavily managed coffee systems, Noponen et al. (2013a) found that carbon stocks ranged from 

22.6 tons of carbon (MgC) per hectare for coffee systems with pruned leguminous shade trees to 

115.8 MgC per hectare under timber species. Sun coffee plots in the same study were found to 

store only 9.1 MgC per hectare (Noponen et al., 2013a). Full-sun farming methods are associated 

with higher greenhouse gas emissions; adding trees to sun farms can decrease net emissions by 

10 to 60 tons CO2 equivalents per year (Hergoualc’h, Blanchart, Skiba, Hénault, & Harmand, 

2012; Noponen et al., 2013a). 

  Carbon storage varies widely across farms even when management is similar. An 

overview of carbon storage in coffee systems is available in Table 1. Suarez (2002) reported that 

aboveground carbon in coffee plantations in Matagalpa, Nicaragua ranged from 6.4 to 41.2 MgC 

per hectare depending on management. This variability can be partially attributed to canopy tree 

age: older shade trees provide greater total carbon storage, but younger trees accumulate carbon 

at a much higher rate (Oelbermann, Voroney, & Gordon, 2004). Farmers also vary in their use of 

management practices that affect carbon stocks, such as regular pruning or harvesting shade trees 

for household uses including timber and fuelwood (Roshetko, Lasco, & Delos Angeles, 2005). 

However, even when aboveground carbon stocks are frequently rotated through pruning or 

culling or shade trees and coffee plants, consistently high levels of below-ground carbon in 

agroforestry systems help to ensure permanence of carbon storage (Soto-Pinto 

 

 

 

 



38 

 

Table 1: Literature values of carbon stocks (Mg/ha) in coffee systems. Aboveground carbon (AGC), soil 

organic carbon (SOC), and total carbon sequestration under different shade regimes. 

Location Shade typology AGC SOC Total Reference Notes 

Costa Rica Full sun 3.03   Noponen et al. 2013  

Costa Rica Full sun 8.25   Siles et al., 2010  

Brazil Full sun   11 Palm et al., 2005  

Costa Rica Full sun 11.4   
Magaña, Harmand, & 

Hergoualc’h, 2004 
 

Southwestern Togo Full sun 13.8   Dossa et al., 2008  

Jinotega, 

Nicaragua 

5 shade species,  

    age 3-4 years 
5.5   

Medina-Benavides et 

al., 2009 
Living biomass only 

Brazil Complex shade  60 Palm et al., 2005  

Matagalpa, 

Nicaragua 

Commercial 

polyculture, <5 m 
6.4 138.3 144.7 Suarez, 2002  

Costa Rica Musa sp. 11   Polzot, 2004  

Jinotega, 

Nicaragua 
Inga sp. and timber 11.1   

Medina-Benavides et 

al., 2009 
Living biomass only 

Costa Rica Erythrina poeppigiana 14.25   Noponen et al. 2013  

Costa Rica Inga sp. 14.6   Polzot, 2004  

Nicaragua 
Commercial 

polyculture 
16.98 142.78 163.88 

Connolly & Corea-Siu, 

2007 
 

Jinotega, 

Nicaragua 
Inga sp., age 8-9 years 19.9   

Medina-Benavides et 

al., 2009 
Living biomass only 

Costa Rica Inga sp. 24.1   Siles et al., 2010 
Includes leaf litter 

and root biomass 

Costa Rica Eucalyptus sp. 28.4   
Magaña, Harmand, & 

Hergoualc’h, 2004 
 

Costa Rica Diversified 31.6   Polzot, 2004  

Jinotega, 

Nicaragua 
Diversified 18.72 142.78 163.88 

Connoly-Wilson & 

Corea-Siu, 2007 

Includes leaf litter, 

herbs, and roots. 

Matagalpa, 

Nicaragua 

Commercial 

Polyculture, >10m 
41.2 125.5 166.7 Suarez, 2002  

Costa Rica 
Chloroleucon 

eurycyclum 
47.24   Noponen et al. 2013  

Chiapas, Mexico 
Polyculture shade,  

     non-organic 
55.9 135 190.9 Soto-Pinto et al., 2010  

Chiapas, Mexico Inga sp. shade, organic 62.8 151 213.8 Soto-Pinto et al., 2010  

Southwestern Togo Albizia adianthifolia. 67   Dossa et al., 2008  
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et al., 2010; Suarez, 2002; Thangata & Hildebrand, 2012).    

  Soil organic carbon (SOC) accounts for 75-97% of total carbon storage in coffee systems  

 (Suarez, 2002). There is not clear evidence that shade coffee systems store significantly more 

SOC than do sun farms, but the importance of soil as a carbon sink should not be overlooked 

(Jha et al., 2014; Noponen et al., 2013b; Tumwebaze & Byakagaba, 2016). Agroforestry 

methods are also likely to maximize SOC by increasing organic matter input and slowing 

decomposition of soil organic matter (Oelberman et al., 2004). Further, management practices 

that reduce erosion, including maintaining canopy cover in coffee plantations, help to conserve 

carbon stocks in soil (Soto-Pinto et al., 2010).  

  Agroforestry methods provide clear benefits over sun coffee production, including global 

climate mitigation through carbon storage. Current climate change scenarios highlight the 

mounting importance of this ecosystem service (IPCC, 2014). The current study adds to the body 

of research on the ecosystem service of carbon storage in shade coffee systems. I address carbon 

storage in smallholder shade coffee systems in Jinotega, Nicaragua. 

 

3.5 Research questions 

This research assesses carbon storage in 70 smallholder shade coffee farms in Jinotega, 

Nicaragua in order to evaluate carbon stocks in smallholder agroforestry systems under different 

shade regimes. I then use detailed study of nine representative farms to model potential changes 

in shade regime to increase carbon storage. Through interviews with coffee farmers and 

cooperative officials, I explore attitudes toward shade management and potential incentive 

programs that could be applied to smallholder shade coffee in Jinotega.  
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This research addresses the following questions: (1) What is the carbon density of 

Jinotega’s smallholder shade coffee landscape; (2) Do coffee systems with denser and more 

diverse shade communities support the highest carbon stocks; (3) Can carbon storage be 

improved without excessive increases in shade; and (4) What attitudes among coffee farmers and 

cooperative officials might influence efforts to improve carbon storage?  
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4.0 Research Methods 

This chapter discusses research methods used to investigate present carbon storage in shade 

coffee systems, potential improvements through changes in canopy management, and 

stakeholder attitudes toward shade. First, I discuss field surveys conducted on 70 coffee farms 

surrounding the city of Jinotega and how this data was used to estimate existing carbon stocks. 

Next I present my approach to investigating the impact of alternative canopy management 

schemes on carbon storage using the Spatially Explicit Individual-based Forest Simulator (SExI-

FS) modeling software. The chapter concludes with a description of methodology for conducting 

interviews with coffee farmers and coffee cooperative officials. Research was conducted through 

a project funded by the Consortium Research Program Humidtropics through Bioversity 

International with in-country sponsorship in Nicaragua through the International Center for 

Tropical Agriculture (CIAT) Nicaragua. Local NGO La Cuculmeca provided field assistence. 

 

4.1 Field inventory and carbon estimation 

Inventories were conducted in the department of Jinotega (N 13o 8” 19” W 86o 52’ 19”) located 

in north-central Nicaragua. The region is classified as a premontane moist to wet tropical forest 

zone (Khatun et al., 2013). Average rainfall is 1,800 mm per year, primarily between May and 

November, with a dry season from December to April, and mean annual temperature is 20-21°C 

(Fenzl, 1988, as cited in Medina-Benavides, Calero-Gonzáles, Hurtado, & Vivas-Soto, 2009). 

Soil types are primarily alifisols and molisols (Suarez, 2002). Ten farms from each of seven local 

cooperatives (a total of 70 farms) were selected from participants in an ongoing study on soil 

fertility management as part of the Humidtropics CGIAR Research Project lead by CIAT in 

Central America. Local technicians identified these farms as representative of the zone and the 
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cooperatives active in the region. Sample farms contained at least one hectare of coffee and had 

coffee as their primary agricultural activity. Plot elevation ranged from 900 to 1,500 m above sea 

level. 

 

4.1.1 Field inventories 

Carbon storage inventories were conducted between August and September of 2016, during the 

rainy season. Coffee crops require less intensive labor on the part of the farmer during this 

period, so presence of researchers is less intrusive. When possible, farmers accompanied 

researchers during inventories to provide directions and identify any unknown tree species. 

Sample plots were established in the same areas where samples were collected for the previous 

soil study. 

 

Shade tree inventory 

On each farm, shade trees were inventoried in a 0.1 ha representative plot, 50 m by 20 m (after 

Kalacska et al., 2004; Sánchez-Merlo et al., 2014; Somarriba et al., 2013). Within this plot, all 

trees with a diameter at breast height (DBH; 137 cm) > 2.5 cm were identified. DBH was 

recorded and height was visually estimated. Where an individual tree had multiple trunks at 137 

cm, DBH was recorded for each trunk with an apex height greater than 1.5 m. For Musa sp. 

(banana plants), pseudostem diameter was recorded as DBH (after van Noordwijk et al., 2002) 

and for Theobroma cacao (cacao trees), diameter was recorded at a height of 30 cm (after 

Somarriba et al., 2013). Where trees had more than one trunk at 137 cm, these observations were 

treated as a single individual for density and diversity calculations, but as separate plants for 

basal area and biomass calculations. 
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Coffee plant inventory 

Coffee plants were inventoried in a 0.01 ha subplot (10 m by 10 m) established in a 

representative corner of the larger plot. Height was recorded for all coffee plants >1 m. Stem 

diameter was measured at a height of 15 cm (after Segura et al., 2006 & van Noordwijk et al., 

2002). Where plants had more than one stem at 15 cm, diameter and height were recorded for 

each stem. 

 

Soil sampling 

We collected soil samples at the same time as tree and coffee inventories. Five subsamples of 

depth 0-20 cm were taken at points five meters diagonally inward from each corner and at 

approximately the center of the plot. The samples were combined into a composite sample of 

approximately 500 g. At the center point we also sampled at a depth of 20-50 cm. Samples were 

sent to the soil laboratory at LAQUISA (Laboratorio Químico, S.A.) in Leon for soil organic 

matter (SOM) analysis using the Walkley-Black method (after De Vos, Lettens, Muys, & 

Deckers, 2007). 

 

4.1.2 Carbon estimation 

Forest carbon pools include AGB, belowground biomass, litter, and soil carbon (Hamburg, 

2000). The most accurate method of determining AGB is destructive sampling, but tree removal 

is costly and generally not feasible on smallholder agricultural lands (Ketterings et al., 2001; 

Picard, Saint-André & Henry, 2012). Allometric equations, based on the principle that species-

specific relationships between dendrometric characteristics can be used to generate relatively 

accurate estimates of plant biomass allow us to predict biomass based on other tree 
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characteristics such as height or diameter, are the accepted method for nondestructive biomass 

estimation (Chave et al., 2005; Picard et al., 2012).  

 

Aboveground carbon pools 

For the most common species in coffee agroforestry, I estimated biomass using allometric 

equations from the literature (Table 2). When no species- or genus-specific allometric equation 

was available, I used a general equation for tropical dry forest (Brown, 1997 as cited in Návar-

Cháidez, Rodríguez-Flores, & Domínguez-Calleros, 2013). Due to uncertainty in root biomass 

calculations (see Cairns, Brown, Helmer & Baumgardner, 1997), the current research omits 

belowground plant biomass. I assumed that carbon accounts for 50% of shade tree biomass (after 

Elias & May-Tobin, 2011). 

 

Soil organic carbon 

Soil organic carbon (SOC) was estimated using Equation 1, which relates SOC stock in Mg/ha to 

soil volume (1 ha * soil depth in m), bulk density, and the fraction of soil organic matter that is 

composed of carbon, assuming 58% carbon (after Nelson & Sommers, 1982). I assumed a bulk 

density of 1 kg/m3 (after Rousseau, Fonte, Téllez, van der Hoek, & Lavelle, 2013; Tonucci, Nair, 

Nair, Garcia, & Bernardino, 2011). 

 

𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘 (
𝑘𝑔

ℎ𝑎
) =

𝑆𝑜𝑖𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 (%)

1.72
∗ 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (

𝑘𝑔

𝑚3) ∗ 𝑠𝑜𝑖𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 (
𝑚3

ℎ𝑎
)               (1) 

 

 

4.2 Canopy modeling and shade management scenarios 

I selected representative farms from the initial sample to revisit for detailed shade inventory and  
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Table 2: Allometric equations used for estimating aboveground biomass (AGB) in Mg of shade trees and 

coffee plants. Based on stem diameter at breast height (DBH), at 30 cm (D30), or at 15 cm (D15) in m. 

Allometric model Family Genus Species Reference  

ln(𝐴𝐺𝐵) = −2.772

+ 2.562ln(𝐷𝐵𝐻) 
Annonaceae Annona muricata 

reticulata 

purpurea 

 

van Breugel 

et al., 2011 

 

log10 𝐴𝐺𝐵

= −0.755 + 2.072 log10 𝐷𝐵𝐻 

 

Boraginaceae Cordia alliodora Segura et al., 

2006 

 

 

log10 𝐴𝐺𝐵

= −1.417 + 2.755 log10 𝐷𝐵𝐻 

 

Juglandaceae Juglans olanchana Segura et al., 

2006 

 

 

log10 𝐴𝐺𝐵 = −1.684

+ 2.158 log10 𝐷30

+ 0.892 log10 𝐻 

 

Malvaceae Theobroma cacao Somarriba et 

al., 2013 

 

ln(𝐴𝐺𝐵) = −2.054

+ 2.389ln(𝐷𝐵𝐻) 

 

Melastomataceae Miconia argentea 

albicans 

van Breugel 

et al., 2011 

 

log10 𝐴𝐺𝐵

= −0.889 + 2.317 log10 𝐷𝐵𝐻 

 

Mimosaceae Inga ruiziana 

oerstediana 

vera 

 

Segura et al., 

2006 

 

 

log10 𝐴𝐺𝐵

= −0.559 + 2.067 log10 𝐷𝐵𝐻 

 

Mimosaceae Inga punctacta Segura et al., 

2006 

 

 

𝐴𝐺𝐵 = 0.0303𝐷𝐵𝐻2.1345 Musaceae Musa AAA 

AAB 

Hairiah et al., 

2001 & van 

Noordwijk et 

al., 2002 

 

 

ln(𝐴𝐺𝐵) = −2.305

+ 2.351ln(𝐷𝐵𝐻) 

 

Ulmaceae Trema micrantha van Breugel 

et al., 2011 
 

𝐴𝐺𝐵 = 0.0890𝐷𝐵𝐻2.5226 Ulmaceae Quercus insignis 

spp. 

 

Návar, 2009  

log10 𝐴𝐺𝐵 = −0.755

+ 2.072 log10 𝐷15 

 

Rubiaceae Coffea arabica 

robusta 

Segura et al., 

2006 

 

ln(𝐴𝐺𝐵) = −1.996

+ 2.321ln(𝐷𝐵𝐻) 

Mixed – dry 

tropical forest 

  Brown 1997 

as cited in 

Návar, 2009 
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spatial mapping of shade trees. For this subsample, I generated models of farm plots and  

simulated scenarios for changing shade management. This section describes the methods for 

generating SExI-FS farm plot scenarios and for estimating the impact of shade management on 

carbon storage and canopy light interception. 

 

4.2.1 Spatial mapping and SExI-FS scenario generation 

I selected five farms at random from each cluster (see Data Analysis) and chose three of these 

farms to revisit. We picked the most level of the available plots, because SExI- FS models of 

light interception assume terrain to be flat when not specified (Harja & Vincént, 2008). At each 

of the nine farms, we reestablished the 50 m by 20 m plots used in shade inventories. I collected 

canopy openness measurements on each plot at five points: five paces in from each corner and in 

roughly the center of the plot. Using a spherical densiometer, I measured canopy cover in the 

four cardinal directions at each point, and averaged the four measurements to estimate mean 

percent shade in each plot.  

We then completed a detailed inventory of all shade trees taller than 1.5 m and with DBH 

greater than 2.5 cm. To record position, we measured the compass angle and distance to a set 

reference point within the plot, either a corner of the plot or another tree. These measurements 

were converted to x-y coordinates using trigonometric relationships. For each tree, we measured 

the canopy radius in four directions by measuring the distance from the trunk to the terminus of 

the farthest branch. In the first plot, we measured height of the first foliated branches and apex 

height using a clinometer. I created generalized linear regression equations based on these 

measurements for the relationship between DBH and crown depth and between DBH and total 
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height for Musa (R2 = 0.86) and for other trees (R2 = 0.66). For all subsequent plots, I used these 

equations to estimate tree height and crown depth.  

SExI-FS software generated plot models based on X position, Y position, species, DBH, 

height, crown depth (distance from the first foliated branch to the top of the tree), crown curve 

(which I assumed to be equal to half of the crown depth), and crown radius (Harja & Vincént, 

2008). In the light interception module, SExI-FS produced estimates of canopy openness at 

points across the plot in a grid of 5 m by 5 m at a height of 1 m. I averaged these estimates and 

subtracted the number from 1 to determine the mean percent shade in each plot, then compared 

this estimate with the observed level of canopy cover measured by a densiometer. 

 

4.2.2 Management scenarios and possible implications for carbon storage and crop production 

Using SExI-FS, I simulated scenarios for changes in shade management designed to represent 

incremental improvements in carbon storage and other ecosystem services. For all scenarios, 

shade was used as a constraint, maintaining shade below 50% or roughly equal to existing shade 

in plots where existing shade was higher than 60%. For all scenarios, trees were removed from 

plot regions where estimated shade was relatively high and added to regions where shade was 

low. This was based on subjective determination, and outcomes could change slightly with 

repeated scenario generation. 

I used allometric equations (Table 2) to estimate changes in carbon storage for each 

scenario. The SExI-FS light interception module modeled changes in shade. For each scenario, I 

use available data to discuss potential impacts on household income streams. The three scenarios 

are outlined below. 
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Scenario 1: Replacing Musa with Inga 

In plots dominated by Musa, I modeled replacing banana plants with Inga sp., a beneficial shade 

genus which also sequesters significantly more carbon than Musa (Hairiah et al., 2001; Soto-

Pinto et al., 2010). I retained roughly half of the banana plants in each plot. Inga trees placed in 

this study were modeled as a hypothetical tree with dimensions equal to the average of all Inga 

trees sampled. Inga trees were placed in the x-y position of existing Musa plants. Where 

additional trees could be placed without exceeding 50% light interception, I placed simulated 

Inga in large gaps in the canopy. 

Inga trees are generally larger than Musa and produce higher levels of shade. However, 

these trees are often pruned to regulate shade levels and to produce leaf litter (Cerdan et al., 

2012; Moguel & Toledo, 1999; Perfecto et al., 2005). I simulated this by reducing the canopy 

radius of existing Inga trees so that average light interception fell below 50%. During this 

modeled pruning, canopy size did not fall below observed measurements of Inga trees with 

similar DBH. 

 

Scenario 2: Adding timber trees 

For Cluster B, the plots dominated by Inga, I modeled replacing some Inga trees with timber 

species. These trees are larger and store greater quantities of carbon (Hergoualc’h et al., 2012; 

Noponen et al., 2013a; Peeters et al., 2003). Their greater height increases the structural diversity 

of the farm and improves habitat value. These trees also importantly provide a future source of 

income for the farmers, who can harvest and market trees after 20 to 30 years. Timber species 

identified during initial inventories were cedar (Acrocarpus fraxinifolius) and walnut (Juglans 

olanchana). Of these, J. olanchana was found on a greater number of the 70 inventoried farms 
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(n=13) than was A. fraxinifolius (n=2). Further, A. fraxinifolius was not present on any of the 9 

plots in which height and canopy dimension parameters were observed. For this reason, I 

selected J. olanchana as the timber species in this scenario18 and created an average tree of this 

species using the average measurements for DBH, height, and crown depth. Three to five 

individuals were added to each plot and Inga trees were removed to keep the average shade level 

at 50%. 

 

Scenario 3: Improving shade to meet Smithsonian Bird-friendly certification standards 

Cluster C plots are presently characterized by diverse shade tree communities. To capitalize on 

this, I modeled altering the plot to meet Smithsonian Bird-friendly certification standards as 

outlined by Smithsonian’s National Zoo & Conservation Biology Institute (2017). Although 

Bird-friendly standards apply to the entire farm, I applied all standards at the level of the 1000 

m2 plot. I increased species diversity to meet the SAN standard for appropriate shade in coffee 

systems of 12 total species per plot, exceeding the Bird-friendly minimum of 10 woody species 

(SAN, 2017; Smithsonian, 2017). When species were added, these species were drawn from 

individuals present on other farms. I used average DBH from initial canopy inventories and 

estimated the height and crown depth using the same regression equations used to create initial 

farm models. Standards also call for a minimum of three visible height strata, with a backbone 

layer of 12-15-m in height composing approximately 60% of foliage volume. The remaining 

40% is split between an understory of smaller fruit trees and an emergent layer of greater than 15 

m. Certification teams appraise these strata by visually estimating tree height and foliage density, 

                                                           
18 It is worth noting that A. fraxinifolius tends to be favored by farmers due to its rapid growth and low maintenance 

requirements, and may therefore represent a viable alternative or complement to J. olanchana (Franzel, Hitimana, & 

Akyeampong, 1995). 
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so I used visual appearance of plot models to determine the appropriate level of foliage at each 

height (Philpott et al., 2007). Standards also require a minimum of 40% average canopy cover as 

measured by a densiometer (Smithsonian, 2017). Though not included in scenario modeling, 

additional standards must also be met in order to achieve Bird-friendly certification, including 

standards for secondary vegetation, leaf litter, organic certification, living fences, and buffers 

along waterways (Smithsonian, 2017). 

 

4.3 Interviews on attitudes and practices regarding shade management 

The interview component of this study was used to investigate the practical applications of the 

field research and modeled management scenarios. Farmers and cooperative officials are the key 

actors in implementing any significant changes in shade management that may influence carbon 

storage. I designed simple questionnaires for both farmers and coffee cooperative officials to 

explore current strategies and areas for improvement of carbon storage. In order to assess 

openness to participation in a carbon payment scheme, I asked about participation in and 

attitudes toward certification efforts. The Internal Review Board for Research on Human 

Subjects at Bard College approved the interview procedures and questionnaires. 

 

4.3.1 Farmer interviews 

I recruited farmer participants when visiting farms for geospatial mapping. Seven farmers 

participated, three representing Cluster A and two representing each of Clusters B and C. I 

conducted interviews, in Spanish, wotj a a native Spanish speaker, who recorded participant 

responses in writing.  
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 Farmers were asked about their personal attitudes and experiences in shade tree selection 

and management as well as certification programs. I then asked whom they consult for 

information on shade trees and what they perceive to be their cooperative’s standing on 

agroforestry. The interview concluded with questions on their awareness of and interest in 

participating in a future carbon payment scheme. An English translation of interview questions in 

available in Appendix A. 

 

4.3.2 Cooperative official interviews 

I contacted officials of the seven cooperatives represented in this study by inquiring in person at 

the cooperative offices accompanied by a native Spanish speaker. We set up appointments with 

officials chosen based on the recommendation of my local research partners and the receptionists 

at cooperative offices. Seven officials representing six cooperatives participated. I conducted 

interviews, in Spanish, with a native Spanish speaker; interviews were recorded on a cell phone 

and transcribed within a week of the appointment.  

I began the interview by asking about the history and goals of the cooperative. I then 

asked about the cooperative’s role in shade management, certification programs, and addressing 

climate change. The interview concluded with questions on willingness to participate in a future 

carbon payment scheme and perceived barriers to implementation of this scheme. An English 

translation of interview questions is available in Appendix B. 

 

4.4 Data analysis 

Inventories were used to assess canopy composition across sample farms. In addition to 

characterizing overall species composition and diversity, a method of clustering farms by 
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composition was used to characterize variations in shade management across farm plots. The 

following sections present the approach used for this characterization, as well as for analyzing 

interview data. 

 

4.4.1 Shade canopy characteristics 

To assess canopy composition, I separated shade species into three functional types representing 

the most common shade trees on sample farms: Musa, Inga, and other shade trees (including 

fruit and timber trees). I calculated the density (number of trees per hectare), basal area (the total 

area covered by tree trunks based on DBH), plant biomass per hectare, and carbon stored in plant 

biomass per hectare for each of the three shade categories. I then calculated the richness (number 

of unique species within the plot) and the Simpson’s Diversity Index (D), a measure of 

biodiversity that incorporates both richness and evenness of species (Peet, 1974). 

 

4.4.2 Clustering based on canopy characteristics 

The literature has identified five general types of coffee systems ranging from rustic polyculture 

to full sun production (Moguel & Toledo, 1999). Sample farms in this study would all be roughly 

categorized as commercial polyculture under this set of typologies. To more accurately capture 

the diversity of shade communities in the region, I clustered sample farms to create subcategories 

under the larger category of commercial polyculture. 

I identified three clusters of farms with similar shade communities using the k-means 

clustering algorithm in R version 3.3.1. The algorithm divides datasets into k number of clusters 

based on input vectors describing data characteristics (Ray & Turi, 1999). I used Inga density, 

Musa basal area, and other shade tree density as input vectors. Inga density was selected to 
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represent the prevalence of Inga in shade communities. Musa basal area was selected to 

represent the amount of the plot covered by banana plants. Basal area was selected rather than 

Musa density because connections via subaerial stems made it difficult to accurately establish 

which plants were unique individuals. Tree density represented the number of other trees in the 

plot, and was significantly correlated with species diversity. Input vectors were scaled prior to 

cluster calculation. 

I used one-way ANOVAs to compare cluster means for Inga density, Musa basal area, 

tree density, coffee plant density and biodiversity. I further compared carbon storage in shade 

biomass, coffee biomass, and soil carbon. Where the main effect of the ANOVA was significant, 

I used Tukey’s HSD to determine differences between unique clusters. 

 

4.4.3 Analysis of shade management attitudes and practices 

Interview responses resulted in qualitative data, and were not statistically analyzed due to small 

sample size. Several questions asked participants for multiple responses; these answers are 

reported as a count representing the number of participants listing the item.  

I used one-way ANOVAs to compare mean shade tree densities and carbon storage in 

farms representing each cooperative. Where the main effect of the ANOVA was significant, I 

used Tukey’s HSD to identify differences between individual cooperatives. The objective of this 

analysis was to compare differences in stated attitudes of cooperative officials with actual shade 

management strategies on member farms. 
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5.0 Results and Discussion 

Sample plots (n=70) supported a total of 4,462 shade trees representing 98 species, an average of 

7.46 species and 136.29 trees per hectare. Across all farms, 57.96% of shade trees were below 

3.5 m in height, 42.58% were between 3.5 and 15 m, and 5.56% were taller than 15 m. Almost 

all shade trees were useful species: 71.40% were fruit trees (most prominently banana, citrus, 

mango, avocado, and guava), 19.52% were nitrogen-fixing species, and 3.05% were timber 

species. The most prominent genera were Musa, representing 59.05% of individuals, and Inga, 

representing 17.30% of individuals. Average Simpson’s Diversity was 0.54 for all plots (where 0 

represents monoculture and 1 represents the highest possible biodiversity). Farms stored an 

average of 160.10 Mg/ha of carbon, 83.60% of which was in the form of soil organic carbon 

(SOC).  

K-means clustering created three clusters representing shade communities dominated by 

Musa (Cluster A), Inga (Cluster B), or diverse tree species (Cluster C). Shade typology cluster 

characteristics are presented in Table 3. 

Table 3: Characteristics of farm clusters. Mean per hectare ± standard error. Superscripts denote 

differences significant at the 0.05 level identified using Tukey’s HSD. 

 Cluster A Cluster B Cluster C 

Description Dominated by Musa Dominated by Inga Dense, diverse shade 

Number of farms 28 25 17 

Inga density (ha-1) 44.64 ± 7.94a 137.20 ± 15.71b 102.35 ± 14.39b 

Musa basal area (m2) 10.90 ± 1.34a 6.19 ± 1.24b 11.46 ± 1.71a 

Tree density (ha-1) 86.07 ± 10.38a 63.2 ± 11.59a 326.47 ± 29.38b 

Coffee density (ha-1) 4471.43 ± 414.45 5048 ± 358.57 5758.82 ± 542.06 

Simpson Index 0.42 ± 0.04a 0.57 ± 0.03b 0.67 ± 0.04b 
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5.1 Cluster characteristics 

Overall biodiversity, as measured by Simpson’s Index, was the lowest in Cluster A. Tree 

biomass varied widely in Cluster A, resulting in large variation in carbon stocks (Table 4). The 

relatively high total shade biomass was generally driven by one or two large trees (>15 m in 

height) per plot rather than a thick layer of middle strata trees (Fig 1). 

Farms grouped into Cluster B supported high numbers of Inga species representing a 

high Inga biomass (Table 4, Fig. 1). Basal area of Musa sp. and density of other trees was 

significantly lower in Cluster B than in either of the other shade typologies. Tree density was 

also low in comparison with published inventories of Inga-dominated farms (Noponen et al., 

2013b). Despite the low number of trees, plots in Cluster B had an average Simpson’s Index 

higher than farms in Cluster A. The high coffee plant biomass supports the suggestion that 

pruned Inga-shaded plantations result in improved coffee growth in regions where overall 

growing conditions for coffee are optimal (Siles et al., 2010). Peeters et al. (2003) also found that 

Inga-shaded plantations had higher coffee plant density when compared with traditional shade,  

 

 

Table 4: Aboveground carbon stocks in coffee farms under three shade typology clusters. Clusters 

represent Musa-dominated (A), Inga-dominated (B), or diverse shade (C). Mean Mg/ha ± standard 

error. Superscripts denote differences significant at the 0.05 level identified using Tukey’s HSD. 

Biomass Carbon Pool Cluster A Cluster B Cluster C 

Musa  3.11 ± 0.39a 1.76 ± 0.36b 3.23 ± 0.48a 

Inga  2.30 ± 0.36a 12.70 ± 1.02b 5.24 ± 0.61c 

Trees  15.22 ± 6.20 6.17 ± 1.60 21.24 ± 8.19 

Coffee  2.65 ± 0.32a 4.53 ± 0.60b 2.63 ± 0.36a 

Total 23.28 ± 6.12 25.16 ± 1.91 32.33 ± 7.90 
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which translated to higher coffee yields under Inga. Romero-Alvarado, Soto-Pinto, García-  

Barrios, and Barrera-Gaytán (2002) found no significant difference between crop yield under 

Inga-dominated or diverse shade in Chiapas, Mexico. The current study did not assess coffee 

yield per tree, so it is not clear if coffee production is significantly higher in Cluster B.  

Cluster C was characterized by a high density of trees and high species diversity (Table 

4). Musa basal area was similar to that observed in Cluster A, but in Cluster C Musa served as 

understory rather than the dominant shade species. Although differences in total carbon storage 

were not significant due to large variation within clusters, there was a slight trend toward  

 

 
Figure 1: Estimated carbon stocks in sample plots (n=70). Shade typology clusters represent Musa-

dominated shade (A), Inga-dominated shade (B), and diverse shade (C). 
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higher carbon storage in Cluster C, farms characterized by diverse shade (Fig. 1, Table 4). This 

result is congruent with published correlations between carbon storage and biodiversity (Poorter 

et al., 2015; Strassburg et al., 2010). The lowest average carbon stocks were observed in Cluster 

B, Inga-dominated shade, primarily due to lower estimated soil carbon. This finding contrasts 

with Soto-Pinto et al. (2010), who observed greater SOC stocks in coffee farms under Inga shade 

than in traditional polyculture systems.  

This study overall supports the inference that there is little correlation between above- 

and below-ground carbon stocks in coffee systems (Noponen et al., 2013b). However, methods 

used to estimate soil carbon could be improved in future studies by calibrating both the local 

bulk density and the soil organic matter to SOC conversion factor. The conventional conversion 

factor of 1.7 used in this study has been questioned in the literature; Pribyl (2010) claimed that a 

conversion factor of 1.9 is more appropriate for most soils. This adjustment would lower average 

SOC estimates from 133.99 Mg/ha to 129.29 Mg/ha. A difference of almost 5 Mg/ha is 

significant in the context of the shade alteration scenarios, and of determining appropriate carbon 

payments for farm owners. 

 

5.2 Light interception and carbon storage 

Observed canopy cover was lower on average than modeled shade in SExI-FS simulations, t(8) = 

2.43, p = 0.04, with an average discrepancy of 11%. Some of the difference is due to the small 

sample size of densiometer measurements, which covered a limited area of the plot. The model 

could also be improved by incorporating a species-specific factor for crown porosity, a measure 

of transparency based on foliage density. Individual measurements of crown form and rotation 

would further improve model accuracy. 
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There was no significant relationship between biomass carbon storage and observed 

canopy cover, R2 = .16, F(1, 7) = 1.33, p = 0.29 (Fig. 2). This result contradicts the intuitive 

conclusion that higher biomass will result in higher light interception and would necessarily have  

a detrimental impact on coffee yields. Based on this, I suggest that carbon storage in these coffee  

plots can be improved without a significant increase in shade. 

 

5.3 Improved management scenarios 

Modeled shade alterations increased estimated carbon storage by an average of 14.82 Mg/ha. 

This represents an average increase in aboveground biomass carbon (AGC) of 156.28% over the 

initial canopy structure across the nine sample plots (Fig. 3). These increases in carbon storage 

came with very little increase in shade, and even slight decreases in shade in clusters B and C  

 

Figure 2: Relationship between estimated aboveground carbon storage in sample coffee farms and 

observed canopy cover was not significant. 
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Figure 3: Change estimated aboveground carbon storage across sample plots for modeled management 

scenarios. In Cluster A, Inga sp. was added to Musa-dominated shade. In Cluster B, timber trees were 

added to Inga-dominated shade. In Cluster C, diverse shade was improved to meet Smithsonian Bird-

friendly standards 

 

. 

  
Figure 4: Changes in shade level across coffee plots as a result of modeled scenarios for optimizing 

carbon storage: adding Inga (A) or timber trees (B) or increasing canopy complexity to meet Smithsonian 

Bird-friendly certification standards (C). Red line represents 50% shade, the level above which coffee 

yields suffer (Soto-Pinto et al., 2000). 
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(Fig. 4). Since SExI-FS simulations overestimate light interception by an average of 11%, carbon 

storage could likely be increased further with a higher shade threshold. 

 

5.3.1 Scenario 1: Replacing Musa with Inga in banana-dominated farms 

In three farms from Cluster A, I modeled removing half of Musa plants and adding Inga trees. 

Results from one representative plot are presented in Fig. 5. SExI-FS simulation images of all 

three plots are available in Appendix C1. The change led to an average carbon storage increase 

of 6.17 Mg/ha, from 36.79 to 42.96 Mg/ha, representing an average increase of 41.63% from 

initial estimated carbon storage (Table 4). In addition to increased carbon storage, this scenario 

 
Figure 5. Change in farm plot appearance from existing shade community (A) to optimized carbon 

scenario (B) for Plot 2 in Cluster A, when half of Musa plants (represented in yellow) are replaced with 

simulated Inga trees (represented in light blue). 
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Table 4: Simulated carbon enhancement for Cluster A. Changes in plot-level density of Inga and Musa, 

estimated change in per-hectare carbon storage, and increase in modeled shade at 1 m when half of 

Musa were replaced with a simulated Inga tree. 

Plot ΔInga ΔMusa  Carbon storage 

increase (Mg/ha) 

Percent change in 

carbon storage 

Percent change in 

light interception 

1 +11 -22 5.98 +17.87% -6.70% 

2 +12 -12 7.33 +112.12% +0.65% 

3 +8 -6 5.19 +7.38% +15.57% 

Average +10.33 -13.33 6.17 +41.63% +3.17% 

 

would provide farmers with some additional ecosystem services. Coffee farmers grow Inga trees 

because these species improve soil through nitrogen fixation and protect plants and soils from 

heavy rain through provision of organic litter (Cerdan et al., 2012). Improved soil quality could 

mean that farmers are required to spend less money on nitrogen fertilizers. 

Although the improved shade scenario led to clear improvements in carbon storage, this 

change would come at a cost to farmers. The trees cost money to plant: Gobbi (2000) estimated a 

cost of $1 per seedling, though the cost could potentially be higher. After trees are planted, 

pruning and other management activities are more difficult for Inga sp. than for Musa, meaning 

that the improved shade scenario would require greater labor input (Cerdan et al., 2012). 

Bananas are also important contributors to household food security, and it maytherefore be 

unrealistic to remove such a high number of Musa (Bacon et al., 2014; Canto et al., 2015; 

Donovan, 2011). 

 

5.3.2 Scenario 2: Adding timber trees to Inga-dominated farms 

I modeled adding timber trees (Juglans olanchana) to plots from Cluster B. Results from one 

representative plot are presented in Fig. 6. SExI-FS simulations of initial shade and timber trees 

at 20-30 years for each plot are available in Appendix C2. The change led to an average carbon 
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storage increase of 24.18 Mg/ha, from 19.45 to 45.90 Mg/ha representing an average increase of 

128.94% from initial estimated carbon storage (Table 5). This scenario would also provide 

farmers with an additional revenue stream: after 20-30 years, trees can be harvested and sold for 

approximately $100 per tree (Farmer #6). This implies a potential value of $3,000-5,000 per 

hectare after 20-30 years. Assuming a discount rate of 10% (after Gobbi, 2000) and harvest at 25 

years, the present value of added timber trees is approximately $280 to $460 per hectare. 

 

  
Figure 6. Change in farm plot appearance from existing shade community (A) to optimized carbon 

scenario (B) for Plot 3 in Cluster B, when simulated timber trees (Juglans olanchana, represented in 

aqua) are added to plots dominated by Inga (represented in beige). 
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Table 5: Simulated carbon enhancement for Cluster B. Changes in plot-level tree density, estimated 

change in per-hectare carbon storage, and increase in modeled shade at 1 m when timber trees were 

added to Inga-dominated plots. 

Plot Trees added Carbon storage 

increase (Mg/ha) 

Percent change in 

carbon storage 

Percent change in 

light interception 

1 +4 28.87 +119.66% -0.86% 

2 +5 26.30 +223.03% -12.50% 

3 +4 24.18 +107.78% +3.30% 

Average +4.33 26.45 +150.16% -3.35% 

 

Estimated light interception decreased by 3.35% in this scenario due to modeled pruning of 

existing Inga trees. However, the additional trees would not significantly impact yield for several 

years due to slow growth cycles, so this pruning would not be immediately necessary. The 

additional income provided by timber sales would also help lower the marginal costs associated 

with additional labor required for maintaining J. olanchana in shade communities (Stavins & 

Richards, 2005).  

A greater concern in this scenario is the permanence of carbon storage, since timber trees 

are intended to be harvested as an additional income stream. Timber extraction is generally not 

permitted in forest patches incorporated into REDD+ projects (Myers, 2007). However, 

selectively logged forest patches retain a large percentage of initial carbon storage and 

biodiversity, indicating that responsible timber extraction may be reasonable within REDD+ 

initiatives (Putz et al., 2012). Moreover, Sedjo and Marland (2003) suggested that all carbon 

stored in forestry projects is best viewed as temporary. In this frame, carbon credits could be 

seen as rented rather than purchased, with a set expiration date based on the lifespan of the tree 

and the half-life of carbon stored in timber products (Sedjo, Wisniewski, Sample, & Kinsman, 

1995; Olschewski & Benítez, 2010).  
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Carbon storage and biodiversity in selectively logged forest patches can be maximized 

through less-frequent harvesting (Schwenk, Donovan, Keeton & Nunery, 2012). In this scenario, 

if trees are harvested at 30 years rather than after 25, present value falls to approximately $170 to 

$290 per hectare. Temporary carbon payments could make up for this reduction in potential 

income, and provide farmers with additional revenue during the long investment period between 

initial planting and final harvest. 

 

5.3.3 Scenario 3: Altering shade structure to meet Bird-friendly certification standards 

I modeled adding additional species and increasing the height of select understory trees to 

improve plots from Cluster C to meet Smithsonian Bird-friendly certification standards 

(Smithsonian, 2017). Results from one representative plot are presented in Fig. 7. SExI-FS 

simulations of initial and improved shade communities in each plot are available in Appendix 

C3. The modeled management change led to an average carbon storage increase of 9.15 Mg/ha, 

from 56.82 to 65.97 Mg/ha, representing an average increase 34.33% from initial estimated 

carbon storage (Table 6). 

While estimated shade was explicitly designed to stay within a specified range in 

scenario modeling, the high shade level in this cluster is likely to have a detrimental effect on 

potential coffee yields. The changes made in this scenario would require a longer timeframe for 

tree growth and greater effort in planning, planting, and managing new species, this investment 

may be offset by the 10-30% price premium commanded by Bird-friendly certified coffee 

(Gobbi, 2000; Ponte, 2004). These farms represent the highest overall carbon storage both before 

and after the modeled change in management, and therefore should be rewarded event though the 
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incremental change is small when compared with potential improvements in Clusters A and B 

(Fig. 3). Certification in addition to carbon payments could help provide such an incentive. 

In considering this scenario, it is important to remember that receiving Bird-friendly  

certification requires more than just a complex shade regime. Coffee farms must also support 

epiphytes, allow 5-10 m buffers of native vegetation along waterways, and also hold organic 

certification (Smithsonian, 2017). These requirements represent additional barriers for 

smallholders in Jinotega, Nicaragua. Many producers in the Jinotega region do use organic  

 

 
Figure 7. Change in farm plot appearance from existing shade community (A) to optimized carbon 

scenario (B) for Plot 2 in Cluster C, when shade was modified to meet Smithsonian Bird-friendly 

certification standards. Each color represents a different canopy species. 
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Table 6: Simulated carbon enhancement for Cluster C. Changes in plot-level species richness, estimated 

change in per-hectare carbon storage, and increase in modeled shade at 1 m when forested plots were 

altered to meet Smithsonian Bird-friendly certification standards. 

Plot  ΔSpecies 

Richness 

Carbon storage 

increase (Mg/ha) 

Percent change in 

carbon storage 

Percent change in 

light interception 

1 +5 12.14 +82.65% -0.47% 

2 +2 2.32 +2.84% -1.42% 

3 +2 12.98 +17.48% +0.04% 

Average +3 9.15 +34.33% -0.61% 

 

methods, but do not hold certification from a USDA-approved agency. For others, the conversion 

to Bird-friendly farming would require a change in agrochemical usage in addition to increased 

shade complexity. This could mean further reduction in coffee crop, since organic yields tend to 

be lower than conventional yields (Seufert, Ramankutty, & Foley, 2012). However, yields from 

smallholder production in Nicaragua are generally low whether conventional or organic methods 

are utilized (Valkila, 2009). The decline in yields would likely not be so significant as to 

outweigh the advantage provided through a combination of certification price premium and 

carbon payments. 

 

5.4 Interviews 

All interview participants felt that shade trees provide farmers with concrete benefits. Although 

both producers and officials believed that shade provides benefits, the perceived benefits differed 

between the groups (Table 7). Farmers listed more benefits relating to on-farm conditions and 

revenue, while cooperative officials noted a greater number of ecosystem services provided by 

shade trees, such as habitat value and improved air and water quality. All interview participants 

also expressed interest in achieving certification for themselves or for a greater percentage of 

cooperative members, indicating a general willingness to participate in initiatives that provide  
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Table 7: Number coffee farmers (n=7) and coffee cooperative officials (n=7) listing benefit of shade 

trees. Percent represents number of times the benefit was mentioned as a percent of all interviewees 

(n=14). 

Shade Benefit  Coffee Farmers Cooperative Officials Percent 

Organic material 5 1 43% 

Improved coffee growth 4 2 43% 

Nitrogen fixation 3 2 36% 

Firewood 2 3 36% 

Timber 2 2 29% 

Coffee plant protection 2 1 21% 

Soil protection 2 1 21% 

Fruit for consumption 1 2 21% 

Habitat value 0 3 21% 

Protection of water sources 0 3 21% 

Ecotourism potential 1 1 14% 

Protection from plant disease 1 1 14% 

Fruit for sale 0 2 14% 

Climate change adaptation 0 2 14% 

Improved air quality 0 1 7% 

Payments for ecosystem services 0 1 7% 

 

farmers with compensation for responsible production. Moreover, all farmers and all but one 

cooperative official stated that they would be interested in participating in a carbon payment 

scheme if one were developed. The following section discusses interview responses from coffee 

farmers and coffee cooperative officials in greater detail. I discuss the attitudes revealed during 

interviews in relationship to shade management scenarios and potential development of a carbon 

payment scheme to benefit smallholders in the Jinotega region. 
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5.4.1 Interviews with coffee producers 

Coffee farmers all believed that their shade regime provided them with benefits, but all also 

noted that maintaining shade trees comes at a cost. Producers were primarily concerned with  

labor required for adequate pruning of shade trees (n=7). One interview participant explained 

that “to maintain just a quarter-manzana of coffee, it takes two people per day to regulate the 

shade trees. That takes money.” Another participant mentioned that labor is not limited only to 

pruning; they must also regulate which seedlings are growing so that they can be sure to keep the 

most beneficial species.  

All farmers indicated that they would like to change their shade community in some way. 

Desired changes included increasing Inga to improve soil quality (n=4), adding new species to 

improve ecosystem services (n=3), replacing nonbeneficial species to improve coffee growth 

(n=2) or to increase timber production (n=1), and reducing shade to improve coffee growth 

(n=1). These priorities are congruent with modeled management scenarios, suggesting that 

farmers would be willing to participate in an initiative to improve shade regimes. Despite their 

interest in changing their shade management, farmers felt that they face serious obstacles to 

maintaining diverse shade. The majority of farmers felt that they needed greater financial 

resources (n=5) and technical support (n=4) to improve shade. Secondary concerns—including 

plant diseases (n=2), climate change (n=2), and the importance of maintaining the appropriate 

shade level (n=1)—could likely be overcome if farmers had access to greater financial and 

technical resources. 

 No farmer participants had previous knowledge of potential carbon payment programs, 

but all stated that they would be interested in participating if such a program were developed. 

Farmers were divided on whether carbon payments should be given as a lump sum to the 
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cooperative (n=3) or as smaller payments directly to producers (n=3). Those who felt that 

cooperative-level payments were more appropriate noted that this would be convenient, would 

allow the cooperative to provide them with better technical support, and would be fairer because 

all producers would benefit equally regardless of the size of their farm. Farmers who favored 

direct payments noted that producers who maintain more trees would deserve bigger payments. 

Additionally, these participants felt that farmers have better knowledge of how additional 

revenue should be invested than their cooperative does. 

 

5.4.2 Interviews with coffee cooperative officials 

The six participating cooperatives were established between 1990 and 2001 and represent a wide 

range of sizes, from 26 members to over 6,000 members. Stated cooperative goals included 

economic (n=7), environmental (n=3), and social (n=3) priorities. Officials representing four of 

the six cooperatives expressed that their organizations recommend that members maintain a 

minimum number of trees or level of shade. Others left shade management to the farmers’ 

discretion, but all cooperatives stressed the importance of planting native trees adapted to the 

climatic conditions of the regions. 

 Cooperative officials universally recognized the impact of climate change on coffee 

producers in the Jinotega region. Interview participants noted that rainy periods have shifted or 

shortened (n=5), rates of coffee plant diseases are increasing (n=4), and coffee quality has 

decreased (n=2). To combat these negative effects, officials stated that their cooperatives use a 

variety of strategies including education programs, coffee certification, research on climate-

resilient coffee varieties, reforestation efforts, and crop diversification. Trees were seen as 

important to climate adaptation, but no cooperatives provided credit to farmers specifically for 
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maintaining shade. Instead, shade management fell into the range of costs covered by general 

coffee production loans provided by cooperatives. 

 The majority of officials (n=6) stated that their cooperative would be interested in 

facilitating carbon payments for their members. Perceived limitations included the need for a 

clear legal framework (n=5), the complexity of quantifying carbon stocks (n=2), lack of interest 

from yield-focused farmers (n=1), and cooperative expenses associated with providing necessary 

technical support to producers wishing to improve carbon stocks (n=1). Cooperative officials 

stated that if their organization received additional revenue through participating in a carbon 

payment program, these funds would be directed toward capacity development for cooperative 

members (n=4), providing technical and financial support for sustainable farming (n=3), crop 

diversification efforts (n=3), eco-friendly post-harvest coffee processing (n=2), watershed 

conservation projects (n=2), and specialty coffee marketing (n=1). These results suggest that a 

carbon payment scheme in which cooperatives serve as the primary beneficiary would lead to 

positive outcomes for associated farmers. 

 

5.4.3 Differences in shade composition and carbon storage across cooperatives 

There was no significant difference between participating cooperatives in total carbon storage or 

AGB. This suggests that cooperative goals do have a significant impact on farm-level 

management practices. However, the lowest mean AGC (18.84 ± 2.39 Mg/ha, compared with the 

overall plot average of 26.16 ± 3.17 Mg/ha) were observed in the cooperative that offers only 

credit and no technical support to members. During our interview, the official from this 

cooperative stated that the organization gives no specific shade recommendations and has no 

specific environmental goals. This official was also the only interview participant who was not 
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interested in a carbon payment program. It is possible that differences in on-farm shade 

characteristics would be more pronounced if cooperatives had greater resources to implement 

their environmental objects and provide technical support and education to farmers. 
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6.0 Policy Recommendations 

This study has presented data quantifying carbon storage in the smallholder shade coffee 

landscape of Jinotega, Nicaragua, and has discussed the priorities and opinions of farmers and 

coffee cooperative officials relating to shade management, future goals, and interest in and 

perceived barriers to participating in a carbon payment program. These results indicate that 

smallholder shade coffee stores significant amounts of carbon and that virtually all stakeholders 

are interested in participating in a carbon payment program if one were to be developed. The 

implications of this study lead to the following key policy recommendations: (1) develop a 

carbon payment program in the voluntary market, building on existing cooperative infrastructure; 

(2) improve availability of financial, technical support, and educational resources; and (3) 

distribute carbon payments between shared cooperative-level payments to provide support 

services and direct compensation to farmers. The following sections develop these 

recommendations and their potential outcomes in greater detail. 

 

6.1 Develop a carbon payment program 

The first policy recommendation resulting from this study is straightforward: develop a carbon 

payment program. Potential participants have secure land tenure and are willing to be part of a 

carbon payment scheme, which are factors identified as important to project success (Bulte et al., 

2008). Moreover, management scenarios demonstrated a strong potential for additionality: 

carbon storage could be increased in all plots without a meaningful increase in shade level. 

Simulated changes in shade composition are not likely to reduce coffee yields in the long term, 

but improved shade would require a large up-front investment and increased labor in 

management. Carbon payments could help offset the cost of planting and maintaining new trees. 
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Where possible, carbon incentives should be paired with eco-certification to increase benefits to 

farmers. 

 

6.1.1 Focus on voluntary carbon markets 

Although the Nicaraguan government initially demonstrated interest in developing a PES 

program to incorporate coffee farmers, there has been little progress in the past ten years 

(Mendez et al., 2010). Interviews revealed that this delay has caused cooperative officials to 

doubt government interest in carbon payments. Government participation is necessary to develop 

appropriate legal frameworks, but an efficient carbon payment program should not rely on the 

Nicaraguan government as an intermediary in distribution of payments, as federal development 

priorities clearly lie elsewhere. Voluntary carbon markets also have the benefit of reduced 

bureaucracy and potentially higher cost efficiency than government-created markets (Newell et 

al., 2013). Rather than rely on the Nicaraguan government to invest in and oversee a fledgling 

carbon payment program, a cooperative interested in participating in such an initiative should 

look to a private buyer for funding. Larger cooperatives in the Jinotega region have existing ties 

to international corporations and NGOs (Donovan, 2011). These relationships should be used to 

market carbon offsets to international buyers. 

 

6.1.2 Work within existing institutional frameworks 

In Nicaragua, existing cooperatives are an ideal community for accepting carbon payments on 

behalf of the smallholders they represent. All cooperative officials interviewed for this study 

expressed some interest in participating, and most were enthusiastically in favor. Farmers 

generally trust cooperative leadership to oversee such a program: half of interviewed farmers 
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stated that carbon payments should be distributed to cooperatives in lump sums rather than as 

smaller payments directed to farmers. This is important because transaction costs are the primary 

barrier to incorporating smallholders into a large-scale carbon payment program (Carlson & 

Curran, 2009; UN-REDD, 2011). Buyers can reduce costs may by distributing payments to 

communities rather than individuals (Carlson & Curran, 2009).  

Large cooperatives already have relationships with international investors and experience 

marketing the eco-friendly nature of their product on the international market (Donovan, 2011; 

Donovan & Poole, 2014). Several larger cooperatives are also already engaged in collecting 

some of the data necessary for appropriate distribution of carbon payments, including farm size, 

shade tree density, and soil carbon. Cooperatives will help minimize the cost of participation, 

and their bottom-up structure will ensure high levels of stakeholder engagement. A successful 

carbon payment program should take advantage of existing cooperatives as monitoring entities 

and payment recipients. 

 

6.1.3 Offer options for improving carbon storage rather than prescribing a standard approach 

Farmers bring a range a different priorities, practices, and knowledge bases to shade 

management. The results of this study suggest that several very different management scenarios 

can increase farm-level carbon stocks. Farmers should be presented with different options for 

altering their shade regime, rather than receiving a standardized plan for maximum carbon 

storage. For example, not all farmers are willing to invest in timber because of the long 

timeframe of the investment. The management scenarios explored in this study provide a starting 

point for offering farmers options based on their personal constraints.  
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6.1.4 Combine carbon payments with eco-certification where possible 

Changes in shade management on farms with an already diverse shade canopy should use Bird-

friendly certification standards as a model. Previous studies have recommended that farmers 

achieve multiple certifications to ensure that they maximize the benefits of higher prices, 

institutional support, and wider distribution channels offered through participation (Philpott et 

al., 2007; Ponte et al., 2004; Rijsbergen et al., 2016). Carbon payments would complement the 

potential 10-30% price premium provided by certification to create a meaningful improvement in 

farm revenue (Gobbi, 2000). Further, certification programs have an established infrastructure 

for assessing compliance, which could contribute to the monitoring and administration needs of 

an emerging carbon incentive scheme (Ponte, 2004). 

 

6.1.5 Prioritize improving shade in Inga-dominated systems 

Simulations demonstrated the greatest potential for improvement in AGC in Cluster B, the farms 

in which shade canopy is dominated by Inga species. Although Inga trees store more carbon than 

Musa, the Musa-dominated systems tended to support a small number of very large trees that 

contributed to higher overall carbon storage. In modeled scenarios, carbon stocks were more than 

doubled by adding timber trees. The promise of additionality makes these farms especially 

suitable for incorporation into a carbon payment scheme. Planting timber species is a 

management strategy to increase carbon stocks while diversifying revenue streams, but further 

research should investigate the impact of other changes in shade management. 
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6.2 Improve distribution of monetary and technical resources 

Any change in shade management will require both financial investment and technical 

knowledge on the part of farmers. Certification programs can serve as a model for potential 

impacts of a carbon payment program. These efforts often require a significant upfront 

investment from farmers to meet program standards, as well as yearly visits from oversight 

teams (Gobbi, 2000; Hardt et al., 2015; Ponte, 2004). Oversight is a necessary feature of a 

carbon payment program as well, though administration through cooperative structures may help 

reduce the cost to individual farmers. The following recommendations are aimed at minimizing 

the initial cost of participation and strengthening stakeholder engagement in an ongoing initiative 

to improve carbon storage. 

 

6.2.1 Make credit available for shade alteration 

First, cooperatives should make long-term credit available to farmers who want to improve their 

shade management. While all cooperative officials interviewed stated that their organization does 

offer coffee production credits that can be applied to shade tree maintenance and alteration, 

farmers still perceived the necessary investment as a major barrier to altering the shade 

community on their property. Cooperatives grant short-term credits for coffee farming, but with 

these loans comes pressure to invest in activities that will turn a profit within a single growing 

season. Shade trees take years to mature and offer little concrete return under current systems. 

Long-term shade management credits that are separate from credits granted for other coffee 

production activities would ensure that farmers have the financial resources necessary to make 

significant changes in shade communities. 
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6.2.2 Increase availability of technicians  

For carbon payments initiatives to be successful in developing countries, participants need 

technical support (Scherr et al., 2004). In interviews, farmers stated that they perceive a lack of 

technical knowledge and support to be a major barrier to making changes in shade management. 

To allay these concerns and reduce perceived risk of investing in shade trees, cooperatives 

should use a percentage of carbon payment revenues to hire field technicians to advise farmers 

on a regular basis. Technicians are a trusted source of information, and can have a strong 

influence on farmers’ management decisions (Donovan, 2011; Frank et al., 2011). Interviews 

revealed that cooperatives would like to provide greater technical resources to their members, but 

currently lack the financial resources to do so. A greater base of field technicians would also 

improve a cooperative’s capacity to monitor carbon stocks and quantify increases in carbon. 

 

6.2.3 Educate farmers on carbon and its importance 

Stakeholders can only be truly engaged in a carbon payment program if they understand the 

impact of participation. During interviews, farmers indicated that they were concerned about 

climate change, but that they were not aware of the role of carbon as a greenhouse gas. 

Participating cooperatives should provide their members with educational materials and 

workshops to help farmers connect shade management practices with the climate change issues 

that affect them. Several officials stated that their cooperative already offers educational outreach 

programs on topics ranging from environmental issues to business skills. These programs should 

be adapted to a carbon focus to help farmers understand the benefits of improving carbon storage 

by altering shade management. These education programs should involve youth as well as 
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landowners: it is important that cooperatives invest in future leaders and professionals who will 

manage carbon markets in subsequent generations (Scherr et al., 2004). 

 

6.3 Carbon payments should be split between cooperatives and farmers 

Additional income from carbon payments could enable cooperatives to advance their economic, 

environmental, and social goals. Cooperative officials stated that their organizations would 

invest new revenues in marketing, coffee processing, education, reforestation, and crop 

diversification projects. All of these ideas address perceived needs of smallholders in the region 

and represent concrete improvements that a carbon payment program could achieve. The benefits 

would be even greater if participating farmers were also granted cash payments representing a 

percentage of cooperative-wide proceeds from carbon payments. This would help cooperatives 

sell the program to their members, because it would bring an additional revenue stream 

independent of yield. Direct payments would also ensure farmer satisfaction with the program, 

since half of interview participants indicated that they preferred direct payments rather than 

larger cooperative-level payments.  

A direct payment strategy could increase environmental benefits by enabling farmers to 

replace a larger proportion of low-carbon Musa with other shade species that have greater 

benefits in terms of both carbon storage and habitat value. Modeled scenarios in this study 

retained half of Musa and most other fruit trees present because this produce is important for 

household food security. Bananas are most critical as a food source during the “lean months” in 

the middle of the growing season, after money from the previous year’s crop sales has run out 

(Bacon et al., 2014). Although cooperatives participating in Fair Trade markets have attempted 

to improve food security, these efforts have been only marginally successful in Nicaragua 
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(Bacon, 2015; Donovan, 2011). Unlike the price premium associated with specialty coffee 

markets, carbon payments would not be tied to crop sales. Payments could therefore be disbursed 

during the June through August period, when smallholder food access is at its lowest due to a lull 

in income-generating on-farm activities (Bacon et al., 2014). This timing strategy has the 

potential to improve smallholder quality of life by smoothing the monthly variability in 

household income. Beyond this, it could reduce the importance of fruit trees to households. 

Carbon payments distributed directly to farmers when they are most in need of income can help 

cooperatives achieve long-term social goals while making concrete environmental 

improvements. 

 

6.3.1 Consider developing a Food-for-work program as an alternative to cash payments 

Cash payments for improving or maintaining ecosystem quality can aid in poverty alleviation by 

smoothing fluctuations in income for smallholders (Bulte et al., 2008). However, direct 

compensation can also lead to negative outcomes, such an inequitable distribution of payments 

and erosion of perceived inherent value associated with shade trees (Wunder, 2007). Corbera 

(2012) suggested that PES leads to the “commodification of nature.” However, virtually all trees 

in inventories were identified as useful species, and farmers stated material reasons for their tree 

selections; trees in these coffee systems are already commodified.  

The question of how to disperse payments to farmers to achieve multiple goals of 

environmental and social improvement still remains. Cash payments are generally viewed as the 

most appropriate compensation when participants sacrifice potential cash income to participate 

(Wunder, 2008). It is not clear how much income participants in this project would be required to 

give up, since proposed shade alterations are not likely to reduce yields in the long term and 
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previous policy recommendations include financing for shade alteration. In this case, in-kind 

payment such as a Food-for-work (FFW) program may provide more appropriate compensation 

(Wunder, 2008). 

 FFW programs, in which cooperatives use carbon payment funds to buy and distribute 

supplies of food, offer the dual advantages of guaranteeing a basic income to food-insecure 

households and providing labor for community infrastructure projects (Holden et al., 2006). This 

compensation method is generally viewed an effective means of addressing the goal of poverty 

alleviation because it targets only the truly needy, although this is the subject of debate (Barrett 

& Clay, 2003). With proper targeting, FFW initiatives would remove the problem of determining 

how to properly distribute carbon payments to farmers and the need for cooperative officials to 

determine which participants are worthy of what monetary compensation. This provides an 

alternative policy option for addressing the ongoing problem of seasonal hunger among 

smallholders in the Jinotega region (Bacon et al., 2014; Holden et al., 2006). 

 

6.4 Conclusion 

Smallholder shade coffee in Jinotega, Nicaragua sequesters significant amounts of carbon, but 

the landscape has greater carbon storage potential. As demonstrated by the scenarios explored in 

this research, carbon stocks could be improved through changes in shade management. 

Stakeholder priorities and constraints vary, so providing a variety of management strategy 

options is necessary to allow flexibility in meeting carbon storage goals. Strong institutions are 

already in place; cooperatives are ideally positioned to administrate a carbon payment program if 

one were to be developed. Further, both cooperatives and farmers are actively interested in 

participating in such a program. By providing a revenue stream independent of crop yield, 
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carbon payments have the potential to improve livelihoods and support both social and 

environmental goals. Future research should address the cost-benefit analysis of management 

changes using more concrete figures, the impacts of additional management scenarios, and actual 

changes in shade biomass over time as high-carbon management practices are adopted. 

  



83 

 

Literature Cited 
 

Albrecht, A. & Kandji, S. (2003). Carbon sequestration in tropical agroforestry systems. 

Agriculture, Ecosystems and Environment, 99, 15-27. 

 

Alemu, M. (2015). Effect of tree shade on coffee crop production. Journal of Sustainable 

Development, 8(9), 66-70.  
 

ASB Partnership for the Tropical Forest Margins. (2011). Agroforestry in REDD+: 

Opportunities and challenges. (Policy brief 26). Retrieved from 

http://www.asb.cgiar.org/PDFwebdocs/ASB_PB26.pdf 

 

Ataroff, M. & Monasterio, M. (1997). Soil erosion under different management of coffee 

plantations in the Venezuelan Andes. Soil Technology, 11, 95-108. 

 

Babbar, L. & Zak, D. (1994). Nitrogen cycling in coffee agroecosystems: Net N mineralization 

and nitrification in the presence and absence of shade trees. Agriculture, Ecosystems, and 

Environment, 48, 107-114. 

 

Bacon, C. (2005). Confronting the coffee crisis: Can fair trade, organic, and specialty coffees 

reduce small-scale farmer vulnerability in Northern Nicaragua? World Development, 

33(3), 497–511. 

 

Bacon, C. (2010). A spot of coffee in crisis: Nicaraguan smallholder cooperatives, Fair Trade 

networks, and gendered empowerment. Latin American Perspectives, 171(37), 50-71. 

 

Bacon, C. (2015). Food sovereignty, food security and fair trade: The case of an influential 

Nicaraguan smallholder cooperative. Third World Quarterly, 36(3), 469-488. 

 

Bacon, C., Sundstrom, W., Gomez, M., Mendez, V., Santos, R., Goldoftas, B., & Dougherty, I. 

(2014). Explaining the ‘hungry farmer paradox’: Smallholders and fair trade cooperatives 

navigate seasonality and change in Nicaragua’s corn and coffee markets. Global 

Environmental Change, 25, 133-149. 

 

Baker, K., Baumann, D., Gervais, S., & van Mossel-Forrester, B. (2014). Plan Vivo Project 

Design Document (PDD): CommuniTree Carbon Program. Retrieved from 

http://planvivo.org/docs/CommuniTree-PDD-2014.pdf 

 

Barrett, C. & Clay, D. (2003). How accurate is Food-for-work self-targeting in the presence of 

imperfect factor markets? Evidence from Ethiopia. The Journal of Development Studies, 

39(5), 152-180. 

 

Bayon, R. (2004). Making Environmental Markets Work: Lessons from Early Experience with 

Sulfur, Carbon, Wetlands, and Other Related Markets. Retrieved from http://www.forest-

trends.org/documents/files/doc_121.pdf 



84 

 

 

Beer, J. (1987). Advantages, Disadvantages, and Desirable Characteristics of Shade Trees for 

Coffee, Cacao, and Tea. Retrieved from 

http://repositorio.bibliotecaorton.catie.ac.cr/bitstream/handle/11554/5747/Advantages.pdf 

 

Beer, J., Muschler, R., Kass, D., & Somarriba, E. (1998). Shade management in coffee and cacao 

plantations. Agroforestry Systems, 38, 139-164. 

 

Beuchelt, T. & Zeller, M. (2011). Profits and poverty: Certification's troubled link for 

Nicaragua's organic and fairtrade coffee producers. Ecological Economics, 70, 1316-

1324. 

 

Bhagwat, S., Willis, K., Birks, J., & Whittaker, R. (2008). Agroforestry: A refuge for tropical 

biodiversity? Trends in Ecology and Evolution, 23(5), 261-267. 

 

Blackman, A. & Rivera, J. (2010). Producer-level benefits of sustainability certification. 

Conservation Biology, 25(6), 1176-1185. 

 

Borkhataria, R., Collazo, J., & Groom, M. (2006). Additive effects of vertebrate predators on 

insects in a Puerto Rican coffee plantation. Ecological Applications, 16(2), 696-703. 

 

Broegaard, R. (2005). Land tenure insecurity and inequality in Nicaragua. Development and 

Change, 36(5), 845-864. 

 

Brown, S. & Lugo, A. (1982). The storage and production of organic matter in tropical forests 

and their role in the global carbon cycle. Biotropica, 14(3), 161-187. 

 

Bulte, E., Lipper, L., Stringer, R., & Zilberman, D. (2008). Payments for ecosystem services and 

poverty reduction: Concepts, issues, and empirical perspectives. Environment and 

Development Economics, 13, 245-254. 

 

Cairns, M., Brown, S., Helmer, E., & Baumgardner, G. (1997). Root biomass in the world’s 

upland forests. Oecologia, 111(1), 1-11. 

 

Canto, G., Perez, L., Gonzalez, V., & Läderach, P. (2015). CIAT Research on Improving 

Livelihoods of Smallholder Coffee Producers in Nicaragua. Retrieved from 

https://cgspace.cgiar.org/rest/bitstreams/59152/retrieve 

 

Carlson, K. & Curran, L. (2009). REDD pilot project scenarios: Are costs and benefits altered by 

spatial scale? Environmental Research Letters, 4, 1-3. 

 

Cerdan, C., Rebolledo, M., Soto, G., Rapidel, B., Sinclair, F. (2012). Local knowledge of 

impacts of tree cover on ecosystem services in smallholder coffee production systems. 

Agricultural Systems, 110, 119-130. 

 



85 

 

Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D., Folster, H., Fromard, F., 

Higuchi, N., Kira, T., Lescure, J., Nelson, B., Ogawa, H., Puig, H., Riera, B., & 

Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and 

balance in tropical forests. Oecologia, 145, 87-99. 

 

Colburn, F. (1986). Post-Revolutionary Nicaragua: State, Class, and the Dilemmas of Agrarian 

Policy. Berkley and Los Angeles, CA: University of California Press. 

 

Cole, R. (2010). Social and environmental impacts of payments for environmental services for 

agroforestry on small-scale farms in southern Costa Rica. International Journal of 

Sustainable Development and World Ecology, 17(3), 208-216. 

 

Connoly, R. & Corea-Siu, C. (2007). Cuantificación de la Captura y Almacenamiento de 

Carbono en Sistema Agroforestal y Forestal en Seis Sitios en Cuatro Municipales de 

Nicaragua. (Master’s Thesis). Retrieved from 

http://repositorio.una.edu.ni/1103/1/tnp01c752.pdf 

 

Corbera, E. (2012). Problematizing REDD+ as an experiment in payments for ecosystem 

services. Current Opinion in Environmental Sustainability, 4, 612-619. 

 

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, 

S., O’Neill, R., Paruelo, J., Raskin, R., Sutton, P., & van den Belt., M. (1997). The value 

of the world’s ecosystem services and natural capital. Nature, 387, 253-260. 

 

Cuenca, G., Aranguren, J., & Herrera, R. (1983). Root growth and litter decomposition in a 

coffee plantation under shade trees. Plant and soil, 71(1-3), 477. 

 

Danielsen, F., Skutsch, M., Burgess, N., Jensen, P., Andrianandrasana, H., Karky, B., Lewis, R., 

Lovett, J., Massao, J., Ngaga, Y., Phartiyal, P., Poulsen, M., Singh, S., Solis, S., 

Sørensen, M., Tewari, A., Young, R., & Zahabu, E. (2011). At the heart of REDD+: A 

role for local people in monitoring forests? Conservation Letters, 4(2), 158-167. 

 

DaMatta, F. (2004). Ecophysiological constraints on the production of shaded and unshaded 

coffee: A review. Field Crops Research, 86, 99-114. 

 

DaMatta, F., Ronchi, C., Maestri, M., & Barros, R. (2007). Ecophysiology of coffee growth and 

production. Brazilian Journal of Plant Physiology, 19(4), 485-510. 

 

De Souza, H., de Goede, R., Brussaard, L., Cardoso, I., Duarte, E., Fernandes, R., Gomes, L., & 

Pulleman, M. (2012). Protective shade, tree diversity and soil properties in coffee 

agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems, and 

Environment, 146, 179-196. 

 



86 

 

De Vos, B., Lettens, S., Muys, B., & Deckers, J. (2007). Walkley-Black analysis of forest soil 

organic carbon: Recovery, limitations and uncertainty. Soil Use and Management, 23(3), 

221-229. 

 

Donovan, J. (2011). Value chain development for addressing rural poverty: Asset building by 

smallholder coffee producers and cooperatives in Nicaragua (Doctoral dissertation). 

Retrieved from http://eprints.soas.ac.uk/12762/1/Donovan_3276.pdf 

   

Donovan, J. & Poole, N. (2014). Changing asset endowments and smallholder participation in 

higher value markets: Evidence from certified coffee producers in Nicaragua. Food 

Policy, 44, 1-13. 

 

Dossa, E., Fernandes, E., Reid, W., & Ezui, K. (2008). Above- and belowground biomass, 

nutrient and carbon stocks: Contrasting an open-grown and a shaded coffee plantation. 

Agroforestry Systems, 72, 103-115. 

 

Elias, P. & May-Tobin, C. (2011). Tropical forest regions. In Union of Concerned Scientists, The 

root of the problem: What’s driving deforestation today. Retrieved from 

http://www.ucsusa.org/sites/default/files/legacy/assets/documents/global_warming/UCS_

RootoftheProblem_DriversofDeforestation_FullReport.pdf 

 

Estrada, A., Coates-Estrada, R., & Merritt, D. (1993). Bat species richness and abundance in 

tropical rain forest fragments and in agricultural habitats at Los Tuxtlas, Mexico. 

Ecography, 16(4), 309-318. 

 

Fair Trade USA. (2014). Compliance Criteria for the Independent Smallholders Standard 1.1. 

Retrieved from 

http://fairtradeusa.org/sites/default/files/wysiwyg/filemanager/FTUSA_ISS_CC_1.1v2_E

N_093014.pdf 

 

Faris, R. (1999). Deforestation and land use on the evolving frontier: An empirical assessment 

(Discussion Paper No. 678). Retrieved from http://www.cid.harvard.edu/hiid/678.pdf 

 

Flores, M., Bratescu, A., Martinez, J., Oviedo, J., & Acosta, A. (2002). Centroamerica: El 

Impacto de la Caída de los Precios de Café. Retrieved from 

http://www.cepal.org/publicaciones/xml/9/9679/l517.pdf 

 

Frank, E., Eakin, H., & Lopez-Carr, D. (2011). Social identity, perception and motivation in 

adaptation to climate risk in the coffee sector of Chiapas, Mexico. Global Environmental 

Change, 21, 66-76. 

 

Franzel, S., Hitimana, L., and Akyeampong E. (1995). Farmer participation in on-station tree 

species selection for agroforestry: a case study from Burundi. Experimental Agriculture, 

31, 27-38. 

 



87 

 

Gallina, S., Mandujano, S., & Gonzales-Romero, A. (1992). Importancia de los cafetales mixtos 

para la conservación de la biodiversidad de mamíferos. Boletín Sociedad Veracruzana de 

Zoología, 2(2), 11-17.  

 

Gay, C., Estrada, F., Conde, C., Eakin, H., & Villers, L. (2006). Potential impact of climate 

change on agriculture: Case study of coffee production in Veracruz, Mexico. Climatic 

Change, 79, 259-288. 

 

Giovannucci, D., Byers, A., & Liu, P. (2008). Adding Value: Certified Coffee Trade in North 

America. Retrieved from https://mpra.ub.uni-muenchen.de/17174 

 

Gobbi, J. (2000). Is biodiversity-friendly coffee financially viable? An analysis of five different 

coffee production systems in El Salvador. Ecological Economics, 33, 267-281. 

 

Gómez-Baggethun, E., de Groot, R., Lomas, P., & Montes, C. (2010). The history of ecosystem 

services in economic theory and practice: from early notions to markets and payment 

schemes. Ecological Economics, 69, 1209-1218. 

 

Gordon, C., McGill, B., Ibarra-Nuñez, G., Greenberg, R., & Perfecto, I. (2009). Simplification of 

a coffee foliage-dwelling beetle community under low-shade management. Basic and 

Applied Ecology, 10, 246-254. 

 

Greenberg, R., Bichier, P., & Sterling, J. (1997). Bird populations in rustic and planted shade 

coffee plantations of eastern Chiapas, Mexico. Biotropica, 29(4), 501-514. 

 

Haggar, J., Barrios, M., Bolaños, M., Merlo, M., Moraga, P., Munguia, R., Ponce, A., Romero, 

S., Soto, G., Staver, C., & Virginio, E. (2011). Coffee agroecosystem performance under 

full sun, shade, conventional and organic management regimes in Central America. 

Agroforestry Systems, 82(3), 285-301. 

 

Haines-Young, R. & Potschin, M. (2011). Common International Classification of Ecosystem 

Services (CICES): 2011 Update. Retrieved from 

http://test.matth.eu/content/uploads/sites/8/2009/11/CICES_Update_Nov2011.pdf 

 

Hairiah, K., Sitompul, S., van Noordwijk, M., & Palm, C. (2001). Carbon stocks of tropical land 

use systems as part of the global C balance: Effects of forest conversion and options for 

‘clean development’activities. Alternatives to Slash and Burn Lecture Note 4A. ICRAF, 

Bogor, India. Retrieved from http://www.asb.cgiar.org/PDFwebdocs/LectureNotes/ASB-

LN-4A-Hairiah-et-al-2001-Carbon-stocks-tropical-land-use.pdf 

 

Hamburg, S. (2000). Simple rules for measuring changes in ecosystem carbon in forestry-offset 

projects. Mitigation and Adaptation Strategies for Global Change, 5(1), 25-37. 

 

Hardt, E., Borgomeo, E., dos Santos, R., Pinto, L., Metzger, J., & Sparovek, G. (2015). Does 



88 

 

certification improve biodiversity conservation in Brazilian coffee farms? Forest Ecology 

and Management, 357, 181-194. 

 

Harja, D. and Vincént, G. (2008). Spatially Explicit Individual-based Forest Simulator - User 

Guide and Software. World Agroforestry Centre (ICRAF) and Institut de Recherche pour 

le Développement (IRD). Retrieved from 

http://www.worldagroforestry.org/downloads/Publications/PDFS/MN15906.JPG.pdf 

 

Hergoualc’h, K., Blanchart, E., Skiba, U., Hénault, C., & Harmand, J. (2012). Changes in carbon 

stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an 

agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and 

Environment, 148, 102-110. 

 

Holden, S., Barrett, C., & Hagos, F. (2006). Food-for-work for poverty reduction and the 

promotion of sustainable land use: Can it work? Environment and Development 

Economics, 11, 15-38. 

 

Holloway, V. & Giandomenico, E. (2009). The History of REDD Policy. Retrieved from 

http://redd.unfccc.int/uploads/2_164_redd_20091216_carbon_planet_the_history_of_red

d_carbon_planet.pdf  

 

Intergovernmental Panel on Climate Change [IPCC]. (2014) Climate Change 2014: Synthesis 

Report. Retrieved from https://www.ipcc.ch/report/ar5/syr/ 

 

Intergovernmental Panel on Climate Change [IPCC]. (2007). Climate Change 2007: Synthesis 

Report. Retrieved from https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf 

 

Jacks, D. & Stuermer, M. (2016). What drives commodity price booms and busts? (Working 

Paper No. 1614). Retrieved from Federal Reserve Bank of Dallas website: 

https://www.dallasfed.org/assets/documents/research/papers/2016/wp1614.pdf 

 

Jha, S., Bacon, C., Philpott, S., Mendez, V., Läderach, P., & Rice, R. (2014). Shade coffee: 

Update on a disappearing refuge for biodiversity. BioScience, 64(5), 416-428. 

 

Jha, S., Bacon, C., Philpott, S., Rice, R., Mendez, V., & Läderach, P. (2011). A review of 

ecosystem services, farmer livelihoods, and value chains in shade coffee agroecosystems. 

In W. Campbell & S. Ortíz (Eds.), Integrating Agriculture, Conservation and 

Ecotourism: Examples from the Field. Springer Science & Business Media. Obtained 

from: 

https://people.ucsc.edu/~sphilpot/Philpott_Lab/Publications_files/Jha_etal_2011.pdf 

 

Jha, S. & Vandermeer, J. (2010). Impacts of coffee agroforestry management on tropical bee 

communities. Biological Conservation, 143, 1423-1431. 

 

Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. 

Agroforestry Systems, 76, 1-10. 



89 

 

 

Junta de Gobierno de Reconstrucción Nacional. (1980). Creación de la Comisión Nacional de 

Renovación del Café. Retrieved from 

http://legislacion.asamblea.gob.ni/normaweb.nsf/($All)/69C50946B88B600A062570A10

057BE50?OpenDocument 

 

Kalacska, M., Sanchez-Azofeifa, G., Calvo-Alvarado, J., Quesada, M., Rivard, B., & Janzen, D. 

(2004). Species composition, similarity and diversity in three successional stages of a 

seasonally dry tropical forest. Forest Ecology and Management, 200, 227-247. 

 

Karp, D., Mendenhall, C., Sandí, R., Chaumont, N., Ehrlich, P., Hadly, E., & Daily, G. (2013). 

Forest bolsters bird abundance, pest control and coffee yield. Ecology Letters, 16,1339-

1347. 

 

Kellerman, J., Johnson, M., Stercho, A., & Hackett, S. (2008). Ecological and economic services 

provided by birds on Jamaican Blue Mountain coffee farms. Conservation Biology, 22(5), 

1177-1185. 

 

Ketterings, Q., Coe, R., Noordwijk, M., Ambagau, Y., & Palm, C. (2001). Reducing uncertainty 

in the use of allometric biomass equations for predicting above-ground tree biomass in 

mixed secondary forests. Forest Ecology and Management, 146, 199-209. 

 

Khatun, K., Imbach, P., & Zamora, J. (2013). An assesment of climate change impacts on the 

tropical forests of Central America using the Holdridge Life Zone (HLZ) land 

classification system. iForest, 6, 183-189. 

 

Kimura, H., Srinivasan, A., & Iyadomi, K. (2006). Clean development mechanism. In 

Srinivasan, A. (Ed.), Asian Aspirations for Climate Regime Beyond 2012. Hayama, 

Japan: Institute for Global Environmental Strategies. 

 

Klopfenstein, N., Rietvelt, W., Carman, R., Clason, T., Sharrow, S., Garrett, G., & Anderson, B. 

(1997). Silvopasture: An Agroforestry Practice (USDA AF Note No. 8). Retrieved from 

https://nac.unl.edu/documents/agroforestrynotes/an08s01.pdf 

 

Larrazábal, A., McCall, M., Mwampamba, T., & Skutsch, M. (2012). The role of community 

monitoring for REDD+: A review of experiences. Current Opinion in Environmental 

Sustainability, 4, 707-716. 

 

Lenart, L., Powell, R., Parmerlee, J., Lathrop, A., & Smith, D. (1997). Anoline diversity in three 

differentially altered habitats in the Sierra de Baoruco, Republica Dominicana, 

Hispaniola. Biotropica, 29(1), 117-123. 

 

Lewin, B., Giovannucci, D., & Varangis, P. (2004). Coffee Markets: New Paradigms in Global 

Supply and Demand. Retrieved from 



90 

 

http://documents.worldbank.org/curated/en/899311468167958765/Coffee-markets-New-

paradigms-in-global-supply-and-demand 

 

Liscow, Z. (2013). Do property rights promote investment but cause deforestation? Quasi-

experimental evidence from Nicaragua. Journal of Environmental Economics and 

Management, 65, 241-261. 

 

López-Bravo, D., Virginio-Filho, E., & Avelino, J. (2012). Shade is conducive to coffee rust as 

compared to full sun exposure under standardized fruit load conditions. Crop Protection, 

38, 21-29. 

 

Lovejoy, T., Bierregaard, R., Rylands, A., Malcon, J., Quintela, C., Harper, L., Brown, K., 

Powell, A., Powell, G., Schubart, H., & Hays, M. (1986). Edge and other effects of 

isolation on Amazon forest fragments. In Soule, M. (Ed.), Conservation Biology: The 

Science of Scarcity and Diversity (pp. 257-285). Sunderland, MA: Sinauer. 

 

Magaña, S., Harmand, J., & Hergoualc’h, K. (2004). Cuantificación del carbono almacenado en 

la biomasa aérea y el mantillo en sistemas agroforestales de café en el suroeste de Costa 

Rica. Agroforestería en las Américas, 41-42, 98-104. 

 

Mahanty, S., Suich, H., & Tacconi, L. (2013). Access and benefits in payments for 

environmental services and implications for REDD+: Lessons from seven PES schemes. 

Land Use Policy, 31, 38-47. 

 

Maraseni, T., Neupane, P., Lopez-Casero, F., & Cadman, T. (2014). An assessment of the 

impacts of the REDD+ pilot project on community forest user groups (CFUGs) and their 

community forests. Journal of Environmental Management, 136, 37-46. 

 

Mas, A. & Dietsch, T. (2004). Linking shade coffee certification to biodiversity conservation: 

Butterflies and birds in Chiapas, Mexico. Ecological Applications, 14(3), 642-654. 

 

Medina-Benavides, C., Calero-Gonzáles, I., Hurtado, H., & Vivas-Soto, E. (2009). 

Cuantificación de carbono en la biomasa aérea de café (Coffea arabica L.) con sombra, 

en la comarca Palo de Sombrero, Jinotega, Nicaragua. La Calera, 9(12), 28-34. 

 

Mendez, V., Bacon, C., Olson, M., Morris, K., & Shattuck, A. (2010). Agrobiodiversity and 

shade coffee smallholder livelihoods: A review and synthesis of ten years of research in 

Central America. The Professional Geographer, 62(3), 357-376. 

 

Mendez, V., Shapiro, E., & Gilbert, G. (2009). Cooperative management and its effects on shade 

tree diversity, soil properties and ecosystem services of coffee plantations in western El 

Salvador. Agroforestry Systems, 76, 111-126. 

 



91 

 

Merger, E., Held, C., Tennigkeit, T. & Blomley, T. (2012). A bottom-up approach to estimating 

cost elements of REDD+ pilot projects in Tanzania. Carbon Balance and Management, 

7(9), doi:10.1186/1750-0680-7-9. 

 

Milder, J., Scherr, S., & Bracer, C. (2010). Trends and future potential of payment for ecosystem 

services to alleviate rural poverty in developing countries. Ecology and Society, 15(2), 4. 

Retrieved from https://www.ecologyandsociety.org/vol15/iss2/art4/ 

 

Moguel, P. & Toledo, V. (1999). Biodiversity conservation in traditional coffee systems of 

Mexico. Conservation Biology, 13(1), 11-21. 

 

Montagnini, F. & Nair, P. (2004). Carbon sequestration: An underexploited environmental 

benefit of agroforestry systems. Agroforestry Systems, 61, 281-295. 

 

Myers, E. (2007). Policies to Reduce Emissions from Deforestation and Degradation (REDD) in 

Tropical Forests: An examination of the Issues Facing the Incorporation of REDD into 

Market-based Climate Policies. (Resources for the Future Discussion Paper No. 07-50). 

Retrieved from 

https://pdfs.semanticscholar.org/baeb/a99cfc374b764193620ab54c8b46ca59c8ed.pdf 

 

Nair, P., Nair, V., Kumar, B., & Haile, S. (2009). Soil carbon sequestration in tropical 

agroforestry systems: A feasibility appraisal. Environmental Science & Policy, 12, 1099-

1111. 

 

Návar, J. (2009). Biomass component equations for Latin American species and groups of 

species. Annals of Forest Science, 66, 208. 

 

Návar-Cháidez, J., Rodríguez-Flores, F., & Domínguez-Calleros, P. (2013). Ecuaciones 

alométricas para árboles tropicales: Aplicación al inventario forestal de Sinaloa, México. 

Agronomía Mesoamericana, 24(2), 347-356. 

 

Nelson, D. & Sommers, L. (1982). Total carbon, organic carbon, and organic matter. In Page, A., 

Miller, R., & Keeney, D. (Eds.), Methods of Soil Analysis. Madison, WI: American 

Society of Agronomy, Inc. 

 

Newell, R., Pizer, W., & Raimi, D. (2013). Carbon markets 15 years after Kyoto: Lessons 

learned, new challenges. Journal of Economic Perspectives, 27(1), 123-146. 

 

Noponen, M., Haggar, J., Edwards-Jones, G., & Healy, J. (2013a). Intensification of coffee 

systems can increase the effectiveness of REDD mechanisms. Agricultural Systems, 119, 

1-9. 

 

Noponen, M., Healy, J., Soto, G., & Haggar, J. (2013b).  Sink or source—The potential of coffee 

agroforestry systems to sequester atmospheric CO2 into soil organic carbon. Agriculture, 

Ecosystems, & Environment, 175, 60-68. 



92 

 

 

O’Connor, K. (2005). La crisis del café en Nicaragua: El impacto y sus implicaciones. 

Encuentro, 70, 40-61. 

 

Oelbermann, M., Voroney, R., & Gordon, A. (2004). Carbon sequestration in tropical and 

temperate agroforestry systems: A review with examples from Costa Rica and southern 

Canada. Agriculture, Ecosystems and Environment, 104, 359-377. 

 

Olschewski, R. & Benítez, P. (2010). Optimizing joint production of timber and carbon 

sequestration of afforestation projects. Journal of Forest Economics, 16(1), 1-10. 

 

Osorio, N. (2002). The global coffee crisis: A threat to sustainable development. Retrieved from 

http://www.ico.org/documents/globalcrisise.pdf 

 

Palm, C., van Noordwijk, M., Woomer, P., Alegre, J., Arévalo, L., Castilla, C., Cordeiro, D., 

Hairiah, K., Kotto-Same, J., Moukam, A., Parton, W., Ricse, A., Rodrigues, V., & 

Sitompul, S. (2005). Carbon losses and sequestration after land use change in the humid 

tropics. In C. Palm, S. Vosti, P. Sanchez, & P. Ericksen (Eds.), Slash-and-Burn 

Agriculture: The Search for Alternatives (pp. 41-63). New York: Columbia University 

Press. 

 

Peet, R. (1974). The measurement of species diversity. Annual Review of Ecology and 

Systematics, 5, 285-307. 

  

Peeters, L., Soto-Pinto, L., Perales, H., Montoya, G., & Ishiki, M. (2003). Coffee production, 

timber, and firewood in traditional and Inga-shaded plantations in Southern Mexico. 

Agriculture, Ecosystems, and Environment, 95, 481-493. 

 

Perfecto, I., Rice, R., Greenberg, R., & van der Voort, M. (1996). Shade coffee: A disappearing 

refuge for biodiversity. BioScience, 46(8), 598-608. 

 

Perfecto, I., Vandermeer, J., Mas, A., & Pinto, L. (2005). Biodiversity, yield, and shade coffee 

certification. Ecological Economics, 54, 435-446.  

 

Philpott, S., Bichier, P., Rice, R., & Greenberg, R. (2007). Field-testing ecological and economic 

benefits of coffee certification programs. Conservation Biology, 21(4), 975-985. 

 

Philpott, S., & Dietsch, T. (2003). Coffee and conservation: A global context and the value of 

farmer involvement. Conservation Biology, 17(6), 1844-1846. 

 

Philpott, S., Lin, B., Jha, S., & Brines, S. (2008). A multi-scale assessment of hurricane impacts 

on agricultural landscapes based on land use and topographic features. Agriculture, 

Ecosystems and Environment, 128, 12-20. (2008)  

 



93 

 

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass 

allometric equations: from field measurement to prediction. Food and Agricultural 

Organization of the United Nations, Rome, and Centre de Coopération Internationale en 

Recherche Agronomique pour le Développement, Montpellier, 215 pp. 

 

Polzot, C. (2004). Carbon Storage in Coffee Agroecosystems of Southern Costa Rica: Potential 

Applications for the Clean Development Mechanism. (Master’s Thesis). Retrieved from 

http://www.sidalc.net/repdoc/A11184i/A11184i.pdf 

 

Ponte, S. (2004). Standards and sustainability in the coffee sector: A global value chain 

approach. Retrieved from 

http://www.ucema.edu.ar/u/hr/Cursos/Casos/Caso_Cafe/Ponte_2004_Standards_and_sust

ainability_in_coffee_sector.pdf 

 

Poorter, L., van der Sande, M., Thompson, J., Arets, E., Alarcón, A., Álvarez-Sánchez, J., 

Ascarrunz, N., Balvanera, P., Barajas-Guzmán, G., Boit, A., Bongers, F., Carvalho, F., 

Casanoves, F., Cornejo-Tenorio, G., Costa, F., de Castilho, C., Duivenvoorden, J., 

Dutrieux, L., Enquist, B., Fernández-Méndez, F., Finegan, B., Gormley, L., Healey, J., 

Hoosbeek, M., Ibarra-Manríquez, G., Junqueira, A., Levis, C., Licona, J., Lisboa, L., 

Magnusson, W., Martínez-Ramos, M., Martínez-Yrizar, A., Martorano, L., Maskell, L., 

Mazzei, L., Meave, J., Mora, F., Muñoz, R., Nytch, C., Pansonato, M., Parr, T., Paz, H., 

Pérez-García, E., Rentería, L., Rodríguez-Velazquez, J., Rozendaal, D., Ruschel, A., 

Sakschewski, B., Salgado-Negret, B., Schietti, J., Simões, M., Sinclair, F., Souza, P., 

Souza, F., Stropp, J., ter Steege, H., Swenson, N., Thonicke, K., Toledo, M., Uriarte, M., 

van der Hout, P., Walker, P., Zamora, N., & Peña-Claros, M. (2015). Diversity enhances 

carbon storage in tropical forests. Global Ecology and Biogeography, 24, 1314–1328. 

 

Porras, I., Amrein, A., & Vorley, B. (2015). Reforestation, Carbon Sequestration and 

Agriculture: Can Carbon Financing Promote Sustainable Smallholder Activities in 

Nicaragua? Retrieved from http://pubs.iied.org/pdfs/16601IIED.pdf 

 

Potapov, P., Hansen, M., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., 

Zhuravleva, I., Komarova, A., Minnemeyer, S., & Esipova, E. (2017). The last frontiers 

of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science 

Advances, 3(1), doi: 10.1126/sciadv.1600821. 

 

Pribyl, D. (2010). A critical review of the conventional SOM to SOC conversion factor. 

Geoderma, 156(3-4), 75-83. 

 

Putz, F., Zuidema, P., Synnott, T., Peña-Claros, M., Pinard, M., Sheil, D., Vanclay, J., Sist, P., 

Gourlet-Fleury, S., Griscom, B., Palmer, J., & Zagt, R. (2012). Sustaining conservation 

values in selectively logged tropical forests: The attained and the attainable. Conservation 

Letters, 5(4), 296-303. 

 

Rainforest Alliance. (2017). Agricultural Certification. Retrieved from http://www.rainforest-

alliance.org/business/agriculture/certification 



94 

 

 

Ramírez, O., Somarriba, E., Ludewigs, T., & Ferreira, P. (2001). Financial returns, stability and 

risk of cacao-plantain-timber agroforestry systems in Central America. Agroforestry 

Systems, 51, 141-154. 

 

Rappole, J., King, D., & Rivera, J. (2003). Coffee and conservation. Conservation Biology, 

17(1), 334-336. 

 

Ray, S. & Turi, R. (1999). Determination of number of clusters in k-means clustering and 

application in color image segmentation. Proceedings of the Fourth International 

Conference on Advances in Pattern Recognition and Digital Techniques, 137-143. 

 

Raynolds, L., Murray, D., & Heller, A. (2007). Regulating sustainability in the coffee sector: A 

comparative analysis of third-party environmental and social certification initiatives. 

Agriculture and Human Values, 24, 147-163. 

 

Rendón-Thompson, O., Paavola, J., Healey, J., Jones, J., Baker, T., & Torres, J. (2013). 

Reducing emissions from deforestation and forest degradation (REDD+): Transaction 

costs of six Peruvian projects. Ecology and Society, 18(1): 17-28. 

 

Rice, R. (2008). Agricultural intensification within agroforestry: The case of coffee and wood 

products. Agriculture, Ecosystems, & Environment, 128(4), 212-218. 

 

Ricketts, T., Daily, G., Ehrlich, P., & Michener, C. (2004). Economic value of tropical forest to 

coffee production. Proceedings of the National Academy of Sciences, 101(34), 12579-

12582.  

 

Rijsbergen, B., Elbers, W., Ruben, R., & Njuguna, S. (2016). The ambivalent impact of coffee 

certification on farmers’ welfare: A matched panel approach for cooperatives in central 

Kenya. World Development, 77, 277-292. 

 

Rocha, J. (2001). Crónica del café: Historia, responsables, interrogantes. Revista Envío, 233. 

Retrieved from http://www.envio.org.ni/articulo/1096 

 

Romero-Alvarado, Y., Soto-Pinto, L., García-Barrios, L., & Barrera-Gaytán, J. (2002). Coffee 

yields and soil nutrients under the shades of Inga sp. vs. multiple species in Chiapas, 

Mexico. Agroforestry Systems, 54, 215-224. 

 

Rosa, H., Kandel, S., & Dimas, L. (2004). Compensation for environmental services and rural 

communities: Lessons from the Americas. International Forestry Review, 6(2), 187-194. 

 

Roshetko, J., Lasco, R., & Delos Angeles, M. (2005). Smallholder agroforestry systems for 

carbon storage. Mitigation and Adaptation Strategies for Global Change, 12, 219-242. 

 



95 

 

Rousseau, L., Fonte, S., Téllez, O., van der Hoek, R., & Lavelle, P. (2013). Soil macrofauna as 

indicators of soil quality and land use impacts in smallholder agroecosystems of western 

Nicaragua. Ecological Indicators, 27, 71-82. 

 

Ruben, R. & Zuniga, G. (2011). How standards compete: Comparative impact of coffee 

certification schemes in Northern Nicaragua. Supply Chain Management, 16(2), 98-109. 

 

Ruiz-Benito, P., Gomez-Aparicio, L., Paquette, A., Messier, C., Kattge, J., & Zavala, M. (2014). 

Diversity increases carbon storage and tree productivity in Spanish forests. Global 

Ecology and Biogeography, 23(3), 311-322. 

 

Samper, M. (1999). Trayectoria y viabilidad de las caficulturas Centroamericanas. In Bertrand, 

B. & Rapidel, B. (Eds.), Desafíos de la Caficultura en Centroamérica. San José, CR: 

IICA. 

 

Sánchez-Merlo, D., Harvey, C., Grijalva, A., Medina, A., Vílchez, S., & Hernández, B. (2014). 

Diversidad, composición y estructura de la vegetación en un paisaje fragmentado de 

bosque seco en Rivas, Nicaragua. Recursos Naturales y Ambiente, 45, 91-104. 

 

Sasaki, N., Asner, G., Pan, Y., Knorr, W., Durst, P., Ma, H., Abe, I., Lowe, A., Koh, L., & Putz, 

F. (2016). Sustainable management of tropical forests can reduce carbon emissions and 

stabilize timber production. Frontiers in Environmental Science, 4, 13 pp. Retrieved from 

http://journal.frontiersin.org/article/10.3389/fenvs.2016.00050      

 

Scherr, S., White, A., & Kaimowitz, D. (2004). A New Agenda for Forest Conservation and 

Poverty Reduction: Making Markets Work for Low-Income Producers. Washington, 

D.C.: Forest Trends. 

 

Schmitt-Harsh, M., Evans, T., Castellanos, E., & Randolph, J. (2012). Carbon stocks in coffee 

agroforests and mixed dry tropical forests in the western highlands of Guatemala. 

Agroforestry Systems, 86, 141-157. 

 

Schroth, G., Läderach, P., Dempewolf, J., Philpott, S., Haggar, J., Eakin, H., Castillejos, T., 

Garcia-Moreno, J., Soto-Pinto, L., Hernandez, R., Eitzinger, A., & Ramirez-Villegas, J. 

(2009). Towards a climate change adaptation strategy for coffee communities and 

ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation 

Strategies for Global Change, 14(7), 605-625. 

 

Schwenk, W., Donovan, T., Keeton, W., & Nunery, J. (2012). Carbon storage, timber 

production, and biodiversity: Comparing ecosystem services with multi-criteria decision 

analysis. Ecological Applications, 22(5), 1612-1627. 

 

Sedjo, R. & Marland, G. (2003). Inter-trading permanent emissions credits and rented temporary 

carbon emissions offsets: Some issues and alternatives. Climate Policy, 3(4): 435-444. 

 

Sedjo, R., Wisniewski, J., Sample, A., & Kinsman, J. (1995). The economics of managing 



96 

 

carbon via forestry: Assessment of existing studies. Environmental & Resource 

Economics, 6(2), 139-165. 

 

Segura, M., Kanninen, M., & Suarez, D. (2006). Allometric models for estimating aboveground 

biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68, 143-

150. 

 

Seufert, V., Ramankutty, N., & Foley, J. (2012). Comparting the yields of organic and 

conventional agriculture. Nature, 485, 229-232. 

 

Siles, P., Harmand, J., & Vaast, P. (2010). Effects of Inga densiflora on the microclimate of 

coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in 

Costa Rica. Agroforestry Systems, 78, 269-286. 

 

Smithsonian Conservation Biology Institute. (2017). Bird-Friendly Coffee: Shade Management 

Criteria. Retrieved from https://nationalzoo.si.edu/migratory-birds/bird-friendly-coffee-

criteria 

 

Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, 

G., Alavarado, E., Poveda, V., Astorga, C., Say, E., & Deheuvels, O. (2013). Carbon 

stocks and cocoa yields in agroforestry systems of Central America. Agriculture, 

Ecosystems, and Environment, 173, 46-57. 

 

Soto-Pinto, L., Anzueto, M., Mendoza, J., Ferrer, G., & Jong, B. (2010). Carbon sequestration 

through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry 

Systems, 78, 39-51. 

 

Soto-Pinto, L., Perfecto, I. & Caballero-Nieto, J. (2002). Shade over coffee: Its effects on berry 

borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agroforestry Systems, 55(1), 

37-45. 

 

Soto-Pinto, L., Perfecto, I., Castillo-Hernandez, J., & Caballero-Nietoc, J. (2000). Shade effect 

on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. 

Agriculture, Ecosystems, & Environment, 80, 61-69. 

 

Staver, C., Guharay, F., Monterroso, D., & Muschle, R. (2001). Designing pest-suppressive 

multistrata perennial crop systems: Shade-grown coffee in Central America. Agroforestry 

Systems, 53, 151-170. 

 

Stavins, R. & Richards, K. (2005). The Cost of U.S.-Based Forest Carbon Sequestration. 

Retrieved from https://www.c2es.org/docUploads/Sequest_Final.pdf 

 

Strassburg, B., Kelly, A., Balmford, A., Davies, R., Gibbs, H., Lovett, A., Miles, L., Orme, C., 

Price, J., Turner, R., & Rodrigues, A. (2010). Global congruence of carbon storage and 

biodiversity in terrestrial ecosystems. Conservation Letters, 3(2), 98-105. 

 



97 

 

Stevens, K., Campbell, L., Urquehart, G., Kramer, D., & Qi, J. (2011). Examining complexities 

of forest cover change during armed conflict on Nicaragua’s Atlantic Coast. Biodiversity 

Conservation, 20, 2597-2613. 

 

Suarez, D. (2002). Cuantificacíón y valoración económica del servicio ambiental 

almacenamiento de carbono en sistemas agroforestales de café en la comarca Yassica 

Sur, Matagalpa, Nicaragua. (Master’s Thesis). Retrieved from 

http://repositorio.bibliotecaorton.catie.ac.cr/bitstream/11554/3735/1/Cuantificacion_y_va

loracion_economica.pdf 

 

Sustainable Agriculture Network [SAN]. (2017). Sustainable Agriculture Standard for Farms’ 

and Producers Groups’ Crop and Cattle Production. Retrieved from 

https://dl.dropboxusercontent.com/u/585326/2017SAN/Certification%20Documents/SA

N-Standard-2017.pdf 

 

Thangata, P. & Hildebrand, P. (2012). Carbon stock and sequestration potential of agroforestry 

systems in smallholder agroecosystems of sub-Saharan Africa: Mechanisms for ‘reducing 

emissions from deforestation and forest degradation’ (REDD+). Agriculture, Ecosystems 

and Environment, 158, 172-183. 

 

Tonucci, R., Nair, P., Nair, V., Garcia, R., & Bernardino, F. (2011). Soil carbon storage in 

silvopasture and related land-use systems in the Brazilian Cerrado. Journal of 

Environmental Quality, 40(3), 833-841. 

 

Tucker, C., Eakin, H., & Castellanos, E. (2010). Perceptions of risk and adaptation: Coffee 

producers, market shocks, and extreme weather in Central America and Mexico. Global 

Change, 20, 23-32. 

 

Tumwebaze, S. & Byakagaba, P. (2016). Soil organic carbon stocks under coffee agroforestry 

systems and coffee monoculture in Uganda. Agriculture, Ecosystems and Environment, 

216, 188-193. 

 

UN-FCCC. (2016). Annual Report of the Executive Board of the Clean Development Mechanism 

to the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto 

Protocol. Retrieved from http://unfccc.int/resource/docs/2016/cmp12/eng/04.pdf 

 

UN-REDD. (2010). The UN-REDD Program Strategy 2011-2015. Retrieved from 

http://www.un-redd.org/Portals/15/documents/publications/UN-

REDD_FrameworkDocument.pdf 

 

USAID. (2012). REDD+ and Carbon Rights, Lessons from the Field. Retrieved from 

http://www.usaidlandtenure.net/sites/default/files/USAID_Land_Tenure_REDD+_and_C

arbon_Rights_Lessons_from_the_Field.pdf 

 

Valkila, J. (2009). Fair Trade organic coffee production in Nicaragua — Sustainable 

development or a poverty trap? Ecological Economics, 68(12), 3018-3025. 



98 

 

 

Valkila, J. & Nygren, A. (2010). Impacts of Fair Trade certification on coffee farmers, 

cooperatives, and laborers in Nicaragua. Agriculture and Human Values, 27(3), 321-333. 

 

van Bruegel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. (2011). Estimating carbon stock 

in secondary forests: Decisions and uncertainties associated with allometric biomass 

models. Forest Ecology and Management, 262, 1648–1657. 

 

van Noordwijk, M., Rahayu, S., Hairiah, K., Wulan, Y., Farida, A., & Verbist, B. (2002). Carbon 

stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, 

Indonesia): From allometric equations to land use change analysis. Science in China 

Series C, 45(Supp.), 75-86. 

 

Vannini, J. (1994). Nearctic avian migrants in coffee plantations and forest fragments of south-

western Guatemala. Bird Conservation International, 4(2-3), 209-232. 

 

Varangis, P., Seigel, P., Giovannucci, D., & Lewin, B. (2003). Dealing with the coffee crisis in 

Central America: Impacts and strategies. (Policy Research Working Paper No. 2993). 

Washington, D.C.: World Bank Rural Development Research Group. 

 

Wardle, D., Bardgett, R., Callaway, R., & Van der Putten, W. (2011). Terrestrial ecosystem 

responses to species gains and losses. Science, 332(6035), 1273-1277. 

 

Wertz-Kanounnikoff, S. & Verchot, L. (2008). How can we monitor, report and verify carbon 

emissions from forests? In Angelsen, A. (Ed.), Moving Ahead with REDD: Issues, 

Options, and Implications. Bogor, Indonesia: CIFOR. 

 

Westphal, S. (2008). Coffee agroforestry in the aftermath of modernization: Diversified 

production strategies and livelihood strategies in post-reform Nicaragua In C. Bacon 

(Ed.): Confronting the Coffee Crisis: Fair Trade, Sustainable Livelihoods, and 

Ecosystems in Mexico and Central America (pp. 179-206). Cambridge, MA: The MIT 

Press. 

 

Williams-Guillén, K., Perfecto, I., & Vandermeer, J. (2008). Bats limit insects in a Neotropical 

agroforestry system. Science, 320(5872), 70. 

 

World Bank. (2015). Agriculture in Nicaragua: Performance, Challenges, and Options. 

Retrieved from 

https://activities.ccafs.cgiar.org/data/projects/2/caseStudy/Final%20Output%20-

%20P152101%202016-01-11%2017%2020.pdf 

 

Wunder, S. (2007). Are direct payments for environmental services spelling doom for 

sustainable forest management in the tropics? Ecology and Society, 11(2), 23. Retrieved 

from https://www.ecologyandsociety.org/vol11/iss2/art23 

 



99 

 

Wunder, S. (2008). Payments for environmental services: Some nuts and bolts (Occasional Paper 

No. 42). Retrieved from CIFOR website: 

http://www.cifor.org/publications/pdf_files/occpapers/op-42.pdf 

 

Zeledon, E. & Kelly, M. (2009). Understanding large-scale deforestation in southern Jinotega, 

Nicaragua from 1978 to 1999 through the examination of changes in land use and land 

cover. Journal of Environmental Management, 90, 2866-2872.  



100 

 

  



101 

 

APPENDIX A 

Questionnaire for interviews with coffee farmers 

 

1.) What do you see as the benefits of the shade trees in your coffee farm? 

2.) Are there costs to maintaining your current shade regime? If so, what are they? 

3.) Would you like to change the types of shade trees in your farm? Would you like to increase 

or decrease the number of trees in your coffee parcel?  

4.) If you would not like to change your shade regime, why not? If you would like to change, 

what additional resources would you need to make the change? 

5.) What limitations do you face in maintaining a diverse shade canopy? 

6.) What sources do you consult for information about shade management?  

7.) What is the attitude of your cooperative about maintaining shade trees?  

8.) Does your cooperative participate in any certification programs? Does your farm have any 

certifications? If so, what are they? 

9.) Would you like to receive additional certifications? If yes, what do you need to do in order to 

receive them?  

10.) Have you heard of payments for carbon sequestration or for maintaining a large number of 

shade trees? 

[If their response was no: There is a possibility that a program could compensate coffee 

producers for maintaining a large quantity of trees because they serve to purify the air of 

excess carbon, which is a greenhouse gas that contributes to climate change.] 

 

11.) If these payments were available, would you be interested in participating? Would your 

organization want to participate? 

12.) Would you prefer to receive a direct payment, although it would be very small, or for your 

cooperative to receive a somewhat larger payment that it could invest in its projects? Why?  
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APPENDIX B 

Questionnaire for interviews with cooperative officials 

 

1.) Please tell me a little about your cooperative. When was it founded? How many 

producers are members?  

 

2.) What are the mission and vision of your cooperative? 

  

3.) What do you see as the role of the cooperative in shade management in members’ coffee 

farms?  

 

4.) What do you see as the benefits for producers of maintaining shade trees?  

 

5.) Does your cooperative recommend that members maintain a certain number or certain 

species of shade trees? What are the reasons for these recommendations?  

 

6.) According to you, what is your role in the decision-making process regarding shade 

management in your members’ farms?  

 

7.) In addition to your cooperative, are there other organizations that work with technical 

assistance in coffee agroforestry systems? What influence do they have? 

 

8.) Is climate change affecting the members of your cooperative? In what way? 

 

9.) What do you see as the role of your cooperative in addressing the problem of climate 

change, especially in coffee systems?  

 

10.) Does your organization assist members in achieving certification? What 

certification programs do your members work with? Would you like to work with more 

certification efforts?  

  

11.) If a carbon payment initiative existed to compensate farmers who maintain a large 

number of trees in their farms, would your cooperative be interested in participating? 

Would the members of your cooperative want to participate?  

 

12.) What do you see as the potential limitations of developing and participating in 

this type of initiative?  

 

13.) In credits granted to producers, does your cooperative offer loans to cover 

activities to improve or alter shade canopy in coffee farms? 

 

14.) If your cooperative had access to greater financial resources, what additional 

services would you like to offer to your members? 

  



104 

 

 

  



105 

 

APPENDIX C1 

SExI-FS Simulations of Shade Management Scenario 1: 

Musa Replaced with Inga trees 

 

 
Cluster A plot 1, existing shade community. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster A plot 1, improved shade scenario: half Musa replaced with simulated Inga sp. 
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Cluster A plot 2, existing shade community. 

 

 

 
 

Cluster A plot 2, improved shade scenario: half Musa replaced with simulated Inga sp. 
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Cluster A plot 3, existing shade community. 

 

 

 

 
Cluster A plot 3, improved shade scenario: half Musa replaced with simulated Inga sp. 
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APPENDIX C2 

SExI-FS Simulations of Shade Management Scenario 2: 

Timber Trees (Juglans olanchana) Added 

 

 
Cluster B plot 1, existing shade community. 

 

 

 

 

 

 

 

 
Cluster B plot 1, improved shade scenario: timber trees (J. olanchana) added. 
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Cluster B plot 2, existing shade community. 

 

 

 

 
Cluster B plot 2, improved shade scenario: timber trees (J. olanchana) added. 
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Cluster B plot 3, existing shade community. 

 

 
Cluster B plot 3, improved shade scenario: timber trees (J. olanchana) added. 
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APPENDIX C3 

SExI-FS Simulations of Shade Management Scenario 3: 

Shade Community Altered to Meet Bird-Friendly Certification Standards 

 

 
Cluster C plot 1, existing shade community. 

 

 

 
Cluster C plot 1, improved shade scenario: Bird friendly. 
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Cluster C plot 2, existing shade community. 

 

 

 
Cluster C plot 2, improved shade scenario: Bird friendly. 
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Cluster C plot 3, existing shade community. 

 

 

 

 
Cluster C plot 3, improved shade scenario: Bird friendly. 
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