
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2023 Bard Undergraduate Senior Projects

Spring 2023

Modeling Vascular Diffusion of Oxygen in Breast Cancer Modeling Vascular Diffusion of Oxygen in Breast Cancer

Tina Giorgadze
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2023

 Part of the Cancer Biology Commons, Numerical Analysis and Computation Commons, and the Partial

Differential Equations Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Giorgadze, Tina, "Modeling Vascular Diffusion of Oxygen in Breast Cancer" (2023). Senior Projects Spring
2023. 137.
https://digitalcommons.bard.edu/senproj_s2023/137

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for inclusion
in Senior Projects Spring 2023 by an authorized
administrator of Bard Digital Commons. For more
information, please contact digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2023
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2023?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/12?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2023/137?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Modeling Vascular Diffusion of Oxygen in
Breast Cancer

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Tina Giorgadze

Annandale-on-Hudson, New York
May, 2023

ii

Abstract

Oxygen is a vital nutrient necessary for tumor cells to survive and proliferate. Oxygen is diffused
from our blood vessels into the tissue, where it is consumed by our cells. This process can be
modeled by partial differential equations with sinks and sources. This project focuses on adding
an oxygen diffusion module to an existing 3D agent-based model of breast cancer developed
in Dr. Norton’s lab. The mathematical diffusion module added to an existing agent-based
model (ABM) includes deriving the 1-dimensional and multi-dimensional diffusion equations,
implementing 2D and 3D oxygen diffusion models into the ABM, and numerically evaluating
those equations using the Finite Difference Method. I started by diffusing a point source in a
2D grid, then diffusing a line in a 2D grid, then a cubic patch in a 3D grid, and finally, diffusing
oxygen from blood vessels into the tissue. Then, I programmed the supply function to represent
the continuous oxygen supply from vasculature, and the uptake function to represent the oxygen
uptake by cancer cells.

iii

iv

Contents

Abstract iii

Dedication vii

Acknowledgments ix

1 Introduction 1

1.1 Biology Background . 2

1.1.1 Cancer . 2

1.1.2 Angiogenesis . 4

1.2 Mathematics Background . 6

1.2.1 Partial Differential Equations (PDEs) . 6

1.2.2 The Diffusion Equation With One Spatial Dimension 7

1.2.3 Diffusion Equation For Higher Spatial Dimensions 8

1.2.4 The Finite Difference Methods . 11

1.2.5 Explicit Finite Difference Method . 12

1.3 Modeling Background . 15

1.3.1 Agent-Based and Continuous Models . 15

1.3.2 Modeling Oxygen Diffusion in Tumor . 18

1.3.3 Previous Work . 20

2 Computational Methods 23

2.1 Code Overview . 24

2.2 2D Diffusion of a Point . 25

2.3 2D Diffusion of a Line . 26

2.4 3D Diffusion of a Cubic Patch . 26

v

vi CONTENTS

2.5 Obtaining the Diffusion Radius . 27
2.6 3D Diffusion of Initial Vasculature . 28
2.7 Model Validation . 30

3 Results 31
3.1 2D Diffusion of a point . 31
3.2 2D Diffusion of a Line . 32
3.3 Obtaining the Diffusion Radius . 34
3.4 3D Diffusion of a Cubic Patch . 35
3.5 3D Diffusion of Initial Vasculature . 36
3.6 Adding Cancer Cells And Continuous Sources to the Model 39

4 Discussion and Conclusions 43
4.1 Next Steps . 45
4.2 Personal Reflection . 47

Appendices 49

A Code for 2D/3D Diffusion, Supply, and Sink 49
A.1 Code for 2D Diffusion . 49
A.2 For Loop for 3D Diffusion . 51
A.3 Vectorized Version . 52
A.4 Diffusing From Vasculature . 52
A.5 Supply Function . 53
A.6 Uptake Function . 54

Bibliography 57

Dedication

This project is dedicated to my late grandmother Tina, who passed away due to breast cancer
in 2017. She made me the person I am today.

vii

viii

Acknowledgments

I want to thank my advisors Dr. Kerri-Ann Norton, Ethan Bloch, and Sven Anderson for
supporting me throughout my senior year. Additionally, I am grateful to every professor in
the computer science and mathematics departments for providing me with the tools and skills
necessary to successfully complete my senior project. Last but not least, I want to acknowledge
my colleagues Ansel Tessier and Henning Fischel, who created a supportive and collaborative
space for me during Bard Summer Research Institute 2021, when I discovered my deep interest
and passion for computational biology and cancer modeling.

ix

x

1
Introduction

The purpose of this project is to add an oxygen diffusion module to an existing agent-based model

of triple-negative breast cancer developed in Dr. Norton’s lab in order to measure hypoxia in

cancer more accurately.

Cancer is identified by the uncontrollable expansion of cells in our bodies, which includes

several hallmark abilities such as unlimited replicative ability, ability to invade and spread,

suppressing growth suppressors, and more ([20]). This makes tumors difficult to treat, with

frequent remissions and recurrences. Triple Negative Breast Cancer (TNBC) is a particularly

difficult tumor to treat, as it lacks the three most commonly targeted receptors ([13]). Dr.Kerri-

Ann Norton’s computational biology lab has developed a 3-dimensional agent-based model of

TNBC. The most recent research purpose of Norton’s lab was to simulate the effects of a newly

developed immunotherapy on the tumor and observe the parameters and conditions that affect

the effectiveness of this treatment. ([11], [16])

Diffusion refers to the movement of material from high to low concentrations ([1]). A classic

example of this process is the movement of heat through a rod. This project looks at the

diffusion of oxygen from our blood vessels into the tissue. Just like heat flows from warmer

to colder temperatures, oxygen diffuses from higher to lower concentrations. Once the oxygen

is diffused into the tissue, it is then absorbed by our cells as a form of nutrition necessary to

1

2 INTRODUCTION

support cell life and reproduction. Like any other cells, cancer cells rely on oxygen to sustain

their lives and expand ([12]). Hypoxia refers to cells being too far from the vasculature to

obtain oxygen, and cells in hypoxic conditions have different properties. For example, hypoxic

cells have slower proliferation and migration rates than cells that have access to oxygen and

nutrition ([28]). The TNBC model this project builds upon incorporates hypoxia and alters

tumor behavior accordingly. Therefore, having an accurate and realistic representation of the

movement of oxygen molecules through our tissue and to the cancer cells is crucial for having

our model yield realistic results.

This project aims to improve the model by adding an oxygen diffusion module, which in-

cludes several steps. First, the design of accurate partial differential equations to model diffusion

with sources (vasculature) and sinks (tumor cells absorbing oxygen). Second, a numerical eval-

uation method will be necessary to estimate the value (amount) of oxygen at a given location.

This method will have to apply to three spatial and one time dimension, as the existing method

is 3-dimensional. Third, the mathematical model, which is sometimes referred to as a continu-

ous model, will have to be integrated into the existing agent-based model. After the model is

complete, it will be validated to prove its correctness.

1.1 Biology Background

1.1.1 Cancer

Cancer manifests itself in many forms, all of which have different complex properties and be-

haviors. There are several steps to tumor development and progression. Zijl et al. ([59]) explain

the process of tumor development: the first step in the formation of tumor is the mutation of

cells. These mutated cells have an increased risk of becoming cancerous. This process is known

as the initiation. The cells that undergo such genetic mutations are then subject to the second

stage of cancer development known as the promotion, where the proliferation rate of such cells

starts to change. The next stage, the progression, is when the growth rate of the cells increases,

and the cells undergo more mutations that increase their invasiveness. As seen in Siddiqui et al.

1.1. BIOLOGY BACKGROUND 3

([51]), the invasiveness of cancer implies that it has the ability to spread from one location to

another through either the lymph system or the bloodstream. Therefore, cancer cells need to

enter the blood vessels, survive inside the bloodstream, leave the vessel, and then keep growing

and proliferating at the new location away from the primary site.

Hanahan and Weinberg ([20]) have identified eight capabilities that most solid tumors share,

including triple-negative breast cancer - the cancer simulated in this project. These eight hall-

marks that make tumor incredibly difficult to treat include sustaining proliferative signaling,

evading growth suppressors, resisting cell death, enabling replicative immortality, inducing an-

giogenesis, activating invasion and metastasis, deregulating cellular energetics and metabolism,

and avoiding immune destruction. Since these hallmark capabilities contribute to the growth

and development of cancer, producing drugs to inhibit these capabilities has been an important

task in developing effective therapeutics. Most of the existing cancer drugs target specific hall-

mark capabilities. However, many of these drugs have been observed to have temporary effects,

with the tumor eventually developing resistance or going into relapse ([20], [57]).

There are several reasons why this happens. First, it has been observed that hallmark

capabilities are regulated by multiple pathways, not just one. Therefore, when a given drug

targets a specific pathway, signals can still travel through other pathways not targeted by the

mechanism. This allows some cancer cells to survive, adapt and develop resistance leading to

continued tumor growth ([30]). One possible solution to this challenge would be designing a

cancer drug that targets multiple pathways simultaneously. That, in theory, would disable the

tumor-promoting hallmark capability altogether ([20]). Another reason current drugs can be

ineffective in the long run is the ability of cancer to shift its dependence. When one capability

is attacked or disabled, the tumor has been observed to become more dependent on another

hallmark capability. This means that the tumor can still progress despite the therapy ([20]). A

solution to this challenge could be to use a single drug that targets most if not all, hallmarks

of tumors. Creating a drug like this is an extremely difficult task, as most processes utilized

by cancer cells are also used by the rest of our cells. Therefore, disabling these processes would

4 INTRODUCTION

cause the patient’s body to stop functioning properly and possibly endanger their lives even

further. Therefore, a therapeutic mechanism will need to carefully select what processes are

non-essential for human bodies that we can risk eliminating.

As described in ([18]), another big reason tumors are difficult to treat is the fact that it

lives in a microenvironment that is altered to support tumor growth. This microenvironment

can include invasive cancer cells, cancer stem cells, inflammatory immune cells, endothelial

cells, cancer-associated fibroblasts, blood vessels, etc. All these cells are normally present in

non-cancerous tissue as well, but they all serve distinct functions in the context of the tumor

microenvironment. For example, blood vessels support tumor growth by providing oxygen and

nutrients. Cancer-associated fibroblasts have been observed to provide structural support. In-

flammatory immune cells, or IICs, support tumor progression by increasing cells’ proliferation

rates as well as death resistance. Tumor cells that have been deprived of oxygen are called “hy-

poxic” cells. Such cells have reduced migration and proliferation rates. Because of the adverse

effects hypoxia has on tumors, treatments that focus on blocking angiogenic signaling can halt

new vessel growth, and thus keep tumor dormant. Out of the eight hallmark abilities mentioned

above, the one most relevant to this project is the ability of tumors to induce angiogenesis. Since

we aim to model diffusion of oxygen from vasculature in TNBC, it is important to understand

how cancer affects our blood vessels. In the next section, I discuss angiogenesis, the recruitment

process of blood vessels by cancer, as well as its effects on tumor growth.

1.1.2 Angiogenesis

Like any other living cell, tumor cells require nutrients to survive and reproduce. Most essential

nutrients and oxygen necessary for tumor cells to live and proliferate come from blood vessels,

also known as vasculature ([28]). As discussed above, one of the major hallmarks of cancer

includes the ability to recruit new blood vessels. That way, if the tumor undergoes metastasis,

it can maintain a supply of oxygen and nutrients wherever it migrates. The recruitment of new

blood vessels is known as angiogenesis. In order for a tumor to recruit new blood vessels, it

1.1. BIOLOGY BACKGROUND 5

needs to send a signal that triggers the formation of new blood vessels. This process is known

as the ”angiogenic switch”.

The process of new capillaries branching from existing vasculature is known as sprouting

angiogenesis. As discussed in [31], there are three main types of cells that participate in this

process: tip, stalk, and phalanx cells. First, the tumor needs to send a signal to endothelial cells

to begin sprouting. A major example of such signaling is Vascular Endothelial Growth Factor,

or, VEGF, that cancer cells secrete. Endothelial cells are cells that make up the inner lining of

blood vessels. They also serve as an anticoagulant barrier between blood vessels and the blood.

Once this signal is received, an endothelial cell starts to sprout, or, migrate away from the parent

vasculature. The guiding cell is known as a tip cell. This cell guides the sprouting of a capillary

toward the signal, usually in the direction of the tumor. Once a tip cell starts to migrate, other

endothelial cells (stalk cells) behind it start to divide and migrate together with the tip cell,

which creates a sprout. Finally, phalanx cells are the remaining quiescent (dormant) endothelial

cells that have lower proliferation and migration rates. Once the branching is finished, the

sprouts connect and form lumen in order for blood to start flowing through the newly sprouted

blood vessels. This process is known as anastomosis ([53],[22]). Once the new blood vessels

undergo anastomosis, the tumor gains access to oxygen and nutrients, allowing it to survive and

grow.

My model uses PDEs to simulate oxygen diffusion from blood vessels into the tissue. An

important long-term goal of this project is to compare hypoxia rates between my model and

previous models. Unfortunately, it is not easy to observe vasculature growth or its effects on

a tumor in patients and in-vivo models. It takes time for the capillaries to grow, and the

number of studies that observed this process from images is low ([54]). For these reasons,

computational modeling is a commonly used tool to observe and predict the effects and patterns

of angiogenesis. It allows us to make these predictions and observations in a fraction of the time.

For example, a computational model was used to predict that stalk and tip cell proliferation rate

has a stronger effect on vasculature growth than migration rate. Models have also been used to

6 INTRODUCTION

observe vasculature as a drug delivery into the tumor microenvironment. Computational models

also allow us to simulate the secretion and effects of VEGF diffusion from cells, as seen in [39].

This model incorporates an angiogenesis module from a previous paper ([16]) in order to diffuse

oxygen from capillaries into the tissue.

1.2 Mathematics Background

This section goes over the necessary mathematical tools to model the diffusion of oxygen from

blood vessels into the tissue. First, I derive the standard heat diffusion equation, which, in

a slightly adapted form, was used in our model. Since our model is 3-dimensional, I used a

3-dimensional diffusion equation. I will show the derivation of the diffusion equation with one

spatial dimension, followed by the diffusion equation for higher dimensions.

Second, I will discuss ways to evaluate the 3-dimensional diffusion equation numerically.

The method discussed in this section is called the finite difference method. First, I derive the

FDM for 2 spatial dimensions, and then show the formula for 3 dimensions.

1.2.1 Partial Differential Equations (PDEs)

Partial differential equations, or PDEs, are equations that depict a relationship between an

unknown function and its partial derivatives. These functions in PDEs, unlike in ordinary

differential equations, depend on more than one variable; for example, time and space as opposed

to just time or just space. Lots of physical phenomena can be modeled and described through

PDEs. Some common examples include the heat equation, the wave equation, laws of motion,

certain quantum mechanics phenomena, etc. In other words, many processes that describe the

change of a quantity over time across space can be modeled by a PDE. The mathematical model

described in this project will implement a type of diffusion equation. Therefore, I begin by

exploring the derivation and evaluation of the classic diffusion equation.

1.2. MATHEMATICS BACKGROUND 7

1.2.2 The Diffusion Equation With One Spatial Dimension

Diffusion refers to the process of matter moving from high to low concentrations in some medium.

A classic example comes from a physics problem that looks at heat diffusing through a rod. I

begin with a rod of fixed length L, as shown in Figure 1.2.1. Heat is traveling through this rod

from one end to another. Let U(x, t) be a function representing the concentration of heat (or

other substance) at time t at location x. In order to be able to calculate the function U at a

given time t at a given location x, I need to write and evaluate a partial differential equation.

In this chapter, I set up the mathematical model and thus derive the classic diffusion equation.

I will closely follow the approach seen in [2]. A more concise derivation of the same result can

be found on page 126 of [5].

Before I set up the PDE, I have to specify our initial and boundary conditions. Initial

conditions refer to the temperature throughout the rod at time t = 0. If U(x, t) denotes tem-

perature at time t and location x, some examples of initial conditions can include, for example,

U(x, 0) = 0, U(x, 0) = sinx, etc. Boundary conditions refer to the temperature of the rod on

the boundary. Namely, when x = 0 and when x = L. For example, I could have{
U(0, t) = 0

U(L, t) = T,

for some temperature T, and for 0 < t < ∞.

Figure 1.2.1: Thin Rod With Cross Section

Next, I derive the heat equation commonly known as Ut = Uxx + F (x, t), where Ut = ∂U
∂t ,

Uxx = ∂2U
∂x2 , and F (x, t) is the source/sink function. To keep things simple, I will ignore constant

coefficients that would come up in physical occurrences. For this part, I think about how

heat moves through the rod over time - in other words, what factors affect Ut. The change in

8 INTRODUCTION

temperature at a given location is affected by two things: first, the flow of heat through that

location. Second, any outside sources or sinks affecting the rod at that location. So, we have

change in U in time = Flow of heat at x, t + external heat from sources or sinks at x, t.

Let Q(x, t) be the heat flow (or flux) function through the rod. In other words, the function

represents how heat flows from one location to the other. We define heat to flow from left to

right. That means that when heat flux is negative, we have a bigger temperature on the right

boundary compared to the left boundary. So, when the flux is negative, we have a positive

change in the temperature at that location. Therefore, we need to take the negative of the heat

flow in the equation. Then, to show how the heat flow changes at a given location, we take the

space derivative of Q. That way, we can quantify the change of heat flow at a given location at

a given time. Now, we can rewrite the equation for Ut above to see that

Ut = −Qx + F (x, t).

Next, we derive Q in terms of U. A good way to demonstrate the process is to slice our

rod into tiny cylindrical pieces starting at x and ending at x + ∆x as shown in Figure 1.2.1,

where ∆x is arbitrarily small. Then, we see that the flow of heat through this cylindrical slice

of the rod is the difference in the temperatures at the two ends of the slice averaged through the

length of the slice. So, to find the flux of heat through this slice, we have Qx = U(x,t)−U(x+∆x,t)
∆x .

However, since we are interested in the instantaneous flux of heat at x as opposed to through

the slice, we take the limit as ∆x goes to 0. This gives us Qx = lim∆x→0
U(x,t)−U(x+∆x,t)

∆x = −Ux.

Substituting the above equation in our current diffusion equation, we get

Ut = −(−Ux)x + F (x, t) = Uxx + F (x, t).

This concludes our derivation of the heat equation with one spatial dimension.

1.2.3 Diffusion Equation For Higher Spatial Dimensions

Let us generalize the diffusion equation for higher dimensions. For this part, we follow the

same general structure as in the previous chapter. However, we now focus on a 3-dimensional

1.2. MATHEMATICS BACKGROUND 9

volume instead of a one-dimensional rod. This volume can have arbitrary shape and size. This

derivation will closely follow the structure seen in [3]. For more detailed derivation of the same

result using the same Gaussian theorem we will use below, see Section 1.5 of [19].

Let us once again think about what components affect the total change of temperature in

time. As we saw with the rod example, two factors contribute to the total change in temperature.

First, heat can be flowing into or from the object. But, since we now have an object with volume,

heat would flow through the boundary. Second, we can have an additional source or sink of heat

inside the volume (for example, the object can receive an external hit, which can generate

additional heat energy). So, we have a rough equation that looks like

Total change in Temperature = Heat flowing through the boundary + External source or sink

First, let us think about how to calculate heat flux through the boundary. Here, we refer to

Fourier’s Law of Heat Conduction ([36]).

Theorem 1.2.1 (Fourier’s Law of Heat Conduction). The rate of heat transfer through a ma-

terial is proportional to the negative gradient in the temperature and to the area, at right angles

to that gradient, through which the heat flows.

Putting Fourier’s Law in differential form, (ignoring constants), we get Q⃗(X, t) =

−∇⃗U(X, t), where X is the spatial position vector and Q represents heat flux. However, re-

call that we define heat to flow from left to right. Therefore, in our final equation, we need to

use the negative of heat flux, because the body gains heat if Q is negative. Additionally, we need

to take the dot product of Q with the normal vector n⃗ pointing perpendicular to the surface.

This way, we get the direction of the heat flux to or from the object. Then, if V is the volume

of the object, and S is its surface, we need to look at the change in total heat energy of the

object as well as the total flux through the entire surface and the total additional heat energy

from sinks/sources across the volume. This calls for volume and surface integrals. Therefore,

we end up with

∂
∫∫∫

V U(X, t) dV

∂t
= −

∫∫
S
Q⃗(X, t) · n⃗ dS +

∫∫∫
V
F (X, t) dV.

10 INTRODUCTION

In order to make matters easier, we need to find a way to convert the surface integral into

a volume integral. For that, we refer to Gauss’s Theorem of Divergence (see [29]).

Theorem 1.2.2 (Gauss’s Theorem of Divergence). Suppose V is a subset of R3 (in other words,

V represents a volume in three-dimensional space) which is compact and has a piece-wise smooth

boundary S (also indicated with ∂V = S). If F is a continuously differentiable vector field defined

on a neighborhood of V , then

∫∫∫
V

(∇ · F) dV =

∫∫
S

(F · n⃗) dS.

The left side is a volume integral over the volume V , the right side is the surface integral over the

boundary of the volume V . The closed surface ∂V is oriented by outward-pointing normal ∂V .

d may be used as a shorthand for dS.) In terms of the intuitive description above, the left-hand

side of the equation represents the total of the sources in the volume V , and the right-hand side

represents the total flow across the boundary S.

Using this theorem, we can rewrite

∫∫
S
Q⃗(X, t) · n⃗ dS

as ∫∫∫
V

(∇⃗ · (Q(X, t) dV.

Then, our final equation ends up being

∂
∫∫∫

V U(X, t) dV

∂t
= −

∫∫∫
V

(∇⃗ · (Q(X, t) dV +

∫∫∫
V
F (X, t) dV

Next, we use Fourier’s Law to write

∂
∫∫∫

V U(X, t) dV

∂t
=

∫∫∫
V

(∇⃗ · ∇⃗U(X, t) dV +

∫∫∫
V
F (X, t) dV

We rearrange the terms to get

∫∫∫
V
U(X, t)t − ∇⃗2U(X, t) − F (X, t) dV = 0.

1.2. MATHEMATICS BACKGROUND 11

However, recall that this equation is true for arbitrary volume V . Therefore, the only way for

this volume integral to always equal 0 is if the expression inside the integral itself equals 0.

Therefore, we get

U(X, t)t − ∇⃗2U(X, t) − F (X, t) = 0,

therefore,

U(X, t)t = ∇⃗2U(X, t) + F (X, t).

This equation is known as the higher dimensional heat diffusion equation. We will use this later

on in our mathematical model of oxygen diffusion, where oxygen diffuses from blood vessels

into three-dimensional tissue. In the next chapter, we look at ways to numerically evaluate

diffusion-type equations.

1.2.4 The Finite Difference Methods

While the diffusion equation derived above can be solved analytically, my program uses a 3D

version of the equation with sources and sinks. The PDE setup in my code is very difficult to

solve analytically. Therefore, we need to implement some kind of numerical evaluation method.

Additionally, since the model we are building upon uses matrices/grids to represent data and

visualize findings, it would be efficient to somehow utilize a similar grid in our numerical solu-

tions.

Finite difference methods are a way to numerically evaluate partial differential equations

using a discretized grid. In the simple case of one-dimensional space, we can use a 2-dimensional

mesh grid to plot the function U(x, t), where the axes represent the time and space dimensions.

The general idea is to use initial and boundary conditions to fill in the function values across the

grid one row at a time. Simply put, the finite difference methods use known function values at

the previous time step to fill in the function values for the current time step. There are several

finite difference approaches, such as the explicit and the implicit methods. In this project, I

will use an explicit method described below. For future projects, it would be interesting to

12 INTRODUCTION

implement the implicit Crank-Nicholson method that uses more linear algebra, which could

potentially optimize the process.

1.2.5 Explicit Finite Difference Method

In this section, we go over the numerical evaluation method for 1-dimensional diffusion

Ut(x, t) = Uxx(x, t).

This part closely follows Lesson 38 of [10], so please see the textbook for more details.

1D Numerical Formula Derivation

We begin this method by constructing a 2-dimensional grid, where xi = ih and ti = ik for real

numbers h, k. Figure 1.2.2 shows such a grid that was used in textbook ([10]). You can see the

time and space dimensions represent the two axes on the grid, with h, k representing the grid

sizes in x and t directions. In this example, we assume that each time step is weighted the same.

First, notice that the formula for the time-derivative of the temperature function gives us

the approximate equation

Ut(x, t) ≈
U(x, t + k) − U(x, t)

k
=

Ui+1,j − Ui,j

k
,

where Ui,j = U(jh, ik). Note that k is a grid dimension, which, ideally, is small enough to allow

this approximation. Now, let us use the grid to find a formula for the second space derivative

of U.

Using the weighted average formula, we can write the derivative at the location x in terms

of the previous and following locations on the grid. Namely,

Ux(x, t) ≈ U(x, t) − U(x− h, t)

h
,

Ux(x + h, t) ≈ U(x + h, t) − U(x, t)

h
.

Then, we can approximate the second spatial derivative of U by using the two approxima-

tions above:

1.2. MATHEMATICS BACKGROUND 13

Uxx(x, t) ≈ Ux(x + h, t) − Ux(x, t)

h
=

U(x + h, t) − U(x, t)

h2
− U(x, t) − U(x− h, t)

h2

=
U(x + h, t) − 2U(x, t) + U(x− h, t)

h2
=

Ui,j+1 − 2Ui,j + Ui,j−1

h2
.

We can use these approximations in the heat equation by replacing U(x, t) with Ui,j , where

t = ik and x = jh. Keep in mind that our goal is to solve for the value of U at the next time

step. By making the substitutions for Ut and Uxx in the heat equation, we can solve for Ui+1,j

as seen below:

Ut = Uxx

Ui+1,j − Ui,j

k
=

Ui,j+1 − 2Ui,j + Ui,j−1

h2

Ui+1,j = Ui,j +
k

h2
(Ui,j+1 − 2Ui,j + Ui,j−1)

Figure 1.2.2: 2-D Grid for numerical approximation

The formula above is what we use to calculate the value quantity of heat at location x = ik

at time t + 1 = (j + 1)h.

14 INTRODUCTION

2-D and 3-D Explicit Formulas

Deriving the explicit finite difference method formula for higher dimensions (2D, 3D) follows a

very similar logic we used above to derive the 1D formula. Therefore, here we simply state the

results for higher dimensions. In this project, I will be using a cubic grid, therefore we assume

that the step size in all three dimensions is the same (Dx = Dy = Dz).

In 2 dimensions, we have the XY grid and the time dimension. Here, let Ui,j,t represent

U(iDx, jDy) at time step t. Let us denote the step size in time by Dt for consistency purposes.

Recall that in the 1D version, the step size in time dimension was denoted by k, but now we

refer to it as Dt for consistency. Then, the oxygen concentration at point i, j at the next time

step is given by

Ui,j,t+1 = Ui,j,t + Dt

(
Ui+1,j,t + Ui−1,j,t − 2Ui,j,t

Dx2
+

Ui,j+1,t + Ui,j−1,t − 2Ui,j,t

Dy2

)
as seen in section 2.3.4 of [23]. (Note that in our case, α = 1,∆x = ∆y = Dx,∆t = Dt.) Since

Dx = Dy we get

Ui,j,t+1 = Ui,j,t + Dt

(
Ui+1,j,t + Ui−1,j,t + Ui,j+1,t + Ui,j−1,t − 4Ui,j,t

Dx2

)
(1.2.1)

For 3D grids, we modify equation 1.2.1 to include a third space dimension, z, represented

by the index k. As shown in section 3.1 of [8], we can find oxygen concentration at the next

timestep t + 1 at index i, j, k with the formula

Ui,j,k,t+1 = Ui,j,k,t (1.2.2)

+ Dt
Ui+1,j,k,t + Ui−1,j,k,t + Ui,j+1,k,t + Ui,j−1,k,t + Ui,j,k+1,t + Ui,j,k−1,t − 6Ui,j,k,t

Dx2
.

(Again, note that in a cubic grid Dx = Dy = Dz, and that Dt denotes the time incre-

ments.) Now that we have covered the important partial differential equations and numerical

approximation formulas needed for our model, we conclude the math background overview.

1.3. MODELING BACKGROUND 15

1.3 Modeling Background

In this section, I explain different types of computational models, go over several oxygen diffusion

models, and discuss the previous work of Dr. Norton’s computational biology lab at Bard

College.

1.3.1 Agent-Based and Continuous Models

Models and simulations are often used to observe biological processes, such as epidemics, popu-

lation dynamics, immunotherapies, and more. These processes, in real life, can take years and

decades to occur. Simulations, on the other hand, can be done in days, hours, and even minutes.

They can also be less costly, and require fewer resources than conducting real-life research with

live subjects. While models and simulations can be more efficient, they are also, by nature,

imperfect. A model can generate results very close to the actual phenomenon, but most models

require assumptions and simplifications that do not always follow in reality. For the purposes

of this project, I look into two major types of models: agent-based and continuous. Specifically,

I focus on agent-based and continuous models of cancer.

An agent-based model incorporates autonomous agents capable of making decisions based

on the information they gather from their local environment without having access to the entire

system. For example, an agent-based predator-prey model, where each animal is an agent.

Prey agents would be checking their local environment to see if they can detect a predator in

the vicinity, and move away from it, if possible. Predator agents, on the other hand, would be

moving around randomly until they can sense a prey agent nearby, and move toward them. These

decisions are made by agents based on what information they can gather from their immediate

environment. Predator and prey agents do not have any information about the entire system.

They do not know how many predator/prey agents there are, their locations, or the locations

of food sources. This is close to how real-life agents make decisions. A predator or a prey does

not have access to its entire environment and therefore has to make decisions based on what

information is available locally. ABMs simulate the same decision-making we see in nature.

16 INTRODUCTION

ABMs are used to simulate cancer as well. Usually, each cancer cell is programmed to be

an independent agent with proliferation, migration, and death rates. This allows a researcher

to track the development, growth, branching, and morphology of tumors on a cellular level.

Figure 1.3.1: Sample ABM Flowchart

Each cell makes decisions based on some type of decision tree, where each decision depends

on information gathered from the cell’s parameters, or the environment. For example, Figure

1.3.1 from another cancer ABM ([40]) shows how each cancer cell agent makes decisions. At

first, a cancer cell checks for empty space adjacent to it in a discretized grid. If there is no

space (for example, if it is surrounded by other cells), the cell will be dormant. If there is space,

the cell determines whether it is hypoxic or not, because being hypoxic affects migration and

proliferation rates of cancer in this model. After determining the migration and proliferation

rates, the cell will migrate accordingly, and be dormant if it can not proliferate. If it can, then

a cell will divide symmetrically, if it is a progenitor cell. If it is a stem cell, then it will either

divide symmetrically or asymmetrically depending on probability. Afterward, a cell checks if its

division limit is reached. If it is, then it senesces and potentially dies off. Otherwise, the cycle

repeats.

1.3. MODELING BACKGROUND 17

Agent-based models of cancer have led to interesting results and breakthroughs. To name a

few, Gong et al. ([17]) found that tumor growth is insensitive to the initial location distribution

of immune cells. A model by Norton and Popel ([40]) identified cell seeding rates and locations

as important contributing factors to tumor growth and were able to give insight into conditions

that lead to exponential and decremented tumor growth. Casarin and Dondossola ([4]) studied

prostate cancer’s response to R223 and found that it only got eradicated in medium or micro-

sized tumors with ineffective results in large tumors. Heidary et al. ([21]) used an agent-based

modeling approach to simulate the interactions between cancer cells and fibroblasts and found

that the signaling of cancer cells caused the status of fibroblasts to switch in the tumor mi-

croenvironment. Olsen and Siegelmann ([42]) programmed an ABM of tumor angiogenesis, but

unlike many other models, they included both cancerous and non-cancerous tissue. Their ABM

showed that including non-cancerous tissue does not yield significantly different results from

models that do not include such tissue. Novak et al. ([41]) used agent-based modeling to observe

how provider-patient interactions influence the de-implementation of breast cancer screenings.

Their ABM suggested that the rates of screenings are lower in women outside the range of 50-74

even when the provider recommendations remain unchanged. A study by Rivera et al. ([48])

used an ABM to predict the critical role of RAC1 (a specific gene) for the metastasis of ovarian

cancer.

While our project intends to build upon an ABM, the module I added is continuous. Contin-

uous models are models applied to continuous data and processes. Such processes occur at every

point in time, as opposed to discrete intervals. For example, the military uses continuous mod-

eling to simulate the trajectory of missiles. Biologists model population dynamics. Engineers

use continuous models to simulate water levels when constructing dams. This type of model

normally uses partial or ordinary differential equations. A very common math model that uses

differential equations is the SEIR model in mathematical epidemiology. The SEIR (Susceptible-

Exposed-Infected-Recovered) model simulated the transmission of a disease through a system

of differential equations. Wickramaarachchi and Perera ([58]) used a typical SEIR model to de-

18 INTRODUCTION

scribe Covid-19 dynamics in Sri Lanka. Using the total population N , exposure rate β, infection

rate σ, recovery rate γ, and COVID death rate µ, they constructed the following system:

dS
dt = − β

N SI
dE
dt = β

N SI − σE
dI
dt = σE − γI − µI
dR
dt = γI

. (1.3.1)

Establishing initial conditions and evaluating this system allowed them to estimate optimal

transmission rates (β), as well as initial parameters of the rate.

Much like ABMs, continuous models are a useful tool for computational cancer research.

Dingli et al. ([7]) used mathematical modeling to check how varying parameters of tumor-virus

interactions affected the therapy. Kozlowska et al. ([24]) used a combination of machine learning

and math modeling to predict a patient’s response to cancer immunotherapy. Gevertz et al. ([15])

used the model to explore how different types of drug resistance influence the spatial development

of tumors. In our model, I use partial differential equations to simulate the diffusion of oxygen

from the blood into cancerous tissue.

1.3.2 Modeling Oxygen Diffusion in Tumor

Real-life processes that include the diffusion of a substance are often modeled using partial

differential equations. Therefore, oxygen diffusion in tumors is usually done with continuous

modeling. Here, I do a brief overview of existing studies that used an oxygen diffusion model

in cancer. A paper by Gevertz et al. ([15]), as mentioned above, largely inspired this project.

They used two diffusion models: one to simulate the diffusion of oxygen, and one to simulate the

diffusion of a drug. Their main goal was to observe how two different types of drug resistance

affect the spatial dynamics and growth of cancer. I will focus on their oxygen diffusion module.

Their partial differential equation has a form very similar to what I use in my project:

Oxygent = Diffusion × Oxygenxx + Supply − Uptake.

The supply term refers to the quantity of oxygen supplied by blood vessels at each spot.

This is measured simply by checking how many blood vessels are within some radius of each

1.3. MODELING BACKGROUND 19

point in space. The uptake term refers to the quantity of oxygen absorbed by nearby cells. The

diffusion is simply a second spatial derivative scaled by a dimensionless coefficient. They used

sink-like boundary conditions. Their model had two space dimensions, so an important aspect

of this project is to use the foundations of Gevertz et al. ([15]) to build a 3-dimensional model.

Their study used a forward finite difference method to numerically estimate the values of their

2D oxygen concentration function. This project uses the same numerical method but instead

evaluates 3-dimensional functions.

Many projects have focused on various other aspects of oxygen diffusion. For example,

Pratx et al. ([45]) used a computational model to observe oxygen depletion, and how it affects

the oxygen enhancement ratio. The model’s predictions indicated that any changes in the

capillary oxygen tension decrease the effects of FLASH (ultra high-dose rate radiotherapy). Li

et al. ([26]) used a 1-dimensional diffusion model to simulate how oxygen diffuses in a biofilm.

For their boundary conditions, they set the x-derivative of oxygen concentration to be 0 at the

boundary, because oxygen is often depleted before it reaches the edge. While this study was

observing the growth and thickness of the biofilm instead of focusing on cancer specifically, it

is still a good example of how even 1-dimensional oxygen diffusion is relevant and necessary for

modeling. Franko and Sutherland ([14]) used modeling to investigate the effects that limiting

the diffusion of metabolites had on the development of necrosis in a tumor environment. Their

model suggested that the number of hypoxic cells in spheroids grown at more than 5% oxygen was

very small. Riffle and Hegde ([47]) used an oxygen diffusion model to observe how cancer cells

adapted hypoxia in tumor spheroids. Liapis et al. ([27]) modeled oxygen diffusion in absorbing

tissue, which is very similar to this project. They, however, used orthogonal collocation, a

different numerical evaluation method, and introduced moving boundaries. Schultz and King

([50]), used a similar mathematical model of oxygen diffusion and reaction with flux boundary

conditions, where the consumption of oxygen by cells in the biological system was determined by

Michaelis-Menten. Tannock ([55]) studied the relationship between oxygen diffusion and cellular

radiosensitivity in tumors by analyzing cell survival curves for different types of tumors. Simpson

20 INTRODUCTION

and Ellery ([52]) derived a new analytic solution for a steady-state model of oxygen diffusion

with nonlinear uptake of spherical cells. In conclusion, various papers have used continuous

modeling and PDEs to study oxygen diffusion in tumors.

1.3.3 Previous Work

In this section, I discuss previous work done in Dr. Norton’s lab that lead to the development of

this project. Note that this section will not focus exclusively on angiogenesis modeling. Instead,

I will overview some of the previous related studies that used computational models to study

triple-negative breast cancer (TNBC).

A previous paper by Norton et al. ([38]) used a similar computational model to observe the

interplay between CCR5 cells, cancer stem cells, and hypoxia. Stem cells are types of cancer stem

cells that have unlimited replicative ability. In other words, they can produce uncontrollably

and have been known to cause tumor relapses. The simulation started with all cells checking

for adjacent empty spaces; then, the migration rate was determined (CCR5+ cells had 10 times

higher migration rates compared to other cells). Then, the model determined proliferation with

50% of progenitors and 20% of stem cells proliferating a day; the division of stem cells was based

on random probability (5% for symmetric and 95% for asymmetric). After proliferating, the

cells either repeated the cycle or died based on whether they had reached the proliferation limit.

This study found that anti-stem cell treatment decreased the tumor size, but only temporarily.

Even one stem cell was enough to eventually regenerate the tumor; thus, the total elimination

of stem cells is necessary for the lasting effects of the treatment. They also found that stem cell

proliferation rates have a more significant effect on tumor growth than migration rates.

Another paper by Norton et al. ([37]) used a computational model to study the effects of

stromal macrophages, fibroblasts, and tumor vasculature on TNBC heterogeneity. Their models

included TNBC, angiogenesis, and stroma modules. In each iteration of the TNBC module,

the cancer cells check for empty space and distance to a mature vessel. If a mature vessel

is detected, they determine whether the cancer cell is hypoxic based on its distance from the

1.3. MODELING BACKGROUND 21

vasculature. Cells’ migration was determined using hypoxia status. Then, the model determined

the proliferation of tumor cells, and depending on whether the cell is a stem or progenitor, it

divided either symmetrically or asymmetrically. Finally, the division number of a cell is checked

(which is reduced every time the cell proliferates). If the number is less than the cell’s limit, the

cycle continues; otherwise, the cell is subject to senescence and possible death. The initial model

included a 1000 × 1000 × 1000 grid with 100 cancer cells and 8 blood vessels. Macrophages and

fibroblasts were then randomly inserted into the grid. This model was used to conclude that

increasing stromal effects on proliferation rates of TNBC cells actually decreases tumor growth.

They also found that a small number of macrophages increased the size of the tumor, while

larger (∼ 1000) numbers inhibited the growth due to space restrictions.

A third paper ([56]) based on a computational model of TNBC by Norton in 2020 added a

new T-cell immunotherapy module to the ABM. The goal of the research was to observe how the

tumor responded to the T-Cell treatment. Their model included tumor (progenitor and stem

cells), macrophages, expanding vasculature, and immune cells. Their research found that while

the T-cell treatment successfully decreased the size of the tumor, the cancer was still not fully

eliminated. Therefore, they observed recurrence of cancer proliferation in the aftermath. My

colleagues and I later expanded on this module by simulated a different type of immunotherapy

of TNBC.

In that research I conducted with colleagues in Norton’s computational lab, we focused

on adding a new tumor immunotherapy known as the Chimeric Antigen Receptor (CAR) T-

cell therapy. Our research aimed to test the effectiveness of immunotherapy under varying

expressions of antigens within tumors. CAA, or, the cancer-associated antigen is an antigen

bound to tumor cells and is used to target the tumor. We programmed two distinct models: one

that used a binary expression of antigens where each tumor cell had 0% or 100% of presenting

the antigen ([11]) and one that used a gradated expression of antigens, where the probabilities of

tumor cells expressing the antigen were distributed on a bell curve ([16]). Our research showed

that CAR T-cell therapy successfully reduced the size of the tumor in both binary and gradated

22 INTRODUCTION

models, with a higher success rate for complete elimination of the tumor in the gradated model

compared to binary. The studies mentioned above led to the development of my senior project,

which aims to improve the simulation of hypoxia in the existing model.

2
Computational Methods

Dr. Norton’s computational lab has developed previous agent-based models of triple-negative

breast cancer ([11], [16]). Those previous simulations include tumor cells, vasculature (blood

vessels), immune cells, data collection, and other cells in tumor microenvironments. Those

models also keep track of hypoxia levels over time, where a cancer cell is considered hypoxic if it

is further than 200 microns away from vasculature. That is a very simplified way of measuring

hypoxia. It is important to have a more realistic way of checking whether a cancer cell is hypoxic,

as hypoxic cells have lower migration rates, which could affect the outcome of simulations. The

goal of this project is to incorporate an oxygen diffusion module into the existing ABM. I add

code to use vasculature as an oxygen source, and diffuse oxygen into the model from each

vasculature node. Now, we have access to the oxygen concentrations at the location of every

cancer cell, meaning that we can measure hypoxia levels more realistically.

The model I expanded in this project uses a 500 × 500 × 500 matrix to keep track of the

locations of the vasculature where each grid unit represents 2 µm. Though the final grid is

500× 500× 500, I used a reduced version of size 50× 50× 50 for testing and better visualization

purposes. The first step was to write 2D diffusion code, and eventually increase it to three

dimensions. Simulation of vascular diffusion occurred in 4 steps: 1. 2D point source diffusion,

2. 2D line source diffusion, 3. 3D cubic patch diffusion, and 4. Vasculature diffusion. I first

23

24 CHAPTER 2. COMPUTATIONAL METHODS

took a 2D grid of the size 50 × 50 and put a single point source in the middle to observe the

diffusion. Then, I tested line diffusion on the same grid by taking the entire top row of the grid

as a source. Both of these 2D models were validated using existing programs and resources to

ensure my results were comparable to those existing resources. Then, I moved to 3D diffusion

in a 50 × 50 × 50 grid by placing a cubic patch in the center, after which I validated my results

using existing diffusion models. Finally, once my 3D program was validated, I used the tumor

model developed in Dr. Norton’s computational biology lab to obtain locations of vasculature

and used those as sources. In other words, I inputted initial vasculature as oxygen sources and

had them diffuse into the model.

2.1 Code Overview

This section will cover the setup of the code. I programmed the entire project in ©Matlab

R2020b ([33]). I first set up our 50 × 50 Oxygen matrix U and set Dx = Dy = 1. Then, I

place a heat source of 100 non-dimensional units at the center with coordinates (25, 25). Next,

I introduce our boundary conditions: I fixed the boundaries at 0 to cut off the oxygen. The

tumor model I plan on building upon simulates a section of a solid tumor, so I decided to fix the

bounds. An important next step is deciding what the time step should be. In the mathematics

background section, I discussed the classic heat equation of the form Ut = Uxx. In practice,

the equation actually has the form Ut = αUxx, where α is a heat diffusion coefficient that has

a significant effect on the specifics of the diffusion. It can determine how fast and how much

diffusion takes place. The numerical solution changes only slightly: Equation 1.2.1 becomes

Ui,j,t+1 = Ui,j,t + α×Dt× Ui+1,j,t + Ui−1,j,t + Ui,j+1,t + Ui,j−1,t − 4Ui,j,t

Dx2
, (2.1.1)

where Dx is the grid width, and Dt is the time step. See Chapter 2 of [25] for more details.

I can decide what time step Dt and what α I want to pick. The smaller the time step, the

more accurate the results will be. However, the smaller the time step, the slower the simulation.

Langtangen and Linge ([25]) discussed the relationship between Dx,Dt, and α in their literature.

2.2. 2D DIFFUSION OF A POINT 25

In Section 3.4, they define the Numerical Fourier Number as

F =
αDt

Dx2
.

They state that in order for the solution to be stable, a sufficient condition for stability is

F ≤ 0.5. This can be rewritten as a condition of Dt, where

Dt ≤ Dx2

2α
.

Since α = 3 > 1 in my program, I used Dt = Dx2

2α2 . This concludes the initial setup. The 3D

code was vectorized for efficiency purposes, meaning that the calculations were performed on

entire rows of entries at once, instead of looping through every individual entry. 2D code was

not vectorized, however, since the program was fast enough unvectorized and slightly easier for

a user to follow.

Inside a double loop, I went through every i, j index of our matrix U except for the bound-

aries. I updated the old value at position Uij according to the Equation 2.1.1 restated below:

Ui,j = Ui, j +
αDt

Dx2
(Ui+1,j − 2Ui,j + Ui−1,j + Ui,j+1 − 2Ui,j + Ui,j−1) .

Once I updated the value, I calculated the absolute change by looking at the difference between

the old and new values of Ui,j . I kept track of the cumulative change. I repeated the process until

the cumulative change is less than a small percentage of the highest starting value of U. That

means I terminated the program after it reached a steady-state and further diffusion became

negligible.

2.2 2D Diffusion of a Point

First, I placed a point source in the middle of a 2-dimensional 50×50 grid and make it an oxygen

point source with a supply rate of 100 non-dimensional units. I set the boundary conditions

to be 0 on all four boundaries of our grid. I then diffuse it until it reaches a steady state. I

considered the program to have reached a steady state when the maximum change in oxygen

concentrations across the grid from one time step to the next was less than 0.01% of the starting

26 CHAPTER 2. COMPUTATIONAL METHODS

highest value of all oxygen concentrations (in our case 100). I expect the point to diffuse in the

shape of a circle centered at (25, 25). I also expect the concentrations to get lower and lower

the further out into the grid we go. I also expect the edges to stay at 0 based on our boundary

conditions. After the program terminates, I validated my model.

2.3 2D Diffusion of a Line

After I finished and validate the point source (0-dimensional source) diffusion, I wanted to make

sure our program works in the case of a 1-dimensional source (a line) as well. Thus, I took the

same 50 × 50 grid but put a line as a source instead of a point. I chose the top edge of the

grid to be a line source. In other words, every point on the line y = 1 has a starting value

of 100 instead of 0. After setting the source line, I specified the rest of the boundaries to be

0, as before. I then let the line diffuse downward until it reached a steady state. This was

an important step, the goal for this project is to successfully diffuse oxygen from vasculature,

which, when simplified, could look like line segments in either 2D or 3D. Therefore, testing and

confirming the correctness of line diffusion in 2D means that we can now simulate vasculature

in 2D using line segments.

2.4 3D Diffusion of a Cubic Patch

After completing the diffusion of both 1-D and 2-D sources in a two-dimensional grid, I moved

up to three spatial dimensions. Although the grid I ultimately used to insert vasculature into

will be the size 500 × 500 × 500, for model validation and visualization purposes I reduced it to

50 × 50 × 50. I centered a 7 × 7 × 7 cube in the center of the 3D grid. This is an arbitrary size,

although a smaller size would have been too small for a grid this large. I set every point inside

that cube to be a source with the value of 1000. I increased the supply rate from 100 to 1000,

since the grid is now 3D, and I wanted the diffusion to be easier to visualize. Note that just like

with 2D diffusion, I needed to slightly modify Equation 1.2.2 to include the diffusion coefficient,

obtaining

2.5. OBTAINING THE DIFFUSION RADIUS 27

Ui,j,k,t+1 = Ui,j,k,t+

Dt× α
Ui+1,j,k,t + Ui−1,j,k,t + Ui,j+1,k,t + Ui,j−1,k,t + Ui,j,k+1,t + U + i, j, k − 1, t− 6Ui,j,k,t

Dx2
.

(2.4.1)

I ran the program until the diffusion reached a steady state, meaning that the maximum

change in the oxygen concentration matrix from one timestep to the next was no more than a

small percentage (0.01%) of the highest entry in the starting grid (1000). After the program

ended, I validated my results using available tools and resources.

2.5 Obtaining the Diffusion Radius

As I discussed earlier, the diffusion coefficient and the diffusion time step have a big impact

on the characteristics, speed, and spread of the diffusion. Since this is a computational biology

project, I have some knowledge of what the correct diffusion radius is supposed to be. In

other words, as seen in [9], the normal diffusion radius for cancer cells is between 100 and 200

microns. That means if a cancer cell is not within that range from an oxygen source, it will be

considered deprived of oxygen, and therefore hypoxic. I measured the diffusion radius by looking

at every non-zero oxygen concentration location in the matrix U , then measured distances from

all those locations to the central point source, and returned the maximum of those distances.

In other words, I measured the maximum distance from the diffusion source to all non-zero

concentrations. In our simulation, after trial and error, I set the diffusion coefficient α to 4 and

the time step to Dx2

2α2 = 0.03125 to obtain a diffusion radius of 180 microns from a point source

centered inside the 500 × 500 × 500 grid. I then kept the same parameters as I used the model

in the future. However, note that our time step is rather small, which means that I exchanged

the speed of the program for accuracy.

28 CHAPTER 2. COMPUTATIONAL METHODS

2.6 3D Diffusion of Initial Vasculature

Finally, I inputted blood vessels into our program as initial sources and have them diffuse

throughout the grid. This is the last step in our diffusion trials because once I successfully

diffused oxygen from the vasculature into the grid, I added tumor cells into the system. I used

a model, developed in Dr. Norton’s computational biology lab, that creates 8 initial capillaries

inside the grid. Then, the code fills a 500 × 500 × 500 grid with logical values (logical values

are 0s or 1s): 0, if there is no vasculature in that location and 1 if there is vasculature in that

spot. I used the code to create capillaries and the code to fill in the vasculature grid. I then

used that grid to find which locations in our program need to be made a source with starting

value of 1000. After I put sources into every location with vasculature in it, I ran the diffusion.

As of now, I have not made the vasculature a continuous source - I am simply doing a one-time

diffusion to test the program. Another thing to note is that we consider starting blood vessels

to have already undergone anastomosis (see Angiogenesis Section of this paper). Therefore, we

can assume that each of the vessels in the vasculature diffuses oxygen. I ran the program where

oxygen diffuses from the vasculature with no sinks or sources.

However, I want to eventually make vasculature a continuous source. Our blood vessels

continuously supply oxygen, therefore, I need to add a supply function to our code. So, I ran

the program a second time with two added functions: supply and uptake. Let Supplyi,j,k,t

represent the supply at location i, j, k at time t. In other words, this function quantifies the

amount of oxygen supplied at this location by vasculature at a given time. I calculated this by

looking at the 8 neighbors of the location i, j, k. Then, I counted how many of these neighboring

locations currently contain a blood vessel node. I then multiplied that number by 1000 (supply

rate of vasculature). I then multiplied that number by the timestep Dt, and add it to the current

amount of oxygen concentration at the location i, j, k, as shown on Page 7 of [25].

The last thing I needed to add is cellular uptake. Once oxygen is diffused into the tissue,

cancer cells absorb oxygen and nutrients in order to migrate and proliferate. I implemented

a cellular uptake function similar to the one used in [15], where at each location at a given

2.6. 3D DIFFUSION OF INITIAL VASCULATURE 29

time step, they count how many cancer cells are within a certain range. Then, I scaled up that

number by a cellular uptake constant. Finally, the uptake is going to be the minimum of the

current oxygen concentration at this location, and the scaled number of cells within the sensing

range from this location. This makes sense because if there are too many cells concentrated

at the location, their oxygen uptake can not be more than what is currently available at this

location. In other words, the uptake function Uptake can be expressed as

Uptake(i, j, k) =
∑

C in Cells

{
1 if ||Clocation − (i, j, k)|| < R

0 otherwise
, (2.6.1)

where R = 3 is the sensing radius of cells, and Cells is the collection of tumor cells.

Adding supply and uptake functions makes our modified Finite Difference Method formula

look slightly different from formula 1.2.2:

Ui,j,k,t+1 =Ui,j,k,t + Supply(i, j, k) ·Dt + Uptake(i, j, k) ·Dt

+ Dt · α
(
Ui+1,j,k,t + Ui−1,j,k,t + Ui,j+1,k,t + Ui,j−1,k,t + Ui,j,k+1,t + U + i, j, k − 1, t− 6Ui,j,k,t

Dx2

)
.

Since the rest of the code is vectorized, meaning, the program operates on entire arrays at

once instead of looping through individual entries, the code for supply and uptake also needs to

be vectorized. Ideally, they will operate on an array of locations, and return an array of values.

Before vectorizing the code, I tested the unvectorized versions. For the supply function, I placed

a 5 × 5 rectangle (unfilled) in the center of a 50 × 50 × 50 grid to represent vasculature. In

other words, I temporarily edited the vasculature grid to only represent a rectangle, to see the

heatmap of the supply function. Since we can calculate the intended values of supply by hand,

it can be manually validated to be correct. We would expect to have no supply at grid locations

more than one row/column away from the central rectangle. We would also expect to have the

most supply around the corners of the initial rectangular vasculature.

30 CHAPTER 2. COMPUTATIONAL METHODS

2.7 Model Validation

Before I can use the model for any research purposes in the future, it is important to first validate

the program by showing how the results compare to already established studies or programs.

For the 2-D source, I used an online Python tutorial ([35]), that aims to obtain a numerical

solution to the 2D heat equation. Their code diffuses the heat from the top line (y = 0) of

their grid downward. To compare it to our model, I set their grid size to be the same as ours

and set our diffusion parameters (Dx,Dy, α,Dt) to match theirs. I then ran both programs

and calculated the average error. Note that their Python program also uses the finite difference

method as they loop through their heat concentration array. For the 3D model validation, I

used the program found at [43]. Their vectorized code includes a steady-state mode using the

steady-state Laplace’s Equation. This resource was also used as a guide for vectorizing our code.

I increased their grid size to 500× 500× 500 and modified their initial conditions to also include

the 3D cubic patch in the center. After both programs reached a steady state, I calculated the

average percent error across the two matrices.

3
Results

This project aims to create an oxygen diffusion module with the purpose of adding it to existing

agent-based breast cancer model(s). I programmed four diffusion models to lead up to the main

goal, which is a vascular diffusion of oxygen. I started with a simple point source diffusion in

2D, then a line source diffusion in 2D, then a cubic source diffusion in 3D, and ended at 3D

oxygen diffusion from the vasculature. In this section, I go over the visualizations and findings

of each of the diffusion models mentioned above.

3.1 2D Diffusion of a point

Figure 3.1.1 shows the 50 × 50 grid after a steady-state diffusion of a point in the middle of

a 2D grid. I see that as expected, the highest concentration is in the middle, and lessens as

we move outward. I also see that the boundaries are set at 0, as I programmed. Since the

diffusion is not biased in any direction, it makes sense for the point source to diffuse equally

in every direction. That’s why seeing the diffusion in the shape of a circle makes sense, as it

is perfectly symmetrical in every direction. In other words, any set of equidistant locations

from the central source has the same concentration of oxygen. The concentric circles in the

figure demonstrate that very concept. Figure 3.1.2 shows a heat plot of the 2D heat diffusion

matrix obtained from [35]. Recall that the initial and boundary conditions were matched to our

program, as well as the size of the grid. The two figures look very similar visually. One thing

31

32 CHAPTER 3. RESULTS

to note is that the Python code I compared to my program was not a steady-state program.

As in, the creators of that code were not checking to see if the change in a matrix was lower

than a certain percentage. Therefore, to match their setup, I temporarily commented out the

check for a steady-state condition I had in my program. We see a very similar diffusion in this

figure, with expanding concentric circles around the central point source with decreasing values

of oxygen concentration. I then calculated the average percent error between my model and

the gold standard in order to confirm the correctness of my program. After calculating the

average percent error between the two matrices, I got 0.3932%. This concludes the point source

validation.

Figure 3.1.1: TG Model of 2D Point Dif-
fusion

Figure 3.1.2: 2D Point Diffusion Gold
Standard From [35]

3.2 2D Diffusion of a Line

Figures 3.2.1 and 3.2.2 shows the steady-state heat plots of our model and the gold standard

from [35] after diffusion of a line at the top of a 50 × 50 grid. Starting values of every source

point on that line were set to 100 in both models. Visually, our model looks as expected: I start

at high concentrations at the top border and gradually decrease in the shape of a semicircle as

I progress downward. The borders are fixed at 0, which aligns with our boundary conditions. It

is important to note that since the supply line is at the top border of the grid, it can not diffuse

3.2. 2D DIFFUSION OF A LINE 33

upward. That is why the diffusion visually we only see half of the diffusion. Otherwise, it would

have been symmetrical in the upward direction as well.

This diffusion shape matches what I see in the gold standard version (Figure 3.2.2. We see

on the heat bar that the values range from 0 to 100, starting with the highest concentrations at

the top and diffusing downward. To check how similar my program was to the gold standard in

[35], I calculated the average percentage error between the two final matrices after 750 iterations

and got 1.3 % average error across 2500 entries. The Python program only did 750 iterations,

so I modified my code to also run for 750 iterations only.

Figure 3.2.1: TG Model of 2D Line Diffu-
sion

Figure 3.2.2: 2D Line Diffusion Gold Stan-
dard From [35]

After calculating average error, I was curious to see the distribution of individual errors,

and whether the distribution would be uniform or follow any pattern. Figure 3.2.3 shows the

distribution of errors. I see that the error between my model and the gold standard ranges

between 0 % and 4%, with most of it concentrated at the bottom of the grid, just above the

boundary. This can be explained by the fact that our diffusion in this case begins at the

top border of the grid, so the error accumulates as it diffuses downward. In other words, our

numerical evaluation method uses previous entries and rows in the matrix is calculate future

rows and values. Therefore, the error builds up from one row to the next. That explains why

most of the higher error values are concentrated in the very last row. We also see no error on

34 CHAPTER 3. RESULTS

the boundaries, as they are fixed in both cases to be 0 and therefore are identical. Next, I move

to the 500 × 500 × 500 matrix in three dimensions.

Figure 3.2.3: Heatmap of Percent Error In 2D Line Diffusion

3.3 Obtaining the Diffusion Radius

As mentioned in Methods, the normal range for oxygen diffusion from vasculature is between

100 and 200 microns ([9]). It is important for the accuracy of the program to make sure that

our model can reach a realistic diffusion radius. If the oxygen does not diffuse enough in the

program, then we might end up with incorrect hypoxia rates. Since our time step is very small,

in order to save some runtime, I ran our program until I reach the lower bound of 100 microns.

Note that our grid width represents 2 microns. Therefore, in terms of our grid width, our target

diffusion radius is at least 50. Figure 3.3.1 shows such diffusion in 2D. This is actually a 2D

slice from a 3D grid. The diffusion value was set to 4, the time step was set to 0.031, and the

program terminated with the maximum change in oxygen concentration across the grid from

one iteration to the next was about 0.0000007. As seen in the figure the diffusion begins in the

center at position 250 and diffuses outward until somewhere around 300 and 325.

3.4. 3D DIFFUSION OF A CUBIC PATCH 35

Figure 3.3.1: Diffusion Radius of 100 Microns:2D

You see the initial source is placed at locations (250,250,250), with the diffusion radius

between 50-75 (100-150 microns). Now that the diffusion radius is within the normal range, I

moved on to diffuse oxygen in a 3-dimensional grid.

3.4 3D Diffusion of a Cubic Patch

As mentioned in the Computational Results section, I set the grid size to 50 × 50 × 50, and

placed a cubic patch of the size 7 × 7 × 7 at the center, where each point inside the cube has

the initial value of 1000. Once again, a cube of side length 7 was arbitrary, but I found that

3 was too small for the grid. I then diffused it until the program reached a steady state, and

compared the final oxygen concentration matrix to the one given by the 3D heat diffusion gold

standard [43].

Figure 3.4.1 shows our program’s steady-state distribution, which, as expected, is highly

concentrated in the center and gradually decreases as we move toward the borders. Since our

36 CHAPTER 3. RESULTS

data was 4-dimensional (three spatial coordinates, plus the fourth dimension for concentration

values), the best way to visualize it was to take three central slices that demonstrate central

diffusion. Note that our boundary conditions on the boundaries were still fixed at 0. As in the

case of 2D diffusion, we have symmetry in 3D as well. I did not introduce any biased diffusion in

any direction, meaning that the cubic source in the center diffused equally in every direction. So,

if the source had been a single point, the diffusion would have been shaped as a perfect sphere.

With the cubic source, we still see symmetry. The diffusion looks the same in every direction of

the slice. My model visually matches the gold standard model shown in Figure 3.4.2. We see

the same distribution of oxygen, concentrated in the center and equally damping out in every

direction. As in the case of 2D diffusion models, I calculated the average error as a percentage

and got 0.2456%. This percentage is small enough for me to conclude my 3D model validation.

Next, I move on to input the initial capillaries into our program.

Figure 3.4.1: TG Model of 3D Cube Dif-
fusion

Figure 3.4.2: 3D Cube Diffusion Gold
Standard From [35]

3.5 3D Diffusion of Initial Vasculature

The aim of this project is to be able to diffuse oxygen directly from vasculature instead of

arbitrary point or line sources. So, after programming and checking the correctness of point

source, line source, and cubic patch, I moved to vascular diffusion. I started by inputting the

3.5. 3D DIFFUSION OF INITIAL VASCULATURE 37

Figure 3.5.1: Initial Vascula-
ture

Figure 3.5.2: Setup of Tumor
Cells

initial vasculature into the grid as initial sources. I then fixed the boundary conditions. The

initial vasculature was taken from previous models developed in Dr. Norton’s lab ([11], [16]).

Figure 3.5.1 depicts the blood vessels at the beginning of the program. We see that the

initial blood vessels are spread near the boundaries of the grid. We assume that all these blood

vessels diffuse oxygen. Recall that in general, sprouting blood vessels have blood flowing if they

have undergone anastomosis. In this project, the initial blood vessels we are using as sources are

assumed to have blood flow, thus, we use every blood vessel as oxygen source without having to

check for anastomosis. I ran the program without sinks or sources. That means that there are

no cancer cells to uptake the oxygen, and the blood vessels aren’t programmed to continuously

supply oxygen. Once the oxygen is fully diffused from the vasculature, I take slices of our

oxygen concentration matrix through various vessels and locations to observe the distribution

of concentrations.

Figures 3.5.3, 3.5.4, 3.5.5, and 3.5.6 represent these cross-sections of the oxygen concentra-

tion matrix diffused directly from the vasculature. The red lines represent close-ups of blood

vessels shown in Figure 3.5.1. The first two figures, Figure 3.5.3 and Figure 3.5.4 were captured

close to the edge of the grid. We can see that the oxygen diffusion is cut off at the edges and does

not diffuse symmetrically around the vessels. We can still see gradients of oxygen concentration

around the vessel, as expected. Once again, these figures do not include continuous supply and

cancer cell uptake functions - these are steady-state one-time diffusion instances of oxygen into

38 CHAPTER 3. RESULTS

Figure 3.5.3: Diffusion From
Vasculature

Figure 3.5.4: Diffusion From
Vasculature

Figure 3.5.5: Diffusion From
Vasculature

Figure 3.5.6: Diffusion From Vasculature

3.6. ADDING CANCER CELLS AND CONTINUOUS SOURCES TO THE MODEL 39

tissue. The diffusion radius is closer to the lower bound of the normal oxygen diffusion radius

of the 100-200 micron range. The bottom two figures, Figure 3.5.5 and 3.5.6 show instances of

diffusion where vasculature goes through a plane. Specifically, Figure 3.5.5 shows a piece of a

vessel (in red) on the left side going through a cross-section of the grid. On that cross-section,

we see a gradient of oxygen diffusion right around the intersection point between the vessel and

the plane. In this case, the vessel is not close to the edge of the grid, so we can see a wider

diffusion with a bigger radius. Figure 3.5.6 shows a case where a vessel goes in and out of a

plane. We see that the entry and exit points have gradients of diffusion around them, as those

locations are the closest to the oxygen supply. The area on the cross-section in between the

entry and exit points of the red blood vessel seems to have lower oxygen concentrations due to

the lack of color gradient, which makes sense as the vasculature is further away from that area.

Being able to diffuse oxygen from vasculature was one of the main goals of this project.

Now that we have accomplished this, the next steps are to add cellular uptake and continuous

supply options.

3.6 Adding Cancer Cells And Continuous Sources to the Model

As discussed earlier, another important goal of this project is to be able to have tumor cells

interact with vasculature by absorbing the concentration of oxygen available at their locations.

I was able to implement the code for the cellular uptake and vascular supply functions, however,

they did not end up fully finished in time and thus did were not put in the final model. The

draft of the code for both functions can be found in the Appendices. As mentioned in Methods,

the supply function takes in a point and counts how many of its neighboring locations act as

oxygen sources. Each cell has 27 neighbors in 3 dimensions (28, since we include the point as its

own ”neighbor”). So, a grid point that is surrounded by vasculature will have a higher amount

of oxygen supplied at that location compared to a grid point far away from blood vessels. The

uptake function counts how many cancer cells are within sensing distance from a given grid

40 CHAPTER 3. RESULTS

location. If a point is surrounded by cancer cells, then the uptake value at that point will be

high since many cancer cells are able to absorb oxygen from that location.

Since the 3D diffusion code (see Appendices) is vectorized, the supply and uptake functions

need to be vectorized in order to be inserted into the program. Vectorizing those functions would

be a potential next step for this project. I was able to test the current unvectorized version of the

supply function. Figure 3.6.1 shows the placement of the initial vasculature in this test model.

To simplify the location and shape of our initial vasculature, I modified the blood vessels, for

now, to look like a rectangle in the center of the grid. It is easier to visualize than the complex

shapes of blood vessels. We can see the yellow rectangle in the center. Figure 3.6.2 shows a

heatmap of the supply function applied to every position on the grid. So, every point in that

grid represents the supply value of the function at that location. The result looks as we would

expect. The corners of the initial rectangle have a supply value of 3 non-dimensional units, one

for themselves, and 2 for their 2 neighbors. The 2 central points on all four sides have supply

values of 4, 1 for themselves and 3 for their three neighbors (diagonals count). We also see the

supply is zero everywhere more than one row/column away from the initial vasculature, which

is what we would expect. We also see a 2 × 2 square in the center with 0 supply, which also

makes sense as that square is not directly adjacent to the rectangle. We can conclude from this

figure that the 2D supply code is distributing the supply values as expected.

Figure 3.6.1: Supply Placement On Grid
Figure 3.6.2: Heatplot of Sup-
ply Function

3.6. ADDING CANCER CELLS AND CONTINUOUS SOURCES TO THE MODEL 41

As I mentioned above, the supply and uptake functions were not implemented in the final

program. Some of the issues I had with the code had to do with the difficulty of vectorizing

those functions. Another issue I had was that the oxygen supply and uptake numbers generated

by my functions were considerably larger than the available oxygen concentrations. That could

have been due to incorrectly selecting supply and uptake coefficients.

While my supply and uptake functions did not end up in my overall program, I was still

able to add tumor cells to the model for future use. They do not currently interact with the

simulation in any way. The model starts with 50 tumor cells being placed in one of the corners

of the grid. Figure 3.5.2 shows the initial starting positions of the tumor cells. This is the same

initial setup of cancer cells and vasculature as seen in the previous models ([11], [16]). The

tumor cells start off in the corner and do not move throughout the simulation. Notice that they

start off very close to the vasculature, which means they would have enough supply of oxygen,

and would not be considered hypoxic. Future work could focus on finishing the uptake function

that uses the locations of cancer cells that are now available inside the program.

Figure 3.6.3: Cancer Cells With Vasculature

Figure 3.6.4: Cancer Cells With
Vasculature

42 CHAPTER 3. RESULTS

Figures 3.6.3 and 3.6.4 show tumor cells with vasculature and cross-sections of the oxygen

concentration matrix zoomed in. The cancer cells are at the bottom of the figures represented

by blue circles. The inclusion of cancer cells in the model makes it easier to incorporate updated

supply and uptake functions for any future work.

4
Discussion and Conclusions

The goal of this project was to upgrade a previous agent-based model of Triple-Negative Breast

Cancer ([11], [16]) by adding a new oxygen diffusion module. The motivation behind adding this

module was to have a more realistic way of measuring hypoxia in cancer. The existing model

measured the closest Euclidean distance between each cancer cell in the grid and the blood

vessels to determine whether the cell was hypoxic. With the addition of my module, we can now

have a separate matrix representing the available concentration of diffused oxygen at any given

location. That means that we would no longer need to use Euclidean distance between cells and

vasculature, and could instead have the cancer cells take up the oxygen concentration available

at their location, and become hypoxic if there isn’t enough oxygen available.

The vascular diffusion occurred in several steps. First, I wrote a program to diffuse a point

source in a 2D grid. The program worked was successful, diffusing equally in every direction in

the shape of a circle centered around the point source. The average error between my program

and the Python program ([35]) I used to validate my code under 0.4%. This was the simplest

diffusion program, so the next thing I did was upgrade the point supply in the grid to a line

source. The 2D line diffusion program also worked as intended, with a downward diffusion

gradient. The result of the diffusion of the line source visually matched the Python program

([35]) I used to confirm the correctness of my program. The average error was 1.3%, with most

43

44 CHAPTER 4. DISCUSSION AND CONCLUSIONS

of the error concentrated at the bottom of the grid, just above the boundary. This distribution

of error was expected since the finite difference method uses previous rows to calculate the

concentrations of oxygen at the next rows of the matrix. Therefore, as we move down the array,

the error accumulates from the last row to the next. That concluded the diffusion models in

2-dimensions. Next, I moved up to diffusing a source in three spatial dimensions. I placed a

cube source with dimensions 7×7×7 at the center of the matrix. 7 was an arbitrary side length,

but I found it to be a good cube size for visualizing purposes. I tried 3, but it was a bit too

small for a 50 × 50 × 50 grid. The 3D diffusion program worked as intended. The cube diffused

symmetrically in all directions and matched the gold standard from ([43]), with an average error

under 0.3%. With the 2D and 3D test models completed and checked for correctness, I then

moved to vascular diffusion of oxygen.

Before I inputted vasculature as the source in my program, I had to make sure the diffu-

sion matched the oxygen diffusion radius range obtained from biology studies and experiments.

Therefore, I experimented with my diffusion parameters, α, and the timestep Dt, to obtain a

diffusion radius of around 100 microns (50 on the grid, as the grid width is 2 microns). As seen

in [9], the normal oxygen diffusion range is 100-200 microns. With the appropriate diffusion

parameters set, I then proceeded to input the initial vasculature into the program as starting

sources.

In order to diffuse oxygen from blood vessels, I used the code for vasculature from Dr.

Norton’s previous model ([16]). That code uses a matrix of logical (boolean values) to keep

track of locations of vasculature in a 500 × 500 × 500 grid. I used that grid to determine what

locations to make my sources in the diffusion model. I did not check for anastomosis, as the

initial blood vessels are all assumed to have blood flow. I was able to successfully run the

vascular diffusion, and the results look as expected, with oxygen diffusing outward equally in

every direction from every vasculature node. The model is now ready to be used in other models

for future research. Since I first coded a 2-dimensional diffusion model, my program can also be

adjusted to fit in 2D models, similar to the one used in Gevertz et al. ([15]).

4.1. NEXT STEPS 45

Figure 4.1.1: Hypoxia in Existing Model

4.1 Next Steps

Dr. Norton’s previous work includes observing trends of hypoxia in tumors over time. Recall that

hypoxic cells are cells that have been deprived of oxygen. Hypoxic cells have been known to have

reduced proliferation and migration rates ([28]). Therefore, having an accurate representation

of hypoxia in a cancer model would lead to more realistic simulations of cancer dynamics. A

longer-term goal for the future of this project would be rerunning some of the older simulations

with the new oxygen diffusion model in order to compare hypoxia trends. In the previous

models, cancer’s access to oxygen has been determined via a straight line distance to the closest

vasculature. This time, we would have information about the exact concentration of oxygen

available at every grid point.

46 CHAPTER 4. DISCUSSION AND CONCLUSIONS

Figure 4.1.1 shows the hypoxia progression in a previous model developed in Dr. Norton’s

computational biology lab. The purple cells represent cancer cells that have been deprived

of oxygen. As expected, I see that such cells are distributed at a further distance from the

vasculature. In theory, the trends should not be drastically different with the new oxygen

distribution model. An important aspect of measuring hypoxia with our diffusion model is

determining the oxygen threshold for cancer cells. How much oxygen is a negligible amount for

hypoxia purposes? How would varying that threshold affect hypoxia trends? Intuitively, the

larger the hypoxia threshold for oxygen concentration, the larger the number of hypoxic cells. It

would be interesting to perform statistical analysis between the locations of hypoxic cells from

the old and new models.

As noted above, the vasculature I diffused in the model has blood flow from the beginning.

Meaning, we don’t check for sprouting or anastomosis. In the future, it would be interesting

to include blood vessels resulting from tumor-induced angiogenesis as oxygen supply. In order

to implement that, we would first need to keep track of which blood vessels have undergone

anastomosis. Dr. Norton’s older model uses another matrix to keep track of that information.

Therefore, with a slight modification of my code, we could diffuse oxygen from every vessel with

blood flow, and not just the initial 8 capillaries.

Another curious direction one could consider taking this project is the simulation of hyper-

baric oxygen therapy. Hyperbaric oxygen therapy refers to increasing the levels of pure oxygen

in a patient’s body. As seen in [34], HBO (hyperbaric oxygen) has the potential to act as a

tumor inhibitor. This could make cancer cells easier to kill with therapies like radiation and

chemotherapy. A study found that hyperbaric oxygen therapy had positive effects on men with

prostate cancer ([6]). Other studies have shown that hyperbaric oxygen alone has no significant

effect on tumor growth and progression ([49], [44]). This model could be a foundation of an

ABM that simulates the effect of hyperbaric oxygen therapy on specifically breast cancer. One

could investigate how Chimeric Antigen Receptor (CAR) T-cell therapy is affected by hyperbaric

oxygen therapy. CAR T-cell therapy has already been simulated in Dr. Norton’s lab ([11], [16]),

4.2. PERSONAL REFLECTION 47

so adding a hyperbaric oxygen therapy module would be one extra step. Furthermore, after

adding an HBO module, that model could be upgraded to a chemotherapy or radiation therapy

simulation in triple-negative breast cancer. In other words, this project can be expanded to

incorporate HBO to test the in-silico effectiveness of chemotherapy and/or radiation therapy.

There are some interesting mathematical future steps this project could incorporate.

Namely, one could bound the roundoff error of the program, which occurs due to the approxi-

mations used in our numerical evaluations. The width of the mesh grid we use for our numerical

evaluation plays a big role in the accuracy of the program. The smaller Dx,Dy, and Dt are,

the more accurate the results will be. This is also seen in the Mathematics Background section

where we approximated Ux and Ut. The smaller the grid sizes, the closer the approximations are

to the actual partial derivatives. However, if we make the grid size too small, that exponentially

slows down the program. So, we are dealing with roundoff and computation errors when we pick

the time step and grid width. A future addition to the project could focus on writing an error

analysis function and try to put bounds on the error function.

Another future mathematical direction for this project is to upgrade the numerical evaluation

method. As mentioned in the Mathematics Background Section, my program incorporates

the Explicit Finite Difference Method. Instead, one could use the Implicit Finite Difference

Method, namely, the Crank-Nicolson method, which incorporates linear algebra to approximate

the solutions to a PDE. Since my code is written in Matlab, implementing an FDM that’s based

on matrix multiplication could potentially make the code considerably faster, as Matlab is very

efficient with its linear algebra operations.

4.2 Personal Reflection

Working on a senior project was a journey full of curiosity, learning, exploring, creativity, and

problem-solving. I started off my senior year not even having seen a partial differential equation.

Within a few months, I managed to learn now only what PDEs are, but how to apply them

to biology, and how to evaluate them numerically. It was the first time I had to teach myself

48 CHAPTER 4. DISCUSSION AND CONCLUSIONS

an entire math topic from scratch. The math was so enticing, that I even took an additional

course in PDEs to learn even more. I learned not only a new math field but strategies to self-

teach. Additionally, I was able to build on a model I worked on during Bard Summer Research

Institute in 2021. It felt rewarding going back to what (my colleagues and) I started years ago.

Throughout the course of the past eight months, I spent every week designing the next steps of

the project, setting weekly goals, reassessing progress and the big picture, and course-correcting.

Of course, I ran out of time and did not get to fully accomplish my very last desired result, but

watching myself make some progress every week was truly a growing experience. Now, I know

how to work with PDEs both analytically and numerically, I know the trends and specifics of

diffusion, and I know about cancer, our vasculature, agent-based and hybrid modeling, and code

vectorization. It feels incredible knowing how much more I know now compared to my first day

of senior year purely due to my senior project.

Appendix A
Code for 2D/3D Diffusion, Supply, and Sink

A.1 Code for 2D Diffusion

%This is the code for diffusing a line at the top of a 2D grid of

size 50. We set Dx , Dy , Dt , alpha , and then diffuse the line

source until the aggregate change in he matrix from one time

step to the next is less than 0.1% of the source value (100).

This Code is not vectorized.

size = 50;

Dx=1; % step size

Dy=1;

alpha =5; % diffusion constant

global U

U=[];

%--BCs --

U(1:size ,1: size) = 0 ;

U(1,1: size) = 0;

U(size ,1: size) = 0;

U(1:size ,1) =0;

U(1:size ,size) = 0;

%--IC 's
for i=2:49

U(1,i)=100;

end

maxx=max(max(U));

49

50 APPENDIX A. CODE FOR 2D/3D DIFFUSION, SUPPLY, AND SINK

%

%calculate timestep

%Dt = Dx ^2/(2* alpha ^2);

%end simulation after 20 ,000 iterations (steadystate)

max_iter =20000;

%---set up the formulas

--

iter =0;

check =1;

while check ==1

difference =0;

U_old = U;

for i = 2:N-1

for j = 2:N-1

%Finie Difference Formula for 2D

new=Dt*((U_old(i+1,j) -2*U_old(i,j)+U_old(i-1,j))/Dx^2 ...

+ (U_old(i,j+1) -2*U_old(i,j)+U_old(i,j-1))/

Dy^2) ...

+ U_old(i,j);

%count aggregate difference between one iteration and the next

difference = difference+ abs(new -U(i,j))

end

end

%Make sure the difference is less than 0.1% of the starting source

. Can be arbitrary

if(difference >=0.001* maxx)

iter=iter +1;

%--If 20,000 time steps aren 't enough , we end early

if(iter >maxx)

check =0;

disp(" terminated early");

end

%--Else , if the error is smaller than 0.1%, we finish the program

..........................

else

check =0;

disp("Done!")

end

end

A.2. FOR LOOP FOR 3D DIFFUSION 51

heatmap(U)

A.2 For Loop for 3D Diffusion

%Most of the code stays the same when we move up to 3

Dimensions. U now changes to a 50 x50x50 matrix , and we also

change BCs to include all 6 boundary planes , and ICs to

include three dimensions.

%Finie Difference Formula for 3D

check =1;

while check ==1

for i = 2:size -1

for j = 2:size -1

for k = 2:size -1

new=(Dt*alpha *((U_old(i+1,j,k) -2*U_old(i,j,k)+U_old(i-1,j,k))/

Dx^2 ...

+ (U_old(i,j+1,k) -2*U_old(i,j,k)+U_old(i,j

-1,k))/Dy^2 ...

+ (U_old(i,j,k+1) -2*U_old(i,j,k)+U_old(i,j,k

-1))/Dz^2) ...

+ U_old(i,j,k));

%count aggregate difference between one iteration and the next

difference = difference+ abs(new -U(i,j,k))

end

end

end

%Make sure the difference is less than 0.1% of the starting source

. Can be arbitrary

if(difference >=0.001* maxx)

iter=iter +1;

%--Is 20 ,000 time steps isn 't enough , we end early

if(iter >maxx)

check =0;

disp(" terminated early");

end

%--Else , if the error is smaller than 0.1%, we finish the program

..........................

52 APPENDIX A. CODE FOR 2D/3D DIFFUSION, SUPPLY, AND SINK

else

check =0;

disp("Done!")

end %end if/else statement

end %end while loop

A.3 Vectorized Version

% This is the vectorized version of the double/triple four loops

seen above. Notice that here , we do not have any looping

through i,j, or k. The only loop we use is a while loop to

check for a steady -state

i = 2:N-1;

j = 2:N-1;

k = 2:N-1;

difference =10; %arbitrary large number

U_n=U; % Placeholder matrix to calculate new values each iteration

tic

%maximum error can 't be more than a tiny percentage of the highest

temperature

while difference >= maxx *0.00001 %can increase the tolerated

percent change as needed

U_n(i,j,k)=Dt*alpha *((U(i+1,j,k) -2*U(i,j,k)+U(i-1,j,k))/Dx^2

...

+ (U(i,j+1,k) -2*U(i,j,k)+U(i,j-1,k))/Dy^2

...

+ (U(i,j,k+1) -2*U(i,j,k)+U(i,j,k-1))/Dz^2)

...

+ U(i,j,k) ;

difference =(max(max(max(abs(U_n -U)))));

U(i,j,k)=U_n(i,j,k);

end

toc

A.4 Diffusing From Vasculature

%When we want to change our program to diffuse oxygen from the

vasculature , the only aspect we need to modify is the initial

conditions. Now , instead of placing the sources at the top

boundary or in the middle of the grid , we check for locations

A.5. SUPPLY FUNCTION 53

that have vasculature in them. In other words , every point in

the grid that has a vasculature node in it starts off as a

source.

%Changed IC: voxelgrid contains three different matrices. The one

we need is called Agent , which is a 50x50 logical array. If the

initial grid has a vasculature source in it , the corresponding

value in Agent is going to be 1, otherwise , it will be 0. find

(voxelgrid.Agent ==1) returns the indices of all gridpoints that

contain vasculature. Note that I do NOT create vasculature in

this program: it is adapted from Dr. Norton 's existing code.

The initial vasculature can be seen in the Results section.

U(find(voxelgrid.Agent ==1))=100;

%BCs remain the same

U(1, 1:N, 1:N) = 0;

U(N,1:N, 1:N) = 0;

U(1:N, 1:N,1) =0;

U(1:N, 1:N,N) =0;

U(1:N,1,1:N) = 0;

U(1:N, N,1:N) =0;

A.5 Supply Function

%The function below takes in a 3d location and returns an integer

value of how many oxygen sources it neighbors. voxelgrid.Agent

is a boolean matrix with 1's at locations of vasculature and 0'
s in locations with no vasculature. We calculate supply at a

point by checking all its 27 neighbors in 3D (and itself) and

counting how many vasculature nodes it neighbors.

function[s]= supply3d(point)

global voxelgrid

x=point (1); y=point (2); z=point (3);

%calculate neighboring coordinates

x_left=max(1, x-1); x_right=min(50, x+1); y_top=min(50, y+1);

y_bot=max(1, y-1); z_up=min(50, z+1); z_down=max(1, z-1);

%find all neighbors , including itself

cords ={ [x_left y z], [x_right y z], [x y_top z], [x y_bot z], [

x_right y_top z], [x_right y_bot z], [x_left y_top z], [x_left

y_bot z]...

,[x y z_up], [x y z_down], [x_right y z_up], [x_right y z_down

], [x_left y z_up], [x_left y z_down],

54 APPENDIX A. CODE FOR 2D/3D DIFFUSION, SUPPLY, AND SINK

[x_right y_top z_up] [x_right y_top z_down] [x_right y_bot

z_up], [x_right y_bot z_down],...

[x_left y_top z_up], [x_left y_top z_down], [x_left y_bot z_up

], [x_left y_bot z_down]...

, [x y_top z_up], [x y_top z_down], [x, y_bot z_up] [x, y_bot

z_down], [x y z]

};

%n is an array of 1s and 0s representing whether its neighboring

locations have vasculature in them

n=zeros(length(cords));

for ind =1: length(cords)

loc=cords{ind};

n(ind)=voxelgrid.Agent(loc(1), loc(2), loc(3));

end

s=0;

%sum up all of n to find the final supply number

for i=1: length(n)

s=s+n(i);

end

end

A.6 Uptake Function

%This function takes in a location and calculates its uptake value

by counting how many cancer cells that location is close to.

XYZ is a matrix containing the locations of all the cancer

cells.

function[intake]= uptake(point)

global XYZ

%variable to control sensing radius. Currently set at 3.

global sensingR

cells=XYZ;

intake =0;

%Loop through the cells

for ind=1: length(cells)

%check if the distance from each cell to our location is less than

the specified radius

if pdist2(point , cells(ind ,:)) < sensingR

%if within the sensing radius , we add 1 to the uptake count

change =1;

else

%otherwise , we add zero

change =0;

A.6. UPTAKE FUNCTION 55

end

intake=intake+change;

end

end

56 APPENDIX A. CODE FOR 2D/3D DIFFUSION, SUPPLY, AND SINK

Bibliography

[1] The Editors of Encyclopaedia Britannica, Diffusion, 2022, https://www.britannica.com/
science/diffusion..

[2] Steve Brunton, Deriving the Heat Equation: A Parabolic Partial Differential Equation for
Heat Energy Conservation, Youtube, 2022.

[3] Steve Brunton, Deriving the Heat Equation in 2D and 3D (and in N Dimensions!) with
Control Volumes and Vector Calculus, Youtube, 2022.

[4] Stefano Casarin and Eleonora Dondossola, An agent-based model of prostate Cancer bone
metastasis progression and response to Radium223, BMC cancer 20 (2020), 1–19.

[5] JR Chasnov, Differential Equations for Engineers, Lecture notes for Coursera. The Hong
Kong University of Science and Technology publishing. (2019).

[6] Marc A Dall’Era, Neil B Hampson, R Alex Hsi, Berit Madsen, and John M Corman, Hyper-
baric oxygen therapy for radiation induced proctopathy in men treated for prostate cancer,
The Journal of urology 176 (2006), no. 1, 87–90.

[7] David Dingli, Matthew D Cascino, Krešimir Josić, Stephen J Russell, and Željko Bajzer,
Mathematical modeling of cancer radiovirotherapy, Mathematical biosciences 199 (2006),
no. 1, 55–78.

[8] Fabien Dournac, HMPI Parallelization for numerically solving the 3D Heat equation, 2003.

[9] Katherine L. Eales, Kate E.R. ollinshead, and Daniel A Tennant, Hypoxia and metabolic
adaptation of cancer cells, Oncogenesis 5 (2016), no. 1, e190–e190.

[10] Stanley J Farlow, Partial differential equations for scientists and engineers, Courier Corpo-
ration, 1993.

[11] Henning Fischel, Tina Giorgadze, Ansel Tessier, and Kerri-Ann Norton, Computational
modeling of chimeric antigen receptor (car) t-cell therapy of a binary model of antigen
receptors in breast cancer, 2021 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), 2021, pp. 3267–3274.

57

https://www.britannica.com/science/diffusion.
https://www.britannica.com/science/diffusion.

58 Bibliography

[12] J. Folkman and R. Kalluri, Cancer without disease., Nature 427, 787 (2004), DOI
https://doi.org/10.1038/427787a.

[13] Monica Fornier and Pierre Fumoleau, The paradox of triple negative breast cancer: novel
approaches to treatment, The breast journal 18 (2012), no. 1, 41–51.

[14] Allan J Franko and Robert M Sutherland, Oxygen diffusion distance and development of
necrosis in multicell spheroids, Radiation Research 79 (1979), no. 3, 439–453.

[15] Jana Gevertz, Zahra Aminzare, Kerri-Ann Norton, Judith Pérez-Velázquez, Alexandria
Volkening, and Katarzyna A Rejniak, Emergence of anti-cancer drug resistance: explor-
ing the importance of the microenvironmental niche via a spatial model, Applications of
dynamical systems in biology and medicine, 2015, pp. 1–34.

[16] Tina Giorgadze, Henning Fischel, Ansel Tessier, and Kerri-Ann Norton, Investigating Two
Modes of Cancer-Associated Antigen Heterogeneity in an Agent-Based Model of Chimeric
Antigen Receptor T-Cell Therapy, Cells 11 (2022), no. 19, 3165.

[17] Chang Gong, Oleg Milberg, Bing Wang, Paolo Vicini, Rajesh Narwal, Lorin Roskos, and
Aleksander S Popel, A computational multiscale agent-based model for simulating spatio-
temporal tumour immune response to PD1 and PDL1 inhibition, Journal of the Royal So-
ciety Interface 14 (2017), no. 134, 20170320.

[18] Florian R Greten and Sergei I Grivennikov, Inflammation and cancer: triggers, mechanisms,
and consequences, Immunity 51 (2019), no. 1, 27–41.

[19] Richard Haberman, Applied partial differential equations with Fourier series and boundary
value problems, Pearson Higher Ed, 2012.

[20] Douglas Hanahan and Robert A Weinberg, Hallmarks of cancer: the next generation, cell
144 (2011), no. 5, 646–674.

[21] Zarifeh Heidary, Jafar Ghaisari, Shiva Moein, and Shaghayegh Haghjooy Javanmard, The
double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based
modeling approach, PloS one 15 (2020), no. 5, e0232965.

[22] Victor W. M. van Hinsbergh, Angiogenesis: Basics of Vascular Biology, Vascularization
for Tissue Engineering and Regenerative Medicine (Wolfgang Holnthoner, Andrea Banfi,
James Kirkpatrick, and Heinz Redl, eds.), Springer International Publishing, Cham, 2017,
pp. 1–29.

[23] Klaus A Hoffman and Steve T Chiang, Computational fluid dynamics, Engineering Educa-
tion System 2 (2000).

[24] Emilia Koz lowska, Rafa l Suwiński, Monika Giglok, Andrzej Świerniak, and Marek Kimmel,
Mathematical model predicts response to chemotherapy in advanced non-resectable non-small
cell lung cancer patients treated with platinum-based doublet, PLoS Computational Biology
16 (2020), no. 10, e1008234.

[25] Hans Petter Langtangen, Finite difference methods for diffusion processes, University of
Oslo (2013).

[26] Mengfei Li, Patricia Perez-Calleja, Bumkyu Kim, Cristian Picioreanu, and Robert Neren-
berg, Unique stratification of biofilm density in heterotrophic membrane-aerated biofilms:
An experimental and modeling study, Chemosphere (2023), 138501.

[27] AI Liapis, GG Lipscomb, Orrin K Crosser, and E Tsiroyianni-Liapis, A model of oxygen
diffusion in absorbing tissue, Mathematical modelling 3 (1982), no. 1, 83–92.

Bibliography 59

[28] Sensen Lin, Shuying Wan, Li Sun, Jialiang Hu, Dongdong Fang, Renping Zhao, Shengtao
Yuan, and Luyong Zhang, Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote
cancer cell migration under hypoxia, Cancer Science 103 (2012), no. 5, 904–912.

[29] J David Logan, Applied partial differential equations, Springer, 2014.

[30] Jeremy S Logue and Deborah K Morrison, Complexity in the signaling network: insights
from the use of targeted inhibitors in cancer therapy, Genes & development 26 (2012), no. 7,
641–650.

[31] Roberta Lugano, Mohanra Ramachandran, and Anna Dimberg, Tumor angiogenesis: causes,
consequences, challenges and opportunities, Cellular and Molecular Life Sciences 77 (2020),
1745–1770.

[32] Romina Martin, Combining system dynamics and agent-based modeling to analyze social-
ecological interactions—an example from modeling restoration of a shallow lake, https:

//www.frontiersin.org/articles/10.3389/fenvs.2015.00066/full.

[33] MATLAB version 9.9.0.123456 (R2020b), The Mathworks, Inc., Natick, Massachusetts,
2021.

[34] Ingrid Moen and Linda EB Stuhr, Hyperbaric oxygen therapy and cancer—a review, Tar-
geted oncology 7 (2012), 233–242.

[35] G Nervadof, Solving 2D Heat Equation Numerically using Python, https://levelup.

gitconnected.com/solving-2d-heat-equation-numerically-using-python-3334004aa01a.

[36] New World Encyclopedia, Heat conduction — New World Encyclopedia, 2017.

[37] Kerri-Ann Norton, Kideok Jin, and Aleksander S Popel, Modeling triple-negative breast
cancer heterogeneity: Effects of stromal macrophages, fibroblasts and tumor vasculature,
Journal of theoretical biology 452 (2018), 56–68.

[38] Kerri-Ann Norton, Travis Wallace, Niranjan B Pandey, and Aleksander S Popel, An agent-
based model of triple-negative breast cancer: the interplay between chemokine receptor CCR5
expression, cancer stem cells, and hypoxia, BMC systems biology 11 (2017), no. 1, 1–15.

[39] Kerri-Ann Norton and Aleksander S Popel, Effects of endothelial cell proliferation and mi-
gration rates in a computational model of sprouting angiogenesis, Scientific reports 6 (2016),
no. 1, 1–10.

[40] Kerri-Ann Norton and Aleksander S Popel, An agent-based model of cancer stem cell initi-
ated avascular tumour growth and metastasis: the effect of seeding frequency and location,
Journal of The Royal Society Interface 11 (2014), no. 100, 20140640.

[41] Sarah A Nowak, Andrew Parker, Archana Radhakrishnan, Nancy Schoenborn, and Craig
Evan Pollack, Using an agent-based model to examine de-implementation of breast cancer
screening, Medical care 59 (2021), no. 1, e1.

[42] Megan M Olsen and Hava T Siegelmann, Multiscale agent-based model of tumor angiogen-
esis, Procedia Computer Science 18 (2013), 1016–1025.

[43] Alex Pedcenko, 3D Heat equation solution with FD in MATLAB, 2023, https://github.
com/aa3025/heat3d/releases/tag/1.0.5.

[44] Angela M Poff, Csilla Ari, Thomas N Seyfried, and Dominic P D’Agostino, The ketogenic
diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer,
PloS one 8 (2013), no. 6, e65522.

https://www.frontiersin.org/articles/10.3389/fenvs.2015.00066/full
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00066/full
https://levelup.gitconnected.com/solving-2d-heat-equation-numerically-using-python-3334004aa01a
https://levelup.gitconnected.com/solving-2d-heat-equation-numerically-using-python-3334004aa01a
https://github.com/aa3025/heat3d/releases/tag/1.0.5
https://github.com/aa3025/heat3d/releases/tag/1.0.5

60 Bibliography

[45] Guillem Pratx and Daniel S Kapp, A computational model of radiolytic oxygen deple-
tion during FLASH irradiation and its effect on the oxygen enhancement ratio, Physics
in Medicine & Biology 64 (2019), no. 18, 185005.

[46] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Nu-
merical recipes in C, Second, Cambridge University Press, Cambridge, 1992. The art of
scientific computing.

[47] Stephen Riffle and Rashmi S Hegde, Modeling tumor cell adaptations to hypoxia in multi-
cellular tumor spheroids, Journal of Experimental & Clinical Cancer Research 36 (2017),
1–10.

[48] Melanie Rivera, Leslie Toledo-Jacobo, Elsa Romero, Tudor I Oprea, Melanie E Moses, An-
gela Wandinger-Ness, and Martha M Grimes, Agent-based modeling predicts RAC1 is critical
for ovarian cancer metastasis, Molecular Biology of the Cell 33 (2022), no. 14, ar138.

[49] Pieter J Schoen, Gerry M Raghoebar, Jelte Bouma, Harry Reintsema, Arjan Vissink, Wouter
Sterk, and Jan LN Roodenburg, Rehabilitation of oral function in head and neck cancer pa-
tients after radiotherapy with implant-retained dentures: effects of hyperbaric oxygen ther-
apy, Oral oncology 43 (2007), no. 4, 379–388.

[50] David S Schultz and William E King, On the analysis of oxygen diffusion and reaction in
biological systems, Mathematical biosciences 83 (1987), no. 2, 179–190.

[51] Imtiaz Siddiqui, Vanna Sanna, Nihal Ahmad, Mario Sechi, and Hasan Mukhtar, Resveratrol
nanoformulation for cancer prevention and therapy, Annals of the New York Academy of
Sciences 1348 (2015), DOI 10.1111/nyas.12811.

[52] Matthew J Simpson and Adam J Ellery, An analytical solution for diffusion and nonlinear
uptake of oxygen in a spherical cell, Applied Mathematical Modelling 36 (2012), no. 7,
3329–3334.

[53] Jonathan W Song et al., Anastomosis of endothelial sprouts forms new vessels in a tissue
analogue of angiogenesis., Integrative biology : quantitative biosciences from nano to macro
4,8 (2012), 857-62.

[54] Angéliqu Stéphanou, Anne-Cécile Lesart, J Deverchère, A Juhem, A Popov, and F Estève,
How tumour-induced vascular changes alter angiogenesis: insights from a computational
model, Journal of theoretical biology 419 (2017), 211–226.

[55] Ian F Tannock, Oxygen diffusion and the distribution of cellular radiosensitivity in tumours,
The British journal of radiology 45 (1972), no. 535, 515–524.

[56] Michael Ventoso and Kerri-Ann Norton, Simulating an immune response with a combined
agent-based model of a triple-negative breast cancer tumor and vascular network, 2020 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), 2020, pp. 1303–1310.

[57] Robert A Weinberg, The biology of cancer, Garland science, 2013.

[58] WPTM Wickramaarachchi and SSN Perera, An SIER model to estimate optimal transmis-
sion rate and initial parameters of COVD-19 dynamic in Sri Lanka, Alexandria Engineering
Journal 60 (2021), no. 1, 1557–1563.

[59] Franziska et al. van Zijl, “Initial steps of metastasis: cell invasion and en-
dothelial transmigration.”, Mutation research vol 728,1-2 (2011), 23-34, DOI
doi:10.1016/j.mrrev.2011.05.002.

	Modeling Vascular Diffusion of Oxygen in Breast Cancer
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Biology Background
	Cancer
	Angiogenesis

	Mathematics Background
	Partial Differential Equations (PDEs)
	The Diffusion Equation With One Spatial Dimension
	Diffusion Equation For Higher Spatial Dimensions
	The Finite Difference Methods
	Explicit Finite Difference Method

	Modeling Background
	Agent-Based and Continuous Models
	Modeling Oxygen Diffusion in Tumor
	Previous Work

	Computational Methods
	Code Overview
	2D Diffusion of a Point
	2D Diffusion of a Line
	3D Diffusion of a Cubic Patch
	Obtaining the Diffusion Radius
	3D Diffusion of Initial Vasculature
	Model Validation

	Results
	2D Diffusion of a point
	2D Diffusion of a Line
	Obtaining the Diffusion Radius
	3D Diffusion of a Cubic Patch
	3D Diffusion of Initial Vasculature
	Adding Cancer Cells And Continuous Sources to the Model

	Discussion and Conclusions
	Next Steps
	Personal Reflection

	Appendices
	Code for 2D/3D Diffusion, Supply, and Sink
	Code for 2D Diffusion
	For Loop for 3D Diffusion
	Vectorized Version
	Diffusing From Vasculature
	Supply Function
	Uptake Function

	Bibliography

