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Abstract

This senior project investigates chaotic behavior and controlled chaos in electrical

circuits. It primarily focuses on two types of circuits: one with a varicap diode

and one with a operational amplifier based Chua diode. These are the non-linear

elements of the circuit that produce chaotic behavior in voltage outputs. Attempts

to get the circuits to function correctly were unsuccessful, but the project includes a

theoretical investigation of the chaotic behavior of the circuits through bifurcations

and period doubling, as well as ways this behavior could be theoretically controlled.
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Chapter 1

Introduction

1.1 What is Chaos?

What does the word “chaos” bring to mind. The average person would probably

say it is synonymous with dysfunction, disorder, or confusion. Ask a physicist or

mathematician and you would get a much more complex answer. Chaos, in the

mathematical sense, is a type of behavior that is exhibited by particular dynamical

systems which have a sensitive dependence on initial conditions. [20] This sensitive

dependence has been referred to as the butterfly effect. [13] This is the idea that a

butterfly in China can flap its wings and through a series of events that happened

because of that flap, Texas experiences a hurricane. Basically, it is a dramatized

expression of a simple notion: small changes produce large-scale results in intercon-

necting and complex environments.

To better understand this, let’s look at the simple example of the rounded edge

pool table:

Figure 1.1: rounded-edge pool table

For this example, let’s neglect friction so that the pool ball will continue its
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motion forever only being forced to change its direction when it hits the edge of the

pool table. The trajectory of the pool ball is the orbit in this case. The following

orbits are periodic, meaning that the orbit will repeat itself in time:

(a) Period-2 orbits (b) Period-2 orbit (c) Period-4 orbit

These periodic orbits are stable and repeat themselves. However, if I was to hit

the pool ball from a slightly different angle or at a slightly different spot on the edge

of the table, I would get a very different looking orbit:

Figure 1.3: Chaotic orbit

And even shifting the starting angle of trajectory slightly from theh starting

angle used in Figure 1.3 would produce something very different than the above

orbit. This behavior is chaotic.

We could describe this behavior in a quasi-mathematical way: whenever the ball

hits a straight wall it bounces off in such a direction that the angle between the

ball’s trajectory and the table on both sides of the collision are the same, like so:

Figure 1.4: Straight wall angle of deflection

When the ball hits a rounded edge of the pool table, a similar rule in applied

to the trajectory which determines the next point of the orbit. We could think of

this as an iterated piecewise function, one that takes into account which edge of the

pool table the ball hits and the angle at which its hits it, and provides the next

8 Chapter 1 Ryan O’Connell
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part of the orbit. We could then continuously take the output of our hypothetical

piecewise function and put it back into our hypothetical piecewise function to get

the next point of our orbit, and continue to do this forever. This iterated function

would produce chaotic behavior. Not all iterated functions do. Some, like f(x) =

2x, just produce a series where each element is twice the value of the one before

it. But in special cases, all of which have some nonlinear element to them, like the

rounded edge pool table, the iterated function can produce chaos — deterministic,

but unpredictable (because of initial condition sensitivity).

1.2 Attractors, Strange Attractors, and Fractals

This next, very famous, example may come as a surprise to someone who has

never seen it. Let’s consider the following iterated formula: We have three points

equidistant and the same angle apart from each other:

Figure 1.5: Vertex points of equilateral triangle

We choose any point within the triangle these three points connect to make to

be our starting point. At random, we will choose an integer from 1 to 3 and draw

a line from our starting point, halfway to the corresponding point. From there, we

iterate through this formula some large number of times. This process will create

something that looks disorderly or chaotic like Figure 1.6a.

If we repeat this process, but for an extremely high number of iterations (some-

thing like 100,000) and only plotted the endpoints of our lines, we would get a

completely different image resembling that of Figure 1.6b.

This image is known as Sierpinski’s Triangle and it is one of the simplest fractals.

Fractals are attractors of chaotic systems. Attractors are groups of points (or a single

Chapter 1 Ryan O’Connell 9
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(a) Twenty iterations of the formula
given (b) Sierpenski Triangle [21]

point) that the a system’s orbit tends to evolve towards. Strange attractors are a

particular type of attractor which have fractal structures, like Sierpinski’s Triangle,

and demonstrate infinite self-similarity, meaning that each piece looks like the whole.

It is impossible to predict where on a strange attractor a system will be at any given

time.[20]

1.3 Lorenz Attractor

Chaotic behavior, as well as strange attractors and fractals can be observed

in iterated function systems, as we have just observed, but they can also be the

product of a system of differentiable equations. The first system to be proven chaotic

rigorously was the Lorenz equations, a set of three differential equations that describe

the behavior of all the convention cycles which dictate the central component in the

forming of weather patterns.[13] These are the Lorenz equations:

dx

dt
= α(y − x) (1.1)

dy

dt
= x(ρ− z)− y (1.2)

dz

dt
= xy − βz (1.3)

Simple enough right? Unfortunately for those of us who would like to accurately

10 Chapter 1 Ryan O’Connell
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know the weather next Saturday, this system of equations exhibits chaotic behavior.

An orbit of this system mapped out over time while plotting x, y, and z against each

other will look like this:

Figure 1.7: The Lorenz Attractor

This is Lorenz Attractor. [23] It is a strange attractor and it is self-similar and

is sensitive to initial conditions. The orbit is completely deterministic, however, it

is impossible to predict which part of the attractor the orbit will be on at any given

time. If you started simultaneous orbits of this system with initial conditions one-

millionth of a decimal place different from each other, their orbits would start off

identical, but eventually would show slight differences that would ultimately result

in completely different orbits. This is a main reason why weather predictions are

very difficult to make with any degree of accuracy past a few days.

1.4 The Logistic Equations and Bifurcation Dia-

grams

As previously shown, chaos is not easily defined and has many components to

identifying and explaining it. All of the examples I have just presented evolve over

time, but time doesn’t have to be the parameter that is evolving in the system for

Chapter 1 Ryan O’Connell 11
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chaos to be observed. For instance, the logistic equations,

xn+1 = λxn(1− xn)

display chaotic behavior by varying the λ-value from 0 to 4. Let’s take a look as

some of the possible orbits the logistic equations can produce. Below is the orbits

of twenty iterations with different λ-values all starting with the initial value of 0.5:

Figure 1.8: Orbits with inital condition at 0.5 with varying λ values

For λ = 0.5 and λ = 1, the orbit goes to zero, but for λ-values 1.5, 2, and 2.5,

the orbit gravitates towards a particular value and stays on that point once it hits

it. This is a fixed point attractor. For λ = 3, the orbit seems to be gravitating

towards two points and once it hits them its oscillates between those two points.

This orbit is periodic with period-2. For λ = 3.5, the orbit appears to just be

oscillating essentially randomly. [20] There is a more useful way to visualize this

data, which will also allow us to see where these differences in attractors and period

points come from. The scatter-plot of the λ-values against the xn values outputted

by the logistic equations is called a bifurcation diagram, as shown in Figure 1.9

12 Chapter 1 Ryan O’Connell
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This bifurcation diagram shows the second 100 of 200 iterations (the first 100 were

thrown away to insure that the orbits had reached their attractors, if they had one).

Figure 1.9: Bifurcation Diagram of the Logistic Map where x-axis is the λ-value and
y-axis is xn [22]

From λ = 1 to λ ≈ 3 there is one periodic point that the orbit converges to, but

past that point, there is now two period points the orbit will converge to. This is the

first period-doubling. Each fork in the diagram represents another period doubling,

meaning that the number of periodic points doubles. We see a few of these period-

doubling forks before the noise-filled region starts. This noise is chaos — completely

deterministic but random-looking and unpredictable — the orbit could land on

essentially any output within the region. There are bands of breaks in the chaos

where we, once again, see the orbits converge on some number of period points. If

we were to zoom in on one of these bands we would see a period-doubling route to

chaos, identical to how the bifurcations looks as a whole, meaning that this diagram

is also self-similar. If we were to zoom-in infinitely, we would observe the same

structure at every level of the zoom. This is one of the ways we know that the

behavior of the orbits in the noise region, are not random, but are chaotic.

Chapter 1 Ryan O’Connell 13
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1.5 Chaos in Physical Systems

As we have already observed to a certain extent, chaos can be observed in many

physical systems. The logistic map has been used to model the stability of ecosys-

tems. A system as simple as a double pendulum or a 3-body system are chaotic

systems. While the individual parts of the systems are simple and easy to predict,

when these parts interact with other simple parts, the sensitivity on initial con-

ditions is amplified and the system becomes chaotic. For instance, if you took a

break shot in pool, the balls will hit into each other in such a way that, even if

you tried your hardest to hit them in the exact same way, you would never be able

to replicate. Think of it like a 15-body problem — extremely dependent on initial

conditions. Perhaps not as obviously as these physical systems have, particular elec-

trical circuits also exhibit chaotic behavior. This project is an investigation into the

different ways we can observe this behavior in two of these particular circuits. The

two circuits I have chosen to focus my exploration on are the varicap diode circuit

and the Chua circuit. the diodes in both cases provide the non-linearity needed to

exhibit chaotic behavior. The varicap diode circuit is much simpler in its structure

as it is essentially just a RLD circuit (that at times acts like an RLC circuit, but

that will be explained later). The Chua circuit is a bit more complicated with an

operational amplifier based diode and a few more reactive elements. Equipped with

the chaos theory vocabulary to describe the behavior of these chaotic circuits, let’s

take a looks at the varicap diode circuit.

14 Chapter 1 Ryan O’Connell



Chapter 2

Varicap Diode Circiut

2.1 How It Works

First, let’s look at the behavior of the varicap diode circuit. The diode’s name

comes from the combination of the words “variable” and “capacitance” because

its capacitance is voltage-dependent. There were three major papers published

describing the behavior of this diode during 1981 and 1982, which I have drawn

most of my understanding of the circuit from. The circuit containing the varicap

diode that exhibits period doubling and chaotic behavior looks like this: where

Figure 2.1: Varicap Diode Circuit

the circled element is the varicap diode and the elements labeled (b) and (c) are

in reference to its behavior under specific conditions. The varicap diode exploits

the voltage-variable property of the junction capacitance, which every diode has to

some extent but in most cases tries to minimize. In the varicap diode, the depletion

15
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region between the P and N parts of the diode is large, making the diode essentially

a capacitor in reverse bias. This is where (b) can be switched in for the varicap diode

in the above circuit. In forward bias, the diode conducts and could be thought to

be replaced by an emf with voltage VF . This is where (a) can be switched in for

the varicap diode in the above circuit. However, the diode will not conduct until Vf

is reached and will stay at Vf for the remaining time the circuit is in forward bias.

Until then, the diode does not conduct but instead has a fixed capacitance. When

the current through the diode passes through zero, the diode does not immediately

stop conducting. It takes some reverse-recovery time to stop conducting completely.

2.2 Voltage-Dependent Capacitance as a Means

of Chaotic Behavior

There are two ways to exhibit the chaotic behavior of the circuit above. The

first of which was first discovered by Paul S. Linsay in 1981 [1] and later expanded

upon by James Testa, Jose Perez and Carson Jeffries the following year [3]. Linsay’s

experimentation was done in response to Feigenbaum’s theory of non-linear systems

that exhibit period doubling, which states that their behavior, and specifically their

bifurcation and period doubling patterns, follow universal laws independent of the

equations that describe their particular behavior. The goal of Linsay’s experiment

was to show that this theory holds for physical systems, and in particular, for a

driven anharmonic oscillator. Feigenbaum’s theory states that given some system

described by

dxi
dt

= Fi(x1, x2, ..., xN)

for i = 1, 2, ..., N and given that xi(t) are periodic with period Tn = 2nT0 at λ = λn,

the recurrence relation,

λn+1 − λn
λn+2 − λn+1

= δ

16 Chapter 2 Ryan O’Connell
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is satisfied, where δ is the Feigenbaum convergence rate, which, for quadratic ex-

trema, is 4.669. For an electrical circuit like this one, the xi(t) is the current flowing

through the system and the λ is the amplitude of the drive voltage at a particular

subharmonic, n. Linsay chose to observe this circuit’s chaotic behavior by analyz-

ing its spectral peaks at different drive voltages, which would be directly influenced

by the diode’s capacitance dependence on said drive voltages. This dependence is

described by this equation:

C(V ) =
C0

(1 + V
φγ

)

where C0 = 81.8ρF, γ = 0.44, and φ = 0.6V determined by measured values of

capacity. A spectrum analyzer was connected to the circuit between the inductor

and the resistor, see Figure 2.2, to measure the subharmonics at specific frequencies

Figure 2.2: Varicap Diode Circuit with Spectrum Analyzer

which would occur as the drive voltage was increased. At very low drive voltages, the

circuit acted like a regular RLC circuit in series, where the resonance frequency was

found to be 1.78MHz. As the drive voltages increased, spectral peaks were observed,

the first being at the frequency one-half of the resonance frequency. Three more

subharmonic frequencies were observed as the drive voltage increased: at one-fourth,

one-eighth, and one-sixteenth the resonance frequency. The calculated value of δ, the

Chapter 2 Ryan O’Connell 17
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convergence rate in Linsay’s experiment, for which he was able to compute two given

the data collected, is displayed in Figure 2.3. The Feigenbaum convergence rate for

quadratic extremum is very close to the calculated values of δ in this experiment,

therefore giving experimental evidence of a physical system exhibiting Feigenbaum’s

theory of nonlinear systems that exhibit period doubling.

Figure 2.3: Table used to compare the difference in Vthreshold for each subharmonic
to calculate the convergence rate

The period-doubling of spectral peaks is displayed in this spectrum, where the

numbers at the top of the peaks corresponds to the order of appearance and the

y-axis is the amplitude in decibels:

Figure 2.4: Period-Doubling Spectral Peaks [1]

When translated into a bifurcation diagram, this spectral peaks appear in the

following fashion as shown in Figure 2.5a. (It is important to note that this does

not look like a traditional bifurcation diagram since the peaks remain as new peaks

appear)

Increasing the drive voltage past this point, produced chaotic behavior as exhib-

ited in Figure 2.5b. Replacement of the varicap diode with a capacitor in parallel

18 Chapter 2 Ryan O’Connell
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(a) Bifurcation Diagram of Spectral
Peaks of Varicap Diode Circuit (b) The full onset of chaos [1]

with a 1N4154 diode which had the same resonant frequency as the varicap diode

set up did but lacked the period-doubling behavior, proves, according to Linsay,

that the chaotic nature of the circuit is due to the nonlinear capacity of the varicap

diode as described by these three equations:

Vc =
Q

CVc
= (1 +

Vc
φ

)γ
Q

C0

L
dI

dt
= V0 sin (2πf1t)Vc −RI

dQ

dt
= I

whose solutions, according to Linsay, support the data.

2.3 Reverse-Recovery Time as a Means of Chaotic

Behavior

As I had mentioned previously, there is a secondary path to proving the vari-

cap circuit presented exhibits chaotic behavior. Instead of observing the voltage-

dependent capacitance, one could prove that the large reverse-recovery time of the

Chapter 2 Ryan O’Connell 19
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varicap diode is the property of this diode that produces the chaotic behavior.

Rollins and Hunt actually speculated that the large reverse-recovery time is, in

fact, the only reason for the chaotic behavior, [2] not the voltage-dependent capaci-

tance that Linsay had suspected, but never actually proved, to be the reason for the

period-doubling. Rollins and Hunt give a step by step procedure on how to observe

chaos this way. They claim that the finite forward bias voltage and reverse-recovery

time are the two attributes of the varicap, that when combined, cause the circuit

to exhibit chaotic behavior. As described previously, the varicap diode takes some

time τRR, the reverse-recovery time, to stop conducting when bias is switched from

forward to reverse. They described the reverse recovery time using the equation

below:

τRR = τm[1− e
−|Im|
Ic ]

where Imax is the most recent maximum forward current and τm and Ic are param-

eters distinct to each diode.

For V (t) = V0 cosωt, these are the general solutions for both states of the diode:

When the diode is conducting:

I(t;A) = (
V0
Za

cos (ωt− θa) + Ae
−Rt
L +

Vf
R

(2.1)

Vd(t) = −Vf (2.2)

where (Za)
2 = R2 + ω2L2, θa = arctan(ωL/R), and A is a constant to be deter-

mined by the boundary conditions.

When the diode is not conducting:

I(t;B,Φ) = (
V0
Zb

cos (ωt− θb) +Be
−2Rt
L cos (ωbt+ Φ) (2.3)

Vd(t;B,Φ) = V0 cosωt− I(t;B,Φ)R− LdI(t;B,Φ)

dt
(2.4)

where (Zb)
2 = R2 + (L

ω
)2(ω2 − ω0

2)2, θb = arctan[L(ω2 − ω2
0)/Rω], ω2

0 = 1
LC

,

20 Chapter 2 Ryan O’Connell
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ω2
b = ω2

0 − ( R
2L

)2, and B and Φ are constants to be determined by the boundary

conditions.

Given an alternating current, the diode will go through different cycles of specific

behavior. An example of three of these cycles that Rollins and Hunt found using

the system modeled above, is given in Figure 2.6.

Figure 2.6: Three cycles of the varicap circuit. The top graph depicts the current
across the diode as a function of time, and the bottom graph depicts the voltage
across the diode also as a function of time. ti(n)’s refer to key times when something
about the diode’s behavior has changed. [2]

In this diagram, t1(n) depicts the beginning of the time that the diode will be

conducting, so the diode will be in forward bias, and the start of the n-th cycle.

t2(n) is the time at which the current passes through zero. Notice that the diode is

still conducting, making this the start of τRR. The reverse-recovery time is dictated

in this case by Im, which is the lowest or highest point of I during the cycle being

considered. One would assume, correctly, then that t3(n) = t2(n) + τRR(n).

Now for the interesting part. The value of t3(n) is determined on a 2-case basis.

Case 1: If current at t3(n) is passing through the diode in the reverse direction, then

Chapter 2 Ryan O’Connell 21
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the diode will stop conducting and it is not until the voltage across the diode is back

at -Vf , that the next cycle begins, as depicted in Figure 2.6. Case 2: If current at

t3(n) is passing through the diode in the forward direction, then the diode does not

stop conducting and the next cycle starts with t1(n+ 1) = t3(n). This is where the

nonlinearity of the circuit that is needed to produce the chaotic behavior comes from.

Since the previously stated system of equations 2.1-2.4 fully describe the behavior

of the system, each new |Imax|n can be determined from the previous cycle’s one,

given a set of initial conditions, the trajectory of the voltage across the diode is

deterministic, but slight changes in the initial conditions will greatly influence the

outcome once a different case of t3(n) is satisfied. This is sensitive dependence on

initial conditions stemming from a nonlinear element of the system, which is our

principle definition of chaos. This is how Rollins and Hunt identified the central

component in the production of chaotic behavior in the varicap diode circuit.

In a later paper by Mariz de Mores and Anlage a more detailed depiction of how

the p-n junction in the diode effects the nonlinearities that the reverse-recovery time

depends on through the different stages of the circuit. [17] They, unlike Rollins and

Hunt, do not make the assertion of the reverse-time constant being the principle cre-

ator of chaotic behavior, but rather, chose to not make a distinction between effects

of the nonlinear capacitance and reverse-recovery time of the diode, as they can be

similar, as they both take the history of the circuit into account when determining

the trajectory of the system.

This concludes my discussion of the varicap diode circuit. Now that we are

familiar with the way in which chaotic behavior can be seen in circuit systems, let’s

take a look at the, slightly more complex, Chua Circuit and the many ways it (and

its variations) exhibits chaotic behavior.

22 Chapter 2 Ryan O’Connell



Chapter 3

Chua’s Circuit

3.1 The Classical Chua’s Circuit

The second simple circuit exhibiting chaotic behavior that I have explored is

called Chua’s circuit. One of the aspects of Chua’s circuit that makes it so attractive

to work with is that it does not require the purchase of a special element as its

nonlinear component, but instead can be made using simple inductors, resistors,

capacitors, and a couple of operational amplifiers as shown in Figure 3.1a with

the right-most section of the circuit being referred to as Chua’s diode, a nonlinear

resistor. The original Chua circuit only has one inductor, but I attempted to use

two in series to get the correct inductance, as I did not have an inductor of the value

needed. Inductors in series add their values, so this should not have effected the

circuit at all. The equations that govern this circuit are as follows, all of which can

be easily obtained with the exception of id(v1) which is a bit more complicated as

it is the current through the diode as a function of the voltage across C1:

C1
dv1
dt

=
v2 − v1
R

− id(v1)

C2
dv2
dt

=
(v1 − v2)

R
− il

L
diL
dt

= −v2

23
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Value Component Schematic Label

10nF Capacitor C1

100nF Capacitor C2

10mH Inductor L1

10mH Inductor L2

1.5kΩ Potentiometer R
220Ω Resistor R1

220Ω Resistor R2

2.2kΩ Resistor R3

22kΩ Resistor R4

22kΩ Resistor R5

3.3kΩ Resistor R6

Table 3.1: Element Values for the Chua Circuit

Here, v1 and v2 refer to the voltage across the corresponding capacitor and iL is

the current across the inductor. The m variables in id(v1) correspond to the slopes

of the line created by the relationship between the voltage across the first capacitor

and the current through the diode as Figure 3.1b displays. This piecewise function,

id(v1) is what makes this circuit non-linear and is responsible for its chaotic behavior.

(a) Chua’s Circuit
Schematic

(b) The current across the Chua diode as a
function of the voltage across C1

With the guidance of [19], I attempted to construct this current with the ele-

ment values described in Table 3.1. I encountered various set-backs along the way

including a power board that was exhibiting 6V of noise. Ultimately, while trying

to measure the resonant frequency of the diode-excluded circuit, my adviser and I

determined that the values of some of the elements I was using were incorrect. Un-

24 Chapter 3 Ryan O’Connell



An Exploration of Chaotic Behavior in Electrical Circuits

fortunately, my error was caught too late in the allotted project time to reconcile,

so I will be giving a theoretical analysis of the chaotic behavior of the Chua Circuit

using some Mathematica modeling and research I have done of previously published

projects.

Modeling of the circuit equations with the help of [21], gave the following results:

Figure 3.2: Chua Circuit’s Equations plotted in the (v1(t), v2(t), iL(t)) plane as t
goes from 0 to 100

This is known as the Double Scroll strange attractor. The above orbit along the

Double Scroll attractor does not systematically move from one scroll to the other in

any kind of predicable fashion, but rather one that is unpredictable and seemingly

random, but deterministic. Other initial conditions would give a completely different

orbit, but one that still has the general shape. Adjusting parameters, such as the

inductance and the resistance of R will give you different sections of the double scroll

and periods before that of the chaotic attractor, respectively.

3.2 The Double Scroll

One of the first to publish on the appearance of the Double Scroll attractor in an

electrical circuit was T. Matsumoto, who observed the behavior of a slightly different

circuit than the one outlined above. [4] Leon O. Chua was actually the one to

discover this attractor, but had to be rushed to the hospital for an emergency surgery
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after his discovery and left this work to Matsumoto to be published. This circuit

had the inductor (or inductors, in my case) switched with the second capacitor, like

so:

Figure 3.3: Matsumoto’s Chua Circuit

The equations that govern this circuit are as follows:

C1
dv1
dt

= R(v2 − v1)− id(v1) (3.1)

C2
dv2
dt

= R(v1 − v2) + il (3.2)

L
diL
dt

= −v2 (3.3)

The difference in structure does lend itself to a slightly different looking attractor

for this circuit as compared to the common construction of the Chua circuit, dis-

played at the beginning of the chapter, which I will present later. Both attractors

are types of Double Scroll attractors. The attractor made by Matsumoto’s circuit

is modeled in Figures 3.4a - 3.4d.

This attractor was proven to be different from the other strange attractors known

at the time (Lorenz Attractor and Rossler’s Attractor) by comparing the signs of

the the eigenvalues on the origin to those not on the origin in each case. [4] And so,

this was the first of its own class of strange attractors, later coined by Chua as the

Double Scroll family of attractors. [5]
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(a) 3-D view of Matsumoto’s Chua Cir-
cuit Attractor observed after a time
lapse of 300 seconds

(b) Left view of attractor where x-axis is
the voltage drop across the first capaci-
tor and y-axis is the current across the
inductor.

(c) Right view of attractor where x-axis
is the voltage drop across the second ca-
pacitor and y-axis is the current across
the inductor.

(d) Right view of attractor where x-axis
is the voltage drop across the first capac-
itor and y-axis is the voltage drop across
the second capacitor.

3.3 Variations of Chua’s Circuit

A slightly more canonical version of Chua’s Circuit is the Chua Oscillator. [11]

This circuit is more canonical in the sense that it exhibits a wider range of chaotic

phenomena than the classical Chua Circuit, particularly in the routes it takes to

display this chaos, as we will investigate.

Figure 3.5: Chua Oscillator Schematic Circuit as described by [12]
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Value Schematic Label
5.75nF C1

21.32nF C2

12mH L1

1.5kΩ R
30.86Ω R1

Chua Diode NR

Table 3.2: Element values for the Chua Oscillator

A period-doubling route to chaos was observed in Chua’s Oscillator by varying

the R0 value 1.5kΩ < R < 1.6kΩ. My attempts to computer model this period

doubling using the values given did not produce the same results as Chua [12], most

likely due to the fact that these results were obtained experimentally, allowing for

different circumstances to influence the results, so I will provide the observations

made by Chua as well as my failed code in Appendix A.

Figure 3.6: Period Doubling route to chaos observed by decreasing the R value from
1.6kΩ to 1.5kΩ [12]

Looking at Figure 3.6: in (a) there is an equillibrium point that loses stability

and from it emerges a stable limit cycle as seen in (b) as R is decreased. Further

decreasing of R allows for this limit cycle to lose its stability and transform into

a limit cycle with twice the period as depicted in (c). This happens once again

to give us (d), which is a limit cycle with period-4. This process continues until

R = 1.503kΩ at which time chaos is observed as shown in (e). This period-doubling
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route to chaos is just one of the routes presented by Chua, that the Chua Oscillator

can take to chaos.

Also described in [12] is the type-1 intermittency route to chaos. This route

to chaos is observed in systems that appear to be periodic in their trajectory but

experience chaotic bursts. This route to chaos was observed for R = 1.501kΩ in

the Chua Oscillator, where a stable period-3 limit cycle was observed, as shown in

Figure 3.7.

Figure 3.7: Type-1 intermittency route to chaos observed by increasing the R value
from 1.501kΩ to 1.502kΩ [12]

Here we see phase portraits of a stable period-3 limit cycle in the left (a) and an

intermittency near the period-3 cycle. The (b)’s are both time waveforms of v1 that

show a period-3 limit cycle and intermittent chaos near that period-3 limit cycle,

from left to right.

Chua goes on to explain that the period-doubling into chaos is not just observed

at these values of R, but that there are windows of chaos that revert back to being

periodic, and then revert back to chaos, similarly to the way the logisitc map does.

This is the another way he proves this circuit to be chaotic.

Lastly, the Chua Oscillator’s torus breakdown route to chaos is explained, this

time, by varying the values of C1 and fixing R. For specified element values and a

specified C1, a double-torus attractor with a trajectory jumping from one torus to
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the other is observed. As the C1 values is decreased, the two consolidate into a single

torus attractor. Reducing the value of C1 further, Chua observed a ”period-adding

sequence of periodic windows of consecutively decreasing periods” [12] until the torus

deforms and a double-scroll attractor is revealed after devolving from period-16 to

period-4. The bifurcation diagram of this torus breakdown as a route to chaos is

presented here:

Figure 3.8: The Bifurcation Diagram of the torus breakdown route to chaos of the
Chua Oscillator [12].

The Chua Oscillator, as well as the other members of the Chua family have been

extremely useful in understanding chaos in physical systems as they exhibit a wide

variety of routes to chaos. The Chua family of circuits has also been thoroughly

analyzed since it has been in existence for nearly three decades, and analyses have

been consistent in their theoretical, experimental, numerical findings, which is not

the case for most other physical systems rigorously proven to exhibit chaos.

Many modifications have been made to the Chua Circuit to obtain desired behav-

ior. Chua published a paper describing a canonical realization of the Chua family of

circuits [8], which gives examples of other members of the Chua family, like the torus

circuit [6] and the double hook circuit [7] and explains how the specific behaviors of

one cannot be replicated in the others. He does this by identifying the eigenvalue

patterns, which determine the conjugacy of the system to another, that can be
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produced by Chua’s circuit and then states reasons for which particular eigenvalue

patterns can not be replicated by the other members of the Chua family. Ultimately,

he describes a circuit of his own creation that is general enough to, given the proper

element values and choosing the right parameters, display all of the behaviors of the

circuits in the Chua family. This canonical circuit is pictured here:

Figure 3.9: The Canonical Chua Circuit. (a) The schematic of the circuit (b) the
current across the non-linear resistor as a function of voltage across C1 (referred to
as the v-i characteristic) [8].

where the G variables are like our m variables from previous cases. As one

can see, the are only six elements in the circuit, and only one of them is nonlinear

making for an exceedingly simple circuit for such a plethora of chaotic behavior to

be observed from. Chua goes on to prove that this circuit can realize any eigenvalue

pattern in the class of three-region symmetric, with respect to the origin, piecewise-

linear continuous vector fields which has come to define a circuit as belonging to the

Chua family. [8]
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3.4 Controlling Chaos

Chaotic systems naturally exhibit a variety of different behaviors in a single orbit.

Being able to control when these naturally occurring behaviors are exhibited is very

desirable since only small changes can produce large effects, increasing efficiency.

However, it is also for these reasons, that it controlling chaos would be a difficult

task. It is also sometimes undesirable to have a system be chaotic when, for whatever

reason, you do not want sensitive dependence on initial conditions. This has been

the motivation behind recent work on controlling chaos in systems like the Chua

Circuit.

This is the line of thinking that argues for the control of chaotic systems: Ana-

lyzing a system by its performance, let’s call that P , we would see that P depends

on the time average of the function of the system state, f(x). This function of the

system state would be a function of the time dependent orbit of the system, x. For

chaotic systems, x would be the chaotic orbit on the attractor. These attractors

have periodic points on them, some stable, some unstable. Each of the unstable

period points on the attractor has its own time dependent orbit, xi and therefore

will have its own performance Pi. Since P is the weighted average of all the Pi’s,

there must exist Pi’s that are higher than P (and some that are lower).

Theoretically, giving a system initial conditions that will project its motion di-

rectly on an unstable periodic point with a large Pi would do the trick. However,

this becomes virtually impossible when dealing with chaotic systems because of their

sensitive dependence on initial conditions. It is also important to note that if you

land only near an unstable periodic point and not on it, the system’s orbit could

be repelled by the unstable periodic point. This means that you must kick the

system back towards the unstable period point. This can be done using a few dif-

ferent techniques including placing the orbit near the stable manifold of the desired

unstable periodic point, using a continuous time-delay feedback system, and the

pole-placement technique. [18]

All techniques of controlling chaos can be broken down into two categories: feed-
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back and non-feedback, feedback techniques being the more versatile and widely

used method. Non-feedback control techniques require small period parametric per-

turbations which continuously kick the system back to the desired fixed point. This

is a quicker fix for chaotic behavior, but without the use of feedback, this becomes

difficult to globalize. There has been successful non-feedback control techniques

performed on the Chua Circuit, and other circuits exhibiting chaotic behavior. [10]

[9] [15] However, since the methods of feedback control methods appear to be more

common and non-feedback methods seem to be better when high-speed control is

needed (not the case here), I will focus primarily on describing and explaining some

of the ways feedback control methods have been use to control the chaotic behavior

of the Chua Circuit. The first method we will explore is a type of linear feedback

control method used on the Chua Circuit by Hwang, Hsieh and Lin. [14] The paper

cited proposed the control method of adding a voltage source in series with the in-

ductor in Chua’s circuit. Our new controlled Chua Circuit will behave according to

the following system of equations:

C1
dv1
dt

=
v2 − v1
R

− id(v1) (3.4)

C2
dv2
dt

=
(v1 − v2)

R
− il (3.5)

L
diL
dt

= −v2 + u (3.6)

Our control addition, u has two parts: the first, mimics the second equation and

in doing so extends the equilibrium points of the system, and the second, cancels

out the non-control part of the equation and adds in what has the same form as a

restoring force, damping the behavior of the system around an equilibrium point.

The following is the, as previously described, equation of u:

u = k(x− y + z) + βy + kp(xref − x)

where xref is your desired reference x-coordinate.
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Hwang, Hsieh and Lin observed the control of Chua’s Circuit’s chaotic behavior

from Figure 3.10a. The restoring nature of the control addition is apparent in Figure

3.10a (b) as the orbit takes an oscillatory path to the desired fixed point.

(a) [a] and [b] both depict the controlling
of chaos to a fixed point, just to different
xref points [14].

(b) [a] Uses the time responses of the
controlled system to depict the control-
ling of chaos to a limit cycle of period-2
and [b] illustrates u as a function of time.
[14].

After establishing a control method for bringing a chaotic circuit to a desired

fixed point, Hwang, Hsieh and Lin tested their method on bringing the Chua Circuit

to a desired limit cycle. This was also successful according to Figure 3.10b

The method of feedback control not only works for fixed points and limit cycles

alike, but it also has a very small overshoot, meaning it does not usually oscillate

very much before settling on a point or cycle, making for a more efficient method of

control.

In a later paper by Tzuyin Wu and Min-Sin Chen, using a backstepper control
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design, a nonlinear feedback control method for Chua’s circuit is presented which

is proven to be a ”global” control, meaning that any initial values of the system

will allow you to control the output to any periodic point. They make the case that

since chaotic systems are nonlinear, it is necessary to use a nonlinear feedback system

to globalize the control. The controlled system set up is in the same in terms of

equations 3.4-3.6, but a smooth approximation is used to describe the current across

the diode as a function of the voltage across the first capacitor that is a follows:

f(x) =
2x3 − x

7

.

The function of u for this control method is much more complicated than the

previous one and is depicted in Figure 3.11.

Figure 3.11: The control non-linear function, u. [16]

Wu and Chen go on to rigorously prove the stability and globalization of this

equation of u.

All of the articles I was able to find on controlling chaos were theoretical and

numerical, but not experimental. For future research, I would be interested in how

one would go about implementing one of the many control methods used on Chua’s

circuit in an experimental capacity.
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Conclusion

After first establishing a language for which to talk about the chaotic behavior

exhibited by the circuits explored in my project, we were able to consolidate almost

three decades of progress in chaotic behavior in electrical circuits with a high degree

of detail and comprehension. The evolution of the understanding of each circuit has

been outlined and samples from each realm of research pertaining to the circuts has

been presented.

To summarize, first we looked at the varicap diode circuit. It was first speculated

that the principle nonlinearity that lead to the a period-doubling route to chaos

as well as other chaotic behavior was the voltage-dependent capacitance. It was

later, more mathematically rigorously explained that the large reverse-recovery time

constant of the circuit had a hand in providing the nonlinearity.

Next, we explored the extensively modeled and understood world of Chua’s Cir-

cuit. We talked about how its different parameters effect its behavior and the varia-

tions of it that belong to the Chua family and their behaviors. The Chua Oscillator,

a member of the Chua family of circuits, displays three different route to chaos that

were outlined: period-doubling, intermittency, and torus breakdown. A canonical

version of Chua’s Circuit was also present which incorporated every type of behavior

observed by members of the Chua family into one circuit with only one nonlinear

element. Lastly, we discussed ways in which one can control the chaotic behavior

exhibited by the Chua circuit, or any other chaotic system, and the reasons why this
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may be desirable. Linear and non-linear feedback control methods were discussed

as well as the advantages and disadvantages of using linear versus nonlinear and

feedback versus non-feedback control methods.

My motivation for exploring chaotic circuits was mainly due to their applications

and observational nature, so my failure to produce an actual circuit to model the

chaotic behavior was definitely disappointing for me. However, I was still able to

explore the varicap and Chua Circuit behavior from multiple perspectives, through

prior written articles and Mathematica simulation and modeling, which has defi-

nitely been rewarding.
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Appendix A

Mathematica Code

A.1 Lorenz Attractor

A.2 Double Scroll Attractor
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A.3 Matsumoto’s Double Scroll Attractor

A.4 Chua Oscillator, Failed
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