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Abstract

It has recently been shown that a rational specialization of Jacobi polynomials, when
reduced modulo a prime number p, has roots which coincide with the supersingular j-
invariants of elliptic curves in characteristic p. These supersingular lifts are conjectured to
be irreducible with maximal Galois groups. Using the theory of p-adic Newton Polygons,
we provide a new infinite class of irreducibility and, assuming a conjecture of Hardy and
Littlewood, give strong evidence for their Galois groups being as large as possible.
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1
Introduction

In 2003, Brillhart and Morton proved that a rational specialization of Jacobi polynomials,

which we denote K
(λ,µ)
n (x), can be reduced modulo a prime p to the supersingular polyno-

mial in characteristic p [2]. This is a significant result; their work expresses a deep charac-

teristic of elliptic curves (the roots of the supersingular polynomial determine isomorphism

types) in terms of a fundamental class of orthogonal polynomials that arise both in physics

(viz., the Legendre specialization of Jacobi polynomials) and other areas of mathematics.

Mahlburg and Ono have conjectured in [18] that the polynomials K
(λ,µ)
n (x) are irreducible

over the rational numbers and have Galois groups isomorphic to the symmetric group Sn.

Our goal in this project is to provide evidence in support of this conjecture using p-adic

Newton Polygons. We emphasize that the techniques employed here are applicable to any

family of rational polynomials and so this project is, in part, an analysis of the usefulness of

Newton Polygons in determining polynomial irreducibility and Galois groups. We attempt

to exhibit both the far reaching possibilities of the Newton Polygon and also some of its lim-

itations. Included in our results are several new cases of irreducibility and the description

of nearly all Newton Polygons for the K
(λ,µ)
n (x) polynomials at primes in specified intervals.



Furthermore, assuming complete irreducibility and a conjecture of Hardy and Littlewood,

we give strong evidence that the Galois groups of K
(λ,µ)
n (x) are the full symmetric group. We

also present several conjectures (together with evidence, partial proofs and consequences)

regarding some special degrees which yield particularly interesting Newton Polygons.

The purpose of the following chapter is to familiarize our reader with the subject, con-

struct framework for our analysis of the K
(λ,µ)
n (x) polynomials and attempt to provide some

motivation for the importance of this study. We therefore intend to:

(A) specify sufficient conditions for a rational polynomial to have maximal Galois group,

(B) identify methods to show that a polynomial fulfills these conditions, and

(C) discuss the importance of the family of K
(λ,µ)
n (x) polynomials.

9



2
Preliminaries

2.1 Irreducible Polynomials and Eisenstein’s Criterion

Irreducible polynomials can be viewed as analogues of the rational primes; polynomials,

like integers, can be factored into unique (up to constant multiples) products of irreducible

elements. Furthermore, irreducible polynomials can be used to construct extension fields -

fields which are strictly larger than the base field in which the polynomial is defined. Iden-

tifying irreducible polynomials is typically a difficult problem. Although polynomial factor-

ization is well-studied, a general algorithm for determining whether a given polynomial

with coefficients in a field F is irreducible over F is currently an open problem.

In this section, we present a well-known procedure (which we intend to generalize in

Section 2.4) that can be applied to certain polynomials to conclude irreducibility. Recall the

following definitions.

Definition 2.1.1. Let K be a commutative ring with 1. If for all nonzero a ∈ K there exists

an element a−1 ∈ K such that aa−1 = 1 then K is called a field. If F ⊆ K is also a commutative

ring with 1 under the same operations as K then F is called a subfield of K . 4



Definition 2.1.2. Let R be a ring and let I be a subset of R. Suppose that the I satisfies

the following conditions:

(i) I is an additive subgroup of R

(ii) a ∈ I and r ∈ R imply that ra ∈ I.

Then I is called an ideal of R. If I 6= R then I is called a proper ideal. 4

Definition 2.1.3. Let F be a field and let f (x) = a0 + a1x+ ·· ·anxn ∈ F[x] be a nonzero

polynomial with coefficients in F. Let A = {(g,h) ∈ F[x]× F[x] : f (x) = g(x)h(x)}. If every

element of A is of the form (c,h) or (g, c′), for some c, c′ ∈ F then f (x) is called an irreducible

polynomial over F. If f (x) is not irreducible over F we say that f (x) is a reducible polynomial

over F 4

From this definition, we see that if f (x) is irreducible over F then, given any two poly-

nomials g,h ∈ F[x] which satisfy g(x)h(x) = f (x), we have that either g is a constant or h

is a constant in F. Thus, a polynomial f (x) ∈ F[x] is irreducible if it cannot be written as a

product of two non-constant polynomials over F.

Example 2.1.4. Consider the polynomial 3x2 +2 ∈ Q[x]. Since this polynomial has roots

±p−2/3 6∈Q, we see that it must be irreducible over Q. ♦

Example 2.1.5. Let 3x2 +2 ∈ Z/5Z. Observe that elements 1,4 ∈ Z/5Z satisfy 3x2 +2 = 0.

Therefore 3x2 +2= (x+1)(x+4) is reducible over Z/5Z. ♦

The following Theorem, given by G. Eisenstein in 1850, has proven to be very useful in

determining whether certain polynomials with integer coefficients are irreducible over the

rational numbers.

Theorem 2.1.6 (Eisenstein’s Criterion). Let f (x)= a0+a1x+·· ·anxn ∈Z[x]. If there exists a

prime p such that

(i) p | ai for all i ∈ {0, . . . ,n−1}
11



(ii) p - an, and

(iii) p2 - a0,

then f (x) is irreducible over Q.

Proof. Suppose that f (x) is reducible over Q and that there exists a prime which satisfies

the above three conditions. Since f (x) is reducible, we know that there exists non constant

polynomials g,h ∈Q[x] such that f (x)= g(x)h(x). Without loss of generality, we also see that

1≤ deg(g)≤ deg(h)≤ n = deg( f ). Setting g(x)= b0+b1x+·· ·+bmxm and h(x)= c0+ c1x+·· ·+

ckxk, we obtain

p | b0c0 = a0.

But since p2 - a0, it must be the case p divides precisely one of b0 or c0. Suppose that p | b0

and p - c0. We may also observe that

p - bmck = an,

and so p - bm. This means that there must exist some minimum j ∈ {1, . . . ,m} such that p - b j.

Now consider that a j = b j c0 + b j−1c1 +·· ·+ b0ck ≡ b j c0 mod p. But p | a j by hypothesis (i),

which is a contradiction.

Example 2.1.7. The polynomial 2x6 +18x4 +15x3 +3x2 +21x+6 ∈Q[x] is irreducible since

it is Eisenstein at the prime 3. ♦

We now define some special ideals that will help us see how irreducible polynomials can

be used to construct fields.

Definition 2.1.8. Let R be a commutative ring with 1 and let A be a proper ideal of R. If

a,b ∈ R and ab ∈ A imply that a ∈ A or b ∈ A then the ideal A is called a prime ideal. If B

is an ideal of R and A ⊆ B ⊆ R implies that B = A or B = R, then the A is called a maximal

ideal. 4
12



Example 2.1.9. Let p be any prime. The ideals pZ are prime ideals in the ring Z[x]. ♦

Theorem 2.1.10. Let R be a commutative ring with 1 and let A be an ideal of R. Then R/A

is a field if and only if A is maximal.

Proof. [11, Theorem 14.4]

Theorem 2.1.11. Let f (x) ∈ F[x]. Then f (x) is irreducible if and only if the ideal ( f (x)) is

maximal in F[x].

Proof. [11, Theorem 17.5]

The above two theorems allow us to see a connection between irreducible polynomials

and fields. In particular, let f (x) = a0 +a1x+ ·· ·anxn ∈ F[x] be irreducible, let I = ( f (x)) be

the ideal generated by f (x) and consider the element r = x+ I ∈ F[x]/I. Then

f (r) = a0 +a1(x+ I )+·· ·an(x+ I )n

= a0 +a1(x+ I )+·· ·an(xn + I )

= a0 +a1x+·· ·anxn + I

= f (x)+ I

= I.

Since I is the zero element in F[x]/I we see that F[x]/I contains a root of f (x). Thus, for

every irreducible polynomial f (x) ∈ F[x] we can construct a field in which f (x) has a root.

This observation is known as Kronecker’s Theorem.

2.2 Algebraic Extensions and Galois Theory

The fields mentioned in Theorem 2.1.10 are significant since they can be viewed in the

following way. Note that K̄ refers to the algebraic closure of K (a field which contains the

root of every non-constant polynomial with coefficients in K).
13



Theorem 2.2.1. Let K be a field and let f (x) ∈ K[x] be an irreducible polynomial of degree

n. If α ∈ K̄ is a root of f (x), then E = K[x]/( f (x)) ' K(α) and a basis for L as a vector space

over K is {1,α,α2, . . . ,αn−1}.

Proof. [21, Theorem 45]

Example 2.2.2. Let f (x) = x2 + 1 ∈ F3[x]. It is easy to check that this polynomial is ir-

reducible. We can therefore see that the quotient F3[x]
(x2+1) is a degree 2 extension of F3 by

Theorem 2.2.1. Furthermore, the field F3[x]
(x2+1) is isomorphic to the field obtained by adjoining

the root
p−1= i of x2+1 to F3 (i.e., we adjoin algebraic object which satisfies x2 =−1). This

can be seen by observing that

F3[x]
(x2 +1)

= {0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2}

and

F3(i)= {0, 1, 2, i, i+1, i+2, 2i, 2i+1, 2i+2}.

The two fields are isomorphic under the map a+bx 7→ a+bi (where a,b ∈F3) which sends x

to i and fixes elements in F3. ♦

Notice from Theorem 2.2.1 that every field extension K(α)/K has degree n as a vector

space over K and that this n is the degree of the (minimal) irreducible polynomial having α

as a root. If E/K is field extension, we denote its degree by [E : K] and if E is a finite degree

extension K then we call E an algebraic number field, where the elements α ∈ E which are

roots of some monic polynomial over K are called algebraic numbers.

Theorem 2.2.1 allows for the construction of algebraic fields (that are not all of C) wherein

a polynomial f (x) ∈ K factors completely. Supposing that deg( f ) > 1, we can factor f into

a product of irreducible polynomials g1, . . . , gk and construct a field field E = K[x]/(g1(x))

which contains a root of g1. After factoring each of g1, . . . , gk in E we can again construct an
14



extension E′/E which contains a root of one of these irreducible polynomials in E. Continu-

ing in this way, we arrive at a field in which f (x) factors completely but is not all of C since

we are only adjoining a finite number of algebraic elements. This field is called the splitting

field of f (x) ∈ K[x]. If α1, . . . ,αi are the roots of f (x) ∈ K[x] we can see that f (x) must split

completely in E = K(α1, . . . ,αi) and that f (x) cannot be fully factored in any subfield of K ′

which is not E itself (if it did then K ′ would contain each root of f ).

Theorem 2.2.3. Let K ,E,L be fields such that K ⊆ E ⊆ L. If [E : K] and [L : E] are finite

then

[E : K] · [L : E]= [L : K].

Proof. [21, Lemma 49]

We now define the Galois group of an extension L/K .

Definition 2.2.4. Let L/K be a field extension. An automorphism of L is an isomorphism

ϕ : L → L. Let A = {ϕ : ϕ is an automorphism of L}. The Automorphism group of L/K is the

set

Aut(L/K)= {ϕ ∈ A : ϕ(c)= c for all c ∈ K}.

If |Aut(L/K)| = [L : K] then Aut(L/K) is called the Galois group of L/K , denoted Gal(L/K),

and the extension L/K is called a Galois extension. Furthermore, if H ≤Gal(L/K) we define

the set

LH = {x ∈ L : ϕ(x)= x for all ϕ ∈ H},

which is called the fixed field of H. 4

It is not difficult to check that LH satisfies the field axioms.

Example 2.2.5. Consider the polynomial x2 − 3 ∈ Q[x]. This polynomial has roots ±p3

and is therefore irreducible over Q. By Theorem 2.2.1 we know that Q[x]
(x2−3) ' Q(

p
3) =

{a + b
p

3: a,b ∈ Q} is a degree 2 extension of Q. If ϕ is an automorphism Q(
p

3) then
15



ϕ(a+ b
p

3) = ϕ(a)+ϕ(b
p

3) = a+ bϕ(
p

3) since ϕ fixes Q and is a homomorphism. To de-

termine Aut(Q(
p

3)/Q), we can therefore restrict our attention to the mappings of
p

3. Ob-

serve that 3 = ϕ(3) = ϕ(
p

3
p

3) = ϕ(
p

3)2 and therefore ϕ(
p

3) = p
3 or ϕ(

p
3) = −p3. Thus

Aut(Q(
p

3)/Q)=Gal(Q(
p

3)/Q) consists of two elements: the identity mapping and the map-

ping a+p
3b 7→ a−p

3b.

♦

The following theorem allows us to see that it also makes sense to speak of the Galois

group of a polynomial.

Theorem 2.2.6. The field extension L/K is Galois if and only if L is the splitting field of a

polynomial over K.

Proof. [6, Thm 4.1]

Since the splitting field L/K of f (x) ∈ K[x] is a Galois extension, we henceforth discuss

Gal( f ) with the understanding that Gal( f ) is the Galois group of the splitting field L/K of

f (x). We now recall some definitions and theorems from group theory.

Definition 2.2.7. Let G be a subgroup of Sn. We say that G acts on the set X = {1,2, . . . ,n}

transitively if for every distinct x, y ∈ X there exists some g ∈ G such that gx = y. If G acts

on X transitively then G is called a transitive subgroup. 4

Example 2.2.8. Clearly the alternating group An is a transitive subgroup of Sn since An

contains every even permutation of elements in X = {1,2, . . . ,n}. Thus, for every pair of

elements xi, x j ∈ X there is a permutation σ ∈ An (the permutation (1 xi x j), for example)

such that σ(xi)= x j. ♦

Example 2.2.9. Consider the subgroup {(1), (13), (24), (13)(24)} of S4. This subgroup does

not act transitively on the set {1,2,3,4} since there is no element that sends 1 to 2. ♦

16



The following theorem allows us to view every Galois group (of an irreducible polynomial)

as a transitive subgroup of the symmetric group.

Theorem 2.2.10. Let f (x) ∈ K[x] be a polynomial of degree n. Then f (x) is irreducible if and

only if Gal( f ) is isomorphic to a transitive subgroup of Sn.

Proof. [6, Thm. 2.9]

The following theorem relates the study of groups to fields and the study of fields to

groups.

Theorem 2.2.11 (Galois Correspondence). Suppose that L/K is a Galois extension of finite

degree. Let H be a subgroup of G = Gal(L/K) and let E be an intermediate field K ⊆ E ⊆ L.

Then

(i) [L : E]= |H|,

(ii) [E : K]= [G : H]= |G/H|,

(iii) L/E is a Galois extension, and

(iv) the extension E/K is Galois if and only if H/G (and thus G/H 'Gal(E/K)).

Furthermore, there is a one-to-one correspondence between the subgroups of Gal(L/K) and

the subfields of E of L such that for every subgroup H ≤G there is a corresponding subfield

LH = E and for every subfield E ⊆ L there is a corresponding subgroup H =Aut(L/E).

Proof. [5, Theorem 5.6, Theorem 4.11]

We note that the correspondence described above is inclusion-reversing: E ⊆ L ⇐⇒ H ≤G

for each subfield E ⊆ L and each subgroup H ≤G.

Example 2.2.12. We present a standard example using f (x) = x3 −2 ∈ Q[x] to illustrate

the depth of Theorem 2.2.11. Let ω = e2πi/3 and observe that the roots of f are 3p2, ω 3p2

and ω2 3p2. We can see that Q( 3p2,ω) is the splitting field for f (x) (and is therefore a Galois

extension by Theorem 2.2.6) since this field contains each root of f . From Theorem 2.2.1 we
17



see that each of the fields Q( 3p2),Q(ω 3p2) and Q(ω2 3p2) have degree 3 over Q. Furthermore,

observe that the polynomial (x−ω)(x−ω2) = x2 + x+1 is irreducible over Q( 3p2) since ω is

complex. Thus Q( 3p2)[x]/(x2 + x+1) has degree 2 over Q( 3p2) and since Q( 3p2)[x]/(x2 + x+

1) contains each root of f (x), it is isomorphic to Q( 3p2,ω). This also allows us to see that

Q[x]/(x2 + x+1) 'Q(ω) ⊆Q( 3p2,ω) must be degree 2 extension of Q. Figure 2.2.1 illustrates

the subfields of Q( 3p2,ω) (on the left) and the subgroups of S3 (on the right).

Q( 3p2,ω)

Q( 3p2) Q(ω 3p2) Q(ω2 3p2)

Q(ω)

Q

A3

{(1), (12)} {(1), (13)} {(1), (23)}

S3

{(1)}

Figure 2.2.1: Subfields of Q( 3p2,ω) and subgroups of S3 (with inclusion reversed).

Since Q( 3p2,ω) is a Galois extension of degree 3 · 2 = 6 (by Theorem 2.2.3) we know

|Gal( f (x))| = 6 and therefore that Gal( f (x)) ' S3 by Theorem 2.2.10. The Galois Correspon-

dence states that this diagram of subfields should be the same as the diagram of subgroups

of S3 if we reverse inclusions, as has been done in the figure above. Items (i) and (iii) in

Theorem 2.2.11 say that the degree of Q( 3p2,ω) over each intermediate field corresponds to

the orders of each subgroup of Gal( f (x)) (e.g., [Q( 3p2,ω) : Q( 3p2)] = 2 = |{(1), (12)}|) and fur-

thermore that Q( 3p2,ω) is a Galois extension of each intermediate field. From item (ii), we

can see that the degree of each intermediate field over Q corresponds to the index of a sub-

group in S3 (e.g., [Q( 3p2) : Q]= 3= |S3/{(1), (12)}| and [Q(ω) : Q]= 2= |S3/A3|). Furthermore,

we see that each subfield of Q( 3p2,ω) corresponds to a subgroup of Gal( f (x)) in that we can

write these subfields as fields fixed by some H ≤ Gal( f (x)). For example, labeling each root
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3p2, ω 3p2 and ω2 3p2 as 1, 2 and 3, respectively, observe that the subgroup {(1), (23)} is iso-

morphic to the subgroup {1,σ} ≤ Gal( f (x)), where σ is complex conjugation (i.e., σ swaps

ω
3p2 and ω2 3p2 and fixes 3p2). Thus

Q( 3p2,ω){1,σ} = {x ∈Q( 3p2,ω) : σ(x)= x for all σ ∈ {1,σ}}=Q( 3p2).

♦

This correspondence can be very useful when studying more complicated polynomials

since it allows properties of field extensions to be studied using groups and, similarly, prop-

erties of groups using fields. We now define the discriminant of a polynomial.

Definition 2.2.13. Let F be a field and let f (x) ∈ F[x] be a polynomial of degree n. If

r1, . . . , rn,∈ F̄ are the roots of f then the discriminant of f is defined to be

disc( f )= ∏
i< j

(r i − r j)2.

4

Example 2.2.14. The polynomial (x−5)(x2+1)= x3−5x2+x−5 ∈Q[x] has roots 5 and ±p−1

and so its discriminant is:

(
(5−

p
−1)(5+

p
−1)(

p
−1+

p
−1)

)2
=−2704.

♦

The following proposition illustrates an unintuitive and important property of the dis-

criminant.

Proposition 2.2.15. Let f (x) ∈ F[x]. Then disc( f ) ∈ F.

Proof. The discriminant of f can equivalently be defined in terms of a resultant, which is,

in rough terms, the determinant of a matrix with entries in F. That is,

disc( f )= C ·Res( f , f ′),
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where C is a constant in F and Res( f , f ′) is the resultant of f and the derivative of f . This

resultant will be the determinant of a matrix whose terms include only the the coefficients

of f , f ′, and zero. Thus disc( f ) ∈ F. For more details see [8].

We now develop sufficient criterion for concluding that the Galois group of a polynomial

is Sn.

Theorem 2.2.16. Let f (x) ∈Q[x]. Then Gal( f )⊆ An if and only if disc( f ) is a rational square.

In particular, if disc( f ) is not a rational square then Gal( f ) 6⊆ An.

Proof. We follow [6, Theorem 4.7]. Observe that disc( f ) is a square in Q if and only if√
disc( f ) = ∏

i< j(r i − r j) ∈ Q. Now let E = Q(r1, . . . , rn) be the splitting field of f and let

σ ∈ Gal(E/Q) = Gal( f ). Viewing Gal( f ) as subgroup of Sn (by Theorem 2.2.10) allows us to

decompose σ into a product of two-cycles, where we let εσ = 1 or −1 depending on whether

σ is even or odd. Using the homomorphism properties of σ, we find that

σ
(√

disc( f )
)

= σ
(∏

i< j
(r i − r j)

)
= ∏

i< j
(σ(r i)−σ(r j)).

But since σ ∈Gal( f ) we know that σ simply permutes the roots of f and thus

∏
i< j

(σ(r i)−σ(r j))= εσ
√

disc( f ).

Now suppose that Gal( f ) ⊆ An. Then σ is an even permutation and εσ = 1 which means

that σ(
√

disc( f )) = √
disc( f ). Thus σ fixes

√
disc( f ) and so

√
disc( f ) ∈ Q by definition. If√

disc( f ) ∈Q then it is fixed by σ and so εσ = 1 which means that σ is even. The result now

follows.

Thus, if we can show that the discriminant of a polynomial f (x) ∈ Q[x] is not a rational

square, we will be able to rule out every subgroup of An, including An itself, as possibilities
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for the Galois group of f (x). If we can furthermore show that the Galois group contains An,

it will follow from the next proposition that Gal( f ) is the full symmetric group.

Proposition 2.2.17. Let f (x) ∈Q[x] be a degree n polynomial and let G =Gal( f ) have finite

order. If G 6⊆ An and G ⊇ An then G = Sn.

Proof. Let |G| = m. By hypothesis, we have that

An (G ⊆ Sn

and therefore |An| = n!/2< m ≤ n!= |Sn|. From Lagrange’s Theorem we know that m|n! and

so am = n! for some a ∈ N. If m < n! then a > 1 and n!/2 < m < am = n!. This implies that

m = n!/a ≤ n!/2< m, which is a contradiction. Thus m = n! and G = Sn.

To help with showing that Gal( f ) ⊇ An, we use the following important result of Jordan.

We choose to omit the proof of Jordan’s Theorem since it is not short and we were unable to

find effective way of summarizing it within the general scope of this project.

Theorem 2.2.18 (Jordan). Let G be a transitive subgroup of Sn. If there exists a prime

p ∈ (n/2,n−2) such that p divides the order of G then G ⊇ An.

Proof. See [14, Thm 5.6.2 and Thm 5.7.2].

Combining Theorems 2.2.10, 2.2.16, 2.2.18, and Proposition 2.2.17, we now have criterion

for showing that the Galois group of a degree n polynomial over Q is the full symmetric

group.

Corollary 2.2.19. Let f (x) ∈ Q[x] be a polynomial of degree n. Suppose that f satisfies the

following conditions.

(i) f (x) is irreducible over Q.

(ii) disc( f ) is not a square in Q.

(iii) There exists a prime p ∈ (n/2,n−2) such that p divides the order of Gal( f ).
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Then Gal( f )= Sn.

We now aim to develop a method for showing that a polynomial satisfies these criterion.

2.3 p-adic Numbers

In this section we provide a basic overview of the p-adic numbers Qp with the aim of using

them to discuss properties of the Newton Polygon in Section 2.4. We provide rigorous defi-

nitions of material explicitly used in this project and also present a less formal discussion

of the p-adic numbers in general.

The field Qp arises by considering the notion of ‘distance’ in a different way. Due to our

familiarity with real numbers, our intuition has been carefully seasoned to measure the

interval between two numbers using the absolute value. The traditional absolute value

allows us to completely characterization the notion of ‘size’ in that any real number is a

unique distance and direction from zero (positive or negative). The idea of an absolute value

turns out to be much more general: given any field K , we can define an absolute value as a

function which satisfies certain conditions outlined below. This allows for the definition of a

metric on K .

Definition 2.3.1. Let K be a field. The function | | : K →R is called an absolute value on K

if it satisfies the following conditions.

(i) |x| = 0 if and only if x = 0.

(ii) |xy| = |x| |y| for all x, y ∈ K .

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ K .

If | | has the property that |x + y| ≤ max{|x|, |y|} for all x, y ∈ K then | | is called non-

Archimedean. If | | is not non-Archimedean then we say that | | is Archimedean. 4

The field Qp is formed in a similar way to the real numbers: we complete Q by adjoining to

it the limit of every rational Cauchy sequence. The difference is the way in which we define
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our concept of measure. To construct R, we adjoin irrational points on the number line by

considering their relative distances from the origin using the absolute value. A different

completion arises when we adjoin irrational points using a different unique characteristic

of Q.

Observe that any integer m ∈ Z can be represented uniquely by expanding it in ‘base-p’

for some prime p (e.g., the integer 242= 2+3 ·5+4 ·52+53). We can define an absolute value

on Q, one which is different from the regular absolute value, that makes use of this ‘base-p’

expansion. From this alternate absolute value, we may also construct Cauchy sequences

and treat their limits (those which do not converge in Q) as the formal definitions of p-adic

irrational numbers.

Definition 2.3.2. Fix some prime number p and some n ∈Z−{0}. Let the function ordp : Z−

{0}→Z be defined by

ordp(n)=max{k ∈N : pk | n},

for all n ∈Z− {0}. We call the integer ordp(n) the p-adic valuation of n. 4

Observe that ordp(n) = max{k ∈ N : n ≡ 0 mod pk}. This allows us to see how the p-adic

valuation can intuitively be interpreted as a measure of a number’s divisibility by p; larger

valuations equate to more factors of p.

The domain of the ordp function can be extended to include all rational numbers as fol-

lows.

Definition 2.3.3. Fix some prime number p ∈ Z. If x = a/b ∈ Q− {0} then we define the

p-adic valuation of x to be

ordp(x)= ordp(a)−ordp(b).

4
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In order to include the number 0 in the domain of ordp, the convention is often to set

ordp(0)=+∞. This results from the observation that we can divide 0 by any integer and so

pk | 0 for every choice of k, no matter how large. In other words, if we look at the ‘expression’

0= 0 · (p · p · p · · · )

we see that p | 0 and so ordp(0) ≥ 1. But p2 | 0 also and so ordp(0) ≥ 2. But p3 | 0 too and so

ordp(0)≥ 3 . . . etc.

We use the following properties of ordp extensively throughout this project.

Lemma 2.3.4. Let x, y ∈Q. Then

(i) ordp(xy)= ordp(x)+ordp(y), and

(ii) ordp(x+ y)≥min{ordp(x),ordp(y)}.

Proof. See [12, Lemma 2.1.3]]

Using the p-adic valuation, we may now define the p-adic absolute value.

Definition 2.3.5. Fix some prime p and let x ∈ Q. We define the p-adic absolute value of x

to be

|x|p =
{

p−ordp(x), if x 6= 0
0, if x = 0.

4

It is not hard to see that this definition satisfies the criterion outlined in Definition 2.3.1.

Similar to the traditional absolute value, the p-adic absolute value also measures the ‘close-

ness’ of numbers; p-adic numbers are ‘near’ one another (have small absolute difference)

when they have similar divisibility by a prime p, just as real numbers are near each other

when their absolute difference is close to zero.

Example 2.3.6. In R, the numbers -4 and 4 have the same distance from 0 since their

absolute values are equal and so both −4 an 4 lie on the perimeter of the closed ball of

radius 4 centered at the origin in R. In Q3 we find a similar phenomena with the numbers
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9 and 45. The 3-adic absolute value of both 9 and 45 is 1/32 and so they lie in the closed ball

B = {x ∈Q3 : |x| ≤ 1/32} of radius 1/32 in Q3. ♦

Example 2.3.7. Observe that the integers 125 = 53 and 1875 = 3 ·54 are not near one an-

other when considered in Q but are close together in Q5 since |53 −3 ·54|5 = |53(1−3 ·5)|5 =

5−3. ♦

Example 2.3.8. We show that
p

2 ∈ Q7 by considering the roots of the polynomial x2 −2

mod 7n for increasing values of n. Observe that 2 is a square modulo 7 since 32 ≡ 2 mod 7.

We can lift this solution to higher powers of 7 by observing that

32 ≡ 2 mod 7

(3+7)2 ≡ 2 mod 72

(3+7+2 ·72)2 ≡ 2 mod 73.

The process can be continued:

(3+7+2 ·72 +6 ·73 +74 +2 ·75 +76 +2 ·77 +4 ·78 +6 ·79 +6 ·710)2 ≡ 2 mod 711

(3+7+2 ·72 +6 ·73 +74 +2 ·75 +76 +2 ·77 +4 ·78 +6 ·79 +6 ·710 +2 ·711)2 ≡ 2 mod 712.

The fact that a solution to x2−2 mod 7n exists for all n is due to Hensel′s Lemma, which,

for our purposes, says that if there is a root of α of f (x) mod p and f ′(α) 6≡ 0 mod p then

roots of f (x) mod pn exist for all powers. Let αn denote the root of x2−2 mod 7n+1 (so α0 = 3

and α1 = 3+7) and notice that αn ≡αn−1 mod 7n. Thus, αn −αn−1 ≡ 0 mod 7n which means

that αn−αn−1 has a factor of 7n and therefore that |αn−αn−1|7 ≤ 1
7n . The non-Archimedean

property allows us to state that the sequence {αn} of lifted roots of x2 −2 forms a Cauchy

sequence and so {αn} converges in Q7. This limit is the 7-adic square root of 2.

♦

Adjoining all limits of Cauchy sequences with respect to a p-adic absolute value results

in the field Qp. We follow Gouvêa [12] in constructing the field of p-adic numbers. If we
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define the set Cp by

Cp =
{
{an} : {an} is a Cauchy sequence with respect to the absolute value | |p

}
,

let {an}, {bn} ∈Cp and furthermore define the operations + and · on Cp by

{an}+ {bn}= {an +bn}

and

{an} · {bn}= {an ·bn},

it can be shown that Cp is a commutative ring with 1. One can also prove that the set

N =
{
{an} : lim

n→∞ |an|p = 0
}

is a maximal ideal of Cp. Accepting these statements as fact, the p-adic numbers are defined

as follows.

Definition 2.3.9. The field Qp is defined to be the quotient Cp/N . 4

Note that Q is necessarily a subfield of Qp; it is included in Qp as the constant Cauchy

sequences consisting of rational elements.

We note that every element x ∈Qp can be written in the form

a−n0 p−n0 +·· ·+a0 +a1 p +a2 p2 +·· ·an pn +·· ·

where each ai ∈Z/pZ and n0 = ordp(x).

The field theory developed in Section 2.2 is also applicable to the p-adic fields. In other

words, algebraic extensions of Qp can also be formed by taking quotients of irreducible

polynomials in Qp. It turns out that if K /Qp is not a Galois extension, then the p-adic

absolute value of any x ∈ K /Qp is equal to the absolute value of x in a Galois extension

L/Qp where L ⊃ K [12, Lemma 5.3.3.]. It therefore makes sense to define the p-adic absolute

value of algebraic elements to be their absolute value in a Galois extension of Qp.
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Definition 2.3.10. Let K be a degree n extension of Qp. If x ∈ K× then the p-adic valuation

ordp(x) : K× →Q of x is defined to be

ordp(x)= 1
n

ordp(NK /Qp (x)).

where

NK /Qp (x)= ∏
σ∈Gal(K /Qp)

σ(x).

The ramification index of K over Qp is defined to be the unique integer e which satisfies

ordp(K×)= 1
e

Z,

where ordp(K×) is the image of ordp : K× →Q. 4

Our use of p-adic numbers will mainly be through an object called the Newton Pol ygon,

which reveals information about polynomial factorization and Galois groups. Definition

2.3.10 is used in Theorem 2.4.12 to show how the the p-adic Newton Polygon can be used to

study Galois groups.

2.4 Newton Polygons

The theory of Newton Polygons is a tool we employ to gain information about a polynomial’s

algebraic properties. The mathematical machinery behind Newton Polygons is extensive;

we offer only a brief summary here, focusing primarily on their usefulness in showing how

polynomials can satisfy the criterion outlined in Corollary 2.2.19. We note that Newton

Polygons arise through a generalization of the p-adic valuation to polynomials f (x) ∈Qp[x].

Definition 2.4.1. Fix some prime p and let f (x) = a0 + a1x+ ·· ·anxn ∈ Q[x]. The p-adic

Newton Polygon of f , denoted NPp( f ), is the lower convex hull of the set of points

{(0,ordp(a0)), (1,ordp(a1)), . . . , (n,ordp(an))}.

4
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One helpful analogy in picturing the lower convex hull is to imagine the plane R2 as a

cork bulletin board and the points {(i,ordp(ai)} above as pins in the board. If we stretch an

elastic band around all the pins so that every pin is either inside the band or supporting

the band on its perimeter, the lower section of this band (i.e., the lower section connecting

the first pin at (0,ordp(a0)) and the last pin at (n,ordp(an))) is the lower convex hull. So for

every prime p there exists a p-adic Newton Polygon for a polynomial f (x) ∈Q[x].

Example 2.4.2. Let f (x)= a0+a1x+·· ·+a6x6 = 27+9x+4x2+6x3+54x4+3x5+18x6. Then

NP3( f ) has the following shape. (Note that we plot all points (i,ord3(ai))).

0 1 2 3 4 5 6
0

1

2

3

coefficient i

ord3(ai)

Figure 2.4.1: NP3(27+9x+4x2 +6x3 +54x4 +3x5 +18x6)

♦

We will often refer to the edges and vertices of a Newton Polygon as segments and breaks,

respectively. The main theorem of Newton Polygons is as follows.

Theorem 2.4.3. Suppose that f (x) ∈ Q[x] is a polynomial of degree n and that f (x)

is not divisible by x. Let (x0, y0), (x1, y1), . . . , (xr, yr) denote the vertices of NPp( f ) and let

mi = (yi − yi−1)/(xi − xi−1) be the slope of the ith segment of NPp( f ). Then there exists polyno-

mials f1, f2, . . . , fr ∈Qp such that:

(i) f (x) factors as f (x)= f1(x) f2(x) · · · fr(x) over Qp,

(ii) the degree of f i is xi − xi−1 for all 1≤ i ≤ r,

(iii) every root of f i in Q̄p has p-adic valuation −mi, for all 1≤ i ≤ r.

Proof. [12, Theorem 6.4.7]
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Note that the length of a segment is its projection onto the x-axis. Thus we see that

f (x)= 27+9x+4x2 +6x3 +54x4 +3x5 +18x6 in Example 2.4.2 factors as f1(x) f2(x) f3(x) over

Q3, where deg f1 = 2, deg f2 = 3 and deg f3 = 1. Furthermore, if α1,α2,α3 ∈ Q̄3 are respective

roots of f1, f2 and f3, then ordp(α1)=−3/2,ordp(α2)= 1/3 and ordp(α3)= 1.

Definition 2.4.4. Let f (x) ∈Q[x] be a degree n polynomial and let p be a prime number. If

NPp( f ) consists of a single segment of length n with slope m 6= 0 then we call the Newton

Polygon pure. If NPp( f ) consists of a single segment of length n with slope m = 0 then we

say that NPp( f ) is trivial. 4

It is not apparent, upon preliminary inspection, why a Newton Polygon consisting of a

single slope 0 segment should be called trivial. The reason for this denomination is that

polynomials with flat Newton Polygons could be either irreducible or reducible and there-

fore no useful information can be acquired from trivial polygons.

Example 2.4.5. Consider the polynomial f (x) = 7x2 −14 and g(x) = 7x2 +14. Both of these

polynomials have trivial Newton Polygons at the prime 7. We have shown in Example 2.3.8

that
p

2 ∈ Q7 (which implies −p2 ∈ Q7) and so f (x) splits in Q7. The second polynomial is

irreducible in Q7 by Hensel’s Lemma (see Example 2.3.8) since there is no element in Z/7Z

which squares to −2 ≡ 5 mod 7. Thus a flat Newton Polygon can be interpreted in multiple

ways: as having multiple slope 0 segments (being reducible) or having a single segment

(being irreducible). ♦

The only conclusion that can be made from a trivial Newton Polygon is that the degree

d of any irreducible factor of f (x) over Q must such that d ≥ 1 (i.e., the degrees of the

irreducible factors of f (x) ∈ Qp could combine in any possible way when the polynomial is

taken over Q.)

These observations also hold for a slope zero segment of a nontrivial Newton Polygon. We

summarize this as a corollary to Theorem 2.4.3.
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Corollary 2.4.6. Let NPp( f ) be the Newton Polygon for f (x) ∈Q[x] and let g(x) ∈Q[x] be an

irreducible factor of f with deg g = d.

(i) If NPp( f ) is trivial then d ∈ [1,n].

(ii) If NPp( f ) has vertices (x0, y0), (x1, y1), . . . , (xr, yr) such that yi−1 = yi for some i ∈ (0, r]

(i.e., NPp( f ) has a slope zero segment of length L = xi − xi−1) then, recalling that f (x) =

f1(x) f2(x) · · · f i(x) · · · fr(x) ∈Qp, precisely one of the following holds.

(a). d is equal to the sum of any combination of degrees deg f j (including j = i),

(b). d is equal to the sum of any combination of degrees deg f j plus some a ∈ [0,L], or

(c). d = a, for some a ∈ [1,L].

Example 2.4.7. Let f (x) ∈Q(x) be a degree 10 polynomial and suppose that there is a prime

p for which NPp( f ) takes on the following shape.

0

1

3 10

This Newton Polygon tells us that f (x) = g(x)s(x) ∈ Qp where the degree of g(x) is 7 and

the degree of s(x) is either 3, or s(x) is the product 3 degree 1 polynomials or it is the

product of a degree 1 polynomial and a degree 2 polynomial. Therefore, over the rational

numbers, we have the following possible factorizations of f (x) into irreducible polynomials

h(x), r(x), t(x),v(x) ∈ Q[x]. The numbers written underneath each polynomial denote their
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respective degrees.

h(x)
10

h(x)
7

r
3
(x)

h(x)
7

r
2
(x)t

1
(x)

h(x)
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1
(x) t

1
(x)v

1
(x)

h(x)
8

r
2
(x)

h(x)
8

r
1
(x) t

1
(x)

h(x)
9

r
1
(x)

In accordance with Corollary 2.4.6, the possible degrees for an irreducible factor of f (x) over

Q are 10, 9, 8, 7, 3, 2, or 1. ♦

Example 2.4.8. Let f (x) = x3 +8x2 −2x−14 = (x2 −2)(x+7). Consider the Newton Polygon

for f at the prime 7.

0

1

1 3

Figure 2.4.2: NP7(x3 +8x2 −2x−14)

This example is different in that we already know the rational factorization of f (x). How-

ever, if we were unsure of this polynomial’s factorization, the 7-adic Newton Polygon would

be of little help; we are only able to conclude that an irreducible factor of f (x) must have

degree d ≤ 3. Note that f (x) actually splits completely in Q7 since ±p2 ∈Q7. ♦

If a Newton Polygon at a prime p is pure, we can conclude the ‘opposite’ of our obser-

vations for trivial Newton Polygons. We state this precisely in the following corollary to

Theorem 2.4.3.
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Corollary 2.4.9. If there exists some prime number p such that NPp( f ) is pure, then f is

irreducible over Q.

Proof. Suppose that the NPp( f (x)) is pure. It follows from Theorem 2.4.3 (i) that f is irre-

ducible over Qp. If f (x) is irreducible over Qp but reducible over Q then, since Qp contains

Q, it must be the case that f (x) is reducible over Qp which is a contradiction.

One useful theorem for determining irreducibility properties of f (x) ∈Q[x] using polyno-

mials that are not pure is seen in the following theorem.

Theorem 2.4.10 (Coleman [4]). Fix some prime p and let f ∈Q[x] be a polynomial of degree

n. If d ∈Z divides the denominator (in lowest terms) of every slope of NPp( f (x)), then d divides

the degree of every irreducible factor of f over Q.

Proof. See the Corollary in [4].

The following definition incorporates the slopes of a Newton Polygon at many primes. It

is through this definition that we arrive at a satisfactory method for fulfilling item (iii) in

the criterion of Corollary 2.2.19 — namely, for showing that Gal( f )⊇ An.

Definition 2.4.11. Fix some prime p and let

Mp = {a/b ∈Q : a/b is a slope (in lowest terms) of NPp( f )}.

The Newton Index of f over Qp, denoted N f , is defined to be the least common multiple of

every denominator b for all

a
b
∈⋃

p
Mp

where the union runs over all primes p. 4

So N f is the least common multiple of all denominators of slopes of every Newton Polygon

for f .
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Recall from Corollary 2.2.19 that if f (x) ∈Q[x] is irreducible and has discriminant that is

not a rational square, then we must only establish the existence of a prime p ∈ (n/2,n−2),

where n = deg( f ), such that p divides the order of Gal( f ) in order to conclude that Gal( f )=

Sn. The following theorem hints at a method for this final step.

Theorem 2.4.12. Let f (x) ∈ Q[x] be an irreducible polynomial and let G = Gal( f ) =

Gal(E/Q), where E is the splitting field of f (x). Then N f divides the order of G. Further-

more, if ` is a prime divisor of N f in the range n/2< `< n−2 then G ⊇ An.

Proof. We follow Theorem 2 in [13], filling in some details. Let m = a/b ∈ Q be a slope of

the Newton Polygon for f at a prime p and let q be a divisor of b. Showing that q divides

the order of G will imply that N f also divides the order of G since q is chosen arbitrarily

(thus the same argument can be repeated for any such divisor of the denominator of a slope,

indicating that the least common multiple of these divisors, N f , must also divide |G|). From

Theorem 2.4.3(i) and (iii), we know that there exists an irreducible factor g(x) ∈Qp of f (x)

having root γ ∈ Q̄p such that ordp(γ) =−m. Furthermore, letting d = deg(g), we know that

d ≤ deg( f ) and that

Qp(γ)' Qp[x]
(g(x))

is a degree d extension of Qp from Theorem 2.2.1. From Definition 2.3.10 we also have that

−m =−a/b = 1
d
· (NQp(γ)/Qp (γ))

and so −ad = b(NQp(γ)/Qp (γ)). Since q | b we have that q | ad. We can see that q does not

divide a since a/b is in lowest terms. Thus q divides d = [Qp(γ) : Qp]. But from Theo-

rem 2.2.3, we also see that d divides [Ep : Qp] = |Gal(Ep/Qp)|, where Ep is the splitting

field of g over Qp. It is well known that Gal(Ep/Qp) is isomorphic to the decomposition

group Dp = {σ ∈G : σ(p)= p} where p is a prime ideal lying over the prime ideal pZ (this just

means that p∩Z = pZ), and furthermore that Dp is a subgroup of Gal(E/Q) = G [19, page
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99]. Thus q|d implies q divides the order of Gal(Ep/Qp) ' Dp ≤ G and therefore q divides

the order of G by Lagrange’s Theorem. Hence we have that N f divides the order of the

Galois group of f (x) ∈Q[x].

If q = ` is a prime in the interval (n/2,n−2) then it follows from Jordan’s Theorem 2.2.18

that G ⊇ An.

2.5 Elliptic Curves and the Supersingular Polynomials

Definition 2.5.1. Let K be a field and let f (x) ∈ K[x] be a cubic polynomial with no repeated

roots. An elliptic curve, denoted E/K , is defined by the two variable equation

y2 = f (x).

4

The ordered pairs (x, y) ∈ K ×K which satisfy the above equation are called the K-points

of the elliptic curve E. These points, together with a special ‘point at infinity’, denoted O,

form an abelian group under a geometric addition law. The point O on E acts as an additive

identity in the group structure. Multiplication by some integer m is defined by letting P be

a point on E and setting

[m]P = P +P · · ·+P︸ ︷︷ ︸
m times

.

We can then ask the question of which points on E have finite order. These points can be

considered via the kernel of the multiplication by m map − that is, by considering all the

points P ∈ E for which there exists an integer m ∈ Z such that [m]P = O. The set E[m] :=

ker[m] = {P ∈ E : [m]P = O} is called the m-torsion subgroup of E and contains all points of

order m on E. It turns out that if the characteristic of K is 0 or p and p - m then E[m] '

Z/mZ×Z/mZ [17, Page 20]. This seems intuitively clear in the case where K =C since elliptic

curves over C can be viewed as a complex lattice (this is due to an unintuitive isomorphism

between Definition 2.5.1 above and a lattice structure in C using a complicated change of
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variables in terms of the Weierstrass ℘ function and its derivative). Multiplication by m on

an elliptic curve C/L, where L is a complex lattice, then maps the points which are on the

lattice back to themselves via their coset representation, which is the zero element of C/L.

When p | m in characteristic p, it can be shown that either E[pr] ' Z/prZ or E[pr] = {O}

[17, Page 20]. We now define what it means for an elliptic curve to be supersingular.

Definition 2.5.2. If E[pr](K̄)= {O} then the elliptic curve E/K is called supersingular. 4

The following theorem allows us to characterize elliptic curves in a particularly nice way.

Theorem 2.5.3. Suppose that char(K) 6= 2. Then every elliptic curve E/K is isomorphic (over

K̄) to an elliptic curve in Legendre form:

Eγ : y2 = x(x−1)(x−γ),

for some γ ∈ K̄ such that γ 6= 0,1.

Proof. [22, Section III, Proposition 1.7]

Definition 2.5.4. Suppose that char(K) 6= 2 and let Eγ/K be an elliptic curve in Legendre

form. The j− invariant of Eγ is defined to be

j(Eγ)= 28(γ2 −γ+1)3

γ2(γ−1)2 ∈Fp2 .

4

Theorem 2.5.3 now allows us to illustrate the importance of j-invariants.

Theorem 2.5.5. Suppose that Eγ and Eδ are two elliptic curves over a field K. Then j(Eγ)=

j(Eδ) if and only if Eγ ' Eδ.

Proof. [22, Section III, Proposition 1.4(b)]

We note that the j-invariant of a supersingular elliptic curve is called a supersingular

j-invariant.
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Theorem 2.5.6. There are only finitely many supersingular elliptic curves in fields of char-

acteristic p.

Proof. See [22, Section V, Theorem 3.1(a))] and [22, Page 140]

Theorems 2.5.5 and 2.5.6 imply that there are also only finitely many supersingular j-

invariants in characteristic p. This leads to the definition of the supersingular polynomial.

Definition 2.5.7. Let K be a finite field of characteristic p > 2, γ ∈ K̄ and let E : y2 =

x(x−1)(x−γ) be a supersingular elliptic curve. The polynomial

sp(x)= ∏
j(E)

(x− j(E)) ∈Fp

is called the supersingular polynomial in characteristic p. 4

The first 12 supersingular polynomials are

s2(x) = x

s3(x) = x−1728

s5(x) = x

s7(x) = x−1728

s11(x) = x(x−1728)

s13(x) = x−5

s17(x) = x(x−8)

s19(x) = (x−7)(x−1728)

s23(x) = x(x−19)(x−1728)

s29(x) = x(x−2)(x−25)

s31(x) = (x−2)(x−4)(x−1728)

s37(x) = (x−8)(x2 −6x−6),
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where the coefficients of each sp(x) are taken modulo p. The following Theorem allows us a

method for computing the supersingular polynomial.

Theorem 2.5.8. Let K be a finite field of characteristic p > 2.

(i). Let m = (p−1)/2 and define a polynomial

Hp(t)=
m∑

j=0

(
m
j

)2

t j.

Let γ ∈ K̄, γ 6= 0,1. Then the elliptic curve

E : y2 = x(x−1)(x−γ)

is supersingular if and only if Hp(γ)= 0.

(ii). The polynomial Hp(t) has distinct roots in K̄. Up to isomorphism, there are precisely

bp/12c+εp

supersingular elliptic curves in characteristic p, where ε3 = 1, and for p ≥ 5,

εp =


0 if p ≡ 1 mod 12,
1 if p ≡ 5 mod 12 or p ≡ 7 mod 12,
2 if p ≡ 11 mod 12.

Proof. [22, Section V, Theorem 4.1(ii),(iii)]

Example 2.5.9. We compute the supersingular j-invariants in characteristic 37. This is an

important example since s37(x) is the first supersingular polynomial whose roots are not

completely contained in F37 (as shown in the list of supersingular polynomials above).

Theorem 2.5.8 tells us that if there exists some γ ∈ F̄37k such that γ 6= 0,1 and H37(γ)= 0,

then the elliptic curve

Eγ : y2 = x(x−1)(x−γ)

is supersingular. Therefore, if we can find the roots γ of H37(t), then the supersingular

j-invariants will be given by

j(Eγ)= 28(γ2 −γ+1)3

γ2(γ−1)2 .
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The first step is to calculate the polynomial Hp(t), called the Hasse invariant of elliptic

curves in Legendre form, at the prime p = 37 and then reduce this polynomial modulo 37.

Direct computation shows that

H37(t)=
18∑
j=0

(
18
j

)2

t j

factors into the following 9 quadratics modulo 37:

t2 +4t+33

t2 +2t+9

t2 +6t+26

t2 +12t+34

t2 +23t+10

t2 +29t+33

t2 +31t+1

t2 +33t+12

t2 +36t+9.

Observe that each of the 18 roots γi ∈ F̄37k of H37(t) will define a supersingular elliptic

curve in characteristic 37. However, since ε37 = 0 (because 37 ≡ 1 mod 12) we see from

Theorem 2.5.8 that all but

b37/12c+ε37 = 3

of these elliptic curves will be isomorphic. Equivalently, of the 18 distinct roots of H37(t), we

should find that only three are distinct under the image of j, and since two elliptic curves

are isomorphic if and only if they have the same j-invariant, this will imply that there

can only be three non-isomorphic supersingular elliptic curves in characteristic 37. These

observations show that the supersingular polynomial s37(x) has degree 3.
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We now proceed with the computation. Consider the first factor t2 +4t+33. If γ ∈ F̄37k is

a root of t2 +4t+33 then γ2 +4γ+33 ≡ 0 mod 37 and so γ2 ≡ −4γ−33 mod 37. Using this

fact successively and reducing coefficients modulo 37 yields

j(Eγ) ≡ 28(γ2 −γ+1)3

γ2(γ−1)2 mod 37

≡ 28((−4γ−33)−γ+1)3

(−4γ−33)((−4γ−33)−2γ+1)
mod 37

≡ 32γ+20
4γ+21

mod 37

≡ 8(4γ+21)−148
4γ+21

mod 37.

≡ 8−37
( 4
4γ+21

)
mod 37

≡ 8 mod 37.

This means that 8 is the supersingular j-invariant of the elliptic curve E : y2 = x(x−

1)(x−γ), where γ is a root of t2 +4t+33 in F̄37k . Therefore 8 is a supersingular j-invariant

in characteristic 37 and s37(x) has (x−8)= (x+29) mod 37 as a factor.

We now consider the second factor t2 +2t+9 of H37(t). Similarly to above, we see that if

r ∈ F̄37k is a root of t2 +2t+9 then r2 ≡−2r−9 mod 37. From this we find that

j(Er) ≡ 28((−2r−9)− r+1)3

(−2r−9)((−2r−9)−2r+1)
mod 37

≡ 30r+33 mod 37.

Unlike the factor t2 +4t+33, whose roots defined two isomorphic elliptic curves, we see

that the value of the j-invariant at a root of t2+4t+33 will depend on which of the two roots

r is chosen. We know from Definition 2.5.4 that j(Er) ∈F372 (note that we have defined the

j-invariant in this way, but the fact that j(Er) ∈ Fp2 can actually be shown (see [22, page

140])). Observe that t2 +4t+33 is irreducible in F37 and so

F372 ' F37[t]
(t2 +4t+33)

'F37(r)
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by Theorem 2.2.1.

Solving r2 + 4r + 33 = 0 using the quadratic formula yields r = (−2±p
4−36)/2 ≡ −1±

19
p

5 mod 37 and hence we see that F37(r)=F37(−1±19
p

5)=F37(
p

5) since (r+1)/±19=p
5.

Substituting r =−1±19
p

5 into the formula for j(Er) above gives

j(Er) = 30(−1±19
p

5)+33

= 3±15
p

5 ∈F37(
p

5)'F372

Thus we see that both 3+15
p

5 and 3−15
p

5 are supersingular j-invariants in charac-

teristic 37 and so (x−(3+15
p

5))(x−(3−15
p

5))= x2+31x+31 ∈F37 is also a factor of s37(x).

Thus we have found the 3 distinct j-invariants in characteristic 37 and

s37(x)= (x+29)(x2 +31x+31) ∈F37.

It can be checked that the other seven factors of H37(t) also define elliptic curves with

j-invariant 8 or 3±15
p

5.

♦

2.6 Current Conjectures and Results

The theory presented in the last sections allow us to give motivation for this project and

precisely state our goals. We aim to investigate a family of polynomials that reduce to the

supersingular polynomials when reduced modulo a prime p. Rational polynomials with this

property are called supersingular lifts.

Definition 2.6.1. Let f (x) ∈Q[x] and let g(x) ∈Fp[x]. If f (x)≡ g(x) mod p then we call f (x)

a rational lift or lift of g(x). 4
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There have been several well-studied lifts of sp(x). In particular, Mahlburg and Ono have

conjectured in [18] that the lifts which we study in this project are irreducible over Q with

maximal Galois groups. In order to define these lifts of sp(x), recall the following definition.

Definition 2.6.2. Let (α,β) ∈R×R. The polynomial

P(α,β)
n (x)=

n∑
j=0

(
n+α
n− j

)(
n+β

j

)( x−1
2

) j( x+1
2

)n− j
.

is called the nth degree Jacobi Polynomial. 4

We will focus on the family of polynomials

K
(λ,µ)
n (x)= 3nn!P(λ/3,µ/2)

n (4x+1),

where λ,µ ∈ {±1}. In order to show that they reduce to sp(x), we present the following The-

orem.

Theorem 2.6.3 (Brillhart and Morton [2]). For a prime p > 3, let p ≡ εp mod 12, where

εp = 1,5,7,11 and let n = (p−εp)/12. The supersingular j-invariants in characteristic p which

are not 0 or 1728 ( mod p) coincide with the roots in F̄p of the polynomial

Jp(x)= (1728)nP(α,β)
n

(
1− x

864

)
,

where

(α,β) = (−1/3,−1/2) if εp = 1,

(α,β) = (1/3,−1/2) if εp = 5,

(α,β) = (−1/3,1/2) if εp = 7,

(α,β) = (1/3,1/2) if εp = 11.

Proof. See [2, Theorem 3]
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Example 2.6.4. We compute s37(x) using Brillhart and Morton’s Jp function. Since 37 ≡

1 mod 12 we let n = (37−1)/12= 3 and set (α,β)= (−1/3,−1/2). Then

J37(x) = (1728)3P(−1/3,−1/2)
3

(
1− x

864

)
= −14725

1296
x3 +30400x2 −21012480x+2548039680

≡ (x+29)(x2 +31x+31) mod 37

= s37(x).

♦

We now show that the K
(λ,µ)
n (x) polynomials are a shift of Jp(x). Observe that if γ is a

root of Jp(x) over a field F (of characteristic 0 or p) then Jp(γ) = (1728)nP(α,β)
n

(
1− γ

864

)
= 0.

Solving 4x+ 1 = 1−γ/864 for x we find that any root γ of Jp is mapped to the root γ′ =

−γ/(4 ·864) = −γ/3456 ∈ F of K
(λ,µ)
n (x). This can be seen by letting Jp(γ) = 0 and observing

that

K
(λ,µ)
n (−γ/3456) = 3nn!P(λ/3,µ/2)

n (4(−γ/(4 ·864))+1)

= 3nn!P(λ/3,µ/2)
n (1−γ/864)

= 3nn!
1728n Jp(γ)

= 0.

We may therefore describe a bijection between between roots of Jp and K
(λ,µ)
n . The map

γ 7→ −γ/3456

sends a root of Jp to a root of K
(λ,µ)
n , and the map

γ′ 7→ −3456γ′
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sends a root of K
(λ,µ)
n to a root of Jp (since Jp(−3456γ′)= (1728)nP(α,β)

n (4γ′+1)=K
(λ,µ)
n (γ′)=

0). Because of this bijection, we see that the polynomials K
(λ,µ)
n (x) have the same irre-

ducibility and Galois properties as the Jp polynomials over F. In particular, if K
(λ,µ)
n is

irreducible over Q then so is Jp. Furthermore, since the roots of Jp correspond to the roots

of sp in F̄pk (which are the supersingular j-invariants), we are led to the following impor-

tant remark.

Remark 2.6.5. Let p ≡ εp mod 12, where εp = 1,5,7,11, and n = (p− εp)/12. Fix (λ,µ) =

(±1,±1) using the same signs as (α,β) in Theorem 2.6.3. Then

(i) K
(λ,µ)
n (−x/3456)≡ sp(x) mod p, and

(ii) if γ′ ∈ F̄pk is a root of K
(λ,µ)
n (x) then −3456γ′ ∈ Fp2 is a supersingular j-invariant in

characteristic p. ♦

Building on the previous examples, we now present the above two observations using the

prime p = 37. In order to make computations involving K
(λ,µ)
n easier, we use the fact (see

Lemma 3.1.1) that

K
(λ,µ)
n (x)=

n∑
j=0

(
n
j

)
α jβ jx j,

where

α j =
n− j−1∏

k=0
(3n+λ−3k)= (3n+λ)(3n+λ−3 ·1) · · · (3n+λ−3(n− j−1)),

β j =
j−1∏
k=0

(6n+6+ε+6k)= (6n+6+ε)(6n+6+ε+6 ·1) · · · (6n+6+ε+6( j−1))

and ε= 2λ+3µ.
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Example 2.6.6. Let p = 37. We begin with observation (i) in Remark 2.6.5 and show that

K
(−1,−1)

3 (−x/3456) reduces to s37 modulo 37. Letting X =−x/3456, observe that

K
(−1,−1)

3 (X ) =
3∑

j=0

(
3
j

)
α jβ j X j

= 8 ·5 ·2+3(8 ·5)(19)X +3(8)(19 ·25)X2 + (19 ·25 ·31)X3

= 8 ·5 ·2− 3(8 ·5)(19)
3456

x+ 3(8)(19 ·25)
34562 x2 − 19 ·25 ·31

34563 x3

≡ (x+29)(x2 +31x+31) mod 37

= s37(x).

We now consider observation (ii) in Remark 2.6.5 and describe the three supersingular j-

invariants in characteristic 37 by finding the roots of K
(−1,−1)

3 (x) in characteristic 37. Direct

computation shows that

K
(−1,−1)

3 (x) = 8 ·5 ·2+3(8 ·5)(19)x+3(8)(19 ·25)x2 + (19 ·25 ·31)x3

= (x+3)(x2 +30x+35) ∈F37

= (x+3)(x− (22+
p

5))(x− (22−
p

5)) ∈F372

This last equality was found using the same method as in Example 2.5.9, namely, by using

the quadratic formula to find the roots of x2 +30x+35 and noting that

F372 ' F37[x]
(x2 +30x+35)

'F37(
p

5).

We know from Example 2.5.9 that the supersingular j-invariants in characteristic 37 are

8 and 3±15
p

5. Since −3 and 22±p
5 at the roots of K

(−1,−1)
3 (x) in characteristic 37, the

multiplication by −3456 map applied to these roots gives

−3456(−3) ≡ 8 mod 37

−3456(22±
p

5) = 3±15
p

5 mod 37

as desired. ♦
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We now attempt to explain why it might be important to show that the supersingular lifts

K
(λ,µ)
n (x) are irreducible with Galois groups Sn. From topics in algebraic number theory (see

[19]), we know that the reduction K
(λ,µ)
n (x) ≡ sp(x) mod p gives information about how the

prime p splits in the field obtained by adjoining a root K
(λ,µ)
n (x) to Q. Roughly speaking,

knowing that the Galois group of K
(λ,µ)
n (x) is the full symmetric group allows us to gauge

the number of primes with the same splitting behaviour as p by invoking a result known as

the Chebotarev Density Theorem [19, page 240]. Furthermore, an Sn Galois group indicates

that the roots of K
(λ,µ)
n (x) are as ‘unstructured as possible’, meaning that K

(λ,µ)
n (x) has an

inherent ‘randomness’ amongst its roots.

Mahlburg and Ono have given many values of n for which the discriminant of K
(λ,µ)
n is

not a rational square. More recently, techniques from analytic number theory have permit-

ted the same result for all n [9]. We give some details of this proof here.

A well-known formula for the discriminant (see [23, Theorem 6.71]) of the nth Jacobi

polynomial is given by

discP(α,β)
n (x)= 2−n(n−1)

n∏
k=1

kk−2n+2(k+α)k−1(2k+β)k−1(n+k+α+3β)n−k. (2.6.1)

Formula 2.6.1, used in conjunction with basic equalities regarding the discriminant of both

shifted and scaled polynomials, allows for the conclusion that discK
(λ,µ)
n (x) ∈ Z. The proof

given in [9] proceeds to construct an argument regarding the prime divisors of discK
(λ,µ)
n (x).

In particular, they show that for every n and λ,µ ∈ {±1} there exists a prime p such that

ordp(discK
(λ,µ)
n (x)) is an odd integer, which therefore implies that discK

(λ,µ)
n (x)) 6∈Q×2. The

basic details are as follows. From [19] we have the following equalities for all a,b, c ∈R:

disc f (x+a)= disc f (x) and discbf (cx)= (b2cn)n−1 disc f (x).

These properties, together with formula (2.6.1), can be used to show that

discK
(λ,µ)
n (x)= 3n2−n

n∏
k=1

kk(3k+λ)k−1(2k+µ)k−1(6n+6k+2λ+3µ)n−k.
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Now, if there exists some prime p ∈ [6n+6+2λ+3µ,12n+2λ+3µ] then

ordp

(
3n2−n

n∏
k=1

kk(3k+λ)k−1(2k+µ)k−1
)

= ordp(3n2−n)+ordp

( n∏
k=1

kk(3k+λ)k−1(2k+µ)k−1
)

= 0,

since p is greater than every term in rightmost product above. Furthermore, if p = 6n+

6k′+6+2λ+3µ for some k′ ∈ [1,n−1] then

ordp(discK
(λ,µ)
n (x)) = ordp

( n∏
k=1

(6n+6k+2λ+3µ)n−k
)

= n−k′.

In the case of λ=µ= 1, it is not difficult to see that [6n+11,12n+5]⊇ [6n+11,1.9(6n+11)]

whenever n ≥ 27. Letting x = 6n+11, our goal is therefore to find primes p = 6n+6k′+6+

2λ+3µ= 6(n+ k′+1)+5 ∈ [x,1.9x] such that the value n− k′ is odd. Consider that n− k′ is

odd whenever n+k′+1 is even and that n+k′+1 is even whenever p ≡ 5 mod 12. It follows

from [7, Theorem 1], and a variation on the results presented there, that for all x > 479

(and therefore all n > (479−11)/6= 78), the interval [x,1.9x] contains a prime p ≡ 5 mod 12.

The remaining cases can be checked via direct computation in the computer algebra system

Pari/GP. We can therefore state the following Theorem.

Theorem 2.6.7. Fix n and λ,µ ∈ {±1}. Then the discriminant of K
(λ,µ)
n (x) is not a square in

Q and therefore Gal(K (λ,µ)
n ) 6⊆ An.

Theorem 2.6.7 satisfies item (ii) of the criterion stated in Corollary 2.2.19. Thus, if we

can show that K
(λ,µ)
n (x) satisfies items (i) and (iii) of the same Corollary (namely, that

K
(λ,µ)
n (x) is irreducible and that K

(λ,µ)
n (x) ⊇ An) it will follow that Gal(K (λ,µ)

n (x)) = Sn. We

investigate both of these questions using the theory of Newton Polygons outlined in Sec-

tion 2.4. Our results encompass new cases of irreducibility and the description of many

Newton Polygons for K
(λ,µ)
n (x) at primes in the interval (n,12n+2λ+3µ]. Furthermore, our

work with Newton Polygons used together with a conjecture of Hardy and Littlewood gives
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strong evidence that the Galois group of K
(λ,µ)
n (x) over Q is Sn. We also present several

conjectures regarding K
(λ,µ)
n (x) at some special degrees that yield particularly interesting

p-adic factorizations.
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3
Newton Polygons

3.1 General Observations

In this section we specify intervals that contain primes for which NPp(K (λ,µ)
n (x)) is triv-

ial, therefore allowing us to determine the primes for which interesting Newton Polygons

arise. We begin by presenting a formula for K
(λ,µ)
n (x) (which we have already seen in Ex-

ample 2.6.6) that allows us to study the polynomial’s coefficients more easily.

Lemma 3.1.1. Let

α j =
n− j−1∏

k=0
(3n+λ−3k) and β j =

j−1∏
k=0

(6n+6+ε+6k)

where ε= 2λ+3µ. Define both αn and β0 to be 1. Then

K
(λ,µ)
n (x)=

n∑
j=0

(
n
j

)
α jβ jx j.

Proof. We use the following identity given in [23, page 62]:

P(α,β)
n (x) =

n∑
j=0

(
n+α
n− j

)(
n+α+β+ j

j

)( x−1
2

) j
. (3.1.1)

Letting S = n+λ/3+µ/2+ j, we have that



K
(λ,µ)
n (x) = 3nn!P(λ/3,µ/2)

n (4x+1)

= 3nn!
n∑

j=0

(
n+λ/3
n− j

)(
S
j

)
(2x) j

from equation (3.1.1). Expanding the binomial coefficients and moving n! (which is a con-
stant since n is fixed) into the sum yields

K
(λ,µ)
n (x)= 3n

n∑
j=0

n!
j!(n− j)!

n− j terms︷ ︸︸ ︷
(n+λ/3)(n+λ/3−1) · · · (λ/3+ j+1)

j terms︷ ︸︸ ︷
S(S−1) · · · (S− ( j−1))(2x) j.

Furthermore, after multiplying 3n = 3n− j3 j into the sum we obtain

K
(λ,µ)
n (x) =

n∑
j=0

(
n
j

)[
(3n+λ)(3n+λ−3) · · · (λ+3 j+3)

]
3 j2 j

[
S(S−1) · · · (S− ( j−1))

]
x j

=
n∑

j=0

(
n
j

)
n−( j+1)∏

k=0
(3n+λ−3k)

j−1∏
k=0

(6S−6( j−1)+6k)x j

=
n∑

j=0

(
n
j

)
n−( j+1)∏

k=0
(3n+λ−3k)

j−1∏
k=0

(6(n+λ/3+µ/2+ j)−6( j−1)+6k)x j

=
n∑

j=0

(
n
j

)
n−( j+1)∏

k=0
(3n+λ−3k)

j−1∏
k=0

(6n+2λ+3µ+6+6k)x j

=
n∑

j=0

(
n
j

)
α jβ j x j.

Example 3.1.2. Let n = 4 and let λ=µ= 1. Then

K
(1,1)

4 (x) =
4∑

j=0

(
3
j

)
α jβ jx j

= α0 +
(
4
1

)
α1β1x+

(
4
2

)
α2β2x2 +

(
4
3

)
α3β3x3 +β4x4,

where this last expression is equal to

13 ·10 ·7 ·4+4(13 ·10 ·7)(35)x+6(13 ·10)(35 ·41)x2 +4(13)(35 ·41 ·47)x3 +35 ·41 ·47 ·53x4.

Multiplying through yields

K
(1,1)

4 (x)= 3640+127400x+1119300x2 +3507140x3 +3574585x4.
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♦

For ease of notation, we denote the jth coefficient of K
(λ,µ)
n (which we now know to be(n

j
)
α jβ j) by A j. It will later become useful to look at specific terms in the products α j and

β j. We therefore present the following definitions.

Definition 3.1.3. Let ak = 3n+λ−3k and bk = 6n+6+ ε+6k to be the kth terms in the

products α j and β j, respectively. In accordance with Lemma 2.0.1, we define αn = a−1 = 1

and β0 = b−1 = 1. 4

Thus,

α j =
n− j−1∏

k=0
ak and β j =

j−1∏
k=0

bk.

Note that ak ∈ [λ+3,3n+λ] and that bk ∈ [6n+ε+6,12n+ε], since the index k runs through

0, . . . ,n−1. Furthermore, it is helpful to keep in mind that {ak} forms a decreasing sequence

and {bk} forms an increasing sequence.

Remark 3.1.4. For reference, we collect the definitions discussed above.

• K
(λ,µ)
n (x)=

n∑
j=0

A jx j =
n∑

j=0

(
n
j

)
α jβ jx j.

• α j = a0a1 · · ·an− j−1 = (3n+λ)(3n+λ−3 ·1) · · · (3n+λ−3(n− j−1)).

• β j = b0b1 · · ·b j−1 = (6n+6+ε)(6n+6+ε+6 ·1) · · · (6n+6+ε+6( j−1)).

♦

Lemma 3.1.1 allows us to make some general observations regarding the prime divisors

of the jth coefficient A j of K
(λ,µ)
n (x). Upon preliminary inspection, we see that any prime

divisor p of α j must have the property that p ≤ 3n+λ= a0 (or else p would be greater than

α j). Furthermore, if q is a prime divisor of β j then it must also be true that q ≤ 12n+ε= bn−1

for the same reason. Restrictions regarding the the prime divisors of
(n

j
)

can also be seen in

the following lemma.
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Lemma 3.1.5. Let p be a prime and let n ∈N. If p > n then ordp(
(n

j
)
)= 0.

Proof. Since p > n ≥ j we have that

ordp

((n
j

))
= ordp

( n!
j!(n− j)!

)
= ordp(n!)−ordp( j!)−ordp((n− j)!)

= 0.

It must also be the case that, if p is a prime divisor of α j or β j, then p must divide one

of the terms ak or bk respectively. This is obvious, though we make it clear in the following

lemma.

Lemma 3.1.6. Let p be a prime and let {m j}n
j=0 be a sequence of integers . If ordp(

n∏
j=0

m j)≥ 1

then there exists some i ≤ n such that p | mi.

Proof. Suppose that n = 1 and that ordp(m0m1)≥ 1. If we write m0 and m1 in their respec-

tive prime factorizations we see that p must be a term in at least one of these factorizations

and thus that p | m0 or p | m1. The result now follows from induction on n.

Though subtle, Lemma 3.1.6 allows us to definitively see that any prime divisor of α j =∏
ak or β j =∏

bk must be a prime divisor of one of the terms ak or bk for some k ∈ [0,n−1]

(this k need not be the same for ak or bk). This observation implies that every non-trivial

Newton Polygon for K
(λ,µ)
n (x) at primes in the interval [b0,bn−1]= [6n+ε+6,12n+ε] will be

determined only by the terms bk in the expansion of β j since these primes are greater than

each term in the expansions of α j and
(n

j
)
. Furthermore, we see that the Newton Polygons

for K
(λ,µ)
n (x) at primes strictly larger than 12n+εmust be trivial. We record this observation

for later reference.
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Remark 3.1.7. If p is a prime in the interval [6n+ε+6,12n+ε] then ordp(α j)= ordp(
(n

j
)
)= 0

for all j ∈ [0,n] ♦

It can also be noted that primes in the range [2,a0] = [2,3n+λ] may divide either α j, β j

or
(n

j
)
, but that primes in the range (n,3n+λ] can only divide α j or β j (since each prime

in the latter interval is greater than n and therefore cannot divide
(n

j
)
). Consequently, it is

possible for primes in either of these intervals to yield non-trivial Newton Polygons, though

we presently have no criterion allowing us to distinguish between the interesting primes

and the trivial ones. We now prove a lemma which formalizes our discussion above and

allows us to further focus our range of possible prime divisors of the coefficients A j in

K
(λ,µ)
n (x).

Lemma 3.1.8. Let p be a prime number. If 3n +λ < p < 6n + 6+ ε or p > 12n + ε, then

NPp(K (λ,µ)
n (x)) is trivial.

Proof. Since the coefficients A j of K
(λ,µ)
n (x) are integers we know that ordp(A j)≥ 0 for all

j and so it will be sufficient to show that ordp(A0) = ordp(An). From our discussion above,

we know that if p > 12n+ ε then p clearly does not divide α j, β j or
(n

j
)

for any 0 ≤ j ≤ n. In

this case, it follows that ordp(A0)= ordp(An) and so NPp(K (λ,µ)
n ) is therefore trivial.

Now suppose that 3n+λ< p < 6n+6+ε. Similar to the first case, it is evident that p does

not divide α j or
(n

j
)
. It will therefore be sufficient to show that ordp(β0) = ordp(βn). Since

β0 = 1, it is obvious that ordp(β0) = 0. If ordp(βn) > 0 then, from Lemma 3.1.6, there must

an exist integer 0 ≤ k < n such that bk = 6n+6+ ε+6k = mp for some m ∈ N. Clearly m is

not equal to 1 or 2 since bk > p for every k and every bk = 2(3n+3+λ+µ−3k)+µ is odd.

If m = 3 then bk = 6n+6+ ε+6k ≡ 0 mod 3 which implies that ε = 2λ+3µ ≡ 0 mod 3 and

thus that 2λ ≡ 0 mod 3, a contradiction. If m = 4 then bk = (4n+4−4k)+2n+2−2k+ ε ≡

2(n+1+ k)+ ε mod 4 ≡ 0 mod 4 which is also a contradiction since ε= 2(λ+µ)+µ is always

odd. Finally, if m ≥ 5 then p > 15n+5λ and so p is greater than each term bk (recall that
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max{bk} = 12n+ ε) and so p - β j for all j ∈ [0,n]. Thus ordp(βn) = 0 = ordp(β0) and we see

that NPp(K (λ,µ)
n ) at primes in the ranges 3n+λ< p < 6n+6+ε or p > 12n+ε are trivial.

Hence, all primes which yield nontrivial Newton Polygons for K
(λ,µ)
n (x) must lie in the

interval [2,3n+λ] or [6n+ ε+6,12n+ ε]. As noted above, it is helpful to partition the first

of these intervals since primes p ≤ n may divide
(n

j
)

in addition to α j and β j and so deter-

mining ordp(A j) for such primes is a more delicate problem. We now aim to determine the

shape of Newton Polygons for K
(λ,µ)
n (x) at primes in the ranges [6n+ε+6,12n+ε], (n,3n+λ]

and some conjectured cases for primes [2,n].

3.2 Primes in the Interval [6n+6+ε,12n+ε]

In this section we determine the Newton Polygons for K
(λ,µ)
n (x) at primes in the interval

[6n+6+ε,12n+ε]. Note that for these primes, ordp(
(n

j
)
)= ordp(α j)= 0 for all j ∈ [0,n] since

p > 3n+λ > n (see Remark 3.1.7). We first prove a lemma showing that every nontrivial

Newton Polygon for K
(λ,µ)
n (x) occurs at a prime of the form p = 6n+6+ ε+6k ∈ [6n+6+

ε,12n+ε] for some k ∈ [0,n−1].

Lemma 3.2.1. Fix n and let p ∈ [6n+6+ε,12n+ε] be a prime such that p 6= 6n+6ε+6k for

any k ∈ [0,n−1]. Then ordp(A j)= 0 for all j ∈ [0,n].

Proof. Suppose that p is not of the form 6n+ 6+ ε+ 6k and that ordp(A j) > 0 for some

j ∈ [0,n]. Since ordp(A j) = ordp(β j) for all j due to the size of p (Remark 3.1.7), we know

from Lemma 3.1.6 that there must exist some m ∈ [0, j−1] such that p | bm, where bm is

the mth term in the expansion of β j. This means that bm = sp for some integer s > 1 (since
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p 6= bm by hypothesis). Recalling that p ∈ [6n+6+ε,12n+ε], we obtain

6n+6+ε ≤ p

= bm

s

= 6n+6+ε+6m
s

≤ 6n+6+ε+6m
2

= 3n+3+ε/2+3m,

which implies that 6n+6+ε≤ 3n+3+ε/2+3m and therefore that m ≥ n+1+ε/6, which is a

contradiction since the maximum value of m is n−1. It follows that if p ∈ [6n+6+ε,12n+ε]

divides A j then p is of the form 6n+6+ε+6k for some k ∈ [0,n−1].

We now state some preliminary observations regarding primes p = 6n+6+ ε+6k. Note

that primes of this form must appear in the expansion of βn since

βn = (6n+6+ε)(6n+6+ε+6 ·1) · · · (6n+6+ε+6k) · · · (12n+ε),

and therefore the p-adic valuation of the leading coefficient of K
(λ,µ)
n (x) (which is An =βn) is

at least 1 for such primes. Recalling that 6n+6+ε+6k = bk is the kth term in the expansion

of β j, we can also see that primes of the form p = bk must divide β j for all j ∈ [k+1,n]. This

can be seen by noting that, since β j = b0 · · ·b j−1 = (6n+6+ε)(6n+6+ε+6 ·1) · · · (6n+6+ε+
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6( j−1)), we have

β0 = 1

β1 = b0

...

βk = b0 · · ·bk−1

βk+1 = b0 · · ·bk−1 · p

βk+2 = b0 · · ·bk−1 · p ·bk−1

...

βn−1 = b0 · · ·bk−1 · p ·bk−1 · · ·bn−2

βn = b0 · · ·bk−1 · p ·bk−1 · · ·bn−2 ·bn−1.

Since p is greater than terms in both α j and
(n

j
)
, we see that the sum of the p-adic valuations

of each term on the right hand side of the above equations will be the precise valuation of

the jth coefficient A j (for example, the valuation of A3 = ordp(b0)+ ordp(b1)+ ordp(b2)).

Given this, the above equations also suggest a plausible shape for Newton Polygons at

primes p = bk. Since the terms bm in the expansion of β j form an increasing sequence, we

can see that p = bk does not divide any terms bm for all m < k since p > bm for each of

these m values. Therefore, we see that a break must occur in NPp=bk (K (λ,µ)
n (x)) at the point

(k,ordp(Ak)). These observations hint toward the following theorem, which we now prove.

Theorem 3.2.2. Let p be a prime such that p = bk = 6n+6+ ε+6k for some k ∈ [0,n). Then

the vertices of the Newton Polygon for K
(λ,µ)
n (x) at p are

(0,0), (k,0), (n,1).

In particular, the Newton Polygon at p consists of two segments with respective slopes 0 and

1/(n−k). (Note that if k = 0 the middle vertex coincides with the outer left vertex resulting in

a pure Newton Polygon with slope with 1/n).
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0

1

k n

Figure 3.2.1: NPp(K (λ,µ)
n (x)) described in Theorem 3.2.2.

Before proceeding with a proof of Theorem 3.2.2, observe that the described Newton Poly-

gon shape will follow if we can show that

(a) ordp(A0)= 0,

(b) ordp(Ak)= 0,

(c) ordp(An)= 1,

(d) ordp(A j)≥ 0, for all j ∈ (0,k), and that

(e) ordp(A j)≥ 1, for all j ∈ (k,n).

Items (a), (b) and (c) above will show that the breaks of the Newton Polygon are in the

correct positions. Items (d) and (e) will show that every term in between the breaks has a

higher divisibility by p than terms at the breaks, and therefore that the lower convex hull

of the points ( j,ordp(A j)) is described by the edges connecting each indicated break. We now

proceed with the proof of Theorem 3.2.2.

Proof of Theorem 3.2.2. Fix n and some choice of λ,µ ∈ {±1}, and suppose that there ex-

ists some k ∈ [0,n) such that p = bk = 6n+ 6+ ε+ 6k is prime. We prove statements (a)

through (e) as listed above to obtain the result. Lemma 3.1.5 and Remark 3.1.7 state that

ordp(
(n

j
)
)= ordp(α j)= 0 for all j and so we omit discussion of these terms in our cases below.

(a). We have that ordp(A0)= ordp(α0)= 0 from Remark 3.1.7.

(b). We show that ordp(Ak)= 0. Since ordp(Ak)= ordp(βk) and βk = b0 · · ·bk−1, we see that

every term in βk is less than p = bk = 6n+6+ε+6k and therefore that ordp(Ak)= 0.
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(c). We show that ordp(An) = 1. Since p = bk we know that βn = b0 · · ·bk · · ·bn−1 =

b0 · · · p · · ·bn−1 and therefore ordp(βn) ≥ 1. If ordpβn > 1 then it must be the case that

βn = b0 · · · p · · ·mp · · ·bn−1, for some integer m > 1 since the terms in the expansion of βn

form an increasing sequence. If m = 2 consider that

2p = 2bk

= 2(6n+6+ε+6k)

= 12(n+k+1)+2ε)

> 12n+ε

= bn−1,

which is a contradiction. It is clear that any multiple of p greater than 2p will also yield a

similar contradiction. Thus ordp(An)= ordp(βn)= 1.

(d). We now show that ordp(A j)≥ 0 for all j ∈ (0,k). Since ordp(A j)= ordp(β j)= b0 · · ·b j−1

we see that each term in this product will be less than p = bk and therefore that ordp(A j)≥ 0

for every j ∈ (0,k).

(e). We conclude by showing that ordp(A j)≥ 1 for all j ∈ (k,n). Since ordp(A j)= ordp(β j)=

b0 · · ·bk · · ·b j−1 = b0 · · · p · · ·b j−1 we know that ordp(A j)≥ 1. (Though not necessary, it follows

from the discussion in part (c) of this proof that ordp(A j)= 1 for all j ∈ (k,n)).

Example 3.2.3. Let n = 5 and λ=µ= 1. Observe that b0 = 6 ·5+5+6+6 ·0= 41 is a prime.

Theorem 3.2.2 allows us to conclude that the Newton Polygon for the polynomial

K
(1,1)

5 (x)= 391672385x5 +482058320x4 +212432480x3 +40081600x2 +2984800x+58240

at the prime 41 has the following shape.
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1

5

This Newton Polygon is pure and so K
(1,1)

5 (x) is irreducible over Q41 and thus over Q by

Theorem 2.4.9. ♦

Example 3.2.4. We now consider a higher degree polynomial. Let n = 582 and let λ = −1

and µ= 1. (To grasp the magnitude of this polynomial, a computation in Pari/GP shows that

the coefficient A582 is in the vicinity of 102159. Printing the entire polynomial would require

over 400 pages of single-spaced text in size 12 font!). Observe that b5 = 6 ·582+1+6+6 ·5=

3529 is prime. By Theorem 3.2.2 we find that NP3529(K (−1,1)
582 ) has the following shape.

0

1

5 582

The slope of the nonzero segment of this polygon is 1/(n− k) = 1/577. Therefore, 577 di-

vides the Newton Index N
K

(−1,1)
582

which in turn divides the order of Gal(K (−1,1)
582 ) over Q (see

Theorem 2.4.12). Furthermore, since 577 is a prime in the interval (n/2,n−2)= (291,580), if

we assume a priori that K
(−1,1)

582 is irreducible, we may also conclude using Theorem 2.4.12

that Gal(K (−1,1)
582 )' S582.

In order to show irreducibility, it is enough to note that b0 = 6 ·582+1+6 = 3499 is also

a prime and therefore that NP3499(K (−1,1)
582 ) is pure. Thus K

(−1,1)
582 (x) is irreducible over Q by

and has Galois group S582.

Furthermore, we note that K
(−1,1)

582 is a lift of the supersingular polynomial s6991(x). This

can be seen from Theorem 2.6.3 since n = 582= (6991−7)/12 where 7 is the residue of 6991
58



modulo 12, implying that λ=−1 and µ= 1 as desired (by the criterion outlined by Brillhart

and Morton in Theorem 2.6.3). ♦

The above two examples allow us to see how Theorem 3.2.2 can be used to determine

irreducibility and Galois properties of K
(λ,µ)
n (x). In particular, Theorem 3.2.2 allows us to

clearly see that the Newton Polygons for K
(λ,µ)
n (x) at primes of the form p = 6n+ ε+ 6

will be pure and therefore that K
(λ,µ)
n (x) is irreducible over Q for these particular n values.

Furthermore, the conclusion that Gal(K (−1,1)
582 )' S582 reached in Example 3.2.4 relied on the

fact that we were able to find three primes of a certain type. The first two primes, of the form

p = 6n+ε+6k (used to define the Newton Polygon) and q = n−k (a denominator of the slope

of the nonzero segment), were used together to conclude that the Galois group of K
(λ,µ)
n (x)

was Sn. The third prime (of the form `= 6n+ε+6) was used only to conclude irreducibility.

This example hints toward a relationship between primes of the form 6n+ ε+6k and n− k

and the Galois group of K
(λ,µ)
n (x); we explore this connection more thoroughly in Section 5.2.

3.3 Primes in the Interval (n,3n+λ]

We now aim to describe the Newton Polygons for K
(λ,µ)
n (x) at primes in the interval (n,3n+

λ]. Unlike Section 3.2, the primes p ∈ (n,3n +λ] which divide A j may also divide both

ordp(α j) and ordp(β j) (though we still have that ordp(
(n

j
)
) = 0 for all j ∈ [0,n] since p > n).

We focus on describing the Newton Polygons for primes of the form p = 3n+λ−3k.

Similarly to Section 3.2, we observe that if p is a prime of the form p = 3n+λ−3k then p

must appear in the expansion α0 since

α0 = (3n+λ)(3n+λ−3 ·1) · · · (3n+λ−3k) · · · (λ+3),

and therefore ordp(A0)= ordp(α0)≥ 1 for these primes. Furthermore, since 3n+λ−3k = ak

is the kth term in the expansion of α j, we can also see that primes of the form p = ak must

divide α j for all j ∈ [0,n−k). Recalling that α j = a0 · · ·an− j−1 = (3n+λ)(3n+λ−3 ·1) · · · (3n+
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λ−3(n− j−1)), we can see this by noting that

α0 = a0 · · ·ak−1 · p ·ak+1 · · ·an−1

α1 = a0 · · ·ak−1 · p ·ak+1 · · ·an−2

...

αn−k−2 = a0 · · ·ak−1 · p ·ak+1

αn−k−1 = a0 · · ·ak−1 · p

αn−k = a0 · · ·ak−1

...

αn−1 = a0

αn = 1.

The above equations allow us to conclude that if p = 3n+λ−3k for some k ∈ [0,n−1] then

ordp(A j) = ordp(α j)+ordp(β j) ≥ 1 for all j ∈ [0,n− k). In order to refine this inequality, we

seek criterion for determining when a prime of the form p = ak divides β j. That is, we wish

to know how the value ordp=3n+λ−3k(β j) changes as j runs through {0, . . . ,n}. This question

is answered in the following lemma.

Lemma 3.3.1. Fix n and suppose that there exists a prime p = ak = 3n+λ−3k ∈ (n,3n+λ].

Let k′ = (−k−1−µ/2) mod p. If k′ ∈ [0,n) then ordp(β j)= 0 for all j ∈ [0,k′] and ordp(β j)= 1

for all j ∈ (k′,n] . Furthermore, if k′ ∈ [n, p) then ordp(β j)= 0 for all j ∈ [0,n].

Proof. There are two cases. First, suppose that k′ = ((−k−1−µ/2) mod p) ∈ [0,n). Then

k+1+µ/2+k′ ≡ 0 mod p

and

3k ≡ 3n+λ mod p
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because p = 3n+λ−3k ≡ 0 mod p. Using these facts, we obtain

0 ≡ k+1+µ/2+k′ mod p

≡ 6k+6+3µ+6k′ mod p

≡ (3k)+ (3k)+6+3µ+6k′ mod p

≡ (3n+λ)+ (3n+λ)+6+3µ+6k′ mod p

≡ 6n+6+ (2λ+3µ)+6k′ mod p

≡ 6n+6+ε+6k′ mod p

≡ bk′ mod p.

The above congruences show that the term bk′ in the expansion of β j is divisible by p.

Furthermore, since k′ is unique (it is just the value (−k−1−µ/2) ∈ Z/pZ), it follows that

bk′ is the onl y term appearing in β j which is divisible by p. This can be seen explicitly by

supposing we had another term bk′′ (for some k′′ ∈ [0,n), k′′ 6= k′) in β j such that p | bk′′ .

The above congruences tell us that k′′ ≡ (−k−1−µ/2) mod p (this is seen by following the

congruences above bottom-to-top, replacing k′ with k′′). Since k′′ 6= k′ it must be the case

that k′′ = sp+ k′ for some integer s > 0 (i.e., k′′ is an integer lift of k′) in order to have the

same reduction modulo p. Then

bk′′ = bsp+k′

= 6n+6+ε+6(sp+k′)

≥ 6n+6+ε+6(p+k′) (since s ≥ 1)

≥ 6n+6+ε+6p (since k′ ≥ 0)

> 6n+6+ε+6n (since p > n)

= 12n+6+ε.
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Thus bk′′ > 12n+6+ε, which contradicts the fact that the maximum value of bm is 12n+ε.

Hence bk′ is the only term in β j which is divisible by p. Now consider that βk′+1 = b0b1 · · ·bk′

and so β j = b0 · · ·bk′ · · ·b j−1 whenever j > k′. It follows that ordp(β j)= 1 for all j ∈ (k′,n].

Still under the hypothesis that k′ ∈ [0,n), we see that βk′ = b0b1 · · ·bk′−1 and thus that

whenever j ≤ k′ there is no bk′ term in the product β j. It follows (from both the uniqueness

of k′ and the fact that the terms bm form an increasing sequence) that if j ≤ k′ then there

is no term in β j which is divisible by p. Therefore ordp(β j)= 0 for all j ∈ [0,k′].

If we now suppose that k′ ∈ [n, p), we see that βk′ = b0b1 · · ·bn−1bn · · ·bk′−1 ≥ βn. But

clearly βn is the largest possible value of β j since n is the degree of the polynomial and

thus it does not make sense to consider values βk′ which are strictly greater than βn (in

this case, the unique term bk′ which is divisible by p would always appear after the term

bn−1 = max{bm} in the expansion of β j). It follows from the uniqueness of k′ that there

is no term in the product βn which is divisible by p and therefore that if k′ ∈ [n, p) then

ordp(β j)= 0 for every j ∈ [0,n].

We are now able to describe the shape of NPp(K (λ,µ)
n (x)) at primes of the form 3n+λ−3k

in the interval (n,3n+λ].

Theorem 3.3.2. Fix n and suppose that there exists a prime p = ak = 3n+λ−3k ∈ (n,3n+λ].

Let k′ = (−k−1−µ/2) mod p.

(1). If k′ ∈ [n, p) then the vertices of the Newton Polygon for K
(λ,µ)
n (x) at p are

(0,1), (n−k,0), (n,0).

In particular, the Newton Polygon consists of 2 segments with slopes −1/(n− k) and 0. Note

that when k = 0 the middle vertex coincides with the end point yielding a pure Newton

Polygon with slope −1/n.
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(2). If k′ ∈ [n−k,n) then the vertices of the Newton Polygon for K
(λ,µ)
n (x) at p are

(0,1), (n−k,0), (k′,0), (n,1).

In particular, the Newton Polygon consists of 3 segments with slopes −1/(n−k), 0 and 1/(n−

k′), respectively. Note that when k′ = n− k the middle vertices coincide yielding a Newton

Polygon with 2 segments and slopes −1/(n−k) and 1/k.

(3). If k′ ∈ [0,n−k) then the Newton Polygon for K
(λ,µ)
n (x) at p is trivial.

Figures 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5 below illustrate the different Newton Polygons

for K
(λ,µ)
n (x) given by Theorem 3.3.2.

0

1

n

Figure 3.3.1: NPp(K (λ,µ)
n (x)) when k′ ∈ [n, p) and p = 3n+λ.

0

1

n−k n

Figure 3.3.2: NPp(K (λ,µ)
n (x)) when k′ ∈ [n, p) and p = 3n+λ−3k (k 6= 0).

0

1

n−k k′ n

Figure 3.3.3: NPp(K (λ,µ)
n (x)) when k′ ∈ (n−k,n) and k′ 6= n−k.
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0

1

n−k n

Figure 3.3.4: NPp(K (λ,µ)
n (x)) when k′ ∈ (n−k,n) and k′ = n−k.

0

1

n

Figure 3.3.5: Trivial NPp(K (λ,µ)
n (x)) when k′ ∈ [0,n−k).

Proof. We prove parts (1), (2) and (3) separately. Throughout the proof it may be helpful to

recall that

K
(λ,µ)
n (x)=

n∑
j=0

(
n
j

)
n− j−1∏

k=0
(3n+λ−3k)︸ ︷︷ ︸

α j

j−1∏
k=0

(6n+6+ε+6k)︸ ︷︷ ︸
β j

x j,

where ε= 2λ+3µ.

It is also helpful to remember that j refers to the index on α j and β j as being part of the

product of the jth degree coefficient in K
(λ,µ)
n (x) and that k or i will generally be used to

index a term in the products α j and β j.

Proof of (1). Suppose that k′ ∈ [n, p). The described Newton Polygon shape will follow if

we can show that

(1a) ordp(A0)= 1,

(1b) ordp(An−k)= 0,

(1c) ordp(An)= 0,

(1d) ordp(A j)≥ 1, for all j ∈ (0,n−k), and that

(1e) ordp(A j)≥ 0, for all j ∈ [n−k,n).
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Before we begin, note that since k′ ∈ [n, p), Lemma 3.3.1 tells us that ordp(β j) = 0 for all

j ∈ [0,n] and we therefore omit discussion of this valuation while proving item (1).

(1a). Observe that A0 = (n
0
)
α0β0 =α0 = a0 · · ·ak · · ·an−1. Since ak = p we know that p | A0

and thus that ordp(A0)≥ 1. Clearly p - ai for all i ∈ [k+1,n) since each term ai < p. If p | ai

for some i ∈ [0,k−1] then 3n+λ−3i ≡ 0 mod p. But since 3n+λ≡ 3k mod p we have that

3k−3i ≡ 0 mod p and so i ≡ k mod p. Because i,k ∈ [0,n−1] ⊆ Z/pZ the above congruence

implies i = k, which contradicts our assumption that i 6= k. Thus ordp(A0)= 1.

(1b). Observe that ordp(An−k) = ordp(
(n

k
)
αn−kβn−k) = ordp(αn−k). Since αn−k = a0 · · ·ak−1

and every term in this product is less than ak = p, we see that ordp(αn−k)= 0 and thus that

ordp(An−k)= 0.

(1c). It follows from Lemma 3.3.1 that ordp(An)= ordp(
(n
n
)
αnβn)= ordp(βn)= 0.

(1d). Let j ∈ (0,n − k) and observe that ordp(A j) = ordp(
(n

j
)
α jβ j)ordp(α j). Since α1 =

a0 · · ·ak · · ·an−2 and αn−k−1 = a0 · · ·ak, we see that p = ak | α j for all j ∈ (0,n− k) and thus

ordp(A j)= ordp(α j)≥ 1.

(1e). Let j ∈ (n−k,n) and observe that ordp(A j)= ordp(α j). Since αn−k+1 = a0 · · ·ak−2 and

αn = 1, we know that α j = a0 · · ·ai for some i ∈ [0,k−1]. It follows from the discussion in (1a)

that p - ai for all i ∈ [0,k−2] and so ordp(α j)= 0 for all j ∈ (n−k,n).
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Proof of (2). Suppose that k′ ∈ (n− k,n). Following the method outlined above, we show

that

(2a) ordp(A0)= 1,

(2b) ordp(An−k)= 0,

(2c) ordp(Ak′)= 0,

(2d) ordp(An)= 1,

(2e) ordp(A j)≥ 1, for all j ∈ (0,n−k),

(2 f ) ordp(A j)≥ 0, for all j ∈ (n−k,k′), and that

(2g) ordp(A j)≥ 1, for all j ∈ (k′,n).

(2a). The fact that ordp(A0)= 1 is independent of k′ and has been shown in (1a).

(2b). Observe that ordp(An−k) = ordp(αn−k) + ordp(βn−k). From (1b) we have that

ordp(αn−k) = 0. Lemma 3.3.1 states that ordp(β j) = 0 for all j such that 0 ≤ j ≤ k′. Letting

j = n−k we see that ordp(βn−k)= 0 since n−k < k′.

(2c). Observe that ordp(Ak′) = ordp(αk′)+ ordp(βk′). Consider that αmin{k′} = αn−k+1 =

a0 · · ·ak−2 and αmax{k′} = αn−1 = a0. This allows us to see that every term ai (where

i ∈ [0,k − 2]) in the expansion of αk′ is strictly greater than p = ak. It follows from the

discussion in (1a) that p - ai for all i ∈ [0,k−2] and so ordp(αk′) = 0. Lemma 3.3.1 implies

that ordp(βk′)= 0.

(2d). Lemma 3.3.1 states that ordp(β j) = 1 for all j such that k′ < j ≤ n. Letting j = n,

since we see that k′ < n by hypothesis and it follows that ord(An)= ordp(βn)= 1.

(2e). Let j ∈ (0,n− k) and observe that ordp(A j) = ordp(
(n

j
)
α jβ j) = ordp(α j)+ordp(β j). It

follows from the discussion in (1d) that ordp(α j)≥ 1 and so ordp(A j)≥ 1. (It actually follows

from Lemma 3.3.1 that ordp(A j)= 1 since ordp(β j)= 0).
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(2 f ). Let j ∈ (n− k,k′) and observe that ordp(A j) = ordp(α j)+ ordp(β j). We know from

Lemma 3.3.1 that ordp(β j) = 0. Consider that αmax{k′} = αn−1 = a0 and αmin{k′} = αn−k+1 =

a0 · · ·ak−2 and therefore the terms in α j = a0 · · ·ai for some i ∈ [0,k − 2]. It follows from

section (1a) that p - ai for all i ∈ [0,k−2] and so ordp(α j)= 0 for all j ∈ (n−k,n).

(2g). Let j ∈ (k′,n) and observe that ordp(A j) = ordp(α j) + ordp(β j). We know from

Lemma 3.3.1 that ordp(β j)= 1 and thus ordp(A j)≥ 1.

Proof of (3). Suppose that k′ ∈ [0,n−k). In order to show that the lower convex hull of the

set of ordered pairs ( j,ordp(A j)) for j ∈ [0,n] is a single line of slope zero, it will be sufficient

to show that

(3a) ordp(A0)= 1,

(3b) ordp(An)= 1, and that,

(3c) ordp(A j)≥ 1, for all j ∈ (0,n).

(3a). This has been shown in (1a).

(3b). Since k′ ∈ [0,n−k), we see that ordp(An)= ordp(βn)= 1 follows from Lemma 3.3.1.

(3c). Observe that ordp(A j) = ordp(α j) + ordp(β j). We know from Lemma 3.3.1 that

ordp(β j)= 1 for all j ∈ (k′,n]. Since p = ak and α j = a0 · · ·ak · · ·an− j−1 for all j ∈ [0,n−k−1]⊇

[0,k′], we see that ordp(α j) ≥ 1 for all j ∈ [0,k′]. Thus ordp(A j) ≥ 1 for all j ∈ [0,n] and we

are done.

Example 3.3.3. The six Newton Polygons in shown below in Figure 3.3.6 illustrate how

NPp(K (−1,1)
208 (x)) varies for different primes of the form p = 3 ·214−1−3 · k = 641−3k. Each

Newton Polygon is determined using Theorem 3.3.2.
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Figure 3.3.6: Newton Polygons for K
(−1,1)

208 (x) at various primes of the form p = 641−3k.

♦

Note that the denominators n−k of the Newton Polygons described in Theorem 3.3.2 are

always divisible by 2 since p−λ≡ 0 mod 2 in the numerator of n−k = (p−λ)/3.

A natural question to ask is whether Theorem 3.3.2 describes every NPp(K (λ,µ)
n (x)) (as

was the case in Section 3.2) at primes in the interval (n,3n+λ]. Notice that each prime

of the form p = 3n+λ−3k is congruent to λ mod 3. Thus, once a choice of λ is selected,

Theorem 3.3.2 describes the Newton Polygons for primes of a single congruence class. We

suspect that primes q ∈ (n,3n+λ] that are not of the same congruence class as p yield

few Newton Polygons; computations in Pari/GP suggest that they only account for about

10% of the total number of nontrivial Newton Polygons at primes in the interval (n,3n+λ].

Furthermore, the Newton Polygons at such primes q are ‘barely’ nontrivial in that, from

the examples that we have computed, they each appear in a similar form to the Newton

Polygon shown in Figure 3.3.7 below.

0

1

k > n/3 n

Figure 3.3.7
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4
Irreducibility Results

4.1 Pure Newton Polygons

We have seen in Examples 3.2.3 and 3.2.4 that special cases of Theorems 3.2.2 and 3.3.2

yield pure Newton Polygons. As noted in both of those Theorems, the primes for which

NPp(K (λ,µ)
n (x)) is pure are of the form p = 6n+6+ε= 6n+6+2λ+3µ and p = 3n+λ. Solving

these equations for n in terms of p allows us to see several infinite classes of degrees for

which K
(λ,µ)
n (x) is irreducible. We note that Corollary 4.1.1 below gives a new case of irre-

ducibility for K
(λ,µ)
n (x). The reformulation of these results in Remark 4.1.4(i) of this section

therefore yields new irreducibility results for lifts of the supersingular polynomials. Fur-

thermore, Corollary 4.1.1 below recovers several cases of irreducibility found by Mahlburg

and Ono in [18], where they used a different interpretation of the K
(λ,µ)
n (x) polynomials (as

hypergeometric series, rather than Jacobi polynomials) and proved Eisenstein properties

explicitly. We state these results as corollaries since they follow directly from the Newton

Polygon arguments made in Theorems 3.2.2 and 3.3.2.

Corollary 4.1.1. Let p be an odd prime. If n = p−λ
3 , where λ ∈ {±1} is chosen with the same

sign as p ≡λ mod 3≡±1 mod 3, then K
(λ,µ)
n (x) is irreducible over Q.



Proof. If n = p−λ
3 then p = 3n+λ= a0 is the first term in the product α0 and irreducibility

follows from Theorem 3.3.2 (1).

Corollary 4.1.2. Let p be an odd prime. If p ≥ 12+2λ+3µ and n = p−6−2λ−3µ
6 , where λ and

µ are chosen according to p ≡ 2λ+3µ mod 6 ≡ ±1 mod 6, then K
(λ,µ)
n (x) is irreducible over

Q.

Proof. Requiring p ≥ 12+2λ+3µ and fixing λ and µ by the reduction p ≡ 2λ+3µ mod 6

ensures that n is always an integer. We know that p = 6n+6+ ε = b0 is the first term in

the product β0 and irreducibility follows directly from Theorem 3.2.2 since NPp(K (λ,µ)
n (x)) is

pure.

It is important to notice that because n = p−6−2λ−3µ
6 depends on both λ and µ, we can

conclude only one irreducible specialization (i.e., one choice of (λ,µ) ∈ {±1}× {±1}) for each

degree n = p−6−2λ−3µ
6 of K

(λ,µ)
n (x). This is different from the case in Corollary 4.1.1 where

n depends only on λ, allowing us to conclude two irreducible specializations (corresponding

to µ = 1 and µ = −1) for each degree n = p−λ
3 . We therefore find that any odd prime p

yields the following irreducible degrees and specializations of K
(λ,µ)
n (x) (remembering that

p ≥ 12+2λ+3µ when the denominator of n is 6).

• If p ≡ 1 mod 3 then K
(1,µ)
p−1

3

(x), K
(1,1)
p−7

6

(x) and K
(1,−1)
p−1

6

(x) are irreducible.

• If p ≡−1 mod 3 then K
(−1,µ)
p+1

3

(x), K
(−1,−1)
p−11

6

(x) and K
(−1,1)
p−5

6

(x) are irreducible.

Example 4.1.3. Let p = 31. From Corollary 4.1.1 we know that K
(1,1)

10 (x) and K
(1,−1)

10 (x)

are irreducible since 31 ≡ 1 mod 3 and 10 = (31− 1)/3. From Corollary 4.1.2 we can also

see that K
(−1,−1)

5 (x) and K
(−1,1)

4 (x) are both irreducible since 31 ≡ 2(−1)+3(−1) mod 6 =

2(−1)+3(1) mod 6. ♦

We relate these irreducibility results back to the supersingular polynomials in the fol-

lowing way. Let q ≡ εq mod 12 be a prime (so εq = 1,5,7,11). Recall from Remark 2.6.5 that
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K
(λ,µ)
n (−x/3456) is a supersingular lift of sq(x) whenever n = (q−εq)/12 and

(λ,µ)=


(−1,−1) if εq = 1,
(1,−1) if εq = 5,
(−1,1) if εq = 7,
(1,1) if εq = 11.

Therefore, if we fix q and find another prime p1 which reduces to λ modulo 3 (where λ is

fixed according to the value of εq above) which satisfies (p1−λ)/3= (q−εq)/12= n, then it fol-

lows from Corollary 4.1.1 that K
(λ,µ)
n (x) is irreducible and therefore that K

(λ,µ)
n (−x/3456)≡

sq(x) mod q is irreducible. Note that the polynomial K
(λ,µ)
n (−x/3456) would be irreducible

for either choice of µ=±1 but that K
(λ,µ)
n (−x/3456) will only reduce to sq(x) modulo q when

µ is fixed according to the value of εq. Hence, if there exists a prime p1 ≡λ mod 3 such that

εq −4λ= q−4p1 then K
(λ,µ)
n (−x/3456) is an irreducible lift of sq(x).

Corollary 4.1.2 can similarly be used to deduce cases where K
(λ,µ)
n (−x/3456) is both

irreducible and reduces to sq(x) modulo q. If we fix q ≡ εq mod 12 and find a prime

p2 ≡ 2λ+3µ mod 6 which satisfies p2−6−2λ−3µ
6 = (q− εq)/12 = n then it follows from Corol-

lary 4.1.2 that K
(λ,µ)
n (x) is an irreducible lift of sq(x). We collect these observations in the

following corollary.

Corollary 4.1.4. Fix some prime q ≡ εq mod 12, where εq = 1,5,7,11, and let

(λ,µ)=


(−1,−1) if εq = 1,
(1,−1) if εq = 5,
(−1,1) if εq = 7,
(1,1) if εq = 11.

(i) Suppose there exists a prime p ≡λ mod 3 satisfying

q−4p = εq −4λ.

Then K
(λ,µ)
p−λ

3

(−x/3456) is irreducible and K
(λ,µ)
p−λ

3

(−x/3456)≡ sq(x) mod q.

(ii) Suppose there exists a prime p ≡ 2λ+3µ mod 6 satisfying

q−2p = εq −12−4λ−6µ.
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Then K
(λ,µ)
p−6−2λ−3µ

6

(−x/3456) is irreducible and K
(λ,µ)
p−6−2λ−3µ

6

(−x/3456)≡ sq(x) mod q.

Example 4.1.5. In further continuation of Examples 2.5.9 and 2.6.6, we consider the prime

q = 37. Since 37 ≡ 1 mod 12 we choose the specialization (λ,µ) = (−1,−1) and n = (37−1)/2

for the lift K
(−1,−1)

3 (−x/3456) of s37(x). In order to conclude that this lift is irreducible, we

seek a prime p such that either

• p ≡λ mod 3 and ε37 −4λ= 37−4p, or

• p ≡ 2λ+3µ mod 6 and ε37 −12−4λ−6µ= q−2p.

There is no prime which satisfies the first item since substituting (λ,µ)= (−1,−1) into ε37−

4λ = 37−4p implies that p = 8. Considering the second item in a similar way allows us to

see that p = 19 works since 19 ≡ 2(−1)+3(−1) mod 6 and satisfies ε37 −12−4λ−6µ=−1 =

37−2 ·19= q−2p. Hence

K
(−1,−1)

3 (−x/3456)= 80− 95
144

x+475497664x2 − 14725
41278242816

x3

is irreducible over Q (because NP19(K (−1,−1)
3 (x)) is pure) and reduces to s37(x) modulo 37.

♦

We now discuss how often the properties of NPp(K (λ,µ)
n (x)) stated in Corollaries 4.1.1

and 4.1.2 can be applied to conclude that K
(λ,µ)
n (x) is an irreducible lift of a supersingular

polynomial. In other words, we consider the number of primes q less than some integer

k for which the lift of sq(x) is irreducible. We proceed by comPari/GPng the value of the

prime counting function π(k) to the total number of primes p which satisfy either of the

criterion stated in Remark 4.1.4 for some fixed prime q. In order to do this, fix some k ∈ N

and consider the sets Cεq (k) (one for each of the four values of εq) which we define to be

{primes q ≡ εq mod 12< k : ∃p ≡λ mod 3 satisfying εq −4λ= q−4p or ∃p ≡ 2λ+3µ mod 6 satisfying εq −12−4λ−6µ= q−2p},
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For the reader’s convenience, we write Cεq (k) explicitly for each εq = 1,5,7,11:

C1(k) = {q ≡ 1 mod 12< k : ∃p ≡−1 mod 3 satisfying 5= q−4p or ∃p ≡ 1 mod 3 satisfying −1= q−2p}

C5(k) = {q ≡ 5 mod 12< k : ∃p ≡ 1 mod 3 satisfying 1= q−4p or ∃p ≡−1 mod 3 satisfying −5= q−2p}

C7(k) = {q ≡ 7 mod 12< k : ∃p ≡−1 mod 3 satisfying 11= q−4p or ∃p ≡ 1 mod 3 satisfying −7= q−2p}

C11(k) = {q ≡ 11 mod 12< k : ∃p ≡ 1 mod 3 satisfying 7= q−4p or ∃p ≡−1 mod 3 satisfying −11= q−2p}

Note that we have replaced the congruence 2λ+3µ mod 6 (as stated above in the definition

of Cεq (k)) with −λ mod 3 since for any choice of λ,µ we obtain 2λ+3µ mod 6 ≡ 2λ mod 3 ≡

−λ mod 3. Thus the value of µ is seen to be relevant only when specializing a lift of sq(x).

Example 4.1.6. We compute C1(20) and C1(100). The only prime q < 20 congruent to 1

modulo 12 is q = 13. Observe that p = 7 ≡ 1 mod 3 satisfies −1 = 13− 2 · 7 = q − 2p and

therefore C1(20)= {13}.

The primes q < 100 (q ≡ 1 mod 12) are 13, 37, 61, 73 and 97 and so |C1(100)| ≤ 5. For the

primes 13, 37, 61 and 73, observe that p = 7, 19, 31 and 37 (all ≡ 1 mod 3) each respectively

satisfy −1 = q−2p and so 13,37,61,73 ∈ C1(100). We also see that 97 ∈ C1(100) since p =

23 ≡−1 mod 3 satisfies 5 = q−4p. Hence C1(100) = {13,37,61,73,97} and each sq∈C1(100)(x)

can be lifted to the irreducible polynomial K
(−1,−1)

(q−1)/12(−x/3456). (Notice that we could also

have used p = 17≡−1 mod 3 to show that 73 ∈ C1(100) because 5= 73−4 ·17= q−4p). ♦

Observe that the sum of the orders of C1, C5, C7 and C11 will give the total number of

primes q less than some integer k for which the lift of sq(x) is irreducible. We therefore

compare the order of the set

C(k)=⋃
εq

Cεq (k),

(where this union is taken over all εq = 1,5,7,11) to π(k). We present some data in the table

below which captures the growth of |Cεq (k)|.
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k π(k) |C(k)| |C1(k)| |C5(k)| |C7(k)| |C11(k)|
100 25 22 5 6 5 6

1 000 168 121 27 34 32 28
10 000 1 229 691 162 183 174 172

100 000 9 592 4 233 1 014 1 121 1 075 1 023
1 000 000 78 498 28 409 6 708 7 459 7 194 7 048

Figure 4.1.1: π(k) compared to the number of primes q < k for which the lift of sq(x) is irreducible.

This table shows the number of primes for which Corollaries 4.1.1 and 4.1.2 can be used

to conclude that K
(λ,µ)
n (x) is an irreducible lift of a supersingular polynomial. The last entry

states that about 36% of supersingular polynomials at primes q < 1000000 have an irre-

ducible lift K
(λ,µ)
n (x). We expect that a conjecture of Hardy and Littlewood in [15] can be

used to estimate the growth of |C(k)|.

We now state the necessary conditions for K
(λ,µ)
n (x) to be irreducible (using Corollaries

4.1.1 and 4.1.2) at every specialization of (λ,µ).

Remark 4.1.7. If there exists two primes of the form p1 = 3n+ 1 and p2 = 3n− 1 then

K
(λ,µ)
n (x) is irreducible for every specialization λ,µ ∈ {±1}. ♦

Remark 4.1.8. If there exists four primes of the form q1 = 6n+1, q2 = 6n+5, q3 = 6n+7

and q4 = 6n+11 then K
(λ,µ)
n (x) is irreducible for every specialization λ,µ ∈ {±1}. ♦

These remarks follow directly from Corollaries 4.1.1 and 4.1.2 where each distinct prime

will corresponds to a specialization of K
(λ,µ)
n (x). Note that the primes in either remark can

be used simultaneously to show irreducibility. For example, if we fix n and suppose there

exists two primes p = 3n+1 and q = 6n+1 then K
(λ,µ)
n (x) is irreducible since p corresponds

to the specialization (λ,µ)= (1,±1) and q to (−1,−1).

Other cases of irreducibility can likely be shown using different (non-pure) Newton Poly-

gons given by Theorems 3.2.2 and 3.3.2. We explore several of these possibilities in Chapter

6.
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5
Galois Groups

5.1 Slopes with Prime Denominator

In this section we aim to identify Newton Polygons for K
(λ,µ)
n (x) which have a slope 1/q seg-

ment for some prime q ∈ (n/2,n−2). The existence of such polygons will allow us to invoke

Theorem 2.4.12, which says that if q is a prime divisor of the Newton Index N
K

(λ,µ)
n

and q

is in the interval n/2 < q < n−2 (which we call the Jordan interval due to Theorem 2.2.18)

then the Galois group of K
(λ,µ)
n (x) contains the alternating group An. Therefore, if there

exists a prime p for which NPp(K (λ,µ)
n (x)) has a segment of slope 1/q, with q in the appro-

priate range, then q | N
K

(λ,µ)
n

(recall that the Newton Index is the least common multiple

of every denominator of all slopes of NPp(K (λ,µ)
n ) for all primes p) and Gal(K (λ,µ)

n (x)) ⊇ An.

Furthermore, since disc(K (λ,µ)
n (x)) ∉∈ Q×2 by Theorem 2.6.7, identifying Newton Polygons

with such slopes will allow us to conclude (via Proposition 2.2.17) that Gal(K (λ,µ)
n (x)) = Sn.

Theorems 2.4.12, 2.2.18, 2.6.7 and 2.2.17 therefore give the following corollary.

Corollary 5.1.1. Fix n ∈ N, λ,µ ∈ {±1}, and suppose that there exists a prime p for which

NPp(K (λ,µ)
n (x)) has a segment of slope 1/q, where q is a prime in the interval (n/2,n−2). Then

Gal(K (λ,µ)
n (x))= Sn.



In order to identify these Newton Polygons, recall from Theorem 3.2.2 that if the term

bk = 6n+6+ ε+6k in β j = b0 · · ·bk · · ·b j−1 is prime then the Newton Polygon for K
(λ,µ)
n (x)

takes on the following shape:

0

1

k n

slope = 1
n−k

Figure 5.1.1: Newton Polygon for K
(λ,µ)
n (x) at a prime p = 6n+6+ε+6k

Unlike the Newton Polygons described in Theorem 3.2.2 whose slopes had denominators

which were divisible by 2, we see that the denominator n− k shown above may take on a

prime value since k ∈ {0, · · · ,n−1} (so n−k could be any positive integer less than n). Hence, if

for every degree n we are able to produce a prime pair p and q such that q = n−k ∈ (n/2,n−2)

and p = 6n+6+ ε+6k = 6n+6+ ε+6(n− q)= 12n+6+ ε−6q, then NPp(K (λ,µ)
n (x)) will have

a slope 1/q segment with q in the Jordan interval. We now state some useful equivalences.

Lemma 5.1.2. Let p = 6n+6+ ε+6k and let q = n− k. Then n/2 < q < n−2 if and only if

6n+18+ε< p < 9n+6+ε if and only if 2< k < n/2.

Proof. We exhibit only the right implication fully; the left is not difficult and can be seen

by following our statements bottom-to-top. If n/2< q < n−2 then

p = 6n+6+ε+6k

= 6n+6+ε−6(n− q)

= 12n+6+ε−6q

< 12n+6+ε−6(n/2)

= 9n+6+ε,
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and

6n+18+ε = 12n+6+ε−6(n−2)

< 12n+6+ε−6q

= p.

Hence 6n+18+ ε < p < 9n+6+ ε. We furthermore see that p = 6n+6+ ε+6k < 9n+6+ ε

implies k < n/2 and 6n+18+ε< p = 6n+6+ε+6k implies 2< k.

Fixing n ∈ N and λ,µ ∈ {±1}, we therefore aim to determine the number of primes p and

q (with either prime in the correct range due to Lemma 5.1.2) which satisfy

12n+6+ε= p+6q.

Finding a single pair p and q for every n will be sufficient conclude that Gal(K (λ,µ)
n (x))= Sn

since we only require the existence of one Newton Polygon with slope 1/q and q in the

Jordan interval.

Example 5.1.3. Let n = 50 and (λ,µ)= (−1,1). Observe that the prime pair (p, q)= (349,43)

satisfy

12n+6+ε = 12 ·50+6+ (−1) ·2+ (1) ·3

= 607

= 349+6 ·43

= p+6q.

It now follows from Theorem 3.2.2 that NP349(K (−1,1)
50 (x)) has a segment of slope 1/(n− (n−

q))= 1/43 (since the term bn−q = b7 = 6n+6+ε+6 ·7= 6 ·50+6+1+6 ·7= 349= p). Thus 43

divides the Newton Index of K
(−1,1)

50 (x) and, because 43 ∈ (n/2,n−2)= (25,48), it follows that

Gal(K (−1,1)
50 (x)) = S50 (assuming K

(−1,1)
50 (x) is irreducible). Irreducibility can be seen from
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Corollary 4.1.1 since 3n+λ= 149 is a prime and so NP149(K (−1,1)
50 (x)) is pure. (Note that the

pairs (p, q) = (421,31) and (433,29) also satisfy 12n+6+ ε= p+6q and thus either of these

pairs could also have been used to conclude the same results). ♦

We now show that it is always possible to find a prime p of the form 6n+6+ ε+6k in

the interval (6n+18+ε,9n+6+ε). Note that proving this existence will only tell us that for

every n we will be able to produce a Newton Polygon that has a slope 1/(n−k) segment with

n−k in the Jordan interval, not that n−k is a prime. The existence of prime values of n−k

will be considered in Section 5.2.

Observe that for every choice of λ and µ we have p = 6n+6+2λ+3µ+6k ≡ 1 or 5 mod 6.

It is therefore possible to write every prime in the range 6n+ 18+ ε < p < 9n+ 6+ ε as

p = 6n+6+2λ+3µ+6k for some k ∈ (2,n/2) where the specialization (1,µ) will give primes

congruent to 1 mod 3 and (−1,µ) the primes congruent to 2 mod 3. Thus, it will suffice to

show that we can always find a prime p ∈ (6n+18+ε,9n+6+ε) since any such prime can be

written in the form 6n+6+2λ+3µ+6k. We show this using the following Theorem regarding

the existence of primes in a prescribed congruence class.

Theorem 5.1.4 (Cullinan and Hajir [7]). Suppose 1 ≤ m ≤ 72, and a is any integer coprime

to m. If x ≥ N(m) then the interval (x,1.048x] contains a prime congruent to a mod m.

Proof. See [7, Theorem 1]. Note that N(3)= 532 from the table given in [7].

Let x = 6n+18+ε and consider that x < p < 3x/2−9−ε/2< 3x/2. Theorem 5.1.4 states that

for all x ≥ N(3) = 532, the interval (x,1.048x] ⊆ (x,3x/2) contains a prime congruent to both

1 and 2 modulo 3. Hence, for all n ≥ (532−18− ε)/6 > 86 we know that there exists a prime

p = 6n+6+ε+6k ∈ (6n+18+ε,9n+6+ε). We record this for future reference.

Corollary 5.1.5. Fix some n > 86. Then the interval (6n+18+ε,9n+6+ε) contains a prime

p of the form 6n+6+ε+6k.
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To see the number of such primes, we define the quantity

πp,ε(n)= |{primes p = 6n+6+ε+6k : 6n+18+ε< p < 9n+6+ε}| (5.1.1)

The value of πp,ε(n) at n will give the number of Newton Polygons for K
(λ,µ)
n (x) which have a

slope 1/(n−k) segment with n−k in the Jordan interval. We compare πp,ε(n) to the quantity

πp,q,ε(n)= |{primes pairs (p, q) : 12n+6+ε= p+6q}|, (5.1.2)

where q = n−k and 6n+18+ε< p < 9n+6+ε as above. Observe that we have defined πp,q,ε(n)

to give the number of Newton Polygons which have a 1/q segment, where q is a prime in

the Jordan interval. We list the magnitude of πp,1(n) and πp,q,1(n) for several values of n in

Figure 5.1.2. These values were computes using Pari/GP [20].

n πp,1(n) πp,q,1(n)
10 0 0

100 20 5
1 000 168 18

10 000 1 324 131
100 000 11 074 900

1 000 000 94 792 6 388

Figure 5.1.2: The number πp,1(n) of Newton Polygons for K
(−1,1)
n (x) which have a slope 1/(n− k)

segment versus the number πp,q,1(n) of Newton Polygons with a slope 1/q segment, where both n−k
and q are in the Jordan interval.

As previously noted, we only need a single value n−k to be a prime in the Jordan interval

(which will follow from the restrictions on p) in order to conclude that Gal(K (λ,µ)
n (x)) is the

full symmetric group. This is encapsulated in the following remark.

Remark 5.1.6. Fix n ∈ N and λ,µ ∈ {±1}. If there exists a prime p ∈ (6n+18+ ε,9n+6+ ε)

such that

12n+6+ε= p+6q (5.1.3)

for some prime q (which is necessarily in the Jordan interval), then Gal(K (λ,µ)
n (x))= Sn. ♦
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As a logical statement, this Remark 5.1.6 could be presented as a theorem since it follows

directly from Lemma 5.1.2 and Corollary 5.1.1. We choose to present it as a remark since it

acts primarily as a summary of our discussion above; a criterion rather than a theorem. In

other words, we may only conclude Gal(K (λ,µ)
n (x)) = Sn if we can guarantee the existence of

primes p and q in the appropriate ranges that satisfy the decomposition in (5.1.3). There-

fore, note that Remark 5.1.6 is not is equivalent to showing πp,q,ε(n) ≥ 1 for every n since

this would establish the existence of such primes, which we presently cannot conclude. Even

though Corollary 5.1.5 says that we can always find a prime p in the desired interval once

n surpasses 86 (i.e., that πp,ε(n)≥ 1 for all n > 86), we cannot verify the existence of primes

q which satisfy the decomposition in 5.1.3. We are hence led to the following conjecture,

whose proof would imply that Gal(K (λ,µ)
n (x))= Sn via Remark 5.1.6.

Conjecture 5.1.7. Fix n ∈N and λ,µ ∈ {±1}. Then there exists a prime p ∈ (6n+18+ ε,9n+

6+ε) and a prime q, necessarily in the Jordan interval, such that

12n+6+ε= p+6q.

5.2 Theorem 3.2.2 and Conjecture C of Hardy and Littlewood

In their celebrated 1922 paper [15], G. H. Hardy and J. E. Littlewood present many elegant

conjectures regarding the decomposition of numbers into sums of primes. We assume one

of these conjectures and use it to estimate how often the denominator n− k of the Newton

Polygon slope described in Theorem 3.2.2 is prime. This is done by considering the number

of decompositions of

12n+6+ε= p+6q,

where p = 6n + 6 + ε + 6k ∈ (6n + 18 + ε,9n + 6 + ε) and q = n − k. In other words, we

analyze the growth of πp,q,ε(n), where this value is defined to be the order of the set

{primes pairs (p, q) : 12n+6+ε= p+6q} where p and q are of the form described above.
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Below is stated Con jecture C from [15] in its original form. Note that ω and ω′ are

primes.

Conjecture 5.2.1 (Conjecture C [15]). If a,b are fixed positive integers and (a,b) = 1, and

N (n) is the number of representations of n in the form

n = aω+bω′,

then

N (n)= o
(

n
(logn)2

)
unless (n,a)= 1, (n,b)= 1, and one and only one of n,a,b is even. But if these conditions are

satisfied then

N (n)∼ 2C2

ab
n

(logn)2

∏
p|nab
p odd

p−1
p−2

,

where

C2 =
∏

odd primes p

(
1− 1

(p−1)2

)
.

We can estimate the growth of πp,q,ε(n) by employing this Conjecture as follows. We let

a = 1, b = 6 and replace the value n in N (n) above with 12n+6+ ε to see that the number

of ways we can write 12n+6+ε as p+6q is asymptotically equivalent to

C2
3

12n+6+ε
(log(12n+6+ε))2

∏
p|6(12n+6+ε)
p odd

p−1
p−2

. (5.2.1)

Letting x = 12n+6+ε, observe that the quantity N (x) in (5.2.1) gives the total number of

representations of x = p+6q where p, q < x. Thus, N (x) in its current form will be greater

than πp,q,ε(n) since it will also be counting the pairs p and q where p is outside the interval

(6n+18+ε,9n+6+ε) and therefore q is not in the Jordan range. This is roughly illustrated

in the following figure, where the pairs p, q being counted by πp,q,ε(n) are in the green and

red intervals.
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0 n
2 n−2 6n 9n 12n

pq

Figure 5.2.1: Primes counted by πp,q,ε(n) (in green and red) versus those counted by N (x) (in
green, red and blue).

To overcome this difficulty, we notice that 3x/4 = 9n+9/2+ ε/4 ≈ 9n and that x/2 = 6n+

3+ ε/2 ≈ 6n. Hence, the difference N (3x/4)−N (x/2) will give a good approximation of the

number of desired decompositions.

Example 5.2.2. Let n = 100 and ε = 1. We calculate both N (x) and N (3x/4)−N (x/2).

Note that πp,q,1(100) = 5 from Table 5.1.2. Observe that x = 12 ·100+6+1 = 1207 and 6x =

2 ·3 ·17 ·71. Multiplying the product

∏
odd primes p

(
1− 1

(p−1)2

)

over all odd primes p < 1000000 gives C2 ≈ 0.66016. Using this approximation, we obtain

N (x) =
(0.66016

3

)( 1207
(log1207)2

)
·2(16/15)(70/69)

≈ 11.416,

which, as expected, is larger than πp,q,1(100).

To calculate N (3x/4)−N (x/2), we choose to round down 3/4 · 1207 = 905.25 ≈ 905 and

1207/2 = 603.5 ≈ 603. Using the same method and approximation of C2 as above, we

find that N (3x/4) ≈ 11.5222 and N (x/2) ≈ 6.5745. Thus N (3x/4)−N (x/2) = 4.9477 ≈ 5 =

πp,q,1(100).

Similar calculations can be done to show that, when n = 10000, we obtain N (3x/4)−

N (x/2)≈ 117.315 (compare this value to πp,q,1(10000)= 131). ♦

Assuming the Hardy-Littlewood Conjecture 5.2.1, we now provide some observations in

support of Conjecture 5.1.7. First, note that because x
(log(x))2 is increasing and unbounded
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for x > 1 it seems plausible that both N (3x/4) and N (x/2) are increasing and unbounded as

well since C2/3 is constant and the product

∏
p|6X
p odd

p−1
p−2

,

(where X = 3x/4 or x/2), is always greater than 1. It therefore does not seem inconceivable

to purpose that N (3/4x)−N (x/2) is increasing and unbounded as well, though this cer-

tainly does not follow directly. If we suppose this were true, we now present the following

argument in favour of Conjecture 5.1.7.

Letting x = 12n+6+ε, Hardy-Littlewood Conjecture 5.2.1 says that the function πp,q,ε(n)

is asymptotically equivalent to N (3x/4)−N (x/2). Corollary 5.1.5 states that for every n > 86

there exists a prime p in the range 6n+ 18+ ε < p < 9n+ 6+ ε which can be written as

p = 6n+6+ε+6k. If N (3/4x)−N (x/2) were increasing and if we could produce some x0 = f (n)

such that for all x > x0 it were true that N (3/4x)−N (x/2) > πp,q,ε(n) then because of the

(conjectured) asymptotic equivalence, it should then follow that for all n > 86, πp,q,1(n) >

πp,q,1(86) > 1. Accepting this, we would obtain the desired decomposition 12n+6+ ε = p+

6q with q in the Jordan interval, thus establishing Conjecture 5.1.7. It would follow that

Gal(K (λ,µ)
n (x)) = Sn (for n > 86) by Lemma 5.1.2 (implies q ∈ (n/2,n− 2)), Theorem 3.2.2

(implies NPp(K (λ,µ)
n (x)) has a slope 1/q segment) and Corollary 5.1.1.
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6
Conjectures and Partial Results

6.1 Irreducibility Using V-Shaped Polygons

Recall from Theorem 3.3.2 that Newton Polygons for K
(λ,µ)
n (x) consisting of two opposite

slopes can occur under certain conditions. Using an irreducibility result given by Bush and

Hajir in [3], it is likely possible for us to use such polygons to conclude irreducibility. The

applicable theorem is as follows.

Theorem 6.1.1 (Hajir [3]). Let f (x) ∈Q[x]. Suppose that m is the maximum of the absolute

values of slopes of NPp( f (x)) and that L is the length of the slope zero segment of NPp( f (x)). If

g(x) ∈Q[x] is a polynomial of degree d which divides f (x) then d ∉ (L,1/m).

Proof. See [3, Lemma 2.5]

Conjecture 6.1.2. Fix n ∈ N and λ,µ ∈ {±1}. Suppose that there exists some s,k ∈ [0,n−1]

such that p = 3n+λ−3s and q = 3n+λ−3k are both prime. If q = 2n+2+µ and (−s−1−

µ/2 mod p) ∈ [n, p) then K
(λ,µ)
n (x) is irreducible over Q.

If we assume the additional hypothesis that s < k for every choice of p = 3n+λ−3s and

q = 3n+λ−3k which satisfy the above criterion, then the proof outlined below should hold.



However, it is our belief that s < k should follow from the requirement that q = 2n+2+µ,

though we have not yet worked out these details.

Proof. Suppose p = 3n+λ−3s satisfies (−s−1−µ/2 mod p) ∈ [n, p), that q = 3n+λ−3k can

be written as 2n+2+µ and that K
(λ,µ)
n (x) is reducible over Q. Then there must exist some

irreducible polynomial g(x) ∈ Q[x] with 0 < deg(g) = d < n which divides K
(λ,µ)
n (x). Since

2n+2+µ= q ≡ 0 mod q have that n ≡−1−µ/2 mod q and thus that n−k ≡−k−1−µ/2 mod q.

From Theorem 3.3.2(2), we therefore see that NPq(K (λ,µ)
n (x)) has the shape shown in Figure

6.1.1.

0

1

n−k n

1
k

−1
n−k

Figure 6.1.1

Furthermore, notice that 2n+2+µ= 3n+λ−3k implies k < n/3. This means k < n−2k <

n−k =⇒ | −1
n−k | < 1/k and so 1/k =max{ slopes of NPq(K (λ,µ)

n (x) }. Hence, from Theorem 6.1.1,

we find that d 6∈ (0,k) and therefore (since d 6= 0) we have that k ≤ d < n.

We furthermore note that Theorem 6.1.1 states that this inequality holds for any degree

di factor of K
(λ,µ)
n (x) over Q. In other words, if g i(x) ∈ Q[x] is a polynomial of degree di

which divides K
(λ,µ)
n (x), assuming that s < k, we obtain

s < k ≤ di < n. (6.1.1)

Now consider that, by Theorem 3.3.2(1), we have the following shape for NPp(K (λ,µ)
n (x)).

0

1

n− s n

−1
n−s

Figure 6.1.2
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From Corollary 2.4.6, the Newton Polygon for K
(λ,µ)
n (x) shown in Figure 6.1.2 allows us

to conclude the following regarding the degree d of g(x). One of the following holds

(i) d = a, for some a in the interval 0< a ≤ s

(ii) d = n− s, or

(iii) d = n− s+b, for some b in the interval 0< b < s.

We now show that items (i), (ii) and (iii) are false and therefore that deg(g)= 0 or n, which

implies the result. For item (i), observe that if d = a ∈ (0, s] then d ≤ s which contradicts

the inequality (6.1.1) above. For item (ii), we see that if d = n− s then there must exist an

irreducible polynomial g1(x) ∈ Q[x] with degree d1 ≤ s < k which divides K
(λ,µ)
n (x), but this

also contradicts inequality (6.1.1). If item (iii) were true then, similarly, there must exist

some irreducible polynomial g2(x) ∈ Q[x] with degree d2 ≤ s− b < k which also contradicts

inequality (6.1.1). Therefore, assuming that s < k is always the case, the above Newton

Polygons at q and p (Figures 6.1.1 and 6.1.2, respectively) imply that K
(λ,µ)
n (x) is irreducible

over Q.

The number of degrees n < N for which there exists at least one pair of primes p and

q (i.e., there exists at least one desired pair of Newton Polygons) of the form described in

Conjecture 6.1.2 are listed in Figure 6.1.3 for the specialization (λ,µ)= (1,1). We define

V(λ,µ)(N)= |{n < N : there exists primes p = 3n+λ−3s and q = 3n+λ−3k = 2n+2+µ}|.

N V(1,1)(N)
10 3

100 21
1000 148

10 000 1124
100 000 8 988

Figure 6.1.3: Number of degrees n < N for which K
(λ,µ)
n (x) exhibits both a V -shaped Newton

Polygon of the type in Figure 6.1.1 and a Newton Polygon of the type in Figure 6.1.2.
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6.2 Newton Polygons for n = `r−λ
3

Recall from Sections 3.2 and 3.3 that we were able to find many nontrivial Newton Polygons

for K
(λ,µ)
n (x) by considering primes of the form p = ak = 3n+λ−3k and q = bm = 6n+6+ε+6m

for some k,m ∈ [0,n−1]. In particular, when either p = a0 or q = b0 was prime, we obtained

pure Newton Polygons and thus irreducibility (as stated in Corollaries 4.1.1 and 4.1.2). In

this chapter, we formulate conjectures about the Newton Polygon for K
(λ,µ)
n (x) when the

first term in α j = (3n+λ)(3n+λ−3 ·1) · · · (3n+λ−3(n− j−1)) is a prime power, rather than

a prime. In other words, we let ` be a prime and consider the case where `r = a0 = 3n+λ,

so that α j = `r · (3n+λ−3 ·1) · · · (3n+λ−3(n− j−1)).

As with Corollaries 4.1.1 and 4.1.2, solving n in terms of `r in allows us to see that the

degree

n = `r −λ
3

(6.2.1)

of K
(λ,µ)
n (x) will give α j this form.

We note that a similar question can be asked about the shape of NP`(K (λ,µ)
n (x)) when

`r = b0 in the product β j. In other words, recall that β j = (6n+6+ε)(6n+6+ε+6 ·1) · · · (6n+

6+ ε+ 6( j − 1) and so b0 = `r whenever n = `r−6−2λ−3µ
6 . It is our belief that considering

this question with regard to β j may allow one to recover the irreducibility results given

by Mahlburg and Ono in [18] in their entirety (the results in Corollary 4.1.2 only recover

some of their cases). Mahlburg and Ono have shown that NP`(K (λ,µ)
n (x)) is irreducible at

n = `r−6−2λ−3µ
6 (with some restrictions on ` and r); we believe that the degrees n = `r−λ

3

of K
(λ,µ)
n (x) may also be irreducible, though our results on this matter are only partial. In

any case, we note that K
(λ,µ)
n (x) seems to exhibit interesting `-adic factorizations at these

degrees. Our conjecture is as follows.
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Conjecture 6.2.1. Fix some prime ` and some r ∈N. Let n = `r−λ
3 , where

λ= 1 when `≡ 1 mod 3, and

λ= (−1)r when `≡−1 mod 3.

Let C+ and C− be defined by C± = `−λ
3 (where + and − correspond to the value of λ) and let

D = `2−1
3 . Define

Sk =



k∑
j=0

(
C+` j

)
, if `≡ 1 mod 3,

k∑
j=0

(
D`2 j

)
, if `≡−1 mod 3 and r is even,

C−+
k∑

j=1

(
D`2 j−1

)
, if `≡−1 mod 3 and r is odd.

(1). If `≡ 1 mod 3, then the vertices of NP`(K (1,µ)
n (x)) are

(
0, r

)
,
(
S0, r−1

)
,
(
S1, r−2

)
, . . . ,

(
Sr−1,0

)
.

In particular, NP`(K (1,µ)
n (x)) consists of r segments of lengths C+, C+`, C+`2, . . . , C+`r−1

with respective slopes −1
C+ , −1

C+` , −1
C+`2 , . . . , −1

C+`r−1 .

(2). If `≡−1 mod 3 (`> 5) and r is even, then the vertices of NP`(K (1,µ)
n (x)) are

(
0, r

)
,
(
S0, r−1

)
, . . . ,

(
Sr/2−1,

r
2

)
.

In particular, NP`(K (1,µ)
n (x)) consists of r

2 segments of lengths D, D`, D`2, . . . , D`r−2 with

respective slopes −1
D , −1

D`2 , −1
D`4 , . . . , −1

D`r−2 .

(3). If `≡−1 mod 3 (`> 5) and r is odd, then the vertices of NP`(K (−1,µ)
n (x)) are

(
0, r

)
,
(
S0, r−1

)
, . . . ,

(
S(r+1)/2−1,

r−1
2

)
.

In particular, NP`(K (−1,µ)
n (x)) consists of r+1

2 segments of lengths C−, D`, D`2, . . . , D`r−2

with respective slopes −1
C− , −1

D` , −1
D`3 , . . . , −1

D`r−2 .
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Example 6.2.2. Let r = 5 and ` = 7. We consider the Newton Polygon for K
(1,1)
n (x) at n =

(75 − 1)/3 = 5602. Since 7 ≡ 1 mod 3, Conjecture 6.2.1 (1) says C+ = (7− 1)/3 = 2 and so

Sk = ∑k
j=0 2 ·7 j. The vertices of NP7(K (1,1)

5602 (x)) are then seen to be (0,5), (2,4), (2+2 ·7,3),

(2+2 ·7+2 ·72,2), (2+2 ·7+2 ·72 +2 ·73,1), and (2+2 ·7+2 ·72 +2 ·73 +2 ·74,0).

0

1

2

3

4

5

2 2+2 ·7 2+2 ·7+2 ·72 2+2 ·7+2 ·72 +2 ·73 2+2 ·7+2 ·72 +2 ·73 +2 ·74

−1
2

− 1
2·7
− 1

2·72

− 1
2·73

− 1
2·74

Figure 6.2.1: NP7(K (1,1)
5602 (x)).

This Newton Polygon tells us that NP7(K (1,1)
n (x)) = f1(x) f2(x) f3(x) f4(x) f5(x) over Qp,

where the degree of each f i is deg( f i) = 2 · 7i−1. Observe that the denominator of every

slope of this Newton Polygon is divisible by 2. Therefore, by Coleman’s Theorem 2.4.10 we

can see that 2 divides the degree of every irreducible factor of NP7(K (1,1)
n (x)) over Q. ♦

Attempting to prove Conjecture 6.2.1 has been decidedly difficult for several reasons.

Namely, the prime ` is less than
(n

j
)
, α j and β j, and therefore ` can divide each of these

quantities nontrivially. Thus, determining the `-adic valuation of the jth coefficient A j re-

quires more care than we have previously seen. Furthermore, the large magnitude of the

degrees n = `r−λ
3 means that it can take longer to compute Newton Polygons (over 8 hours

were needed for Pari/GP to compute the Newton Polygon for the degree 39216 = (76 −1)/3

polynomial), and so generating examples for larger values of r or for bigger primes has been

difficult.
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Observe that Corollary 4.1.1 is a special case of Conjecture 6.2.1. If we let r = 1 and

`≡ λ mod 3, Conjecture 6.2.1 says that the vertices of NP`(K (λ,µ)
n (x)) are (0,1) and (S0,0) =

((`−λ)/3,0)= (n,0), which agrees precisely with the irreducibility results stated in Corollary

4.1.1.

Below are listed the necessary items for an inductive proof of Conjecture 6.2.1. We have

managed to show the base case for some required steps, but a full proof has not yet been

reached. The items in bold font indicate items which we have proven.

Steps to Prove Conjecture 6.2.1 (1).

(Base case: r = 2). Let r = 2 and let ` ≡ 1 mod 3 (so that n = (`2 −1)/3 and we take C =

C+ = `−1
3 ). Show that

(1a) ord`(A0)= 2,

(1b) ord`(AC)= 1,

(1c) ord`(AC+C`)= 0,

(1d) ord`(A j)≥ 2, for all j ∈ (0,C), and that

(1e) ord`(A j)≥ 1, for all j ∈ (C,C+C`).

Proceed using induction on r.

Steps to Prove Conjecture 6.2.1 (2).

(Base case: r = 2). Let r = 2 and let ` ≡ −1 mod 3 (so that n = (`2 −1)/3 and D = `2−1
3 ).

Show that

(2a) ord`(A0)= 2,

(2b) ord`(AD)= 1,and

(2c) ord`(A j)≥ 2, for all j ∈ (0,D).

Proceed using induction on r.
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Steps to Prove Conjecture 6.2.1 (3).

(Base case: r = 3). Let r = 3 and let ` ≡ −1 mod 3 (so that n = (`3 +1)/3 and C− = `+1
3 ).

Show that

(3a) ord`(A0)= 3,

(3b) ord`(AC−)= 2,

(3c) ord`(AC−+D`)= 1,

(3d) ord`(A j)≥ 3, for all j ∈ (0,C−), and that

(3e) ord`(A j)≥ 1, for all j ∈ (C−,C−+C`).

Proceed using induction on r. ä

Conjecture 6.2.1 has the following implications.

Corollary 6.2.3 (Assuming Conjecture 6.2.1). Let ` be a prime congruent to 2 mod 3 and

let n = `2−1
3 . Then K

(1,µ)
n (x) is irreducible over Q.

The above corollary would result from proving only the base case of Conjecture 6.2.1 (2)

(i.e., a pure Newton Polygon results from setting r = 2). We believe that this result would

be a new infinite class irreducible of degrees for K
(λ,µ)
n (x).

Corollary 6.2.4 (Assuming Conjecture 6.2.1). Let ` be a prime and let n = `r−λ
3 , where λ is

defined as in Conjecture 6.2.1. Suppose that g(x) ∈ Q[x] is an irreducible factor of K
(λ,µ)
n (x)

with degree deg(g)= d.

(i) If `≡ 1 mod 3 then C+|d.

(ii) If `≡−1 mod 3 and r is even then D|d.

(iii) If `≡−1 mod 3 and r is odd then gcd(C−,D)|d.
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Furthermore, in every case we have that d is divisible by 2k, where

k =


ord2(C+) if `≡ 1 mod 3,
ord2(D) if `≡−1 mod 3 and r is even,
ord2(gcd(C−,D)) if `≡−1 mod 3 and r is odd.

Note that k ≥ 1 in each of the cases listed in Corollary 6.2.4. Items (i), (ii) and (iii) follow

easily from Coleman’s Theorem 2.4.10. The second remark in this Corollary 6.2.4 is just the

observation that 2 divides each C+, C−, D (and therefore (gcd(C−,D))). Our next corollary

uses a similar technique as was used in the proof we sketched for Conjecture 6.1.2.

Corollary 6.2.5 (Assuming Conjecture 6.2.1). Let n = `r−λ
3 (where λ is chosen according

to the criterion in Conjecture 6.2.1) and let s be a divisor of C+ (if ` ≡ 1 mod 3), of D (if

`≡−1 mod 3 and r is even), or of gcd(C−,D) (if `≡−1 mod 3 and r is odd). If there exists a

prime p such that p = 6n+6+ε+6(s−1)= 2`r +3µ+6s then K
(λ,µ)
n (x) is irreducible.

Proof. We prove the case where `≡ 1 mod 3. Let C = C+ and g(x) be an irreducible factor

of K
(1,µ)
n (x) in Q[x] such that 0 < deg g(x) = d < n. We show by contradiction that d = n.

From Conjecture 6.2.1 and Coleman’s Theorem 2.4.10 we know that C|d and thus that

s|d. Now consider the Newton Polygon of K
(1,µ)
n (x) at the prime p. By Theorem 3.2.2 we

know that this Newton Polygon consists of two segments of lengths s−1 and n− (s−1) with

respective slopes 0 and 1
n−(s−1) .

0

1

s−1 n

1
n−(s−1)

Figure 6.2.2: Newton Polygon for K
(λ,µ)
n (x) at p = 2`r +3µ+6s.
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Thus, we can conclude that one of the following must be true regarding the degree d of

g(x) over Q.

(i) d = n− (s−1),

(ii) d = a, for some a in the range 1≤ a ≤ s−1,

(iii) d = n− (s−1)+b, for some b in the range 1≤ b < s−1.

We first note that d ≡ 0( mod s) since s|d. For the first case, we have that d = n−(s−1)≡ n+1

mod s. Using Lemma 6.3.3 (i) below we know that n = C+C`+C`2 + ·· ·+C`r−1 and thus

that d ≡ 1 mod s, which is a contradiction. For the second case, observe that d ≡ a mod s,

which also cannot be true since s|d. For the third case, we have that d = n−(s−1)+b ≡ 1+b

mod s. But since, b < s−1, we also have a contradiction in this case. Hence K
(1,µ)
n (x) has an

irreducible factor g(x) of degree n and therefore K
(1,µ)
n (x) is irreducible over Q.

We expect that a similar proof can be constructed when `≡−1 mod 3 (where there would

be two cases for r being even or odd), but we have not yet attempted this.

Note that Corollary 6.2.5 relies on the existence of primes of a rather complex form.

Fixing r, we see that for every prime ` (which corresponds to a degree n) we need a prime p

which can be written in terms of a divisor s of C = (`−1)/3. In other words, we need a pair

(p, s) such that s|(`−1)/3 and

p−6s = 2`r +3µ.

Corollary 6.2.5 states that we only need to find one satisfactory pair for every prime ` in

order to conclude irreducibility. To consider the number of such pairs, we define the set

Ur,(λ,µ)(k)= |{`≡λmod 3< k : there exists p and s such that s|(`−1)/3 and p−6s = 2`r +3µ}|.

We record some values of U2,(1,1)(k) in Figure 6.2.3 below. We compare this order to the total

number of primes less than k which are congruent to 1 mod 3, which we denote

π1 mod 3(k)= |{primes `< k : `≡ 1 mod 3}|.
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k π1 mod 3(k) U2,(1,1)(k)
10 11 9

500 45 33
8 000 495 414

163 841 7 477 5 979
1 299 709 49 916 39 188

Figure 6.2.3

6.3 Base Case Proofs for the `-adic Valuation of A0 and An

One of the difficulties we have found while attempting to prove Conjecture 6.2.1 has been

establishing that the vertices of NP`K
(λ,µ)
n (x) are in the correct positions. This has been

problematic due to the obvious reason that ` can divide each constituent product of A j =(n
j
)
α jβ j.

A question which we only partially understand is why the reduction of ` modulo 3 should

affect the shape of the Newton Polygon, as seen in the difference between Conjecture 6.2.1

(1) and (2). Namely, we hope to understand why the degree n = `r−λ
3 at a prime `≡−1 mod 3

results in a Newton Polygon with half the number of segments as the Newton Polygon for

K
(λ,µ)
n (x) when `≡ 1 mod 3.

In this section we focus primarily on the cases where r = 2 and r = 3, which are the base

cases for an inductive proof of Conjecture 6.2.1. These cases offer some resolution regarding

the affect that ` modulo 3 has on the Newton Polygon shape. From the steps listed in bold-

font in Section 6.2, we will prove items: (1a), (2a) and (3a) for any value of r; (1c) and (2b)

for r = 2; and (3c) for r = 3. The general propositions are as follows.

Proposition 6.3.1. Fix some prime `> 5 and some r ∈N and n = `r−λ
3 , where

λ= 1 when `≡ 1 mod 3, and

λ= (−1)r when `≡−1 mod 3.
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Then

ord`(A0)= r+ord`((n−1)!).

Proposition 6.3.2. Fix `, r and let n = `r−λ
3 (with λ the same as in Proposition 6.3.1.

(i). If `≡ 1 mod 3 then ord`(An)= ord`((n−1)!).

(ii). If `≡−1 mod 3 and r is even then ord`(An)= r/2+ord`((n−1)!).

(iii). If `≡−1 mod 3 (`> 5), r is odd then ord`(An)= (r−1)/2+ord`((n−1)!).

The ord`((n−1)!) term arises since the K
(λ,µ)
n (x) polynomials do not have 1 as their con-

stant term which means their Newton Polygons can be vertically shifted. However, this

shift does not affect the overall polygon shape since the vertices will have the same relative

distances from one another (the lower convex hull does not change).

Before proceeding, we provide some general remarks regarding the degree n = `r−λ
3 that

we will use later on.

Lemma 6.3.3. Fix some prime ` and some r ∈ N. Recall the definitions C+ = `−1
3 , C− = `+1

3

and D = `2−1
3 .

(i). If `≡ 1 mod 3 then `r−1
3 =

r−1∑
j=0

C+` j.

(ii). If `≡−1 mod 3 and r is even then `r−1
3 =

r/2−1∑
j=0

D`2 j.

(iii). If `≡−1 mod 3 and r is odd then `r+1
3 = C−+

(r+1)/2−1∑
j=1

D`2 j−1.

Proof. We proceed with induction on r.
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Proof of (i).Let ` ≡ 1 mod 3 and let C = C+ = `−1
3 . The case where r = 1 is trivial since∑0

j=0 C` j = C = (`−1)/3. Let r = 2. Then

3
2−1∑
j=0

C` j = 3C+3C`

= 3
(`−1

3

)
+3

(`−1
3

)
`

= (`−1)+ (`−1)`

= `2 −1.

Dividing both sides of the above equation by 3 yields the result for r = 2. Now let r = m and

suppose that `m−1
3 =∑m−1

j=0 C` j. Then

3
(m+1)−1∑

j=0
C` j = 3

m−1∑
j=0

C` j +3C`m

= (`m −1)+3
(`−1

3

)
`m

= (`m −1)+ (`−1)`m

= `m+1 −1.

Thus `r−1
3 =∑r−1

j=0 C` j for all r.

Proof of (ii). Let `≡−1 mod 3 and let r = 2m be an even integer. The case where r = 2 is

trivial since
∑0

j=0 D`2 j = D = (`2 −1)/3. So we take our base case to be r = 4. Then

3
4/2−1∑

j=0
D`2 j = 3D+3D`2

= 3
(`2 −1

3

)
+3

(`2 −1
3

)
`2

= (`2 −1)+ (`2 −1)`2

= `4 −1.

Dividing both sides of the above equation by 3 yields the result for r = 4. Now let r = 2m and

suppose that `r−1
3 = `2m−1

3 = ∑m−1
j=0 D`2 j. We show the result holds for r = 2(m+1). Observe
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that

3
r/2−1∑
j=0

D`2 j = 3

2(m+1)
2 −1∑
j=0

D`2 j

= 3
m∑

j=0
D`2 j

= 3
m−1∑
j=0

D`2 j +3D`2m

= (`2m −1)+3
(`2 −1

3

)
`2m

= `2(m+1) −1

= `r −1.

Thus
∑r/2−1

j=0 D`2 j = `r−1
3 for every r ∈N.

Proof of (iii). Let `≡−1 mod 3, let r = 2m+1 be an odd integer and let C = C− = (`+1)/3.

The case where r = 1 is trivial since C +∑(r+1)/2−1
j=1 D`2 j−1 = C +∑0

j=1 D`2 j−1 = C under the

usual convention that
∑0

j=1 f ( j)= 0. So we take our base case to be r = 3. Then

3
(
C +

(3+1)/2−1∑
j=1

D`2 j−1
)

= 3C+3D`

= 3
(`+1

3

)
+3

(`2 −1
3

)
`

= (`+1)+ (`2 −1)`

= 1+`3.

Dividing both sides of the above equation by 3 yields the result for r = 3. Now let r = 2m+1

and suppose that

`r +1
3

= `(2m+1) +1
3

= C +
(2m+1)+1

2 −1∑
j=1

D`2 j−1.

97



We now show that the result holds for r = 2(m+1)+1. Observe that

3
(
C +

(r+1)/2−1∑
j=1

D`2 j−1
)

= 3
(
C +

m+1∑
j=1

D`2 j−1
)

= 3C +3
m∑

j=1
D`2 j−1 +3D`2(m+1)−1

= (`(2m+1) +1)+ (`2 −1)`2m+1

= 1+`2(m+1)+1

= 1+`r.

Thus `r+1
3 = C+∑ r+1

2 −1
j=1 D`2 j−1 for all r ∈N.

We are now able to prove Proposition 6.3.1.

Proof of Proposition 6.3.1. Fix some prime `> 5 and some r ∈N and n = `r−λ
3 , where

λ= 1 when `≡ 1 mod 3, and

λ= (−1)r when `≡−1 mod 3.

We show that

ord`(A0)= r+ord`((n−1)!).

Since n = `r−λ
3 we have that

ord`(A0) = ord`(α0)

= ord`
(n−1∏

k=0
(3

(`r −λ
3

)
+λ−3k)

)
= ord`

(n−1∏
k=0

(`r −3k)
)

= ord`(`r)+ord`(`r −3)+ord`(`r −3 ·2) · · ·+ord`(`r −3(n−1))

= r+
n−1∑
k=1

ord`(`r −3k)

Note that ord`(`r−3k)≤ r for every 1≤ k ≤ n−1. (If not, then there exists some 1≤ k ≤ n−1

such that `r −3k ≡ 0 mod `r+1 which implies that 3k = `r which is clearly false since ` is

prime).
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Thus we see that every term in the sum
∑n−1

k=1 ord`(`r −3k) is zero except when k is a

multiple of `i for some i ≤ r. But this means that the sum
∑n−1

k=1 ord`(`r −3k) is equal to the

sum of `-adic valuations of every multiple of `i in the interval [1,n−1]. In other words, we

find that
n−1∑
k=1

ord`(`r −3k)= ord`(1)+ord`(2)+ord`(3)+·· ·+ord`(n−1)

since the sum on the right-hand side accounts for the `-adic valuation of every possible

value of k in the range 1 ≤ k ≤ n− 1, where each term in the right-handed sum is zero

exactly when that term is not of the form m`i for some m ∈ N and i ≤ r. We therefore have

that

n−1∑
k=1

ord`(`r −3k) = ord`(1)+ord`(2)+ord`(3)+·· ·+ord`(n−1)

= ord`((n−1)!),

and so ord`(A0)= r+ord`((n−1)!).

In the case of ` ≡ 1 mod 3, we can say even more. It is well-known (see [16]) that, if

n = n0 +n1 p+n2 p+·· · is the p-adic expansion of an integer n ≥ 1 then

ord(n!)= n− (n0 +n1 +n2 +·· · )
p−1

.

From Lemma 6.3.3 (i) we know that the `-adic expansion of n = `r−1
3 is

r−1∑
j=0

C+` j, where

C+ = (`−1)/3. Thus, letting C+ = C = (`−1)/3, we have that

ord`((n−1)!) = (n−1)− (rC−1)
`−1

= (`r −1)/3− r(`−1)/3
`−1

= `r − r`+ r−1
3(`−1)

.

So, in the case of `≡ 1 mod 3, we may conclude that ord`(A0)= r+ `r−r`+r−1
3(`−1) .

We now construct some framework in order to prove each base case of Proposition 6.3.2.

The reliance of Proposition 6.3.2 on the reduction of ` modulo 3 is subtle and, though the
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following lemmas may seem unrelated at first, we have found them necessary in order

to exhibit this relationship. In essence, the proof of Proposition 6.3.2 (i) will be done by

constructing two sets, the first with order ord`((n−1)!) and the second with order ord`(An),

and then producing a bijective function between them, allowing us to conclude that their

orders are equal. The proofs of part (ii) and (iii) are done with similar sets but if ` ≡

−1 mod 3 an element from the second set must be removed in order for our function to be

bijective.

Before we proceed, consider the following preliminary observations. By definition, we can

see that

An =
(
n
n

)
αnβn

= βn

=
n−1∏
k=0

(6n+6+ε+6k)

=
n−1∏
k=0

(6
(`r −λ

3

)
+6+ε+6k)

=
n−1∏
k=0

(2`r −2λ+6+2λ+3µ+6k)

=
n−1∏
k=0

(2`r +6+3µ+6k).

Thus we obtain

ord`(An)=
n−1∑
k=0

ord`(2`r +6+3µ+6k). (6.3.1)

Furthermore, when k = 0 we have that 2`r+6+3µ≡ 0( mod `) which implies µ≡−2( mod `),

where this last congruence is only true when µ= 1 and `= 3 6≡ ±1 mod 3. We may therefore

change the lower index on the sum for ord`(An) in equation (6.3.1) (since the prime 3 does

not fit our hypothesis) to read

ord`(An) =
n−1∑
k=1

ord`(2`r +6+3µ+6k) (6.3.2)
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Switching to the notation bk = 2`r+6+3µ+6k, it is therefore seen that every term in the

sum ord`(An)=∑n−1
k=1 ord`(bk) is zero except at the values of k that satisfy

2`r +6+3µ+6k ≡ 0 mod `,

which implies that 2+µ+2k ≡ 0 mod ` and therefore k ≡−µ/2−1 mod `. These congruences

imply that ord`(2`r +6+3µ+6k)≥ 1 whenever k ≡ (−µ/2−1) mod `.

When µ= 1, since (`−1)/2−1 ∈Z/` and (`−1)/2−1≡ (`−1)·1/2−1 mod `≡ (−1/2−1) mod `≡

−µ/2−1 mod `, it follows that any k satisfying 2`r+6+3·1+6k ≡ 0 mod `must reduce modulo

` to (`−1)/2−1. In other words, if µ= 1 then every value k satisfying bk ≡ 0 mod ` has the

form (`−1)/2−1+ t` for some t ∈N.

When µ = −1, we have that (`+1)/2−1 ∈ Z/` and (`+1)/2−1 ≡ 1/2−1 mod ` ≡ −µ/2−

1 mod `. This means that, if µ=−1 then every value k satisfying bk ≡ 0 mod ` has the form

(`+1)/2−1+ t` for some t ∈N. Thus we see that

bk ≡ 0 mod ` if and only if k = `−µ
2

−1+ t`.

Letting X = {1, · · · ,n−1}, we now define the sets

X i
def= {m ∈ X : m ≡ 0 mod `i}= {m ∈ X : ord`(m)≥ i} and, (6.3.3)

X ib

def= {k ∈ X : bk ≡ 0 mod `i}= {k ∈ X : ord`(bk)≥ i}. (6.3.4)

Note that X i ⊇ X i+1 and that X ib ⊇ X(i+1)b for all i. Furthermore, for any given m ∈ X1 or

k ∈ X1b it is obvious that ` can only divide m or bk a finite number of times, which means

that there must exist some N such that for all i ≥ N both X i and X ib are empty.

Remark 6.3.4. Every m ∈ X1 has the form m = u` for some u ∈ N− {0} and, from our

discussion above, we also know that every k ∈ X1b has the form k = `−µ
2 −1+ t` for some

t ∈N. ♦

Example 6.3.5. Let `= 5 and r = 3. Since 5 ≡−1 mod 3 we take n = (53 − (−1))/3 = 42 and

therefore consider the polynomial K
(−1,µ)

42 (x). We easily find that X1 = {5,10,15,20,25,30,35,40}
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and X2 = {25}. If µ= 1 then min{k}= (5−1)/2−1= 1 ∈ X1b and so the elements of X1b are sim-

ply all the lifts of 1 mod 5 which are less than n−1 (i.e., 1,1+5,1+2·5, . . . , (1+t·5)≤ n−1= 41).

Hence X1b = {1,6,11,16,21,26,31,36} and X2b = {11,36}. If µ=−1 then min{k}= (5+1)/2−1=

2 ∈ X1b and thus X1b = {2,7,12,17,22,27,32,37} and X2b = {12,37}. ♦

Lemma 6.3.6. Let k ∈ Xb1 . Then

`−µ
2

−1+ t`= k ∈ Xb1 if and only if t < 2`r −3`−2λ+3µ+6
6`

.

Proof. Since k ∈ Xb1 we know that k = `−µ
2 −1+t`< (`r−λ)/3= n by definition. This implies

that 3(`−µ−2+2t`)< 2(`r −λ) and so 6t`< 2`r −3`−2λ+3µ+6. Hence

t < 2`r −3`−2λ+3µ+6
6`

.

The other implication is not difficult to see.

We now summarize the properties of X1 and X1b discussed above for future reference.

Remark 6.3.7. If m ∈ X1 then:

• m = u` for some u ∈ {1, . . . ,b n
`
c}

• min{m}= `

• max{m}= b n
`
c`

If k ∈ X1b then:

• k = (`−µ)/2−1+ t` for some t ∈ {0, . . . ,b2`r−3`−2λ+3µ+6
6` c}.

• min{k}= (`−µ)/2−1

• max{k}= (`−µ)/2−1+b2`r−3`−2λ+3µ+6
6` c`

♦
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Furthermore, it is helpful to note the following regarding elements of X i and Xbi .

Remark 6.3.8. If m ∈ X i then:

• m = u`i for some u ∈ {1, . . . ,b n
`i c}

If k ∈ X ib then:

• k = (`i −µ)/2−1+ t`i for some t ∈ {0, . . . ,b2`r−3`i−2λ+3µ+6
6`i c}.

• max i{t}
def= max{t ∈Z : t ∈ {0, . . . ,b2`r−3`i−2λ+3µ+6

6`i c}

♦

It was mentioned above that there must exist some N such that for all i ≥ N both X i and

X ib are empty. We claim that N = r.

Lemma 6.3.9. If k ∈ X1 then ord`(m)< r, (which implies that |X i| = 0 for all i ≥ r).

Proof. Suppose that there exists some m ∈ X1 such that ord`(m) ≥ r. Then m ≡ 0 mod `r.

But 0 < m < n = (`r −λ)/3 < `r by definition, which implies that m 6≡ 0 mod `r, a contradic-

tion.

In the Lemma above, we were using the fact that 0 < m < `r and thus the reduction

of m modulo `r is simply m. This technique cannot be used to show that k ∈ X1b implies

ord`(bk) = ord`(2`r +6+3µ+6k) < r because bk > `r and therefore bk has a nontrivial re-

duction modulo `r. But since k = (`−µ)/2−1+ t` we know that

bk = 2`r +6+3µ+6k

= 2`r +6+3µ+6((`−µ)/2−1+ t`)

= 2`r +3`+6t`,

and we may there construct an argument using the permitted values of t to show that

bk 6≡ 0 mod `r. In particular, we use the fact that t < `r, a detail we now show.
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Lemma 6.3.10. Let t ∈ {0, . . . ,b2`r−3`−2λ+3µ+6
6` c}. Then t < `r.

Proof. Since t < 2`r−3`−2λ+3µ+6
6` by definition, t < `r will be implied by showing that

2`r−3`−2λ+3µ+6
6` < `r. We can see this in the following way. If it were the case that `r <

2`r−3`−2λ+3µ+6
6` then 6`r+1 < 2`r−3`−2λ+3µ+6 which implies that 2`r < 6−3`−2λ+3µ

3`−1 . Now ob-

serve that the numerator 6−3`−2λ+3µ< 0 whenever `> 6+3µ−2λ
3 . But for every λ,µ ∈ {±1},

we know that 6+3µ−2λ
3 ≤ 11/3< 4< ` and so 6−3`−2λ+3µ< 0 for all primes `> 4. Since we

are only concerned with primes `≥ 5 we see that 2`r < 6−3`−2λ+3µ
3`−1 < 0, which is a contradic-

tion. Thus we know that t < `r for any choice of λ,µ.

Using Lemma 6.3.10 we can show the following.

Lemma 6.3.11. If k ∈ X1b then ord`(bk) = ord`(2`r +6+3µ+6k) < r, (which implies that

|Xbi | = 0 for all i ≥ r).

Proof. Suppose that there exists some k ∈ X1b such that ord`(2`r +6+3µ+6k) ≥ r. Then

2`r+6+3µ+6k ≡ 0 mod `r. Substituting k = (`−µ)/2−1+t` and simplifying yields `(3+6t)≡

0 mod `r which implies that t ≡−1/2 mod `r ≡ (`r −1)/2 mod `r. But since 0< (`r −1)/2< `r

and t < `r, we see that t = (`r − 1)/2. Thus, we have that t = (`r − 1)/2 < 2`r−3`−2λ+3µ+6
6` .

However, we also see that

t = `r −1
2

= 3`r −3
6

> 3`r −3
6`

> 2`r −3
6`

,
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and since ` ≥ 5 = 15/3 > 14/3 we have 3` > 14 and so 2`r −3 > 2`r −3`+11 for all `. This

means that

t = `r −1
2

> 2`r −3
6`

> 2`r −3`+11
6`

≥ 2`r −3`−2λ+3µ+6
6`

,

which contradicts the fact that t < 2`r−3`−2λ+3µ+6
6` . Thus k ∈ X1b implies that ord`(bk) <

r.

The collection of lemmas above allow us to see that

r−1∑
i=1

|X i| = ord`((n−1)!)

and
r−1∑
i=1

|X ib | = ord`(βn).

Recalling that n = `2−λ
3 , we can now to illustrate the effect of `≡ λ mod 3 in Proposition

6.3.2. Before doing so, we remind our reader of the following properties of the floor function.

Lemma 6.3.12. Let x ∈R. Then

(i). bxc = m ∈Z if and only if m−1≤ x < m.

(ii). x−1< bxc ≤ x.

(iii). If m ∈Z then bm+ xc = m+bxc.

Proof. See [17, Chapter 3]

Lemma 6.3.13. Let ` be a prime and let r = 2.

(i). If `≡ 1 mod 3 and `> 7 then

`(max1{t}+1)< n
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(ii). If `≡−1 mod 3 and `> 2 then

`(max1{t}+1)> n and max1{t}`< n.

Proof. Note that since r = 2 we have that λ= 1 for both cases (i) and (ii). We now proceed,

remembering that n = `2−1
3 .

Proof of (i).We show that max1{t}< n/`−1, which implies the result. Since `≡ 1 mod 3 we

know that `= 3s+1 for some s ∈N such that s > 2. Thus

n = `2 −1
3

= (3s+1)2 −1
3

= 9s2 +6s
3

= 3s2 +2s

and so

n
`
−1 = 3s2 +2s

3s+1
−1

= 3s2 − s−1
3s+1

.

Furthermore, recall from Remark 6.3.8 that max1{t} = b2`r−3`−2λ+3µ+6
6` c. Since λ = 1 we

then obtain

max1{t} =
⌊2`2 −3`+3µ+4

6`

⌋
=

⌊2(3s+1)2 −3(3s+1)+3µ+4
6(3s+1)

⌋
=

⌊18s2 +3s+3µ+3
18s+6

⌋
=

⌊6s2 + s+µ+1
6s+2

⌋
.

We now show that

s−1< 6s2 + s+µ+1
6s+2

< s
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in order to conclude that
⌊

6s2+s+µ+1
6s+2

⌋
=max1{t}= s−1 by Lemma 6.3.12. Observe that

(s−1)(6s+2) = 6s2 −4s−2

< 6s2 + s

≤ 6s2 + s+µ+1

and thus we know that s−1< 6s2+s+µ+1
6s+2 . Furthermore, since s > 2 we see that

6s2 + s−µ+1 ≤ 6s2 + s+2

< 6s2 +2s

= s(6s+2),

and so 6s2+s+µ+1
6s+2 < s. Hence

⌊
6s2+s+µ+1

6s+2

⌋
=max1{t}= s−1.

We now show that max1{t}< n/`−1= 3s2−s−1
3s+1 . Observe that

max1{t}(3s+1) = (s−1)(3s+1)

= 3s2 −2s−1

< 3s2 − s−1.

Hence max1{t}< 3s2−s−1
3s+1 = n/`−1 and therefore `(max1{t}+1)< n.

Proof of (ii). Since ` ≡ −1 mod 3 we know that ` = 3s−1 for some s ∈ N such that s > 1.

We first show that `(max1{t}+1)> n by proving that max1{t}> n`−1. Observe that

n = `2 −1
3

= (3s−1)2 −1
3

= 9s2 −6s
3

= 3s2 −2s
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and so

n
`
−1 = 3s2 −2s

3s−1
−1

= 3s2 −5s+1
3s−1

.

Since max1{t}= b2`r−3`−2λ+3µ+6
6` c and because λ= 1 we have that

max1{t} =
⌊2`2 −3`+3µ+4

6`

⌋
=

⌊2(3s−1)2 −3(3s−1)+3µ+4
6(3s−1)

⌋
=

⌊18s2 −21s+3µ+9
18s−6

⌋
=

⌊6s2 −7s+µ+3
6s−2

⌋
.

We now show that

s−1< 6s2 −7s+µ+3
6s−2

< s

in order to conclude that max1{t}=
⌊

6s2−7s+µ+3
6s−2

⌋
= s−1 by Lemma 6.3.12. Observe that

(s−1)(6s−2) = 6s2 −8s+2

< 6s2 −7s+2

≤ 6s2 −7s+µ+3,

and thus we know that s−1< 6s2−7s+µ+3
6s−2 . Furthermore, since s > 1 we see that

6s2 −7s+µ+3 ≤ 6s2 −7s+4

< 6s2 −7s+4s

= 6s2 −3s

< 6s2 −2s

= s(6s−2)
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and so 6s2−7s+µ+3
6s−2 < s. Hence,

⌊
6s2−7s+µ+3

6s−2

⌋
= max1{t} = s−1. We now show that max1{t} >

n/`−1= 3s2−5s+1
3s−1 . Observe that

max1{t}(3s−1) = (s−1)(3s−1)

= 3s2 −4s+1

> 3s2 −5s+1.

Therefore max1{t}> 3s2−5s+1
3s−1 = n/`−1 and so `(max1{t}+1)> n.

Lemma 6.3.14. Let `≡−1 mod 3 be a prime and let r = 3.

(i). If µ = 1 then `((max1{t})+1) < n for all ` > 11 and if µ = −1 then `((max1{t})+1) < n

for all `> 5

(ii). If `> 5 then (max{t}2)`2 < n.

Proof. Proof of (i). We begin by showing that max1{t} < n/`− 1 which will imply that

`((max1{t})+1)< n. Since `≡−1 mod 3 we know that `= 3s−1 for some s ∈N. Furthermore,

because r is odd we have λ=−1 and so n = (`3 +1)/3. Observe that

n = `3 +1
3

= (3s−1)3 +1
3

= 9s3 −9s2 +3s

and so

n
`
−1 = 9s3 −9s2 +3s

3s−1
−1

= 9s3 −9s2 +1
3s−1

.
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Substituting r = 3, λ=−1, and `= 3s−1 yields

max1{t} =
⌊2`3 −3`+3µ+8

6`

⌋
=

⌊2(3s−1)3 −3(3s−1)+3µ+8
6(3s−1)

⌋
=

⌊18s3 −18s2 +3s+µ+3
6s−2

⌋
.

This expression may be simplified by observing that

18s3 −18s2 +3s+µ+3
6s−2

= 18s3 −6s2 −12s2 +4s− s+µ+3
6s−2

= 3s2(6s−2)−2s(6s−2)− s+µ+3
6s−2

= 3s2 −2s+ µ+3− s
6s−2

.

Thus

max1{t}=
⌊18s3 −18s2 +3s+µ+3

6s−2

⌋
= 3s2 −2s+

⌊µ+3− s
6s−2

⌋
.

Now observe that µ+3−s
6s−2 < 0 whenever s > µ+3 = 2 or 4 (so if µ = 1 we consider primes ` =

3s−1> 11 and if µ=−1 we consider primes `> 5, as stated in the hypothesis). Furthermore,

because µ=±1 and s is positive, we see that

(−1)(6s−2) = −6s+2

< −s+2

≤ −s+µ+3,

and thus that −1< µ+3−s
6s−2 . These two observations allow us to conclude using Lemma 6.3.12

that bµ+3−s
6s−2 c =−1 and so

max1{t}= 3s2 −2s−1.

From this, we obtain

(3s−1)(3s2 −2s−1) = (3s−1)(3s2 −2s−1)

= 9s3 −9s2 − s+1

< 9s3 −9s2 +1
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and therefore

max1{t}= 3s2 −2s−1< 9s3 −9s2 +1
3s−1

= n
`
−1

which gives the result.

Proof of (ii). We prove that max2{t}< n/`2. As with part (i), letting `= 3s−1 we find that

n = 9s3 −9s2 +3s and so

n
`2 = 9s3 −9s2 +3s

(3s−1)2

= 9s3 −9s2 +3s
9s2 −6s+1

= s(9s3 −6s+1)−3s2 +2s
9s2 −6s+1

= s+ 2s−3s2

9s2 −6s+1

Recall from Remark 6.3.8 that max2{t}= b2`r−3`2−2λ+3µ+6
6`2 c. Substituting r = 3,λ=−1, and

`= 3s−1 yields

max2{t} =
⌊2`3 −3`2 +3µ+8

6`2

⌋
=

⌊2(3s−1)3 −3(3s−1)2 +3µ+8
6(3s−1)2

⌋
=

⌊54s3 −81s2 +36s+3µ+3
54s2 −36s+6

⌋
=

⌊18s3 −27s2 +12s+µ+1
18s2 −12s+2

⌋
=

⌊ (18s3 −12s2 +2s)−15s2 +10s+µ+1
18s2 −12s+2

⌋
=

⌊ s(18s2 −12s+2)−15s2 +10s+µ+1
18s2 −12s+2

⌋
=

⌊
s+ 10s−15s2 +µ+1

18s2 −12s+2

⌋
= s+

⌊10s−15s2 +µ+1
18s2 −12s+2

⌋
.
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We now show that b10s−15s2+µ+1
18s2−12s+2 c =−1. Since `> 5, we know that s > 2 and so 2−s < 0. Also,

consider that 11s < 15s2 and so 11s−15s2 < 0. Thus

10s−15s2 +µ+1 = 11s−15s2 +µ+1− s

< 0+µ+1− s

≤ 2− s

< 0.

Thus 10s−15s2+µ+1
18s2−12s+2 < 0 for all s > 2. Furthermore, since −3s2 <−2s we have that

(−1)(18s2 −12s+2) = −18s2 +12s−2

= −3s2 −15s2 +12s−2

< −2s−15s2 +12s−2

= −15s2 +10s−2

< −15s2 +10s+µ+1.

Hence b10s−15s2+µ+1
18s2−12s+2 c >−1. This implies that

⌊10s−15s2 +µ+1
18s2 −12s+2

⌋
=−1

and so max2{t}= s−1.

Finally, consider that because −3s2 <−2s we have

(−1)(9s2 −6s+1) = −9s2 +6s−1

= −3s2 −6s2 +6s−1

< −2s−6s2 +6s−1

< 4s−6s2

= 2(2s−3s2).
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which implies that −1/2< 2s−3s2

9s2−6s+1 . Therefore

max2{t} = s−1

< s−1/2

< s+ 2s−3s2

9s2 −6s+1

= n
`2

and so max2{t}`2 < n.

We are now ready to prove the base case steps of Proposition 6.3.2.

Base Case Proof of Proposition 6.3.2. .

Proof of (i) (Base Case r = 2). Suppose that `≡ 1 mod 3 and that n = (`2 −1)/3. We show

that ord`(An)= ord`((n−1)!). From Lemma 6.3.11, we know that |X i| = 0= |Xbi | for all i ≥ 2.

Thus we have that

|X1| = |{m ∈ [1,n−1] : m ≡ 0 mod `}| = ord`((n−1)!)

and

|X1b | = |{k ∈ [1,n−1] : bk ≡ 0 mod `}| = ord`(βn).

This means that every integer k ∈ [1,n−1] which contributes to the `-adic valuation of bk

must be a member of the set X1b , and furthermore, that the elements of X1b are the only

integers which contribute to this valuation.

We now define the function

ϕ : X1 → X1b by ϕ(m)= `−µ
2

−1−`+m.

If we can show that ϕ is a bijection, it will follow that

ord`(βn)= |X1b | = |X1| = ord`((n−1)!),
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since X1 and X1b are both finite (see [1]).

It is clear that ϕ is injective. Letting m1,m2 ∈ X1, we see that ϕ(m1) = ϕ(m2) implies

m1 −`−1+ `−µ
2 = m2 −`−1+ `−µ

2 and so m1 = m2.

In order to show that ϕ is surjective, we let k ∈ X1b and recall from Remark 6.3.8 that

k = `−µ
2 −1+ t` for some t ∈ {0, . . . ,b2`2−3`−2λ+3µ+6

6` c}. Then

ϕ((t+1)`)= `−µ
2

−1−`+ (t+1)`= `−µ
2

−1+ t`= k.

Thus, if we can show that (t+1)` ∈ X1 for all t ∈ {0, . . . ,b2`2−3`−2λ+3µ+6
6` c} then will have shown

that ϕ is surjective. Since the elements of X1 are simply every multiple of ` which is less

than n, it will be sufficient to show that (t+1)`< n = `2−λ
3 for all t ∈ {0, . . . ,b2`2−3`−2λ+3µ+6

6` c}.

But this follows directly from Lemma 6.3.13 (i) since

(t+1)` ≤ (max1{t}+1)`

< n,

and thus we have that ϕ is a bijection. Hence ord`(βn)= |X1b | = |X1| = ord`((n−1)!) and we

are done.

Proof of (ii) (Base Case r = 2). Let `≡−1 mod 3 (`> 5) suppose that r = 2. We show that

ord`(An)= r/2+ord`((n−1)!)= 1+ord`((n−1)!).

From Lemma 6.3.11, we know that |X i| = 0 = |Xbi | for all i ≥ 2. Similar to the base case

in part (i), it then follows that

|X1| = |{m ∈ [1,n−1] : m ≡ 0 mod `}| = ord`((n−1)!)

and

|X1b | = |{k ∈ [1,n−1] : bk ≡ 0 mod `}| = ord`(βn).

Recall from Remark 6.3.7 that max{k}= (`−µ)/2−1+max1{t}`where max1{t}= b2`r−3`−2λ+3µ+6
6` c =

s−1 and s is defined via the decomposition of `= 3s−1.
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We now define the function

φ : X1 → X1b −
{

max{k}
}

by

φ(m)= `−µ
2

−1−`+m.

If we can show that φ is a bijection, it will follow that

ord`((n−1)!)= |X1| = |X1b |−1= ord`(βn)−1

and thus that

ord`(βn)= ord`((n−1)!)+1.

It is clear that φ is injective. In order to show that φ is surjective, we let k ∈ X1b −{max{k}}

and observe that k = `−µ
2 −1+ t` for some t ∈ {0, . . . ,b2`2−3`−2λ+3µ+6

6` c−1}. Consider now that

φ((t+1)`)= `−µ
2

−1−`+ (t+1)`= `−µ
2

−1+ t`= k.

Hence, we must show that (t+1)` ∈ X1 for all t ∈ {0, . . . ,b2`2−3`−2λ+3µ+6
6` c−1}. We know that

the elements of X1 are just every multiple of ` which is less than n and thus it will be

sufficient to show that (t+1)` < n = `2−λ
3 for all t ∈ {0, . . . ,b2`2−3`−2λ+3µ+6

6` c−1}. By Lemma

6.3.13 (ii), we see that

(t+1)` ≤ ((max1{t}−1)+1)`

= max1{t}`,

< n

and thus we have that φ is a bijection. Hence ord`(βn) = |X1b | = |X1|+1 = ord`((n−1)!)+1

and we are done.

Proof of (iii) (Base Case r = 3). Let ` ≡ −1 mod 3 (` > 5) and suppose that r = 3. We

show that ord`(An)= (r−1)/2+ord`((n−1)!). As before, we know that |X i| = 0= |Xbi | for all
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i ≥ 3 and thus that ord`(bk) ≤ 2 for all k. We can therefore conclude that every element k ∈

[1,n−1] which yields ord`(bk) ≥ 1 must be an element of Xb1 . Furthermore, every element

k ∈ [1,n−1] which yields ord`(bk)= 2 must be an element of the set Xb2 ⊂ Xb1 .

We now define two functions:

Φ1 : X1 → X1b by Φ1(m)= `−µ
2

−1−`+m,

and

Φ2 : X2 → X2b −
{

max{k}
}

by Φ2(m′)= `2 −µ
2

−1−`2 +m′.

Note that elements m ∈ X1 have the form m = u`< n and m ∈ X2 have the form m′ = u′`2 <

n. If we can show that Φ1 and Φ2 are bijections, it will follow that

ord`((n−1)!)= |X1|+ |X2| = |X1b |+ |X2b |−1= ord`(βn)−1

and thus that

ord`(βn)= ord`((n−1)!)+1.

It is routine to check that both Φ1 and Φ2 are injections. We now show that Φ1 is surjective.

Let k ∈ X1b and recall that k = `−µ
2 −1+ t` for some t ∈ {0, . . . ,max1{t}}.

Consider that

Φ1((t+1)`)= `−µ
2

−1−`+ (t+1)`= `−µ
2

−1+ t`= k.

As in the other cases, we must show that (t + 1)` ∈ X1 for all t ∈ {0, . . . ,max1{t}} in or-

der to show that Φ1 is surjective. It will suffice to show that (t + 1)` < n = `3+1
3 for all

t ∈ {0, . . . ,max1{t}}. By Lemma 6.3.14 (i), we see that

(t+1)` ≤ (max1{t}+1)`

< n,

and thus we have that Φ1 is a bijection.
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We now show that Φ2 is surjective. Let k′ ∈ X2b and recall that k′ = `2−µ
2 −1− t`2 for some

t ∈ {0, . . . ,max2{t}−1} (where max2{t}= b2`3−3`2−2λ+3µ+6
6`2 c}by Remark 6.3.8). Consider that

Φ2((t+1)`2)= `2 −µ
2

−1−`2 + (t+1)`2 = `2 −µ
2

−1+ t`2 = k′.

Thus, we must show that (t+1)`2 ∈ X2 for all t ∈ {0, . . . ,max2{t}−1} to obtain that Φ2 is

surjective. Recall that the elements of X2 are just every multiple of `2 which is less than n

and it will therefore be sufficient to show that (t+1)`2 < n = `3+1
3 for all t ∈ {0, . . . ,max2{t}−1}.

By Lemma 6.3.14 (ii), we see that

(t+1)`2 ≤ ((max2{t}−1)+1)`2

= max2{t}`2,

< n

ThereforeΦ2 is also a bijection. Thus we know that ord`((n−1)!)= |X1|+|X2| = |X1b |+|X2b |−

1= ord`(βn)−1 and the result for r = 3 follows.

Propositions 6.3.1 and 6.3.2 lead to the following corollary, which we have shown to be

true when r = 2 (for items (i) and (ii)) and r = 3 (item (iii)) below.

Corollary 6.3.15. Let n = `r−λ
3 , where r and λ are defined as in Theorem 4.2.1.

(i). If `≡ 1 mod 3 then ord`(A0)−ord`(An)= r.

(ii). If `≡−1 mod 3 and r is even then ord`(A0)−ord`(An)= r/2.

(iii). If `≡−1 mod 3 and r is odd then ord`(A0)−ord`(An)= (r+1)/2.

Computational evidence gathered in Pari/GP suggests the following relationship between

the family of functions φi : X i → X ib and Φi : X i → X ib , depending on whether r is even or

odd (`≡−1 mod 3 in both these cases).

Conjecture 6.3.16. Let r ∈N and let `≡−1 mod 3.
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(i) Suppose that r is even. If i ∈ N is even then φi : X i → X ib is a bijection and if i is odd

then φi : X i → X ib − {max i{k}} is a bijection.

(ii) Suppose that r is odd. If i ∈ N is odd then Φi : X i → X ib is a bijection and if i is even

then Φi : X i → X ib − {max i{k}} is a bijection.

We furthermore believe the following to hold.

Conjecture 6.3.17. Fix some prime `> 5 and some r ∈N. Let n = `r−λ
3 , where

λ= 1 when `≡ 1 mod 3, and

λ= (−1)r when `≡−1 mod 3.

Then

ord`(α j)= r+ord`((n− j−1)!)

for all j ∈ [0,n−1].

6.4 Newton Polygons for Shifts of K
(λ,µ)

n (x) and Other Conjectures

Conjecture 6.4.1. Let r ∈ N and let n = 3r. Then NP3(K (λ,µ)
n (x+4)) is pure with slope (1−

3n)/2n.

Conjecture 6.4.2. Let k ∈N and let n = 52k. Then NP5(K (−1,−1)
n (x+4)) is pure.

Conjecture 6.4.3. Let k ∈N and let n = 7k. Then NP7(K (−1,−1)
n (x+8)) is pure.

Conjecture 6.4.4. For every n ∈N and λ,µ ∈ {−1,1} we have the following congruence:

K
(λ,µ)
n (x)≡ (x+2)n mod 3.

Conjecture 6.4.5. Let C = `−1
3 , `≡ 1 mod 3 and n = 3`r−`−2

6 . Then the Newton Polygon for

K
(1,µ)
n (x) at ` consists of 2r−1 segments of lengths C, C`, . . . , C`r−1, C`r−1

2 , C`r−2

2 , . . . , C`
2 with

respective slopes −1
C , −1

C+` , . . . , −1
C+`r−1 , −2

C`r−1 , −2
C`r−2 , . . . , −2

C` .
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Conjecture 6.4.6. Let C− = `+1
3 , D = `2−1

3 , ` ≡ −1 mod 3, n = 3`r−`+2
6 and r an odd

integer. Then the Newton Polygon for K
(−1,µ)
n (x) at ` consists of r segments of lengths

C−, D`, . . . , D`r−1, D`r−1

2 , D`r−2

2 , . . . , D`
2 with respective slopes −1

C− , −1
D` , . . . , −1

D`r−1 , −2
D`r−1 , −2

D`r−2 , . . . , −2
D` .
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