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Abstract

This paper investigates a recently discovered geometric representation of two-qubit
states, the Quantum Steering Ellipsoid, by exploring quantum state measurements on
mixtures of polarization-entangled photons produced using spontaneous parametric
down conversion (SPDC). Measurements of the second photon of a mixed bipho-
ton system that are conditioned on observations of the first photon demonstrate all
possible Bloch Vectors that the second photon can be collapsed to by way of ”steer-
ing,” which is only possible due to the nonlocal nature of entangled systems. This
paper examines methods to experimentally verify the Quantum Steering Ellipsoid as
a geometric classification of quantum states.
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1

Introduction

In the physics lab, it is tricky to repeatedly produce quantum particles (electrons,

protons, photons, etc.) that are in the same state. For example, let’s say we wanted

to play with light in its simplest form: a single photon. Photons can be viewed

as electromagnetic waves oscillating through space. In other words, the eletric field

oscillates—it moves side to side, up and down, or in a circular pattern—and the

direction of that oscillation is what we call the state of a photon’s polarization. If

we could prepare a beam of photons perfectly, the polarization state of all the photons

in that beam would be the same each time our laser produced one. That means if

we could pull a single photon from a laser beam, regardless of which one we pulled

out we know that our single photon would be oscillating in the same direction every

time. Our ability to know exactly which polarization state our individual photons of

this beam are in, with 100% certainty, means the photons of that beam are all in the
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same pure state. In other words, we do not need to measure the photons to figure

out what state they are in—there was never any ambiguity as to their polarization.

Mathematically then, we can describe what we know about these pure state photons

with a column vector, even more simply represented in the handy bra-ket notation

by the general symbol |γ〉. What is peculiar about pure state particles, however, is

that when they are measured in a way that transforms or rotates the particle there

is an inherent probability that we will get certain outcomes. For example, if we had

a photon in a horizontally polarized state |H〉 and then tried to measure it such

that we found it in the diagonal |D〉 or antidiagonal |A〉 polarization state, there is

a 50-50 chance we would get|A〉 or |D〉—and there is no way to know which it will

be until we measure it. In quantum mechanics, this is an ontological ignorance; it is

an uncertainty inherent in the state of the particle itself.

However, most of the time our lab equipment will prepare photons imperfectly,

meaning some photons will come out in any number of different polarization states.

Because of this, we do not know which pure states our individual photons are in until

we measure them. In this case, if we wanted to pull a single photon out to play with,

all we know about the photon before we observe it is that there is some probability

pα that it came out of the laser prepared in state |α〉, some probability pβ that it

was prepared in state |β〉, some probability pε that it was prepared in state |ε〉, and

so on. The description of this beam of photons is now a mixture of possible pure

states, or a mixed state, meaning we can only describe it as a combination of those

possible states and their respective probabilities. Take for example a laser which

9
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prepared photons in two possible polariztion states: horizontally |H〉 or vertically

polarized |V 〉. In this case, a simple example of a mixed state could be that 50% of

the photons come out horizontally polarized and 50% come out vertically polarized.

If we wanted to express this as an equation, the state of this mixed state beam

of photons (which we’ll call the Greek letter rho) could be written using bra-ket

notation as such:

ρ =
1

2
|V 〉 〈V |+ 1

2
|H〉 〈H| .

Looking at this we see the probabilities of measuring a photon in one of the two

possible states are written as fractions multiplied times that state. The components

in this equation tell us that it’s essentially a coin toss whether we’ll measure a

vertically or horizontally polarized photon from our beam of photons. However, unlike

a real coin toss where you could ostensibly calculate the coin’s angular velocity

and trajectory to predict whether it will turn up heads or tails, there is no way to

physically predict which state each photon will be in once the coin has been flipped.

We can’t open up our laser and look at the materials generating the photons in hopes

that it will tell us exactly what pure state the next photon is about to be prepared

in—we could only figure out what the probability is that it will be prepared in that

state. In quantum mechanics, this is an epistemological ignorance; the photon is in

a pure state, but we don’t know which pure state it is in before measurement.

10



1. INTRODUCTION

These sorts of curiosities in the world of the very-tiny is part of what makes

quantum mechanics so fascinating—and also so perplexing. The overarching goal

of this paper is to explore some of the bizarre phenomena of quantum mechanics

in a way that makes them easier to understand. The focus in particular is on a

quantum phenomenon known as steering, and how we can represent it through the

gemoetric shapes of spheres and 3D ellipses (aka ellipsoids). This by itself is beautiful,

but by doing this we can make it easier to visualize the phenomenon and what it

can mean on the quantum level. It is my hope that armed with a rudimentary

understanding of the language we use to describe quantum mechanics, this type of

geometric representation can make some of the most fascinating parts of physics, at

least conceptually, less esoteric. In that spirit, I did my best to write this paper with

the goal of accessibility, taking time to explain concepts that undoubtedly appear

basic to those already versed in the language of quantum physics and translating

more complicated ideas and notations to simpler versions wherever possible. It shall

not be taken for granted that readers know what I mean when I say this paper deals

with finite-dimensional non-relativistic theory—instead I’ll explain that we’re dealing

with physics with a defined number of dimensions (2 to 4 at most), and that we don’t

have to worry about the other weird stuff that happens when you start moving close

to the speed of light. Likewise, I will find ways to communicate ideas without using

higher level mathematical jargon, which in the end isn’t necessary to the aims of

this paper. I intentionally avoid concepts such as a basis and Hilbert space when I

can just as effectively explain the same ideas in simpler, more real-world oriented

terms (as the physicist Asher Peres put it: Quantum phenomena do not occur in a

11
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Hilbert space. They occur in a laboratory.” [12]). I do this in part because I remember

wondering when I first set out to study physics if it was necessary that the mysteries

of the quantum world be guarded behind the gates of advanced mathematics. Part of

me still, stubbornly, believes we can even explain the mysteries of a field in physics

known for its complexity and oddity in a way that far more people than currently

do can understand. In that sense this paper is, too, an experiment.

In such, I will walk through the theory step by step to build the foundation

upon which the experiment I modeled is built. The section on Theory will detail

all the knowledge necessary for this exploration of the study of light on the particle

level—a field we call quantum optics. I first discuss terms and ideas that will be

needed to conceptualize what we are physically doing when running the experiment,

as well as the mathematical background for the calculations we will need for modeling

it. After demonstrating what we’ll be doing with some examples, I then demonstrate

the Experimental Model by looking at the Apparatus that would be used to run

this experiment, as well as a detailed explanation as to how it would be run and

the results one should anticipate. Examples of computationally modeled Quantum

Steering Ellipsoids conclude the paper, drawing a well illustrated roadmap for anyone

who should want to verify this experimentally.

12
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Theory

2.1 Photon Polarization and Superposition

Before going forward it is important to expand a bit more on our knowledge of

polarization. First, a clarification: polarization does not tell you everything about

the state of a photon. An example of another part or facet of the photon’s whole

state (what’s known as the global state), which is important to distinguish from

polarization, is the direction of a photon’s propogation—in other words, which way

the wave is headed. Remember polarization is the direction in which its electric field

is oscillating back and forth.

The available polarization states for photons come in a variety of flavors[4]:

• linear polarization: the direction of the electric field of the photon oscillates in

the horizontal or vertical plane, in the diagonal or antidiagonal plane, and so
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on. In other words, the oscillations of a photon’s electric field are confined to

a single plane.

• circular polarization: the direction of the electric field rotates as the photon

moves, circling in the counterclockwise (left) or clockwise (right) direction with

respect to the direction of propogation.

Figure 2.1.1: Linear and Circular Polarization
[See electronic version for figure in color.]

• elliptical polarization: the direction of the electric field rotates as the photon

moves, drawing an ellipse in the counterclockwise or clockwise direction with

respect to the direction of propogation.

• unpolarized: photons are randomly polarized, which is how normal light from

a desk lamp or the sun is typically prepared (and has to be transformed to

become a particular state).

14
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Figure 2.1.2: Elliptical Polarization
[See electronic version for figure in color.]

Having defined these types of polarizations, this is where we start using bra-ket

notation to help abbreviate the different polarization states. Bra-ket notation is a

way of writing the information we know about a state as simple symbols, and those

symbols are shorthand for the information written in the form of a vector. In that

case, 〈bra′s| represent row vectors such as
(
1 0

)
and |ket′s〉 for column vectors such

as

(
1
0

)
, and the same will be true for this paper.

It is important to note that when we write equations that multiply bra’s and

ket’s that we know the difference between an inner product and an outer product.

An inner product is when we have a bra and a ket facing away from one another

(〈bra| |ket〉, usually abridged to be 〈bra|ket〉), and their product always equals a

number (or scalar). A special case is when the bra and ket represent the same state,

15
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and in that case the result is alwas equal to 1:

〈γ|γ〉 = 1 (2.1.1)

Likewise the outer product is when a ket and a bra are facing towards one another

(|ket〉 〈bra|), and they equal a matrix. We will see examples of both of these products

later in the paper.

With this introduction to the notation, particular cases of the polarization

types we just described can be represented by a ket and its associated column vector

[4]:

16
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Horizontal Polarization |H〉
(

1
0

)

Vertical Polarization |V 〉
(

0
1

)

Diagonal Polarization |D〉 1√
2

(
1
0

)
+ 1√

2

(
0
1

)
= 1√

2

(
1
1

)
1√
2
|H〉 + 1√

2
|V 〉

Antidiagonal Polarization |A〉 1√
2

(
1
0

)
- 1√

2

(
0
1

)
= 1√

2

(
1
−1

)
1√
2
|H〉 - 1√

2
|V 〉

Left-Circularly Polarized |L〉 1√
2

(
1
0

)
+ i√

2

(
0
1

)
= 1√

2

(
1
i

)
1√
2
|H〉 + i√

2
|V 〉

Right-Circularly Polarized |R〉 1√
2

(
1
0

)
- i√

2

(
0
1

)
= 1√

2

(
1
−i

)
1√
2
|H〉 - i√

2
|V 〉.

Note that when we talk about a photon being in a particular polarization state

we’re saying we know exactly what its state is, meaning that those states we just

listed are all pure states. Notice, too, that the diagonal/antidiagonal and left/right

circular polarization states we wrote above can also be described as combinations

(known as linear combinations) of the horizontal and vertical polarization states.

This principle of superposition is true for all pure states: they can be rewritten

17



2.1. PHOTON POLARIZATION AND SUPERPOSITION 2. THEORY

as a linear combination of other pure states. The reason for this is because a light wave

can also be described as an overlaying (hence superposition) of two or more other light

waves [15]. In the same way that two sound waves interfere to either create a bigger

(and to us, louder) sound wave or cancel one another out, polarization states interfere

to create different wave shapes as well, in effect forming a different polarization. That

does not mean that the diagonal polarization is not its own definite polarization

state; the horizontal polarization state can be written as a linear combination of

diagonal and antidiagonal polarizations as well. But thinking of a state also being a

combination of two other states can be useful in ways we will see in the next section.

It is important to distinguish how superposition is different from a mixed state,

in that superposed states are pure states and not a mix of different photons in one

state or another. Recall our simplest-case mixed state beam from the Introduction:

we saw that half the photons of our laser beam were horizontal and the other half

were vertical. Compare that to the individual photons of a diagonally polarized beam,

which are always a single state that is also both horizontal and vertical at the same

time. What this tells us is that in the quantum world, superposition means photons

can be thought of as moving in two (or more) directions at once—in essence, they

can occupy multiple states at once.

18
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2.2 Qubits

Related to superposition is another important concept for this paper that comes from

quantum information theory. Quantum information is a way of looking at the states

of quantum systems (like the polarization state of our single photon) as information—

in essence applying the field of data science (with binary bits and computation and

all that) to the weird world of quantum physics, producing some interesting ways of

viewing these concepts.

The simplest quantum systems are those that exist in two-dimensional space.

This is where our single photon’s polarization lives: a space defined by two axes that

are perpendicular to one another. For example, the vertical and horizontal polariza-

tions form two perpendicular axes that create a 2D space; the same could go for our

diagonal/antidiagonal and left/right circular polarizations. The polarization of our

single photon is thus an example of the simplest quantum system. These simplest

2D systems are known in quantum information as a qubit. A qubit is simply tak-

ing the binary bit to the quantum level, where systems can exist simultaneously as

both a 1 and a 0—making good use of the phenomenon of superposition [15]. Since

one qubit represents two dimensions, like our horizontal-vertical photon, a two-qubit

system represents four dimensions, such as two entangled photons both with their

own horizontal-vertical space. The notion of qubits will be helpful when we discuss

the construction of the Bloch Sphere, which we’ll adress in a few sections.

19
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2.3 Density Matrices and the Trace

It is also important to understand how mixed states can be most handily represented.

Keeping with our vector and bra-ket notation, the best way to mathematically rep-

resent a mixed state is to describe it as what we call a density matrix. A density

matrix is simply what you get when you add up the mixture of pure states that the

quantum system could possibly be in, writing all that we know about the beam of

photons in the form of a matrix [1].

For example, let’s say we take our mixed state from the Introduction again: the

mixed state in which 50% of the photons come out of the laser horizontally polarized

and 50% are prepared vertically polarized. Each polarization state has a probability

of 1
2
. Thus our representation of its state, a density matrix ρ, is a sum of the two

possible states and their respective probabilities made into a matrix:

ρ =
1

2
|V 〉 〈V |+ 1

2
|H〉 〈H| ,

which using vector multiplication becomes

ρ =
1

2

(
1
0

)(
1 0

)
+

1

2

(
0
1

)(
0 1

)
⇒ ρ =

1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)

⇒ ρ =
1

2

(
1 0
0 1

)
.

So far we’ve only seen density matrices that are diagonalized—meaning all elements

not on the left-to-right diagonal of the matrix are zero. Any density matrix can be

20
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diagonalized if rewritten in a way that uses the states that form the density matrix as

the

(
1
0

)
and

(
0
1

)
vectors. For example, had we defined the |D〉 polarization state to

be equal to

(
1
0

)
and the |A〉 polarization state to be equal to

(
0
1

)
, their respective

density matrices would be diagonalized.

If we think of the density matrix as the sum of the possible pure states and the

probabilities of their preparation, we get a something that more generally looks like

[15]:

ρ = pα |α〉 〈α|+ pβ |β〉 〈β|+ pε |ε〉 〈ε|+ ...,

which is commonly written in the form:

ρ =
∑
γ

pγ |γ〉 〈γ| . (2.3.1)

The simplest examples of density matrices are those that are formed by pure

states. In the pure state case, we know the probability of our single photon being

in a particular polarization state is 1, meaning our equation for a density matrix is

simplified to just one element of the sum:

ρ = |α〉 〈α| . (2.3.2)

Hence the density matrices for all possible polarization states we listed in Section

2.1 are

21
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ρH =

(
1 0
0 0

)
, ρV =

(
0 0
0 1

)
,

ρD = 1
2

(
1 1
1 1

)
, ρA = 1

2

(
1 −1
−1 1

)
,

ρL = 1
2

(
1 −i
i 1

)
, ρR = 1

2

(
1 i
−i 1

)
.

It is important to note that it is a condition of density matrices that the sum of their

diagonal elements, known as the trace of the density matrix, is always equal to 1:

Tr[ρ] = 1. (2.3.3)

The other condition of density matrices is that they are Hermitian. That means

if we flipped the elements across the left-to-right diagonal of the matrix, and then

turned any imaginary elements negative (so i becomes -i and vice versa), it would

be the same matrix. These concepts will be useful going forward.

We can do all sorts of neat things with the density matrix, but the function that

matters to us here is how we can represent density matrices (and thus the states of

quantum systems) in a way that’s easier to visualize, like a point on a graph. This

is where the Bloch Sphere comes in.

2.4 Constructing the Bloch Sphere

Let’s say we want to plot polarization states on a graph. As it turns out, there’s a

way to turn any density matrix, which as we’ve shown can represent both pure and

22
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mixed states, into a unique 3D vector. With the three components of that vector,

we can plot a point on a 3D graph that represents a given photon’s (or photons’)

density matrix, and thus its polarization state.

To do this we use a set of matrices that when written as a linear combination

can describe any possible matrix. This set is known as the Pauli Matrices, which

is made up of three matrices, plus the identity matrix:

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
,

σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
.

Note that each Pauli Matrix is associated with a pair of polarizations, and this pair

forms an axis. One polarization represents the positive direction on the axis, and the

other polarization represents the negative direction on the axis [3]:

σx = |D〉 〈D| − |A〉 〈A|

⇒ σx =
1

2

(
1 1
1 1

)
− 1

2

(
1 −1
−1 1

)
⇒ σx =

(
0 1
1 0

)

σy = |L〉 〈L| − |R〉 〈R|

⇒ σy =
1

2

(
1 −i
i 1

)
− 1

2

(
1 i
−i 1

)
⇒ σy =

(
0 −i
i 0

)
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σz = |H〉 〈H| − |V 〉 〈V |

⇒ σz =

(
1 0
0 0

)
−
(

0 0
0 1

)
σz =

(
1 0
0 −1

)
.

To rewrite any density matrix for a qubit as a linear combination of these Pauli

Matrices, we use the equation[15]:

ρ =
1

2
(1 + axσx + ayσy + azσz) (2.4.1)

which can be re-written again as

ρ =
1

2
(1 +

(
σx σy σz

)( ax
ay
az

)
) =

1

2
(1 + #�σ · #�a ). (2.4.2)

You’ll notice that there are three unspecified elements in Equation (2.4.1) and

(2.4.2) that can be represented as a column vector: ax, ay, and az. This column

vector #�a , which is specifically associated with the three Pauli Matrices, we call the

Bloch Vector, and it is what we’ll be plotting on our 3D graph. The Bloch Vector

will always be a set of three real numbers that we can show as a point in 3D space.
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The way to acquire the values of components of ax, ay, and az is by taking

the associated trace of the density matrix times each Pauli Matrix. We know this

because, by taking Equation (2.4.2) and multiplying it times the Pauli Matrix written

as a vector, we have:

ρ · #�σ =
1

2
(1 · #�σ + #�σ 2 · #�a ),

which we then take the trace of both sides we get:

Tr[ρ · #�σ ] =
1

2
(Tr[1 · #�σ ] + Tr[ #�σ 2 · #�a ]).

The first term on the right hand side simply becomes the trace of #�σ , since the

Identity Matrix does not transform the vector, and looking at all the Pauli Matrices

we see the Tr[ #�σ ] is equal to 0. Likewise the square of any Pauli Matrix is the Identity

Matrix, meaning the second component reduces to #�aTr[1] which gives us 2 #�a :

Tr[ρ · #�σ ] = #�a .

Here’s an example of how we would solve for a Bloch Vector. Let’s say we wanted

to figure out what the Bloch Vector is for the pure state horizontally polarized density

matrix. We’ve shown that the density matrix for the horizontally polarized photon

is

ρH =

(
1 0
0 0

)
.

Now we know we need to solve for the a-components of the Bloch Vector in the

following equation:
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ρH =

(
1 0
0 0

)
=

1

2
(

(
1 0
0 1

)
+ ax

(
0 1
1 0

)
+ ay

(
0 −ı
ı 0

)
+ az

(
1 0
0 −1

)
).

To solve for the three unknowns, we can utilize the trace function. The trace of the

density matrix for a horizontally polarized photon would thus be 1 (which is good

because as we noted above the trace of any density matrix should be equal to 1). To

solve for ax in particular, we take the trace of the density matrix of the horizontally

polarized photon multiplied times the Pauli Matrix associated with that component

of #�a , which in this case is σx. Thus, our equation for ax would be

ax = Tr[ρH · σx]

⇒ ax = Tr[

(
1 0
0 0

)(
0 1
1 0

)
].

We apply the same to the other two components of #�a . Thus, for the horizontally-

polarized photon, our Bloch Vector is this column vector:

#�aH =


Tr[

(
1 0
0 0

)(
0 1
1 0

)
]

Tr[

(
1 0
0 0

)(
0 −i
i 0

)
]

Tr[

(
1 0
0 0

)(
1 0
0 −1

)
]
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⇒ #�aH =


Tr[

(
0 1
0 0

)
]

Tr[

(
0 −i
0 0

)
]

Tr[

(
1 0
0 0

)
]



⇒ #�aH =

0
0
1

 .

And to double check that this Bloch Vector fits into our original equation, we simply

plug the components of #�aH in:

ρ =
1

2
(1 + (0)σx + (0)σy + (1)σz)

⇒ ρH =
1

2
(

(
1 0
0 1

)
+ (0)

(
0 1
1 0

)
+ (0)

(
0 −ı
ı 0

)
+ (1)

(
1 0
0 −1

)
)

⇒ ρH =
1

2

(
2 0
0 0

)
=

(
1 0
0 0

)
X

Thus the density matrix ρH can also be described by the vector #�aH =
( 0
0
1

)
.

This case shows that the Bloch Vector for our horizontally polarized photon

has a length of 1. As it turns out, all pure states when turned into Bloch Vectors
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have a length of 1. We can prove this mathematically based on everything we know

about pure states and density matrices:

ρpure = |γ〉 〈γ| ,

ρ2pure = |γ〉 〈γ|γ〉 〈γ| ,

and since 〈γ|γ〉 = 1,

⇒ ρ2pure = |γ〉 〈γ| ,

which means that the trace of ρ2pure is also equal to 1. All this to say that we know

a density matrix represents a pure state if Tr[ρpure]=Tr[ρ2pure] = 1.

Now if we look at the trace of the density matrix equation using the Bloch

Vector, then the result would be:

Tr[ρ2] = Tr[
1

4
(1 + axσx + ayσy + azσz)(1 + axσx + ayσy + azσz)]

Since the trace is commutative, it operates indivudally on each component of the

equation once we’ve factored it all out, with the a-components being unaffected by

the trace and thus moved outside the function

Tr[ρ2] =
1

4
(1 + ax Tr[σx] + ay Tr[σy] + az Tr[σz] + a2x Tr[σ2

x] + axay Tr[σxσy]

+ axaz Tr[σxσz] + ayax Tr[σyσx] + a2y Tr[σ2
y ] + ayaz Tr[σyσz]

+ azax Tr[σzσx] + azay Tr[σzσy] + a2z Tr[σ2
z ])
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With that in mind, we get rid of all the terms of different Pauli Matrices being

multiplied by one another as they are all equal to zero:

Tr[σxσy] = Tr[σxσz] = Tr[σyσx] = Tr[σyσz] = Tr[σzσx] = Tr[σzσy] = 0,

as well as get rid of all terms that are the trace of a Pauli Matrix (or a Pauli Matrix

times any number):

ax Tr[σx] = ay Tr[σy] = az Tr[σz] = 0.

Finally, because a Pauli Matrix times itself will give you the Identity Matrix, and

the trace of the Identity Matrix is 2, we have:

Tr[ρ2] =
1

4
(2 + 2a2x + 2a2y + 2a2z)

⇒ Tr[ρ2] =
1

2
(1 + a2x + a2y + a2z)

⇒ Tr[ρ2] =
1

2
(1 + | #�a |2),

which means anytime that Tr[ρ2]=1, and thus is a pure state, | #�a |2 must also be equal

to one, meaning the length | #�a | (the length of the Bloch Vector) is always 1.

Since the maximum length any Bloch Vector can have is 1, if we took all possible

Bloch Vectors and plotted them out they would form what is known as the Bloch

Sphere, where all pure states of this qubit are on the surface of the sphere and all

mixed states of the qubit are on the inside of the sphere.

In the Figure 2.4.1 below, you’ll see what this looks like. Our axes for the

Bloch Sphere are chosen to be pairs of the usual culprits for pure polarization
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states: diagonal-antidiagonal is the x-axis, and the left-right ciruclar is the y-axis,

and horizontal-vertical is the z-axis.

Figure 2.4.1: The Bloch Sphere for our single photon

What’s helpful about the Bloch Sphere is that this represents all the states

available to a qubit, including the quantum system of our beam of photons. We

have a graphical representation of all its possible states described in these three

polarization axes—the horizontal-vertical, the diagonal-antidiagonal, and the left-

right circularly polarized axis. The beam of photons can thus be represented as a

point anywhere both on or inside the Bloch Sphere.

2.5 Entanglement

Having explored different representations of simple polarization states, we can explore

some more complicated phenomena. As we’ve seen in quantum mechanics, simple
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quantum systems like the polarization of photons are described as being in a given

state, whether it be a mixed state or a pure one. But where some of the quantum

weirdness really starts is when we have a quantum system that is composed of two

(or more) particles’ states that are said to be entangled, meaning that the states of

these two particles form one composite system rather than two one-particle states [8].

In other words, we cannot think of an entangled system of two photons as separate

entities—this is why some refer to two entangled phtons as a single biphoton [10].

To express the system as two separate photons would mean they were not entangled.

Entanglement can be represented mathematically by taking what is known as

the Kronecker product between two states. If we have two horizontally or vertically

polarized photons whose polarizations are entangled, they could be written in one of

three ways:

|H1〉 ⊗ |H2〉 = |H1〉 |H2〉 = |H1, H2〉 ,

|V1〉 ⊗ |V2〉 = |V1〉 |V2〉 = |V1, V2〉 .

The Kronecker product is simply taking two vectors/matrices and matching each

element of the first vector/matrix with the entire second vector/matrix. A quick

sketch of how this vector multiplication works for the horizontally polarized case

would be:

|H1, H2〉 =

1

(
1
0

)
0

(
0
1

)
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|H1, H2〉 =


1
0
0
0

 .

As you can see, the entanglement of two qubits moves us up into four

dimensions—in this case being the pair of axes formed by each photon’s individual

horizontal and vertical polarization states. The simplest examples of entangled pure

states are known as the four Bell States, which are written here using the horizontal

and vertical polarization states:

|φ+〉 =
1√
2

(|H1, H2〉+ |V1, V2〉),

|φ−〉 =
1√
2

(|H1, H2〉 − |V1, V2〉),

|ψ+〉 =
1√
2

(|H1, V2〉+ |V1, H2〉),

|ψ−〉 =
1√
2

(|H1, V2〉 − |V1, H2〉).

We will be looking at an example of steering photons using the third of those four

Bell States.

2.6 Down-Conversion

We can produce entangled photons in a number of different ways. The earliest op-

tical experiments on entangled photons involved sending ultraviolet light at calcium
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atoms, which causes electrons to jump into a more excited state. When the electrons

fell back to their natural resting orbits (their ground state), the spontaneous decay

would emit a pair of correlated pairs of photons emanating in opposite directions[10].

A technologically simpler method (and the way this experiment would produce en-

tangled photons) is by sending a beam of photons through down-conversion crystals.

Spontaneous Parametric Down-Conversion (SPDC) is the splitting of individual

photons into entangled photons by sending them through specially prepared crys-

tals. The process was first described in 1970 [2], improving on the efficiency of atomic

emission of two photons to having one out of every 1012 photons sent into the crystal

turned into a pair [11]. The process is “parametric” because the down-conversion is

dependent on the electric fields of the photons, not just the intensity of the light we

send in to the crystals. Specifically, in our experiment one of the blue-wavelength pho-

tons we send into the crystals will split into two, entangled, red-wavelength photons.

The reason for the color change is because in the process of being down-converted,

energy and momentum of the soon-to-be-down-converted-photon are conserved by

being split evenly between the two entangled photons, meaning that they are less

energetic and take longer to oscillate, producing longer wavelengths (hence “down-

conversion”). How down-conversion in the crystals works is still unknown (hence

“spontaneous”), but since the focus of this paper is on the entanglement we will

have to leave that as an open question [7].
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2.7 Quantum Steering

The phenomenon of entanglement is what allows for a quantum system as a whole

to react to actions performed on its individual parts. This is how the concept of

quantum steering works. First discovered by Schrödinger, steering can be thought

of as taking measurements on one particle of an entangled system (like our biphoton),

causing the other particle to collapse (i.e. to be ”steered”) to another state [14]. In

effect, by using optical elements to rotate one of the entangled photons (called the

idler photon) into different polarization states and then measuring that photon, we

can steer the other photon (called the signal photon) into a range of other states.

Steering is not as active a process as it may sound. By taking measurements

on the idler photon, we are not causing the signal photon to become another state.

Instead, steering is simply finding a correlation that we defined: if we purposefully

measure diagonal polarization on the idler side for the state |D1, D2〉 by projecting

it on to the diagonal polarization state, then we’re going to get diagonal polarization

on the signal side as well; and that stays true even if we try to measure the idler

photon by projecting it on |H〉 or |R〉 or any pure polarization state. The correlation

always holds, and is what allows steering to take place. One way to think of this is

by taking trials of rolling a pair of dice. Let’s say we labeled each of the 6 numbers

on our dice with the common polarization states, where the opposite side of the die

is the perpendicular polarization: 1 → |H〉, 2 → |L〉, 3 → |D〉, 4 → |A〉, 5 → |R〉, 6

→ |V 〉. Now say these dice were entangled, so that each time we got one state on the
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first die, we got its perpendicular polarization on the second die. The trials would

look something like this:

Trial 1st Die 1st State 2nd State

1 3 |D〉 |A〉

2 5 |R〉 |L〉

3 1 |H〉 |V 〉

4 1 |H〉 |V 〉

5 4 |A〉 |D〉

As you can see, each time we find |H〉 for the 1st die, we will always find

|V 〉 for the 2nd die, and vice versa. Thus steering, in this example, would be if we

did something to the first die mid-roll that made it land with a 1 facing up. By

projecting it onto the state 1, we have in effect steered the second die to come up

with a 6 because of that correlation. This is a subtle difference between causation

and correlation in quantum mechanics, but an important one to make.

2.7.1 Rotating States with Wave Plates

In our experimental model, we rotate our down-coverted idler and signal photons

using wave plates and then measure the states using Rochon Polarizers and detec-

tors, which transmit horizontally and redirect vertically polarized light (see Figure
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3.1.1). Depending on how we angle the wave plates, we can rotate our photons into

a modified polarization state. Thus, if we were to place a wave plate in front of the

beam of the idler photon, the signal photon would be rotated such that when we

measure it as a result of their entanglement it will be projected onto a pure or mixed

state.

The way we mathematically represent what wave plates and polarizers do to

the polarization state of photons is by using the Jones Matrices. Each Jones Ma-

trix mathematically represents the operation a given wave plate performs on a beam

of photons. In our experiment, we are using common wave plates known as half-wave

plates and quarter-wave plates. Rotating these wave plates to different angles trans-

forms the states. The general Jones Matrices for half-wave plates and quarter-wave

plates are listed below, as are the two matrix operations that the Rochon Polarizer

performs on the state (since it acts as both a horizontal and vertical polarizer) [1]:

Horizontal Polarizer JH

(
1 0
0 0

)
Vertical Polarizer JV

(
0 0
0 1

)
Half-Wave Plate Jλ

2
(φ)

(
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

)

Quarter-Wave Plate Jλ
4
(χ)

√
2
2

(
cos2(χ) + i sin2(χ) (1− i) sin(χ) cos(χ)

(1− i) sin(χ) cos(χ) sin2(χ) + i cos2(χ)

)

When we talk about orienting or rotating the wave plates, we mean that we

are rotating it like a wheel about its center. The Figure 2.7.1 depicts this.
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Figure 2.7.1: Wave Plate Orientations

There are particular orientations of both wave plates that will be important

for taking measurements. On the signal side of the biphoton, we’ll need to rotate the

signal state in three different ways, each correlated with one of the three Pauli Ma-

trices and their associated polarization axis for the Bloch Sphere that we mentioned

earlier. In essence, we’re rotating the state of the photon beam from wherever it is

in the Bloch Sphere to one of these axes.

The wave plate settings for our signal photon will thus be
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Polarization Axis QWP Angle χ HWP Angle φ

Horizontal-Vertical 0o 0o

Diagonal-Antidiagonal 0o 22.5o

Left-Right Circular 45o 0o

with the fast axis of the wave plates being rotated relative to the horizontal (i.e. 0o

means perpendicular with the lab table).

It is important to understand that the wave plates after down-conversion only

act on the individual photons in the biphoton system. However, we mathematically

have to operate on the entire biphoton state due to their entanglement. We do this

by taking the Kronecker product of the Identity Matrix with the operators we listed

above, so that it only acts on one of the components of the Kronecker product that

makes up the entanglement.

For example, this operation (1⊗Jλ
4
(45o)) |Hs, Hi〉 only acts on the idler photon,

leaving the horizontal polarization state of the signal photon unchanged, which gives

us with |Hs, Ri〉 .

2.7.2 An Example with a Bell State Biphoton

Let’s flesh all this out with an example using our third Bell State biphoton:

|ψ+〉 =
1√
2

(|Hs, Vi〉+ |Vs, Hi〉).
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The idler passes through a quarter- and half-wave plate and the signal through either

a quarter- or half-wave plate (as they will in the experiment we model, see Figure

3.1.1). We take the Kronecker product of a general Jones Matrix and the Identity

Matrix, the Kronecker product of the Identity Matrix and the Jones Matrix for the

half-wave plate, and then the Kronecker product of the Jones Matrix for the quarter-

wave plate and the Identity Matrix:

(J λ
2,4

(θ)⊗ 1)(1⊗ Jλ
2
(φ)(1⊗ Jλ

4
(χ)) |ψ+〉

where the angles θ, φ, and χ are all dependent on our rotations of the wave plates.

Note we must order the Jones Matrices right to left according to the order that they

rotate the state.

As this is a pure state case, and later we will be dealing with mixed state cases,

we’re going to convert our pure state from a ket to a density matrix. Using Equation

(2.3.2), our density matrix is simply the product |ψ+〉 〈ψ+|:

ρψ+ =
1√
2

(|Hs, Vi〉+ |Vs, Hi〉)
1√
2

(〈Hs, Vi|+ 〈Vs, Hi|

⇒ ρψ+ =
1

2
(|Hs, V2i〉 〈Hs, Vi|+ |Hs, Vi〉 〈Vs, Hi|+ |Vs, Hi〉 〈Hs, Vi|+ |Vs, Hi〉 〈Vs, Hi|).

This may look clunky in bra-ket notation, but what this tells us is the value of

each component in the 4x4 density matrix that represents our third Bell State bipho-

ton |ψ+〉. We’re going to use bra-ket notation for the next part of our calculation,
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but just to see the density matrix at this juncture we convert it to vector notation

and find:

ρψ+ =
1

2
(


0
1
0
0

(0 1 0 0
)

+


0
1
0
0

(0 0 1 0
)

+


0
0
1
0

(0 1 0 0
)

+


0
0
1
0

(0 0 1 0
)

⇒ ρψ+ =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .

Much neater. Now back to bra-ket notation. Having prepared our biphoton, let’s

make up some settings for our wave plates. We can do a simple demonstration of

how the operations work by rotating the half-wave plate to 22.5o and leaving the

quarter-wave plate oriented at 0o. Our equation is thus:

(J λ
2,4

(θ)⊗ 1)(1⊗ Jλ
2
(22.5o))(1⊗ Jλ

4
(0o)) |ψ+〉 ,

which we’ll introduce a shorthand for in order to make our equations less messy:

Ŵ |ψ+〉 ≡ (J λ
2,4

(θ)⊗ 1)(1⊗ Jλ
2
(22.5o))(1⊗ Jλ

4
(0o)) |ψ+〉 .

Now looking at the density matrix representation of this we’d have:

Ŵ |ψ+〉 〈ψ+| Ŵ †
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where the dagger next to the Jones Matrix shorthand stands for the Hermitian

conjugate, which we saw in our discussion of density matrices. Expanding that, we

get:

= Ŵ (
1

2
(|Hs, Vi〉 〈Hs, Vi|+ |Hs, Vi〉 〈Vs, Hi|+ |Vs, Hi〉 〈Hs, Vi|+ |Vs, Hi〉 〈Vs, Hi|))Ŵ .

To save us the headache of multiplying all these 4-element vectors with 4x4 matrices,

we can simply create a key that shows us:

Jλ
2
(22.5o)Jλ

4
(0o) |H〉 = |D〉

〈H|Jλ
4
(0o)†Jλ

2
(22.5o)† = 〈D|

Jλ
2
(22.5o)Jλ

4
(0o) |V 〉 = i |A〉

〈V |Jλ
4
(0o)Jλ

2
(22.5o)† = −i 〈A| ,

which we can use to more quickly convert our pure state density matrix in bra-ket

notation:

= (J λ
2,4

(θ)⊗ 1)·

1

2
(|Hs〉 i |Ai〉 〈Hs| (−i) 〈Ai|+ |Hs〉 i |Ai〉 〈Vs| 〈Di|+

|Vs〉 |Di〉 〈Hs| (−i) 〈Ai|+ |Vs〉 |Di〉 〈Vs| 〈Di|)

·(J λ
2,4

(θ)† ⊗ 1).

Notice how all of the idler states have been rotated to become diagonal or antidiag-

onal polarization, sometimes producing an imaginary number i, which means that

the wave of the polarization was shifted backward or forward relative to its original
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oscillation. Now if we wanted to find the tranformed density matrices for each of the

three possible wave plate orientations, so that we could the find the three compo-

nents of the Bloch Vector from those density matrices, we need to do three separate

transformations for measuring the signal state using no wave plate, a quarter-wave

plate, and then a half-wave plate .

No Wave Plate

ρnwp =
1

2
(|Hs〉 (−i) |Ai〉 〈Hs| i 〈Ai|+ |Hs〉 i |Ai〉 〈Vs| 〈Di|

+ |Vs〉 |Di〉 〈Hs| (−i) 〈Ai|+ |Vs〉 |Di〉 〈Vs| 〈Di|)

=
1

2
(|Hs〉 ((

1√
2

)(|Hi〉 − |Vi〉)) 〈Hs| ((
1√
2

)(〈Hi| − 〈Vi|)))

+i |Hs〉 ((
1√
2

)(|Hi〉 − |Vi〉)) 〈Vs| ((
1√
2

)(〈Hi|+ 〈Vi|))

−i |Vs〉 ((
1√
2

)(|Hi〉+ |Vi〉)) 〈Hs| i((
1√
2

)(|Hi〉 − |Vi〉))

+ |Vs〉 ((
1√
2

)(|Hi〉+ |Vi〉)) 〈Vs| ((
1√
2

)(〈Hi|+ 〈Vi|)))

⇒=
1

2
(
1

2
(|Hs〉 |Hi〉 − |Hs〉 |Vi〉)(〈Hs| 〈Hi| − 〈Hs| 〈Vi|)

+
i

2
(|Hs〉 |Hi〉 − |Hs〉 |Vi〉)(〈Vs| 〈Hi|+ 〈Vs| 〈Vi|)

− i

2
(|Vs〉 |Hi〉+ |Vs〉 |Vi〉)(〈Hs| 〈Hi| − 〈Hs| 〈Vi|)

+
1

2
(|Vs〉 |Hi〉+ |Vs〉 |Vi〉)(〈Vs| 〈Hi|+ 〈Vs| 〈Vi|))
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⇒=
1

4
(|Hs〉 |Hi〉 〈Hs| 〈Hi|−|Hs〉 |Hi〉 〈Hs| 〈Vi|−|Hs〉 |Vi〉 〈Hs| 〈Hi|+|Hs〉 |Vi〉 〈Hs| 〈Vi|)

+
i

4
(|Hs〉 |Hi〉 〈Vs| 〈Hi|+ |Hs〉 |Hi〉 〈Vs| 〈Vi| − |Hs〉 |Vi〉 〈Vs| 〈Hi| − |Hs〉 |Vi〉 〈Vs| 〈Vi|)

− i

4
(|Vs〉 |Hi〉 〈Hs| 〈Hi| − |Vs〉 |Hi〉 〈Hs| 〈Vi|+ |Vs〉 |Vi〉 〈Hs| 〈Hi| − |Vs〉 |Vi〉 〈Hs| 〈Vi|)

+
1

4
(|Vs〉 |Hi〉 〈Vs| 〈Hi|+ |Vs〉 |Hi〉 〈Vs| 〈Vi|+ |Vs〉 |Vi〉 〈Vs| 〈Hi|+ |Vs〉 |Vi〉 〈Vs| 〈Vi|)

⇒=
1

4


1 −1 i i
−1 1 −i −i
−i i 1 1
−i i 1 1

 .

This is our transformed biphoton for this case just before it hits the Rochon

Polarizers, untransformed by a wave plate on the signal side of the apparatus. When

we take the trace of the biphoton state’s density matrix times the associated Pauli

Matrix for this wave plate arrangement (in this case σz), we will get the az component

of the Bloch Vector. Now for the next component ay, we transform the biphoton

density matrix using a half-wave plate.
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Half-Wave Plate (Oriented at 22.5o)

Doing the same steps as above get us the following state (abbreviated here):

ρhwp = (Jλ
2
(22.5o)⊗ 1)·

(
1

2
)(|Hs〉 i |Ai〉 〈Hs| (−i) 〈Ai|+ |Hs〉 i |Ai〉 〈Vs| 〈Di|

+ |Vs〉 |Di〉 〈Hs| (−i) 〈Ai|+ |Vs〉 |Di〉 〈Vs| 〈Di|)·

(Jλ
2
(22.5o)† ⊗ 1)

⇒ ρhwp = (
1

2
)(|Ds〉 |Ai〉 〈Ds| 〈Ai|+ i |Ds〉 |Ai〉 〈As| 〈Di|+

i |As〉 |Di〉 〈Ds| 〈Ai|+ |As〉 |Di〉 〈As| 〈Di|)

⇒ ρhwp =
1

4


1 i −i −1
−i 1 −1 i
i −1 1 −i
−1 −i i 1

 .

Quarter-Wave Plate (Oriented at 45o)

ρqwp = (Jλ
4
(45o)⊗ 1)·

(
1

2
)(|Hs〉 (−i) |Ai〉 〈Hs| i 〈Ai|+ |Hs〉 i |Ai〉 〈Vs| 〈Di|+

|Vs〉 |Di〉 〈Hs| (−i) 〈Ai|+ |Vs〉 |Di〉 〈Vs| 〈Di|)·

(Jλ
4
(45o)† ⊗ 1)

The key for this being

Jλ
4
(45o) |H〉 = |R〉
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〈H|Jλ
4
(45o)† = 〈R|

Jλ
4
(22.5o) |V 〉 = i |L〉

〈V |Jλ
4
(45o)† = −i 〈L|

ρqwp =(
1

2
)(|Rs〉 |Ai〉 〈Rs| 〈Ai|+ i |Rs〉 |Ai〉 (−i) 〈Ls| 〈Di|

+ i |Ls〉 |Di〉 〈Rs| 〈Ai|+ (i) |Ls〉 |Di〉 (i) 〈Ls| 〈Di|).

We’d then rewrite the diagonally and antidiagonally polarized photons in terms of

the right and left circular polarizations. Our resultant matrix would be:

ρqwp =
1

2


0 0 0 0
0 1 −i 0
0 i 1 0
0 0 0 0

 .

2.7.3 Converting Coincidence Counts

Now we have these three matrices representing three different transformations of the

signal state after we rotate the idler photon.

In order to finally determine the signal state, we send both the idler and

the signal photons through Rochon Polarizers, which transmit horizontally polar-

ized photons and redirect vertically polarized photons to separate detectors. Our
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single-photon counting modules receive those beams, telling us how many coinci-

dence counts occur between them. In other words, the entangled photons will arrive

at two separate detectors at the same time—hence their coincidence—and the pro-

portion of those counts give us information about the signal state.

For example, in our apparatus the idler side has two detectors (A and A’), and

the same goes for the signal side (B and B’). Detector A and B receive horizontally

polarized light and A’ and B’ receive vertically polarized light. Let’s say we sent

the signal beam through the quarter-wave plate oriented at 45o: if the proportion

of coincidences between Detectors A and B is 100% of all coincidences, then we

know the incoming state was |H,H〉. If we then work backwards to see what the

quarter-wave plate on the signal side rotated the biphoton state from to achieve

a pure |H,H〉 state, we know what our signal photon was before we rotated it to

horizontal or vertical polarization—in other words, what state we had steered the

signal photon to. In the case where we get 100% of the coincidence counts at A

and B after transforming the signal state with a quarter-wave plate, we know that

Jλ
4
(45o) |L〉 = |H〉, meaning our signal state had been steered to |L〉.

Knowing which setting of wave plates we used, we can conclude using the

coincidence counts the value of each component of our 3D Bloch Vector, associated

with the polarization axis that we rotated to using our signal wave plate setting.

In the example above, we just showed a proportion of 100% (or 1) came up for our

measurement using the quarter-wave plate on the signal side, meaning we projected it

from the left-right circular polarization axis onto the horizontal-vertical polarization
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axis. Were we running the experiment, we would have achieved this proportion using

the formula [3]:

NAB −NAB′

NAB +NAB′
. (2.7.1)

This allows for negative proportions as well, which means they lie on the “negative”

side of the axes that make up the Bloch Sphere. If we had gotten a proportion of -1,

that would tell us that we had steered our state to |R〉.

For the purpose of modeling, we can achieve this same coincidence proportion

by taking the trace of the three density matrices after we operate on them with

the Rochon Polarizers. Since the Rochon Polarizers function as both horizontal and

vertical polarizers acting on the idler and signal part of the biphoton, we take the

Kronecker Product of (JH − JV ) with itself, giving us

(JH − JV )⊗ (JH − JV ) = (JH ⊗ JH − JH ⊗ JV − JV ⊗ JH + JV ⊗ JV ), (2.7.2)

which is the 4x4 matrix equal to the Kronecker Product of the Pauli Matrix σz with

itself:

R̂ =

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)

⇒ R̂ =

1

(
1 0
0 −1

)
0

(
1 0
0 −1

)
0

(
1 0
0 −1

)
−1

(
1 0
0 −1

)


⇒ R̂ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .
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Meaning for our third Bell State biphoton case, the values of our Bloch Vector would

be

ax = Tr[ρnwp · R̂]

⇒= ax Tr[
1

4


1 −1 i i
−1 1 −i −i
−i i 1 1
−i i 1 1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]

⇒ ax = 0,

ay = Tr[ρqwp · R̂]

⇒ ay = Tr[
1

4


0 0 0 0
0 1 −i 0
0 i 1 0
0 0 0 0




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]

⇒ ay = −1,

az = Tr[ρnwp · R̂]

⇒ az = Tr[
1

4


1 −1 i i
−1 1 −i −i
−i i 1 1
−i i 1 1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]

⇒ az = 0.

Thus our Bloch Vector for the signal state is #�a ψ+ =

 0
−1
0

 or simply the right

circularly polarized state |R〉.

We can do this for any combination of angles rotating the idler state. Here are

the answers to a few more φ and χ angle combinations inserted into the equation

(J λ
2,4

(θ)⊗ 1)(1⊗ Jλ
2
(φ))(1⊗ Jλ

4
(χ)) |ψ+〉 ,
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φ = 10o and χ = 60o:

#�a ψ+ =

 .150384
.984808
.0868241



φ = 150o and χ = 35o:

#�a ψ+ =

−.925417
−.173648
.336824



φ = 292o and χ = 108o:

#�a ψ+ =

 0.361877
0.788011
−0.498081



It’s not obvious at first glance, but all of these Bloch Vectors have a length of 1,

meaning that we have only been steering our third Bell State biphoton to pure

states. As it turns out, we can only steer this biphoton to any pure state on the

Bloch Sphere. Having plotted a number of the angled pairs, we can see how the

possible Bloch Vectors for this case outline the Bloch Sphere in Figure 2.7.2.

Now that we’ve shown this for the pure state biphoton case, we can use the

same process both computationally for and experimental measurement of mixed state

biphotons. In the case of mixed state biphotons, the states that the signal photon can

be steered to would produce an interesting shape: a 3D ellipse, otherwise known as

an ellipsoid [9]. The experiment we model will then produce mixed state biphotons

that we then steer to different ellipsoids.
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Figure 2.7.2: Signal Steering from the Bell State |ψ+〉. These are the results for a
list of different angle pairs ((0o, 0o), (10o, 10o), and so on) that we oriented our
quarter-wave plate and half-wave plate to on the idler side of the apparatus. We
then calculated the Bloch Vectors through the equations above and plotted as points
on the graph, specifically for the state of the biphoton |ψ+〉, which are all pure states
on the surface of the Bloch Sphere as seen above. [See electronic version for figure in
color.]
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Experimental Model

3.1 Apparatus

With all this information in our tool belt, let’s look at a model of running this ex-

periment in full. The experimental apparatus is depicted in the Figure 3.1.1 below,

and builds off the correlated-photon experiments run by Mark Beck [1] and En-

rique Galvez [5]. In the model, a 40-mW Gallium-Nitride 405-nm blue laser diode

sends a beam into beta-barium borate (BBO) down-conversion crystals. Down con-

verted photons emerge at angles of 3o with respect to the pump beam. Each down-

converted photon, due to conservation of momentum, has a wavelength of approxi-

mately 810nm.

We use two types of down-conversion crystals in this apparatus: Type I and

Type II. Type I down conversion produces entangled photons that are in the same
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polarization state, while Type II crystals produce entangled photons that are in

perpendicular polarization states [1]. What states they are produced in depend on

how we prepare the pump beam (using the half-wave plate, the birefringent crystal,

or polarizer) as well as the angle of the crystal itself.

Figure 3.1.1: The laser (called the pump for historical reasons) passes through a
half-wave plate (λ/2) and then through a birefringent plate (BP) before hitting the
down-conversion crystal (DC). The idler beam passes through two wave plates, first
the quarter-wave plate and then the half-wave plate. The signal beam passes through
one of the three wave plate settings (WP). Both the signal and the idler then hit
Rochon Polarizers (RP), which transmit horizontally-polarized photons and displace
vertically-polarized photons. Each beam then hits a detector, which we use to count
coincidences.

After passing through the wave plates, whose orientation we vary by rotating

them, and then through the Rochon Polarizers the photon hits the single-photon
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counting modules (SPCMs) that then send a 5V pulse to a coincidence analyzer,

picking up when two signals strike at exactly the same time (or rather, within a 30

ns range). The pulses from the coincidence analyzer then go through a PCI board

that transmits them to the computer programmed to acquire the data.

3.2 Computational Results

Though I was unable to run the experiment myself, with some computer coding of

the physical operations discussed in the Theory section, I was able to accurately

model the outcome of running these experiments for various mixed state biphotons.

The code I wrote that generated these models is included in the Appendix. A few

examples of Quantum Steering Ellipsoids below are ones that could be created in a

laboratory setting, where mixed states are prepared in the way that Galvez mimicks

a mixed state in one of his experiments [6], which is by putting a polarizer, which only

allows photons in a particular polarization state through, before the down conversion

crystal, and then using the half-wave plate or a quarter-wave plate to rotate that

state. For example, if we place a polarizer and then a properly rotated half-wave

plate in front of the pump beam, then from Type I down conversion we get |Ds, Di〉

entangled photons, and from Type II down conversion we could get |Ds, Ai〉 entangled

states.

If we ran an experiment in which we prepared biphotons in the state |Hs, Hi〉

for half the time and biphotons in the state |Vs, Vi〉 for half the time, and then added
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the two data sets together, we would be mixing the state manually to create the

state

ρ1 =
1

2
|Hs, Hi〉 〈Hs, Hi|+

1

2
|Vs, Vi〉 〈Vs, Vi| .

When we put that mixed state into the computation model, we get a graph of all

the points inside the Bloch Sphere representing all the states the signal photon can

be steered to, which is an ellipsoid of sorts (see Figure 3.2.1).

Figure 3.2.1: Steering Ellipsoid for the ρ1 = 1
2
|Hs, Hi〉 〈Hs, Hi| + 1

2
|Vs, Vi〉 〈Vs, Vi|

biphoton. The signal state is only collapsed to other mixtures of |H〉 and |V 〉 states,
forming an “ellipsoid” that is a straight line along the axis formed by the horizontal-
vertical polarization states. [See electronic version for figure in color]

The signal photon states that we can steer an evenly mixed biphoton of |Hs, Hi〉

and |Vs, Vi〉 states to are mixtures of |H〉 and |V 〉 states. This makes sense if we
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consider that our mixed state was prepared such that the idler and signal photon were

correlated on one another both being horizontally or vertically polarized. Regardless

of how we rotated and then measured the idler photon by sending it through wave

plates, we could never steer the signal photon to anything other than mixtures of its

original entangled polarization states.

If we wanted to steer our signal photon to a set of states that looked more

like an ellipsoid than a straight line, then we would need to create a mixed state

including polarization states that are not just horizontal and vertical. In that case,

say we used a a combination of polarizers and wave plates in the pump beam that

were sent through a Type II down conversion crystal to produce the state |H,V 〉.

Then say we changed the polarizers and wave plates and a Type I down conversion

crystal to produce the state |R,R〉, as well as |D,D〉. We then measured those states

for periods of time that, when we added their data together, produced the state:

ρ2 =
1

4
|H, V 〉 〈H, V |+ 1

2
|R,R〉 〈R,R|+ 1

4
|D,D〉 〈D,D| ,

producing the density matrix
3
16

1
16

+ i
8

1
16

+ i
8
− 1

16
1
16
− i

8
7
16

3
16

1
16

+ i
8

1
16
− i

8
3
16

3
16

1
16

+ i
8

− 1
16

1
16
− i

8
1
16
− i

8
3
16



This would give us a Steering Ellipsoid in which the signal state is now collapsed to a

number mixtures of |H〉, |V 〉, |D〉, |A〉,|L〉, and |R〉 states. Had we steered the signal

using all possible angles for our two wave plates on the idler side of the apparatus,
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the ellipsoid would have a closed surface area, representing all possible mixed states

of the steered signal photon.

Figure 3.2.2: Steering Ellipsoid for the ρ2 = 1
4
|H,V 〉 〈H,V | + 1

2
|R,R〉 〈R,R| +

1
4
|D,D〉 〈D,D| biphoton. The signal state is now collapsed to a number mixtures

of |H〉, |V 〉, |D〉, |A〉,|L〉, and |R〉 states. Had we collapsed all possible angles for
our two wave plates, the ellipsoid would have a closed surface area, representing all
possible mixed states of the steered signal photon. [See electronic version for figure
in color.]

Beautiful: a Steering Ellipsoid we can create right here in the lab utilizing the method

described above. It is important to note that we could, using the method described

above in which we add data sets of pure states entanglements together, create mixed

states that could not physically exist. To ensure this did not happen, I used an

equation that converts the density matrices of biphotons (or any two-qubit systems)
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into a block matrix that includes the Bloch Vectors of the idler (represented below

by
#�

b , which in the matrix is turned into a row vector by taking its tranpose) and

signal photon (represented below by #�a ), were they disentangled from one another

and then measured as separate states [9]:

Θ =

(
1

#�

bT

#�a T

)
.

The T in this block matrix is its own 3x3 matrix that contains information about the

correlation between the two photons. We solve for this block matrix in the same way

we solved for the elements of the Bloch Vector: by taking the trace of the original

density matrix times the Pauli Matrices—though this time, it is all possible Kronecker

products between each the Pauli Matrices, creating 16 traces that represent each

element in the block matrix.

Through this equation we know that if the Bloch Vectors had a length greater

than 1, then we know that this density matrix cannot be accurate, and we mimicked

a state that does not exist in reality: the beam of photons would have probabilities

of being in a particular pure state that were greater than 1.

We can, however, mimick mixed states that are weighted such that the ellipsoid

takes on very different shapes. For example, I modeled the preparation of the mixed

state:

ρ3 =
1

14
|H, V 〉 〈H, V |+ 6

7
|R,L〉 〈R,L|+ 1

14
|D,A〉 〈D,A| ,
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which because the values were so heavily weighted towards the entangled |R,L〉 state,

stretched the Steering Ellipsoid along the axis formed by the right/left circularly

polarized states.

Figure 3.2.3: Steering Ellipsoid for the ρ3 = 1
14
|H,V 〉 〈H,V | + 6

7
|R,L〉 〈R,L| +

1
14
|D,A〉 〈D,A| biphoton. [See electronic version for figure in color.]

The method we used above only allows for Quantum Steering Ellipsoids that are

centered in the Bloch Sphere, as these biphotons carry only one type of correlation.

There are possible mixed states that would create Steering Ellipsoids off the center,

however, which relates to other types of correlation between two particles. Readers
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interested in more about these other types of Steering Ellipsoids should see the paper

that proved the Quantum Steering Ellipsoid theoretically [9].
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Conclusion

To date I know of no experimental test of the claim to the concept of the Quantum

Steering Ellipsoid since its theoretical proof less than a year ago [9]. I’ve shown ex-

amples of the Steering Ellipsoid using models based on real quantum mixed states, as

welll as demonstrated the steps to experimentally verify their existence. This exper-

iment can and should be run, because the Quantum Steering Ellipsoid has potential

to make a concept that initially sounds complicated (a two-qubit mixed state) and

yield clear and intuitive understandings about the concepts of entanglement and

steering. The Steering Ellipsoid could also have uses for visualizing the results of

two-qubit state tomography, which is the reconstruction of a system of source states

based on measurements taken on parts of that system—not too dissimilar from the

experimental procedure we described here. It ought to be the goal of physics to con-

tinue searching for these intuitive and salient representations of quantum mechanical
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phenomena, not only so further discoveries can be made in the field, but so more

people can access the strange realities of our physical world. I hope this roadmap

for experimentally verifying the Quantum Steering Ellipsoid serves of use to those

pursuing that end.
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Appendix

The code below was written in Wolfram Mathematica. It contains abbreviated func-

tions that allow for variable inputs; all I had to do was insert some new [ρmixed]

and then run all of the functions to return a Bloch Sphere with the ellipsoid mapped

inside of it. I left out the returned values for the lists below, but they can easily be

recalculated by reinserting the code into Mathematica.
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