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Abstract

The project involves the development of MUSCLE (MUonS Cascade at Low Energy), a
collection of programs written in C++ and Mathematica to numerically simulate the passage
of low energy muon beams through crystals. Monte Carlo methods employing binary collision
approximation calculations and appropriate molecular dynamics algorithms are implemented
to construct the trajectories and determine the spatial distribution of stopped muons in single
crystals. Channeling of muon particles along certain crystal planes are also found. Binary
collision approximation and molecular dynamics algorithms are compared and the possible effect

of channeling is discussed.
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1 uSR: Methods and Applications

1.1 Introduction

Muons are unstable elementary particles that are abundant in space, and they can be produced in
particle accelerators with much more intensity. At the atomic level, interactions between muons
and surrounding particles such as the atoms and electrons of a particular material can provide
wealth of information regarding the material such as microscopic magnetic properties. Muon science
deals with such phenomena, and the methods mostly rely on the unique physical properties of
this particle. The methods are collectively called pSR, which stands for muon Spin Rotation/Spin
Relaxation /Spin Resonance techniques. Other than their usage in condensed matter physics, SR is
often used in biology to characterize protein by providing information about the microscopic level of
electron transfer in proteins, and in medical physics to perform non-destructive elemental analysis
of human bodies. This project involves the precise calculations of muons stopping in crystalline
samples, which is crucial to every uSR studies as knowing the accurate position of stopped muons is
the foremost step in the analysis. This section briefly describes the methods of muon spin relaxation,
the kind of applications that can be employed using this technique, and the importance of precisely

calculating the stopped muon sites in these experiments.

1.2 Properties and Behavior of Muons Inside Matter

Muons have some unique characteristics that make them particularly useful in applied science

research.



e Muons have unique mass (0.114 amu), like a heavy electron and a light proton.
e They exhibit radioactivity with polarization phenomena.
e They exhibit electromagnetic interaction with matter without a strong interaction.

They can be found in two charge types (postive u* and negative ™), with a spin of 1/2. Muons

have a lifetime of of about 2.2 us, with the following major decay modes:
pt = et + 7,4 v
B e 4+ v+ Ve

where v, and v, are the electron and muon neutrinos and 7, and 7, are the corresponding
antineutrinos. We are mostly interested in pTsince it is used as a “passive” probe to study the
magnetic properties of the host. The stopping of muons in the material under consideration is
divided into a few phases. Figure 1.1 [Nagamine, 41| provides a summary of the energy loss processes
and depolarization mechanisms that occur during u* stopping.

As seen in the figure, high energy muons beams produced in accelerators are slowed down to
a few keVs by interaction with electrons. At 2-3 keV, the u™* particle may capture an electron to
become a neutral Mu (muonium, a hydrogen-like atom composed of u* and e™). This might be the
case when u™ travels through gases, insulators and most semiconductors. Then it is decelerated
via elastic collisions with atoms and inelastic energy loss due to free electron cloud. While slowing
down, Mu may also lose an electron through interaction with other atoms to become u™ again.
After stopping (1-2 eV), the u*, Mu or u~ are said to be implanted into the material. The initial
polarization of u* changes over time due to formation of Mu atoms and interaction with local
magnetic fields, which is the basis of uSR studies. The prolonged half life of the particle is really
useful as it does not decay during the stopping process. It is also important to note that such u™
probes operate in the low energy range, starting from 2-3 keV. Thus our concern is mostly about

the stopping process associated with low energy regime.
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Figure 1.1. Energy loss mechanisms involved with muon stopping.

1.3 SR Experiments

The p spin relaxation technique is based on the fact that the initial spin of a muon may be relaxed
due to interaction with the local magnetic field distribution and its dynamic and random fluctuation.
Due to such interactions, the projection of the muon spin along its initial spin direction changes
over time, i.e. the longitudinal polarization relaxes. In order to observe this experimentally, two
counters can be set in the backward and forward directions with reference to the initial direction of

the incident muon to measure the forward/backward asymmetry, as shown in the following figure.



Figure 1.2. Detection of muon spin relaxation. [Nagamine, 105]

The relaxation can also be observed without the applied field H, 1, using zero-field uSR techniques
(ZF-pSR). The stopped pu' decays inside the sample under study, and gives out e™ that are detected
in the counters. The time evolution of such anisotropic e™ decay corresponds to the motion of the
muon spin direction, which in turn can be related to the dynamic or static nature of local magnetic
field using a one-to-one correspondence [Nagamine, 105 - 109].

All low energy uSR (LE-uSR) experiments involve the following steps:

1. Use of an energy degrader (usually a suitable material of certain thickness) to lower the energy

of the muon before it enters the target.

2. Focusing of the beam to the target. From the previous step, certain amount of spread in the
beam is introduced, along with some contamination. These deviations are minimized in this

step using a collimator.
3. Detection of positron after the muon stops in the sample and decays.
4. Precise time difference measurement between the stopping of muon and detection of positrons.
5. Data collection and statistical calculations.

In the statistical calculation, the possible remaining contamination in the beam and the noise in
the signals are characterized and removed. With the improved data, one can now deduce what

happened at the relaxation site of the muon.



1.4 Applications in Condensed Matter Physics

Determining or predicting the location of stopped p* is crucial for the later stages of TSR calcula-
tions. The properties to be probed cannot be used here. So we have to rely solely on the properties
of ut. The following figure shows a basic example of the kind of qualitative and quantitative

inferences that can be made about the location of u* from a TSR experiment.

0.20

u* Location determination via
spin relaxation by nuclear dipoles 0.00 F

Asymmetry

(a)

Time (us)

Measurement of u* international field vector and
nature of electron spin in undoped system

Figure 1.3. Determination of p* site using asymmetry data. [Nagamine, 129]

The p™ location can be determined from the asymmetry data that essentially captures the
spin relaxation scenario. It can be noticed that the asymmetry dies out exponentially and rises
again in the cases labelled (a) and (b). The u™ sites at (a) and (b) in the crystal shows that
it is likely for the magnetic field there to fluctuate dynamically that may cause such behavior
in the relaxation process, as the muons at (a) or (b) are surrounded by atomic dipoles. On the
other hand, (c) is at a location where dipole contributions from the surrounding atoms do not
fluctuate much according to the experiment data (smooth relaxation curve). Thus, with some idea
about the crystal structure and experimentally determined asymmetry functions, we can learn more
about the u™ site, surrounding dipole contributions and the nature of local field distribution of a
crystalline sample. This is the essential concept behind using muons as a “probe.” Other SR (spin

rotation/resonance) techniques are also used to construct hyperfine field vector profile and magnetic



phase diagrams for a sample based on where the muon stops and what behavior it exhibits, and
this may provide a complete picture of the magnetic properties [Nagamine, 128 - 129, 132 - 140)].
An important concern in such studies, therefore, is predicting the location of a muon. This
provides a useful background check for experimentally determined location. In case the experimental
data cannot be used to locate muons, a good prediction may act as an equivalent of experimental
observation. Ton beam simulation software is widely used for predicting the spatial distribution of
stopped muons, and our goal is to come up with a reliable prediction of muon stopping locations using
such simulation algorithms. However, there are problems associated with some existing simulation
packages. Firstly, some do not take account of the channeling phenomena associated with ion beams
passing through crystals. Secondly, those which do take account of this phenomena are often not
reliable in terms of carrying out an accurate calculation of implantation depth profiles. These issues

are addressed in the following sections.

1.5 Channeling

Experimental results have shown that ions and recoiling nuclei move in a crystal in a different
way than in amorphous materials. In particular in the case of motion along crystallographic axes
and planes, the so-called "channeling effect" can occur and the ions manifest an anomalous deep
penetration into the lattice of the crystal.

The channeling effect can occur in crystalline materials due to correlated collisions of ions with
target atoms. In particular, the ions through the open channels have ranges much larger than the
maximum range they would have if their motion would be either in other directions or in amorphous
materials. When a low-energy ion goes into a channel it transfers its energy mainly to electrons
rather than to nuclei in the lattice and, thus, it usually penetrates much deeper into the crystal
compared to its regular trajectory in an amorphous target. The figure below depicts the effect of

channeling in a Sodium lodide crystal.
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Figure 1.4. Channeling in Sodium lodide crystal under a certain incident angle .. (Picture

courtesy: http://statistics.roma2.infn.it/~dama/web/nai _dmp_20.html)

The ion in this example, under a certain critical angle 1., enters a channel, deflects from different
nuclei but still stays in the channel. On the other hand, the unchanneled ion behaves much like
what it would do in an amorphous sample, i.e. scatter from random atoms.

The effects of channeling can be a very important factor in puSR studies. Often, the sample
being studied is a multilayered one, composed of several samples stuck together in layers. If a good
proportion of muons channel out of the first layer, then the overall multilayer spatial distribution
would look considerably different from a simulation run for an amorphous sample. Other than such
concerns, it should also be noted that even for a single layer sample, channeling of muons may result

in greater depths being reached, and hence, affect the shape of the spatial distribution.

1.6 Existing Software

Monte Carlo algorithms have been extensively used to predict the behavior and trajectories of ions
propagating through a solid. Ion Beam physics is mostly concerned about the stopping distribution
of the incident ions, since this information can be used to characterize the properties of materials.
There are different varieties of programs available from many different authors that find the ion
trajectories, stopping distribution, damage calculation and sputtering yields. The programs mostly
fall under two categories according to the treatment of a sample. The samples can be treated as
amorphous targets, or crystalline targets. There are further variations in the implementation of the
algorithms for each of the category. The binary collision approximation is generally well accepted in
the SR community [Dubman, 2009], which takes account of two ions scattering from each other and
does not consider the influence of the other neighbor ions in a single event. There are other models

such as the molecular dynamics model that deals with the problem from a many-body perspective.



1.6.1 Geant4

Geant4 is an open source C++ framework that is famous for its versatility and stability. It has
been used in many physics applications that deal with some form of ion passage through matter.
It is a recognized tool for high energy, medical, radiation and ion beam physics simulations. Our
initial idea was to write a Geant4 simulation of muons passing through layered Iron or Niobium
thin film samples. Geant4 has nice features for constructing any type of geometry that describes
the experimental setup. Another useful feature of Geant4 is the ease of combining different physics
processes in the program. For our task, we needed to take account of muon precession and decay
processes. Geant4 includes models for all the physics processes involved with muons except the
polarization property, which, according to the documentation, will be included in future releases.
However, it does not track channeling of projectile particles, whereas our goal is to understand and
find a measure of the channeling effect associated with muons traveling through crystals. As famous

and useful as it is in the ion beam physics community, Geant4d was a dead end for our goal.

1.6.2 TRIM

TRIM, which stands for TRansport of Ions in Matter, has been used by many experimentalists
and theoreticians for over 25 years. The specifications and description of the algorithms associated
with the program are explained in a book by one of the authors [Ziegler, 1985]. After we ran a few
simulations using TRIM, results were quite promising. We were successful in creating a simulation
of layered thin film samples and generated depth distribution plots for several crystals. TRIM
does not simulate crystalline structure. It uses random sampling of surrounding atoms to choose a
collision partner at each step, which essentially means it simulates amorphous materials. For the
purpose of simulating crystals, TRIM may not be very useful, but we have still studied the program
in details and amended and implemented our own version of it in order to simulate crystal cells.
The program uses binary collision approximation (BCA) methods, which will be discussed in detail

in chapter 2.



1.6.3 Crystal-TRIM

While researching primary literature to know what other tools are currently being used in ion beam
physics simulation, we came across the name Crystal-TRIM. This is a version of TRIM that deals
with crystalline structures. The program is written in Fortran and, to our disappointment, had very
limited options. The program takes account of the crystal structure of diamond and Silicon only,
whereas we were more interested in elements that exhibit microscopic magnetic properties, such as

Iron, Niobium or Copper. Thus Crystal-TRIM is not suitable for our investigation.

1.6.4 MARLOWE

MARLOWE is one of the very first computer simulation programs that dealt with ion beam physics.
Its origin dates back to 1974. The current version of the program implements methods to simulate
crystals using a modified form of binary collision approximation. Although it is said to use binary
collision approximation, it actually takes account of multiple collisions at the same time step in
order to increase the accuracy of the scattering and energy loss process. Thus this program is one
of our primary investigation tools to investigate the spatial distribution of stopped muons. The

details of its algorithms are described in chapter 2.

1.6.5 MUSCLE

We essentially need a program where we can change parameters of the simulation flexibly, and put
in our own algorithms to test out our ideas. The programs described so far uses BCA algorithms,
but recently the molecular dynamics (MD) model is also being considered in the ion beam physics
community [Nordlund, 2008]. In fact, for our purpose, we think that it is a very good idea to try the
MD model as it takes account of scattering contribution from all the surrounding atoms. Thus it is
actually more accurate compared to the BCA model. To address all our needs, and also to test our
own ideas, we have developed MUSCLE. MUonS Cascade at Low Energy (MUSCLE) is a collection
of programs that we have written in bits and pieces over a year to simulate low energy muon passage
in crystals. MUSCLE has implementation of both binary collision approximation and molecular
dynamics algorithms, and in this project we compare the results from both algorithms and find out

which one is more accurate and efficient. With the inclusion of MD algorithms, we demonstrate

10



the channeling effect and discuss whether it contributes significantly to the determination of spatial
distribution. Comparison of MUSCLE with MARLOWE and TRIM is also provided.

Chapter 2 describes the BCA method in more detail, and provides explanation of all the algo-
rithms we have used in our investigation. Chapter 3 demonstrates the MD model, and our own
version of the same model that reduces computation time and memory storage. Qualitative com-

parison between the models and our own conclusion is drawn in chapter 4.
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2 Binary Collision Approximation

2.1 Introduction

Binary Collision Approximation methods are used in many simulation programs that treat the move-
ment of the projectile particle in a solid as a series of consecutive binary collisions. In this chapter,
we use the terms particle and projectile interchangeably to denote the moving atom. The primary
idea is that the particles come into the solid and scatter from several atoms, which are assumed to
be stationary. During each binary collision, the stationary atom recoils and thus absorbs energy.
The projectile is deflected in the process and after enough collisions it comes below a threshold
energy, when it is assumed that it is now at rest. In terms of classical mechanical treatment, during
a binary collision the transfer of energy between the moving and stationary atoms depends on the
speed and direction of the incoming atom, and the mass and charge of both the atoms. Using
conservation of energy and momentum, the final velocities and equations for trajectories can be
obtained. In the literature, it is known as the asymptotic orbit problem |[Zeigler, 14]. Analytical

solutions can be obtained for screened potentials between the particles.

2.2 Essentials of Two Particle Scattering

This section will briefly describe the essential mathematics and physics behind the binary scattering
process. At first we look at the general process of elastic scattering between two atoms. We extend
this process to consider the problem of two-body scattering due to a central force between them.

Then we provide a brief description of how interatomic potentials for these calculations are found.

12



The section ends with a very effective and widely used formula that captures the scattering process
very efficiently, and evaluates the scattering angle and energy transferred analytically. This approach

is appropriate for the purpose of simulations.

2.2.1 Classical Two Particle Scattering

We are dealing with a low energy regime here, so we stick to non-relativistic calculations. Figure 2.1
and 2.2 show the two coordinate systems we will be using frequently from now. In the laboratory
coordinate system, a projectile of mass M1 comes in, gets deflected from the atom of mass M2
making an angle of ¥ with the axis of incidence, and consequently M2 recoils with a velocity vy and
an angle ¢. The parameter p is defined as the impact parameter, and represents the perpendicular
distance from the initial position of the target atom to the initial axis of incidence of the projectile

atom.

M

Vo

Figure 2.1 Scattering in the laboratory coordinate system. [Zeigler, 15]

For non-relativistic elastic collisions, using conservation of energy, we have the following relation

for the initial kinetic energy FEjy:

1 1
Miv3 = ZMv? + §M2v%. (2.1)

En —
0 2

N

Using the conservation of momentum principle, we get two relations.

Longitudinal : Myvg = Myvicost + Mavacose, (2.2)

and

Lateral : 0 = Myvisind + Mjvisind. (2.3)

13



The problem, if reformulated in center of mass coordinate system, becomes simplified in several
ways. The force function between the two atoms may become very complex, but if there is no
transverse component (the force acts only on the line joining the two particles), the relative motion
of the two atoms can be modeled as a single particle moving under the influence of a central potential
(later we call it the interatomic potential). Thus there is an advantage of describing the problem
using CM coordinate system when we describe the interaction of the two particles using a force field
V(r) that only depends on the interatomic separation r. The motion of both particles in the CM
system is described using only one equation of motion for a particle that moves in a central force
field V' (r). r is an independent variable in this equation. Figure 2.2 shows the scattering process in

the CM system.

CENTER-OF-MASS COORDINATES

Figure 2.2 Scattering in Center of Mass coordinate system. [Zeigler, 15]

The CM system velocity is defined as v.. v, has to be defined in such a way that there is zero

net momentum.

Myvg = (M1 + MQ)UC. (24)

A reduced mass, M., is introduced in the CM system that simplifies the calculation.

1 1 1
- 4 2.5
M. M * My’ (25)

i.e.

14



My My

=— 2.6
" M+ M, (2:6)
Thus the velocity v, is given by
’U()MC

= ) 2.7
Ve M2 ( )

The velocities of the target and projectile atoms in terms of v. are now given as

vo M.
Uprojectile = V0 — Ve = ) 2.8
projectile c Ml ( )
’U()M

Vtarget = Uc = M2C. (29)

For the purpose of simulation, we need to be able to convert the quantities from the CM system
to the laboratory system when we want to calculate the loss of energy due to recoil. The target
atom’s recoil velocity is easy to convert because its initial velocity in laboratory frame is zero. We
keep the total momentum of the system zero, so the velocity vector ve in laboratory system is
related to the CM velocity vector v by the translation vector between the two systems, v.. This
gives us an isosceles triangle and the angle of scatter in the CM frame is related to that of the the

laboratory frame by

o = 2¢. (2.10)

LABORATORY CENTER-OF-MASS

M2 M2

TARGET / v

PARTICLE /\\qb v ),\qs
e
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Figure 2.3 Conversion of the target recoil angle from the CM to the laboratory frame. [Zeigler, 17]

Using this relation, we apply the law of cosines to find the velocity vs in the laboratory coordi-

nates.

v3 = v+ 02 —v2cos (m — ®) = 202 (1 — cos O). (2.11)

Next, we simplify the expression and relate it to the laboratory angle of recoil by using v, =
voMc/ My, and & = 2¢,
M,
vy = 2v0ﬁ; cos ¢, (2.12)

thus relating the final recoil velocity to the angle of recoil in laboratory frame. The energy trans-

ferred, T, is simply the energy due to this recoil velocity vs.

1
T = §M2v§
1 2vgM_.cos ¢ 2
= M, 2emT
2 2( M,

2
= E(UOMCCOS ¢)?

It is important to be able to relate this quantity to the angle of scatter in laboratory frame by using

the equation 2.10, giving us:

T

YR voMe sin < Y2 sin” < EY VAL sin < (2.13)

2 ( @)2_ AE.M, = ,©  AE,MM,  ,©
We now have a basic treatment of two body elastic scattering process, along with expressions that
give us the loss of energy involved. Another important quantity of interest is the scattering angle

of the projectile. We need to find a relation that connects it with the CM angle of scatter. Figure

2.4 shows a conversion scheme.

16
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Figure 2.4 Conversion of the projectile scattering angle from the CM to the laboratory frame.

[Zeigler, 18]

This time, the situation is complicated by the initial velocity vy of the particle. The angle of

scatter in the laboratory frame is given by

(v — ve) 8in ©

tan = . 2.14
an Ve + (Vo — V) c0s O (2.14)
Now, we can use the conservation of momentum in the CM system to say that
(’U()—UC)/UC:MQ/Ml. (2.15)
Thus the angle relationship is now given as
(MQ/Ml) sin @
tan = 2.16
an 1+ (My/My)cos®’ (2.16)
or:
My sin ©
tan = —————. 2.17
an My + M5 cos © ( )

We now have figured out the basic physics of the elastic scattering between an initially moving

particle and a stationary target. A more rigorous treatment is presented in the next section that

17



deals with the interatomic potential between the two charged particles, and modification of the ideas
presented in this section to build a basic understanding of binary collision approximation between

charged bodies.

2.2.2 Two Body Central Force Scattering

The discussion so far is valid for all collisions that maintain the laws of conservation of energy and
momentum. There are some inelastic energy loss due to electronic stopping, which will be discussed
later. Let us look closer at the physics of two body central force scattering, which arises from the
use of CM coordinates that essentially reduces the problem of two body scattering to that of a single
body motion under the influence of a static potential field V(r). The single body has a mass of M,
and possess a velocity v.. The potential V(r) is centered at the origin of the CM coordinates. This
scheme works because of the underlying symmetry of the scattering process. In the CM system,
the total linear momentum of the particles is always zero, and since the paths of both the particles
are symmetric before and after scattering, the calculation for one particle’s trajectory gives the
trajectory of the other. After we find the scattering angles in CM frame, we can change them back
to that of the laboratory frame using the equations (2.10) and (2.17).

In order to derive a trajectory equation for a particle, we resort to the use of polar coordinates as
it makes the math much easier. There are only two particles to consider, and we assumed that there
are no transverse forces involved in this interaction. So the scenario is essentially two dimensional
in a plane defined by the target’s initial position and the initial velocity vector of the projectile. Let
us define the azimuthal polar coordinate © and radial coordinate r for the vector connecting the
projectile and the target atom. Then the time differentials are given by 7 = dr/dt and © =do /dt.

The CM energy of the system is given by

1
Ee =5 M. v, (2.18)

so from conservation of energy of the system, we have the following:

1 .
Ee = M. (2 + 1203 + V(r). (2.19)
Using the conservation of angular momentum, we can also state the following for the polar
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coordinate system:

J.=M.r*0 (2.20)

where J, is the constant of angular momentum. It is worthwhile to also know this relation in the

general coordinate system:

J. = M.vgp, (2.21)

where p is the impact parameter. In order to determine the radial equation of motion, we substitute

equation (2.21) into equation (2.20) and solve for 72.

2  Vop
@ 2.2
Putting this back to equation (2.19), and solving for 7,
2(E.—V .

M.

We now have a relation leading to the radial equation of motion. It can be simplified using M, =

2 E./v3, and

O = vy p/r? (2.24)
(by combining (2.21) and (2.20)), yielding
22 o V() , P
74 =5 — E. w3 (2.25)
i.e. the radial equation of motion is
. dr Vir) P\ 2 1/2
_ (1 - (7) . 2.2
" dt v < E, r (2.26)

Now combining the equations for 7 and ©, we can solve for d© /dr, as this will yield the scattering

angle later.

19



o _dod
dr dt dr 2 (1 V() p2)1/2'

(2.27)

E. r2

In order to find the scattering angle, we integrate the above relation over the entire collision path

PR pdr (2.28)
o0 2 vy _ 2\ '
T<1—f:—ﬁ)

The initial value of © is m, that is why the integral is subtracted from the initial value. The
limits of the integral can be changed by taking account of the fact that there is a closest distance of
approach between the particles, which is defined as 7,,;,, and the path of the particle is symmetric
(hence, we can simply integrate one portion and put in a factor of 2 in front of the integral). The

integral is now

o—r_2[ pdr . (2.29)
Tmin g2 1 V(r) p? 1/2
g

7z

This scattering angle can be used to evaluate the energy transferred from the projectile to the
target by using equation (2.13). The above equation is known as the general orbit equation for
two-body central force scattering, and also as the classical scattering integral. In order to apply
this, we should make sure that the central force potential is not dependent on time or the motion

of the particle, i.e. the potential must be spherically symmetric.

2.2.3 Interatomic Potentials

An accurate potential function is essential in the calculation of scattering angle and energy loss. In
order to calculate the potential between two atoms, extensive studies have been carried out in the
last 60 years or so, and a comprehensive list of such literature is provided by Zeigler |Zeigler, 1985].
The theory itself is detailed and it would require much larger space to explain all the developments.
We summarize the essentials of the theory in this section.

Much of the theory relies on experimental results and statistical models. Some widely used
potential functions are the Thomas-Fermi potential, the Moliere approximation and the Bohr po-

tential. All these potentials are given in a Coulombic 1/r form multiplied by a screening function.
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The actual Coulombic term value due to the positive nucleus is reduced by the screening due to
the surrounding electron cloud, and the so called screening function ¢ attempts to capture this
scenario. It is defined as the ratio of the actual atomic potential at radius r to the potential due to

an unscreened nucleus.

V(r)

= Zelr (2.30)

¢

where V' (r) is the potential at the radius r, Z is the atomic number and e is the electronic charge.
From the experimental data, it is much easier to find the screening function ¢, and then derive the
actual interatomic potential from it. There are other methods to calculate the interatomic potential
too, but we stick to describing the method that relies on experimental data.

The general form for the total interaction potential is

V:Vnn+%n+%e+vk+va- (231)

Van is the electrostatic potential energy between the projectile and target nuclei, Ve is the
pure electrostatic interaction energy between the electron distribution of the two atoms, Vg, is
the interaction energy between each nucleus and the other atom’s electron distribution, Vj is the
increase in kinetic energy due to Pauli excitation of the electrons because of overlapping of regions,
and V, is the net increase in exchange energy of electrons. Each term is evaluated based on specific
theories and a full model for V' is derived.

However, a screening function is generally used to express the potential. The interatomic screen-

ing function definition is given as

V(r)

¢r = (717262 ]7) (2.32)

The general approach to express an interatomic screening function requires the use of a reduced

radius R, which is the atomic radius divided by the screening length.

.
R=—. (2.33)

where ay, the universal screening length, is defined as
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8854
a = 0 (2.34)

which is derived by fitting the primitive form of screening length expression to experimental data.

With the reduced radius and the screening function ¢, the potential can be written as

I Zye?

VIR ==k

¢1(R). (2.35)

This is the form in which potential functions are used in simulations. As said before, the screening
function is determined by fitting a guessed form an expression with experimental data. The universal

screening function is given as

Py = .1818e 3% 4 5099¢ 94237 1 2802¢ 10287 | (281720162 (2.36)

where x is the reduced radius. The word universal (used for screening length and screening function)
does not actually mean that it is accurate and true for all atom pairs. In fact, these formulae are
derived by selecting a large number of random pairs of atoms and adjusting the formula by means of
a least squares fit with experimental data for all these pairs. This approximation is actually pretty

accurate and works very well |Zeigler, 41 - 44, 48|.

2.2.4 Magic Scattering Formula

For a Monte Carlo simulation, it is impractical to evaluate the scattering integral for all the collisions
a projectile undergoes with selected atoms in the sample. Depending on the length of each step
a projectile takes, there can as well be hundreds of collisions depending on the initial energy of
the projectile, and the thickness and structure of the sample. Thus for the simulation purpose,
another method of approximation was proposed by Biersack [Zeigler, 110], usually known as the

Magic scattering formula.
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Figure 2.5. Scattering triangle depicting the scattering process in CM system. |[Zeigler, 112]

For an analytical evaluation of the scattering angle, we formulate the problem according to the
above figure, which depicts the scattering in a center-of-mass coordinate system. A projectile of
mass M; and energy F scatters from a mass My which is initially stationary. The angle of scattering
is given by 6. A so called “scattering triangle” is constructed in the diagram which has some known
parameters as its sides. These parameters are the impact parameter p, distance of closest approach
19, radii of curvature of the trajectories at the closest approach defined as p; and p2, and the terms
01 and d2 known as the correction terms that compensate for the deficiency of the lengths of the
scattering triangle composed of the other parameters. We can find the angle 6 from the following

relation

Q7p+p+5

cos
2 p+ro

(2.37)

p is defined as the summation of p; and po, and 6 = §; + d1. In order to obtain rg, we set the
radial equation of motion dr/dt to zero to find the minimum value of . So rg is obtained by solving

the equation

L Vo) <p>2 o, (2.38)



where E, is the energy of the projectile in CM system, and V'(r) is the interaction potential between
the projectile and the target atoms. The above equation can be solved by using Newton’s method
if we reformulate the equation in the following manner. Let f(r) be the right hand side of the

equation.

fy=1- Y0 (9)2 0. (2.39)

The derivative is given by
fi(r) = —E/(T) + 2 *32 (2.40)
(& r .

Also, an approximation for the derivative f/(r) is given by

7y = L) = I o), (2.41)

r—7To

We know that f(rg) has a value of zero. Hence,

f(r)= —rf_(TZO- (2.42)
Thus 79 can be obtained from
rg =1 — J]:’((:))’ (2.43)

which is essentially the form for iterative solution using Newton’s method. A few steps with an
initial guess of r can yield a good value for the distance of closest approach.
The radius of curvature p is obtained from the following relation based on the fundamental rule

for centripetal force f..

p=p1+p2 = (Mo + Myv3)/ f. (2.44)

Using 2(E. — V(r9)) to represent the numerator which is double the kinetic energy, where E, is the

energy of CM system, we can say that
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(Ec —V(ro))

Vi) (2.45)

p=2

with —V'(rg) representing the force. It is convenient to introduce a dimensionless energy € at this

point, which is basically the CM energy E. expressed in the units of Z; Z3 e?/a.

aFE,

E= 55—
Z1Z2€2’

(2.46)

where Z; and Z, are atomic numbers of the projectile and target atoms, e is the electronic charge
and a is the screening length.

In order to determine the correction term 6, it is a wide accepted practice to change the cosine
formula for the scattering angle in the following manner. The parameters of scattering angle are

expressed in units of the screening length a. The universal screening length is used

0.8853 ag
0= —5a——5av, (2.47)
(Z?'23 4 ZS.23)
where ag = 0.529 A is the Bohr radius. Thus the parameters are now given as
B =p/a, Ry =19/a, Rc = p/a, and A =§/a. (2.48)
Now the cosine relation is
0 B+R.+A
cos = = i (2.49)

2 Ro+R.
The parameter A is now to be determined. The authors of this method determined a formula by

fitting it to precalculated scattering results, which is

Ry— B
A=A 2.50
1+G (2.50)
where
-1
A=2aeB’, andG:q/((l—i—AQ)l/Q—A) . (2.51)
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Here,

a=1+Ce 12 (2.52)
02 _|_€1/2
=== _ 2.53
P Cs + gl/2 ( )
Cy+e
= 2.54
and C, ..., C5 are fitting parameters which are statistically determined for the potential of

interest. The solutions of classical scattering integral is calculated for a range of ¢ and B values
using the desired potential function, and the parameters C; —C5 are determined from a least squares
fitting procedure. There is no particular derivation of the equation (2.50), although the term Ry— B
was shown to give best fits and valid results. The essence of this formula comes from the fact that
as € becomes quite large, the quantities «, S, and v approach unity. Thus at larger energy range,
equation (2.50) produces the Rutherford scattering formula, which is valid at the high energy limit.

The universal interatomic potential is used in all the calculations.

I Zyé?

VIR) == 5

o(R), (2.55)

where R is interatomic separation expressed in units of screening length a, R = r/a, and ¢(R) is
the universal screening function discussed before.

The analytic expression for the scattering angle essentially yields quite accurate values according
to some studies [Zeigler, 114|. Thus this formula is widely used in Monte Carlo programs to save

computation time and resources.

2.2.5 Validity of Classical Mechanical Treatment of BCA

We use classical equations of motion in all the BCA calculations. This is valid when quantum
mechanical effects are negligible. A lower limit for the energy of the projectile is immediately
evident from the fact that the wavelength of the moving atom must be smaller than the lattice

dimensions. The wavelength A of an atom with mass M, velocity v, and kinetic energy F is given
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-2
N = 28710 (256)

Mv  \/M[amu]E[eV]

For a muon, M = 0.114, and assuming that it goes through Iron, the lattice dimension of the crystal

is 2.87 A (0.287 nm). If A = 0.287nm, then E = 0.0877 eV. Thus for most of our purposes, we are
safe. In many simulation, a projectile with energy below 2 - 3 eV is considered to be at rest. In

that respect, it is ok to say that BCA calculations are perfectly valid for our purpose.

2.3 Inelastic Energy Loss

Atoms/particles going through a solid lose energy due to two types of interaction with electrons.
This is the basis of inelastic or electronic energy loss. The first type of interaction is excitation
or ionization in both the colliding atoms. Since it happens in the electronic shells of atoms, it is
called local energy loss. The other type of energy loss is due to the electron gas in the solid (metal)
which acts as a friction force to the projectile motion. It is known as continuous energy loss as the
projectile loses energy to the electron cloud throughout its motion. The theory for local energy loss
involves quantum mechanics, and the formulae are once again validated with experimental data by
means of curve fitting. For our purpose, we do not need to worry about energy loss due to electronic
shell interactions as the muon particle does not have a conventional atomic shell structure. Thus,
even if it somehow manages to excite or ionize an atom, such events will be very rare and our code
does not need to take account of local energy loss. Besides, ionization or excitation could occur
for very high energy muons, and here we are dealing with low energy ones. Continuous electronic
energy loss, on the other hand, is a very important factor in our simulation, as it is responsible for

a major amount of energy loss of low energy muons.

2.3.1 Continuous Electronic Energy Loss

We consider two schemes of determining the continuous electronic energy loss. The first one is by
Lindhard and Scharff [Eckstein, 66] and the second one is by James Zeigler. The continuous energy
loss schemes are energy dependent; the amount of energy loss depends on the kinetic energy of the

projectile.
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Using the dielectric response of a solid, Lindhard and Schar f f presented a formula for inelastic
stopping cross section (given in eVA_l) that they derived on the basis of modeling the electron gas
as a viscous medium:

A E

Srs(E) = 87V 2aph —, 2.57
LS( ) B (212/3_|_222/3)3/2 M1 ( )

7/6
=KVE=121—; 321/ Z223 ,/ﬂ. (2.58)
(Zl/ +Z2/ )3/2 M,

Here, E is given in eV/amu. Hence, E = J\% is used. The constant K is adopted in such a way that

it fits with experimental data. Z; and Z, are the atomic numbers of the projectile and the target
atom, respectively. M; represents the mass of the projectile in atomic mass unit.

However, a better method is to rely on experimental data. A more comprehensive treatment
over a wide variety of experimental proton stopping data is done by Zeigler et al. [Eckstein, 70].
The stopping for other atoms are usually found by means of careful extrapolation of proton stopping

data. For our job, we stick to the expression found for proton stopping.

E1 ag El a4 El
= — — — <2 2.
Slow = a1 (M1) + a3 <M1> , R < 25 keV/amu (2.59)
In (cw% + a8%> E
Shigh = as (Alh)% - ﬁll > 25 keV/amu. (2.60)
‘Fr1

The constants a; — ag are called the proton stopping coefficients which are found by curve fitting
with experimental stopping data. Once the stopping at low and high energies are calculated, the

average stopping Se(F) for a particular energy value is given by

L1 1
Se(E)_Slow

. 2.61
Shigh (2.61)

This is the form we will be using for our simulation. The authors have also suggested a velocity
proportional stopping at low energy regime. For ]\% < 25 keV/amu, the stopping becomes

S(E) ~ ). (2.62)
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This adjustment is required for electronic stopping to agree well with experimental data |Zeigler,

218).

2.4 Monte Carlo Simulation for Amorphous Samples

TRansport of Tons in Matter (TRIM) [Zeigler, 1985] is a standard Fortran program that is used to
predict the slowing down and spatial distribution of ions in an amorphous sample. The latest version
of TRIM is available for download from the author’s (James F. Zeigler) website. The program has
received a face lift over the years and has been transformed from a command window program to
a nice Windows Graphical User Interface. The current version is called SRIM. We downloaded the
program and modified its parameter files so that it recognizes muons as ions. We also found the ion
mass parameter in the data file and modified its range so that the program allowed a lower mass
limit, as the lowest mass that could be entered was the mass of proton.

The Monte Carlo algorithm is based on the physics of scattering and energy loss described above
in the previous sections. The program follows the two dimensional trajectory of the projectile, i.e.
the information about an axis is omitted. A few details of the implementation of this program will
be described in this section, along with some examples showing the kind of results it produces. The
program does not come with a very good documentation (although general explanations are given,
many times the authors have not made it clear why they were using some certain formulas), and
the following is our own interpretation of the original design of the authors. We will also add our

own analysis to justify the usage of some formulas and numerical computation code in the program.

2.4.1 TRIM techniques

The structure of the program can be divided into four phases.
e Initial calculation of the properties of the projectile and the target material,
e electronic stopping calculation for the target material,
e Monte Carlo loop that simulates the transport and scattering of the projectile,

e and finally, calculation of quantities that provide statistical inference about ion beam implan-

tation.
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In our discussion, we will mainly focus on how the electronic stopping calculation and the Monte
Carlo loop is implemented, which are the main essence of the program.

The stopping coefficients data is loaded from a text file that lists experimentally determined
coefficient values for all the ninety two elements. The program allows incorporating up to three
layers of different materials as the target. Hence, all the properties of the elements in the target,
such as density, atomic number, atomic mass etc, are retrieved from the data file. The parameters
for the calculation of the scattering angle, e.g. the reduced mass M., screening length a, initial CM
energy F. etc are calculated in the initial phase of the simulation.

In order to incorporate electronic stopping cross sections, the authors use a list of 1000 stopping
values that are calculated before the main Monte Carlo loop. Our guess is that they wanted to
make the computation faster during the Monte Carlo phase by taking this approach. The electronic
stopping calculation proposed by Zeigler (section 2.3.1) is used in the program. So, instead of
calculating S.(F) for the current energy E of the projectile that requires calling the electronic
stopping method in every step of the simulation, the authors decided to precompute stopping for
1000 energy values, ranging from the initial maximum energy to zero, in equal steps. For a specific
energy, the corresponding element in the stopping list is selected by rounding off the energy variable
to decide which bin its integer value belongs.

The Monte Carlo loop manages the life cycle of a particle moving in the material. Based on a
fixed length step, the particle travels a certain amount of distance in every execution of the loop. An
atom is selected in every step that will act as the target atom from which the particle will scatter.
In a multi-atomic material, an atom is chosen randomly from the set of available atoms, and the
randomization scheme is weighted according to the proportion of the elements present. The energy

loss due to scattering is calculated using the formula we previously derived

Tps = AMy Mo (M + My) 2E sin®(0/2). (2.63)

Here, E is current energy of the particle. The scattering angle is in the laboratory system is given

as

Y = arctan (sm@) (2.64)

cos@—i—%
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This angle lies on the plane defined by the scattering process. The azimuthal scattering angle is

selected at random, using

¢ =27 Ry, (2.65)

where R,, is a random number with a value between 0 and 1.
In the program, the displacements are calculated with reference to a fixed axis, usually chosen to
be the one perpendicular to the target surface. In order to determine how far the particle deviates

from this axis, the angle the particle makes with the axis is determined after each collision by

COS (y; = COS Qy—1 COS Y; + Sin i;—1 SN YP; COS ;. (2.66)

The directional cosines for other axes in the lateral directions are determined if the programmer
wants to follow the trajectory with reference to those directions.

The nuclear energy loss is subtracted from the current energy, along with the energy loss due
to electronic stopping, in every step. Determining the length of each step is tricky as it needs to
be adjusted for different energy range of the incoming projectiles. We focus our discussion only on
the low energy regime. In order to determine the step length, the density of the material is taken
into account by assuming that there is one target atom in every cylinder of volume N !, where N
is the atomic density of the target (number of atoms per unit volume). Then the length of step L

is given by the relation

e L= N7, (2.67)

where Py is the maximum impact parameter. The maximum impact parameter is predetermined
for a material by using numerical fitting with the parameters T},;, (minimum transferred energy
during a collision, usually around 5 eV), Zy, Z M, M and the screening length a, keeping in
mind that the particle loses at least T;,;, amount of energy in every step.

The impact parameter is chosen randomly. In other words, the position of the target atom in
the scattering plane is determined by a random scheme. A proportion of the maximum impact

parameter is assigned as the value of the current impact parameter using the following
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p = Ry Pmaz, (2-68)

where R, is again a random number between 0 and 1.

S is calculated in eVA_l, and the energy loss per step length is given by

Tos = L S.(E) (2.69)

The current energy of the particle is then reduced by the amount lost in nuclear scattering and

electronic stopping.

E’i+1 =E; — Ty — Tes (270)

One scattering process occurs in every execution of the Monte Carlo loop. After every scattering,
the new positions are calculated with reference to the fixed axis normal to the target surface. The
loop continues until the energy of the particle comes below the threshold energy value, which is
usually considered to be 5 ¢V. At this point the final coordinates are saved and a new particle is
introduced. At the end of all the particles’ journey, statistical calculations regarding the average
penetration and lateral spread are carried out, which is not important for our discussion of the

Monte Carlo scheme.

2.4.2 Implementation

The original TRIM program was written in Fortran 77, back in 1985. In my summer REU, I rewrote
the above algorithm using C++-. The data file containing the atomic properties and the stopping
coefficients had to be reformatted for making it usable in my program. In order to visualize the
trajectory, a preliminary trajectory viewer was also written using Processing, which is a Java wrap-
per for easy graphics and animation creation. Our concern is mostly about the spatial distribution
of the muons. Mathematica was used to create histograms from the data obtained by running the
simulation in a Linux machine. The current version of TRIM (available from its authors) was re-
leased in 2009, and comes with a nice GUI and a versatile configuration window where the necessary

parameters for the simulation can be easily set.
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2.4.3 Sample Results

Simulations were run in the TRIM software for 10000 muons going into an Iron sample of thickness

500 angstroms. Initial energy values were set at 500 eV and 1000 eV for two runs.
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(a) Depth distribution for 1 keV muons incident on Iron
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(b) Depth distribution for 500 €V muons incident on Iron.
Figure 2.6. TRIM output for 1 keV and 500 eV muons.

As expected, 1 keV muons penetrate deeper into the sample compared to the 500 eV ones. The
average depth reached by 1 keéV muons, with an incident angle of 0, is 111 A. With the same
settings, 500 éV muons reach 70 A on average. Note that the maximum range reached by 1 keV

muons is ~400 A. For 500 €V muons, the maximum range is ~260 A



The C++ version that we developed produces similar distributions. The following image is a
snapshot of the visualization program written in Processing that loads trajectory data from the

output file produced by the main simulation program.
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Figure 2.7. Visualization program written using Processing that animates the muon trajectories.

The program also calculates the depth histogram from the stopped muons’ coordinates and
displays it. The program outputs agrees well with the distributions produced from TRIM. The next
task is to modify the same code to take account of crystalline structures to see if the distributions

are the same as those produced from TRIM .

2.5 Monte Carlo Simulation for Crystalline Samples

TRIM takes account of amorphous samples only, whereas in many instances the samples under
muSR study are crystalline. Although many muSR physicists [Dubman, 2009] rely on TRIM as the
results match well with experimental data, our main goal is to establish a simulation for crystalline
samples and investigate the effect of channeling. It is still possible to use the same BCA code to
simulate a projectile’s passage through crystalline materials, only this time we need to choose the
target atom in each step carefully. The length of each step should be associated with the lattice
constant of the crystal in some way. In addition, the usual 2-dimensional calculations done in TRIM
(where only the geometry associated within the plane of scattering is considered) needs to be altered

to take account of target atoms residing in fixed positions in a 3-dimensional crystal space. All these
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changes are implemented in our code to simulate the transport of muon in a crystal. We choose the

body centered cubic crystal structure as an example in all the explanations.

2.5.1 Going from 2D to 3D

In order to take account of the 3-d vector geometry associated with the scattering, we came up with
the following calculations. Let us call the target atom T, the current direction of motion X, and
the previous point of scattering D; 1. Let us also denote the vector connecting D;_l and T; as Az.
The projectile scattered previously from the atom 7;_1, and we are to determine the position of ﬁi,
the point where the next scattering will occur. We also need to determine N , the new direction of
motion after scattering at D;.

We begin by calculating the scattering angle in the center-of-mass coordinate system using the
same formula(s) we used for the amorphous target. Once 6 is found, we know that the angle between
N-D;-D; 1 is m — 0 in the CM system. At the time of scattering, when the distance of approach
between the projectile and the target is the closest, the symmetry of the problem allows us to safely
say that the angle m — @ is bisected by the vector connecting the projectile and the target. If we

denote ¢ = (m — 0)/2, then the angle between X and the vector connecting D; and T; is also ¢.

(a) N is the new direction of motion, after a particle scatters from a target atom 7;.
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(b) The angle of scatter, 6, is calculated in center-of-mass coordinate system as before.

A

(c) Convert 6 to the lab frame angle 1, find s and calculate D;.

A
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(d) Finding X using P and 1.
Figure 2.8. Calculating D; and ) for a scattering process where the target atom position is T;.

The magnitude of the impact parameter is given by

— —

P> = (Ax x X)2 (2.71)

In order to find the vector ]3, we use the following

P=(AzxX) XX (2.72)

The value of the scalar distance s is found by

_ P
s =
tan ¢

(2.73)

Having found all these quantities, now we can calculate our desired parameters. The lab frame

angle of scattering v is found from 6 at first. Then the new position of scattering is given by

Di=Di_1 + Az + P — sX. (2.74)

In order to find the new direction of motion N , we find the unit vectors P and \. Then

N = Acostp + P sinip. (2.75)

2.5.2 Modified Algorithm

The above calculations are enough to bring necessary changes to the amorphous TRIM algorithm.
However, we have not discussed the most tricky part in our modification yet. As a muon enters
a sample and scatters from different atoms, it is hard to determine which neighbor atoms it will
scatter from. There is no good method to determine this, although several researchers have tried
several techniques with some success (e.g. the program MARLOWE does a good job in this case).

In my program, I employ a very simple condition that looks reasonable.

37



Figure 2.9. A unit cell of a body centered cubic crystal.

Let us assume that we are working with a crystal that has a bece structure. There are 14 neighbor
atoms surrounding the center atom in the unit bee cell (the corner ones, and the center atoms of the
adjacent cells). If we choose an initial target atom (based on proximity) when the muon enters the
sample, then the next possible target atom must lie among the surrounding 14 neighbor atoms. We
can exploit the symmetry of a bee cell to deduce that any atom (not at the surface or boundaries)
has 14 neighbor atoms. Hence, once the muon scatters from an atom residing in the surface, the

next candidate for scattering is chosen from a list of neighbor atoms based on the condition

p’L < pmaz7 Z: 1, 27 ceey 14 (276)

here p; is the impact parameter of the ¢ — th atom in the neighbor list, and py,q, is calculated
beforehand using the formula that TRIM employs. Whichever atom in the list satisfies this condition
at first, is chosen as the target. Thus this method is different from TRIM since the step length was
fixed in the latter one. In this method, the step length is the distance between each scattering points,
80 it changes over time, based on which atom gets chosen from the list as the target. Whenever
a candidate is chosen, the neighbor atoms list is updated to reflect the new position of the target
atom and its neighbor atoms. The drawback for this method lies in the ordering of the atoms list.
There is no good way (in our knowledge) to order the atoms in the list when using this method,
and in the worst case this process may end up selecting an atom which is behind the muon (but
still a neighbor) and does not contribute much in the muon’s trajectory. Nonetheless, we tried this

method and got some results which are not very promising.
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2.5.3 Results

The following figure shows a range distribution produced from the modified program that simulates

500 eV muons stopping in Iron and Niobium samples.
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Figure 2.10. 500 eV muons stopping in Iron and Niobium.

As seen here, the ranges are quite high compared to TRIM outputs. It is as if only the electronic
stopping was prominent in the stopping. In our investigation with raw simulation output data, we
found that only a very negligible amount of nuclear recoil energy was lost during each muon’s
journey. This may be due to the fact that we could not come up with a rule to select a better
candidate for scattering. The condition we use to find a neighbor atom for the next collision can
be fulfilled by several atoms, but we could not find a good way to take account of all those atoms
in the scattering process. The program MARLOWE takes account of multiple collision partners, so

has more accuracy compared to our or any other BCA program.

2.5.4 MARLOWE Simulations

MARLOWE uses the same kind of geometry methods described in the previous section to find the
point of scattering and new direction of motion after scattering [Eckstein, 104]. In addition, it finds
the surrounding atoms which meet the condition p < ppqz- Then the algorithm finds the momenta
of all these atoms after scattering in laboratory frame. Conservation of momentum is then used
to find the momentum of the projectile after scattering. FEarly versions of the program used to

calculate the scattering processes individually for each selected neighbor atom, and used vectorial
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addition to find the final motion of the projectile. The momentum conservation technique is more
accurate and gives better results.

Instead of using the magic scattering formula to find the scattering angle, MARLOWE solves
the scattering integral using a 4-point Gauss-Mehler procedure [Eckstein, 106]. This comes with the
expense of increased computation time, but yields much better and accurate results. The following
distributions are produced by the program for 500 eV and 5 keV muons going into Iron.

Number of Muons

— Depth (Angstroms)

(a) 500 eV muons stopping distribution
Humber of Muons

BOD

G500

A0 -

=
=
—T—

— Depth (Angstroms)

(b) 5 keV muons stopping distribution

Figure 2.11. Muon stopping distribution produced by MARLOWE.

The results show very promising signs of muons channeling in the sample. In the figures, the
depth scale is not shown as MARLOWE generates bin information and depth data separately, and
we have not figured out a way to merge the two data sets yet. The 500 eV muon distribution has

two visible bumps, which is unusual compared to the TRIM distributions. This suggests that one
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group of muons have slowed down and come to rest at much earlier depth, whereas the other group
continued to travel further due to channeling. For 5 keV muons, the first bump is less visible, and
most of the muons have ended up in the second bump. This suggests that higher energy muons
have traveled further into the sample because of their energy and also because of channeling, i.e.
there are fewer muons which stopped at a smaller depth. The average depth of muons here are

comparable to what TRIM estimates.

2.6 In Search of a Good Neighbor Selection Algorithm

In the course of the project, we have spent some time thinking about an efficient neighbor selection
algorithm. In this section, we present our take on the problem and possible pitfalls in the method.
The method employs probability and randomization to capture the very essence of the scattering
process in reality. The success and failures of the method remains questionable as we will see from
our results. The algorithm can be improved in several ways by taking account of some factors we

ignored in order to make the coding process simple.

2.6.1 Basic Principle

The formulation of the problem remains the same. The scenario again has a target atom from which
the muon scatters, and a list of potential candidate atoms surrounding the current target atom one
of which will be selected as the next target. We consider a cylindrical volume that is enclosed by
the muon and a possible target atom k, and which has a radius equal to the impact parameter py

of the system, and a length equal to the distance between the muon and k, r.

k

Pk

A
\j

Ik

Figure 2.12. A cylindrical volume enclosed by the muon and a possible candidate for scattering, k.
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The volume of this cylinder is

Vk = ﬂpi Tk. (277)

Our idea is that the bigger the volume of this cylinder is, the smaller is the probability of k being

chosen as the target atom. We introduce the probability by

k=1,2, .., 14 (2.78)

and take out the factor 7 to write the probability of being chosen as

1
P(k) = 5
Pr Tk

(2.79)

The algorithm ranks each of the atoms in the neighbor list according to this probability and
normalizes each P(k) value by dividing it with the summation of all probabilities. Once this
set of probability values is created, we treat the set as a collection of bins (where all the values
add up to 1). A random value between 0 and 1 is generated, and by using a linear search in the
probability set we determine which bin this value falls into. The bin widths are non-uniform because

of different probability values, so the linear search is required to select the appropriate bin. The

atom corresponding to the chosen bin is selected as the next target atom.

2.6.2 Algorithm

In order to generate the probability set, we do the following:
Begin
For nCount = 1 to number of neighbors

{

Find the projectile’s impact parameter p and radial distance r from neighbor[nCount|;
S[nCount] = 1/((p~2)r);
sumS = sum$ + S[nCount|;

}

For nCount = 1 to number of neighbors
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Probability[nCount| = S[nCount|/sums;
//Once we have the probability set, we generate a random number and see where in the set it
belongs.
random_ candidate = Random(0, 1);
low = 1;
high = Probability[2];
If random_candidate >= low AND random candidate < high
{
Select the 1st atom in the neighbor list;
Break;

Else

For i = 1 to number of neighbors
{
low = low + Probabilityli|;
high += Probability|i+1];
If random_candidate >= low AND random candidate < high

{

Select the i-th atom;

Break;

}
End

This algorithm is coded in our C++ version of TRIM that simulates crystalline structures. We
replace the condition we employed before, p < pmaz, and use this method to select the next target

atom.
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2.6.3 Results and Analysis

The results are, unfortunately, not very promising. We obtained a distribution that did not resemble
the usual distributions produced by other simulations. Moreover, around one-fourth of the muons
backscatter in each run. This is unusual, and this does not portray the real stopping process.
The calculations are checked to make sure the algorithm is doing what it is supposed to do. The
probability set generated at each step is calculated correctly - the individual elements of the set
add up to 1.0. In order to investigate further, we tracked each muon’s energy loss processes at each
step. Similar to our last attempt (section 2.5.3), the energy loss due to nuclear recoil energy was
found to be negligible, and most of the energy is lost due to electronic stopping.

One plausible explanation for this bizarre behavior is the probability formula we use. Small
impact parameters usually give rise to backscattering of the projectile. Since the probability is
inversely proportional to the impact parameter squared, the algorithm essentially selects atoms
which have smaller impact parameter with the projectile (and thus have higher probability of being
selected according to our formula). The probability function can be improved by taking account of
the possibility of scattering from several neighbor atoms simultaneously. We are not sure how to
incorporate this scenario with a single function though.

In general, it is not clear whether we can simulate muon passage through crystals and inves-
tigate the channeling effects with binary collision approximation methods. With some success in
characterizing the channeling effect using MARLOWE, we next turn our attention to molecular
dynamics models, which take account of the interaction between many bodies. Using these models,

we may very easily see the effect of simultaneous scattering from all the neighbor atoms.
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3 Molecular Dynamics Model

3.1 Introduction

Molecular dynamics techniques are considered to be more accurate than Binary Collision Approxi-
mation in the low energy range. The basic principle is to keep track of a number of projectiles and
recoil atoms as they interact with one another in a simulation cell. The simulation process is time
dependent. After a certain time step dt, the positions of all the atoms are recalculated and updated.
The precision comes in exchange for longer computation time and larger memory storage. Unlike
BCA, MD techniques require us to store information about all the particles in the simulation cell,
and at each time step, this information is accessed and updated. Since all the interactions are taken
into account, basic algorithms for MD techniques take account of interactions between n - 1 atoms
with each atom that essentially yields O(n?) computation time. Despite the longer computation
time, molecular dynamics techniques are getting more and more popular due to availability of par-
allel supercomputers. Even on a home machine that has several processor cores, fast MD programs
can be executed in parallel which greatly reduces the computation time. The basic physics of MD
is easy to implement, so it all boils down to intelligent use of data structures and fast computers

when it comes to efficiency and reliability.

3.2 Existing Simulation Techniques

This section will describe the current techniques used in molecular dynamics simulations. This

is a subject that has been well studied, and many different algorithms and schemes exist in the
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literature that address different issues. Molecular dynamics techniques are used in a wide variety of
applications including cell biology, ion beam sputtering, radiation damage calculations etc. We will
give a brief overview of the basic principles, equations and algorithms used in classical molecular

dynamics simulations that explicitly deal with ion beams.

3.2.1 Basic Principles

Given an ensemble of n particles in a simulation cell, we are to find out the force they exert on one
another over a certain length of simulation time, updating the positions of the particles as needed.
As a projectile enters the target, the motion of the projectile is affected by the target particles that
are nearby. If the projectile has enough speed, or has enough mass, it can knock off the target atoms
from their lattice positions, and they become projectiles as well. Let the projectiles be denoted by
the index i and the neighbor atoms which are exerting force on them be denoted by index j (note that
these atoms may also be projectiles). Then the force on the projectile is given by the summation

of all the forces from the neighbors.

!

2 .
w0 Sy = ), (3.1

j=1

where M; stands for the mass of the projectile, and N is the total number of neighbors at a
given instant of time. When looping through all the atoms, we should also note that an atom does
not exert force on itself, and the magnitude of the force exerted by atom a on atom b is the same

as that by b on a. The direction of the force is reversed.

—

Fy; =o0. (3.3)

The forces are conservative, and hence, can be derived from a potential function V'(r) by the
following formula:
PR _ g

= Fi(75) = =Y VVi(i%) (3.4)
j#i
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where 7;; is given by

rij = (17l — 175 1%)'/2. (3.5)

There are several ways for solving these equations numerically, namely the Central Difference
method, Average Force method, Euler-Cauchy scheme and the Verlet scheme. These are not very
hard to implement in terms of programming, and usually yield a good approximation with a carefully
chosen time step At.

A time step determines the accuracy and efficiency of the simulation. The popular rule of
thumb [Eckstein, 39] in the literature is to choose a time step such that the fastest projectile will

not traverse more than 5% of the distance equivalent to the lattice constant.

At =0.05d /M /2T, (3.6)

where T, represents the kinetic energy of the projectile with mass M, and d is the lattice
constant, i.e. the interatomic separation between unit cells, or equivalently, the length of one edge

of the cell.

3.2.2 Potential Function

There are many varieties of potential functions which are used in both BCA and MD simulations.
Some of the widely used are - Born-Mayer, Morse, Lennard-Jones, Johnson’s etc. Born-Mayer
potential is the simplest one we came across:

|7

V(F) = Agpe *BM (3.7)

where Ap)s is an energy parameter given in eV, and ap)s is the screening length. The values of
Apy and apys are found by fitting them to the Thomas-Fermi-Dirac potential curves since these
two potential functions behave almost in the same way [Eckstein, 46]. A table of values of these
parameters is available [Eckstein, 47]. Morse potential is a bit more tricky which takes account of
both small and large internuclear distances. If we are dealing with very low energy regime, attractive

forces come into play. Morse proposed an attractive potential of the form
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V(r)=D e 2¢(r=r0) _gp =o' (r=r0), (3.8)

The first term of the potential introduces a repulsive force, the second term dominates at bigger
internuclear separations. D is a parameter (in e€V) that gives the depth of the attractive well of
the potential, and rg is a parameter that determines where the potential will reach 0, and it also
determines the slopes of the curves. It has a similar value compared to the nearest neighbor distance
in a lattice. These parameters are calculated and verified by curve fitting with experimental data.

Finding the correct potential for a specific task is tricky. Other than these simple potentials,
there are many potentials which are just combinations of a few simpler potentials so that a larger
range of internuclear distance and energy regime can be addressed. The idea of combined potentials
comes from the fact that at low energies and larger separations, the interatomic force becomes
attractive, and at smaller distances, repulsive force comes into action. So an trick is to use the
Morse potential for larger distance, and any repulsive potential at smaller distance. To fit both
potentials together, a cubic polynomial is used.

Another popular scheme for describing interactions between atoms is the Embedded Atom
Method (EAM). This relies on the idea that the electron density surrounding an atom is a su-
perposition of the electron densities of all the neighbor atoms. Due to the electrostatic repulsion,

the total energy is approximated by

1
E =) Fi(on:) + 5 > bilriy), (3.9)
@ 1,5 (i#5)

where Fj(pp) is the energy that is needed to attach atom i within the background electron
density o, and ¢;;(r;;) represents the repulsion between the cores of atoms i and j with interatomic
separation 7;;. Using the total energy, the ground state properties of the solid can be calculated.
With a good approximation function that describes F'(p) and the pair potential ¢;;, we can calculate

the exchange of energy between atoms to estimate their influence on one another.
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3.2.3 Other Methods

The above sections stated the basic ideas used in MD simulations. People have tailored these
schemes and algorithms according to their needs, which brings us to a brief discussion of other
methods relevant to our simulation.

A method called Recoil Interaction Approximation only tracks the projectile and the surrounding
atoms (the list of which dynamically evolves) in the simulation. This is particularly useful for ion
beams simulation as we do not need to track what interactions go on between atoms other than the
projectile and the neighbor atoms of the projectile which can be affected from the force exerted on
them by the projectile while it moves along the crystal. Recoil Interaction Approximation is widely

used in ion beams simulations nowadays [Nordlund, 1995].

3.2.4 Computational Efficiency

In order to increase the efficiency of calculation, Verlet introduced a method for bookkeeping [Eck-
stain, 39]. For a particle 7, a table of all particles within a calculated distance r, is produced, and
only these particles are allowed to interact with the projectile in the next (n-1) time steps. Rather
than keeping track of all the atoms in a solid (which would be a huge task), the simulations are
usually done in a confined volume known as the simulation cell. The simulation cell contains a
sample of the solid containg a few thousands to a few hundred thousands atoms (depending on the
type of simulation), and as the projectile enters the simulation cell, it interacts with the atoms in
the simulation cell. In many cases, the projectile atoms will come to a halt within the simulation
cell volume. However, for atoms with very high velocity, or for simulation cells with lower number
of atoms in the arrangement, i.e. a smaller cell, the contents of the cell needs to be updated as
the projectile goes out of the cell. The projectile is then agssumed to enter a similar simulation cell,
which contains an updated list of atoms that could have entered the current cell from the previous
cell’s interactions, and also the new atoms in the cell which are supposed to be there. In this way,
only one cell is needed to simulate the rest of the cells in the crystal. This method is convenient

and adapted in many different forms by the researchers.
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3.3 Discretization Technique

To tackle some of the computationally intensive tasks and also to overcome the burden of writing
very big code modules, we decided to modify the existing MD models slightly, taking into account
the properties of muons in low energy regime.

The simulation cell is reduced down to a very small volume that only considers atoms which
are very close to the projectile. For increase in computational efficiency, we have also decided to
discretize the cell volume. In other words, the simulation cell is imagined to be a box made up of
much smaller cubes. Fach of the cube’s center is thought to represent the whole cube, i.e. any point
inside the cube will be approximated as the center of the cube. The force field due to neighbors are
calculated in each of these small blocks, and the projectile interacts with the field and moves from
one block to the other in the simulation.

This is not a very good approximation, so we should be careful and clever enough to handle all
the consequences that may result from it. The sections below deal with the different aspects of this

concept.

3.3.1 Potential Function

We have decided to use the simplest potentials to begin with, as they are easier to program. One

choice is the Born-Mayer potential:

|7

V()= Apme “BM (3.10)

where Apjs is an energy parameter given in eV, and apjs is the screening length. Some authors
have listed all the values of these parameters in detail for every element [Eckstein, 47 - 51]. So we
decided to use the values given by them. Morse potential is also made available in our program
because it’s easier to implement. The choice of potential, for our purpose, mostly was driven by the
factor of simplicity and time consumption behind writing big code modules for the other potentials

mentioned before, such as the EAM method or the combined potential.
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3.3.2 Assumptions

Several assumptions have been made in order to reduce the computational load compared to the
existing molecular dynamics simulations. Some of them take the advantage of the particular po-
tential function we decided to use, and others simply follow from the physical properties of muon.
There are certain advantages of using the lattice unit cell of a material as our basic simulation cell,
which we discovered while implementing the simulation. These assumptions are described in detail

in this section.

Effective Distance (Size of Cell)

7]

The potential function we are using is basically an exponentially decaying curve, V() = Agy e “BM .

Using the universal values proposed by Andersen and Sigmund [Eckstein, 45|, Apayr = 52.0 (23 Zy)3/%
eV and apy; = 0.219 A, and taking Z; = 1 for muon, we can plot the potential function over a
certain range of |; | and get a feel for the strength of this particular potential for different elements
(different values of Zs). A small Mathematica script (see Appendix A) takes care of this to produce
the following plots.
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Figure 3.1. Potential strength (V) vs. distance (A) for elements with atomic number Zy = 1, 10,
20, ..., 90.

Zooming into a much smaller range provides us a clearer scenario.
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Figure 3.2. A closer look at the Born-Mayer potential function

From the figures we can deduce that the Born-Mayer potential acts only up to a certain range.
Fortunately, for our purpose, this range is around the same size as the lattice constant of the elements
we are mostly concerned about (for example, Iron - 2.87A). In such a situation, we can argue that
we really do not need to keep track of a few thousand atoms in a bigger simulation cell since we are
mostly interested in the interaction between the projectile and the nearby lattice atoms that can
affect it with enough force. Surely, a simulation cell large enough to include the neighbor atoms
which are rougly one lattice constant distance away is sufficient to take account of the Born-Mayer

interactions between the projectile and the neighbor atoms.

Negligible Recoil Energy Loss and Recoil Interaction Approximation

The previous assumption brings us to another important consideration. Most of the molecular
dynamics simulations take account of all the interactions of all the atoms in the simulation cell.
This is particularly useful for high energy ion beams since the projectiles have enough energy to
knock off an atom from their almost fixed site in the crystal lattice, which eventually become
another projectile and may knock off other atoms too. This eventual chain of collisions may create
a disturbance in the whole system composed of thousands of atoms in the cell. Thus keeping track
of all the atoms are necessary in such situations. Bulk of many MD codes are devoted to building
efficient data structure to keep track of all the atoms, and needs a lot of computation time and

resources to do so. Fortunately, for our purpose, the properties of muon comes to our rescue. We
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know that muons are not even as heavy as protons, whereas our material of choice, iron, is really
heavy compared to muons. Moreover, we are concerned about the low energy regime which is
around 25 eV - 1 keV. Thus, the momentum with which these low energy muons come in is small
and they are not capable of knocking off an atom from its lattice site. In other words, the recoil
energy loss during the collision is negligible since only a minute fraction of the muon’s momentum
is transferred to the heavy lattice atoms.

The standard method to take advantage of this situation is to use Recoil Interaction Approx-
imation methods. In this technique, only the interaction of the projectile with the target atoms
are considered. As there’s no chance of knocking off an atom from its site, the interaction between
the lattice atoms can be safely ignored. We decided to follow this technique in order to avoid
the unnecessary burden of coding extra modules to take account of interatomic interactions in the

crystal.

Inelastic Energy Loss - Continuous Electronic Energy Loss vs. Local Electronic Energy

Loss

We have already defined the essential concepts of inelastic energy loss in chapter 2. The theory
is complex and there are many formulations present in the literature. The energy loss mechanism
in our MD technique must take account of the properties of muon. Once again, it is pretty much
simplified. Muon is not an ion (as in an atom with empty valence shell) with electronic shell
structure. So there is no question of any interaction in the electronic shell level when it collides
with other atoms. Thus the only thing left to worry about is the non-local continuous electronic
energy loss due to the electron gas in the metal. We decided to use the same electronic stopping

code we used for BCA simulations.

The center of a block represents all the other points in the block

If the number of blocks in the simulation cell is enough so that the distance between the centers of
two adjacent blocks are “small,” we can approximate the center of a block to represent all the points
in that block. The word small is quoted because the definition of it depends on us. What kind of
accuracy are we looking for in our results? This issue is addressed in section 3.3.6 where we give a

formal description of accuracy in the context of our model.
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3.3.3 The Simulation Cell: General Structure

The simulation cell is a cuboid which has edges of length equal to the lattice constant. The idea is
to divide the cell into blocks (smaller cubes) of constant edge lengths. The center of each block will
represent all the other points inside the block. This means that for the approximation to work well,
the dimension of each of the blocks should be sufficiently small enough. The dimension of these

smaller blocks are determined by a scheme described in section 3.3.6.

. °

25

Figure 3.3. A simulation cell composed of a matrix of 5x5x5 blocks. The origin of the cell

coordinates is located at the bottom left corner of the first layer.

In order to identify each of the blocks in the cell, we number them according to the following
scheme, which makes the programming easier. The lower left corner of the cell (also the lower left
corner of the block labeled 1) represents the origin. If the unit lattice cell dimension is equal in all
three directions (e.g. bce elements), then let the dimension be represented by L. Using a scheme
we will describe later in section 3.3.6, we find the number of blocks we want in each direction ny,
and the length of one edge of the block is given by L/n,. The blocks are numbered from the lower
left corner to the right in an ascending order, and we go one step further in the z direction and
continue our count. This makes the upper right corner of the first layer numbered 25. Then we
continue with the same scheme for the consequent layers in ascending order, so that the block on

the upper right corner of the last layer in x-direction is numbered 125.
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3.3.4 Force Field

The force field in each of the smaller blocks can be calculated in several ways. We present two
methods we devised that are particularly suitable for our simulation purpose.

Method 1: If we happen to know the individual potential at a certain point due to a few
particles exerting force at that point, we can add up all the scalar potential values at that particular
point. For the purpose of the simulation, we take the center of each of the blocks as the point that
represents the potential of any other point in that box. Now, if the blocks are small enough so that
the distance between the centers is quite small, we can approximate the force in the y-direction at

the center of each of the blocks by

Vi(y2) = Viyl)

F,
“ y2 — yl

(3.11)

Y=

where y2 and y1 represent the coordinates of the centers of the blocks adjacent to the block of

concern in the y-direction. Similarly, for z and x direction, we have

Foom ———— (3.12)
and
Feu_ V(ZQQ) — Zim) (3.13)
z2
yl C y2

Figure 3.4. Calculation of force vector in the block labeled C from the adjacent blocks’ potential
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values. The blocks in the x-direction are not shown.

After finding the individual components of the force vector, we simply represent the vector by

F_‘é’ = {FCma FCya FCz} (314)

These approximation formulae are discrete versions of the general formula for deriving force
from a conservative potential field. We start by noting that force is simply the gradient of the scalar

potential

ov oV oV

(3.15)

We are to figure out the combined force vector at a certain point due to multiple bodies. Consider
the hypothetical situation where we have n lattice atoms in the neighbor configuration, and we are
trying to approximate the force at the mid point C between P1 and P2, the centers of two adjacent

blocks.

Figure 3.5. A hypothetical situation with n neighbor atoms (only three are shown). Their scalar
potential at points P1 and P2 are known. The force at C (the mid point of P1P2) is to be

approximated.

In general, the force vector for any two known potentials due to a particular neighbor (say 1) at

P1 and P2 will be given by
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F = _VV = _al ~ _M’
87“ |7“11 —?”12|

(3.16)
where V1= V(r71) and Vis= V(r12), and they are calculated from the Born-Mayer potential
formula. Note that for all the other force vectors due to other n — 1 neighbor atoms, the magnitude

of Or in the formula is always same as the distance between P1 and P2 is constant. Now, the

combined force vector at C is given by the summation of all 8V values due to the n neighbor atoms.
Thus
OVy(r Vi Vi
_ Z k(T Z k1 — Vi2 (3.17)
57“1@ < |k — rra|

Fo ~

. Vii—Viz | Vo — V& Vi1 — Va
N _( 11— Vio 2= Vo +12>. (3.18)

Ir1i1 —ri2]  fror —7r2e] T |Ta1 — el
Note that all the denominator values are the same - the distance between P1 and P2. Let the

distance be Ar. Then the combined force vector can be written as

- Vit = Vig | Vo — Vg Vil — Vo
Fo ~ — e —= . 3.19
¢ ( Ar T T Aar T TA ) (8.19)
e Vit+Vor+ ..+ Ve Vio+Vaa+ o+ Vi
Fo ~ — — . 2
¢ < Ar Ar > (3.20)

Thus, the force vector is given by adding up all the potentials due to n neighbors at P1, dividing
the number by the distance between P1 and P2, doing the same for P2 and finally subtracting the
latter from the former. This is essentially captured by the equations stated earlier in this section.

In order to do this by writing a program, we need to -

1. Calculate the Born-Mayer potential at each of the block’s center, due to all of the neighbor

atoms we consider in the simulation cell,

2. Loop through each of the center points, and find the force according to the above formula.
Calculating the potential requires us to go through every single point and add up the potential
contribution of the neighbor atoms, which is roughly an O(n?) method. Finding the force costs

us a linear time algorithm.
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3. The force at the boundaries of the simulation cell require special attention that is dealt in

3.3.7. Otherwise, we stick to the general rule described above.

Algorithm
Input: neighbor AtomsList (list of neighbor atoms’ coordinates), CoordList (List of center
coordinates).
Other Arrays: Vliist (list of potentials at the centers), V' (temporary list to hold the individual
potential due to each neighbor atoms), forceList (list of force vectors at each point)
Begin
For i = 1 to Number of blocks
currpt = CoordList][i]
For j = 1 to number of neighbors
currNeighbor = neighbor AtomsList][j]
dist = FindDistance Between(currpt, curr Neighbor)
V[j] = Apas e—dist/ann
sumV = Sum all the elements of V
Vlist[i] = sumV
//force calculation
For i = 1 to Number of blocks

If CoordList[i][1] is not in boundary (here CoordList[i][1] is the x coordinate)

fo — Viist[i+1]—Vlist[i—1]
T = 2xStep Volume

Else

f _ Vlist[i]—Vlist[i—1]
T = Step Volume

If CoordList[i][2] is not in boundary (CoordList[i][2] is the y coordinate)

_ Vlistli+1]—-Vliist[i—1]

fy o 2xStep Volume
Else
f _ Vlistli]—Vlist[i—1]
Y= Step Volume

If CoordList[i][3] is not in boundary (CoordList[i|[3] is the z coordinate)

fz= Viist[i+1]—Vlist[i—1]
z = 2xStep Volume

Else
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f _ Vlist[i]—Vlist[i—1]
c = Step Volume

forceListli] = fx, fy, fz
//end of For loop
Return forceList

End

Method 2: This is a straightforward method that may yield more accurate results compared
to the previous method. Following the derivation of the force F_é on a projectile in method 1, we

take account of the fact that instead of using a discrete approximation for the change in potentials

from adjacent blocks, we directly use the formula for %—‘7{, ie.
y - OV (ric)
Fh==) af — =, (3.21)
i=1 e

where af is the cosine of the angle between the vector 7., the displacement from the i-th atom
to the center of the block, and the k-th axis, where k €{1, 2, 3}. The force F_g calculated in this
way gives the force along the k-th axis. To determine af, we calculate the dot product between
75e and a unit vector along the k-th direction, and divide the quantity by the product of magitudes
of the vectors. In the case of a unit vector, which has a magnitude of 1, we simply divide the dot
product by the magnitude of 7;.. The summation of all the calculated %

c

values may give a
better approximation compared to the scheme we described in method 1.
Algorithm
Input: neighbor AtomsList (list of neighbor atoms’ coordinates), CoordList (List of center
coordinates).
Other Arrays: Vliist (list of potentials at the centers), V' (temporary list to hold the individual
potential due to each neighbor atoms), forceList (list of force vectors at each point)
Begin
For i = 1 to Number of blocks
fz=0.0, fy =0.0, fz=0.0.
CP = CoordList]i]
For j = 1 to number of neighbors

CN= neighbor AtomsList[j]
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dist = FindDistanceBetween(CP, CN)

dvd,r. - _ABJVI e—dist/aBM
apmMm

fram —CP-CN
with = {1, 0, 0}

cs = fcom-wzt?h
| from|*|with|

fr = fx—dVdr=*cs
with = {0, 1, 0}

cs = fcom-wzt?h
| from|*|with|

fy= fy—dVdrxcs
with = {0, 0, 1}

fr?)m-w;th
| from|*|with|

fz= fz—dVdrxcs

forceList[i] = fz, fy, fz

Return forceList

CcS —

End

3.3.5 Energy Loss Mechanism

As mentioned in our previous discussion, a projectile, when it enters the crystalline material, can
lose energy in three ways - lattice atom recoiling due to momentum transfer from the projectile,
interactions between the electron shells of the projectile and the lattice atoms (local electronic energy
loss), and finally, continuous electronic energy loss due to the free electron cloud in the material. For
muons, we assume that there’s a negligible amount of energy loss due to lattice atom recoil (3.3.2).
The question of local electronic energy loss is also not relevant here as our projectile does not have
any electronic shell structure. So in terms of energy loss procedure, we are only concerned about
continuous electronic energy loss. For this, we use the same calculations and procedures employed
for binary collision approximation. However, for molecular dynamics purpose, where we are more
reliant on velocity calculations, we need to use different formulae to incorporate the stopping.

In every time step, the projectile advances a variable amount of distance. For BCA, we relied
on finding the length of the step, multiplying that with the S. value that corresponds to the

current energy of the projectile, and finally subtracting that quantity from the current energy of
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the projectile. For MD, our main goal is to calculate new velocities due to the force field at each
block the projectile travels to, and calculate the displacement over some definite time step due to
that velocity. In order to incorporate S, in this method, we calculate by how much the magnitude
of velocity changes as it traverses some distance over the fixed time step. If Se is given in the units

of eVA_l, The change in speed in As7his given by

Se
My,

Av = At (3.22)

where M, is the mass of muon and At is the time step. The magnitude of velocity is decreased
by this amount in every At amount of time. Other than the stopping scheme proposed by Zeigler,
the Lindhard-Scharff electronic stopping model is also included in our simulation to see whether it

provides better results. Both the models are described in chapter 2.

3.3.6 Number of Blocks

The number of blocks needed for our approximation scheme to work is a crucial part in the design
of this simulation. We do not want a huge number of blocks in the simulation cell as that defeats
the purpose of designing a computationally less intensive program. We also want to have sufficient
blocks in our cell in order for the force field calculation to be as precise as possible. Thus, choosing
the right number is a trade-off between simulation speed and computational accuracy. For crystals
with much bigger unit cell size, the issue becomes more important. We have devised a simple
method that gives the user complete control over this trade-off process.

The issue essentially boils down to the fact that we are approximating the center as the rep-
resentative of all the points in the block. How good or bad is this? The corner points of a block
are the farthest from the center in the block, so we should find a measure of how good the center
is when approximated as the corners. We cannot simply use distance as our measure here. The
simulation cell can be of different size and can have different neighbor atom configurations that may
make the potential and force field vector values drastically different for different crystals. Hence, we
concentrate on how much the potential value changes from the corners to the center of the block.

Let np be the total number of blocks in the x, y and z direction of the simulation cell. For now,

we will focus on having equal number of blocks in each direction. For a particular block, let Cy be
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any of the eight corners’ position vector (in the cell coordinate space), where ke{1, 2, ..., 8}, and
let @ be the position vector of the center. We define the value € as a measure which will be used to
determine how many blocks we need in each of x, y and z directions. Let us also choose a random
atom from the nearest neighbor atom configuration, which has a position vector 7. Then the mean

of the potential contribution from the chosen neighbor atom to the eight corners of the block is

Vv

_ T Véﬁ — ék), (3.23)

Where V/(7) is the Born-Mayer potential (7= it — C,). The standard deviation is:

L \/zi:xvgk) i 2

Now, we will assume the potential at the center of the block, V (@), as the mean potential V'

calculated above. Then the standard deviation is:

L \/ ZhVIC — V@) 525

We set € = 0l — 02, and observe its characteristic as we increase np. In order to find np,
we choose any two consecutive points from C7k (assuming that they are ordered), say the first two

points. Then npg is given by:

L

[C1 —

where L = length of an edge of the simulation cell. The evolution of € for different values of np
tells us a way to choose a suitable value of ng. A Mathematica program that carries out the above

calculation is written for this purpose.
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Fig. 3.6. € vs. np graph generated from the Mathematica program for Born-Mayer Potential in

bee Iron. (Note: The vertical axis does not start from 0).

The graph shows the evolution of € values as we increase the number of blocks starting with
np = 5. The program output is written for the Born-Mayer potential interaction between muon
and bcc iron lattice, although it can be easily modified for any other potential function and atoms.
As seen from the graph, the value of € starts to become steady after ng ~ 45. Certainly it does not
make sense to choose a value for the number of blocks greater than 45 in each direction. For the

purpose of speeding up the simulation, we choose a value between 25 and 30, which is right after

the big jumps of € values.

3.3.7 Boundary Conditions

Boundary conditions are always difficult to handle. An accurate boundary condition usually is a key

factor for the reliability of a model. In usual MD methods, the boundary of the crystal is designed

to have a restoring force to keep the crystal confined to a certain volume. A damped harmonic

oscillator is a standard force for this purpose. Atoms at the boundary are governed by the equation
d*u du

M, 2 = gy — R 3.7
a2 =TT (3.27)

The term ku represents a spring-like force that simulates the elastic response of the matrix. The
damping term makes the excess kinetic energy of the model cluster disappear. Usually a critical
damping model is used, for which R = (4M,,k)Y/2. The critical damping model makes a particle

come back to the matrix with zero velocity.
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For our model, since we are mostly interested in the trajectory of the projectile and since the
lattice atoms are assumed to be fixed in their position, we decided that we do not need a boundary
restoring force to keep the crystallite confined to a fixed volume. Since we have agreed to the fact
that low energy muons only lose a very minute amount of energy to the heavy atoms of the crystal,
there is no question of the atoms that are fixed in their position to move out from there and go out
of the confined volume of the crystal.

For our simulation cell, however, we do need to take account of an accurate potential at the
boundary for force field calculation by method 1. The force at block ¢ is determined from the blocks
i+ 1 and ¢ — 1 for a particular axis, but at the boundary there is either the (i + 1)th or the (i — 1)th
block missing. For this purpose, we calculate the boundary potentials to be the potential at the mid
point between the boundary block and the block immediately adjacent to it from the boundary, i.e.

V(re,) = V(Fp+1),)

Fy, = — , 3.28
g 70y, = T(b1), | (3.28)

where 7, is the position vector of the center of the block at the boundary in k£ —th direction, and
T(b+1),18 the vector representing the center of the adjacent block in the postive or negative k —th
direction. This, again, is not a very good approximation as we are assuming that the average force
at the mid point between 7%, and 7{;41),is the same as the force at 7,, but that is the best we can
do. This is justified to some extent due to the same reasoning we used in the previous section. The
potential function we are using is a smooth curve and does not have a sharp change over the range
we are considering here. Thus the force may not change a lot from the midpoint of 7, and 741y,

to Fbk-

3.3.8 Trajectory Calculation

The heart of our simulation, after an accurate calculation of the force fields, is how precisely we
calculate the trajectory of the muons. Although it seems that solving the force equations for the
displacement term should do the job for us, which is pretty much straightforward, the inclusion of
electronic stopping complicates the matter a little bit. Also, instead of using the trivial displacement

and velocity equations,
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1
F(t) = 7o + oot + 56752, (3.29)

5(t) = v + dt (3.30)

we use numerical integration schemes to solve the force equation dynamically during the simu-
lation, which are slightly different from the above. Let the initial velocity of a muon particle be v;,
and the initial energy be E;. Realistically speaking, the particles do not come in with an incident
angle of 0. The beam is spread over some area of a crystal face, hence we assume that the incident

angle can range from 0° to 30° from the x (depth) axis. The relationship between v; and Ej is -

2F;
M,,’

(3.31)

V; =

where M, is the mass of the muon particle. The particle is incident on the y — z face of the

simulation cell, so we choose a random point 7;on this face by choosing a random block B;.

B; = Random(1, YpZp), (3.32)

where Yp and Zp are the number of blocks in y and z direction, respectively. 7; represents the
center of the block B;. Once the particle enters the crystal, we solve the equations of motion
using numerical integration and find the new position 7(¢) at time t. There are several numerical
integration schemes available. The most basic one is called the Central Difference method, which
essentially reflects the general equations of motion.

This method tells us that the position at time t + At, 7#(t + At), is given by wherever the
projectile is at time ¢, and a change in position due to the velocity of the projectile, which also
changes in every time step as it interacts with a new force field. The velocity dr(t)/dt is determined

at half the time step At,

dF(t + At)2)  dF(t — At/2) Fi(t)
dt N dt + At M,,’

(3.33)
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di(t + At/2)

r(t + At) =1t At
(t + At) = 7(t) + o

(3.34)

The force Fj(t) represents the force at the center of the current block the projectile resides in.
The name comes from the fact that the velocity is found at At/2.
The mean kinetic energy is important for finding the right amount of electronic stopping Se(FE).

The mean K.E. at time ¢ can be calculated from the following formula,

3

M,

Emean(t) = =" > I (3.35)
k=1

where % (t) represents the velocity in the k-th direction (x, y or z) at time t. Using the position

of the projectile at times t + At and t — At, we can write the mean K.E. as

My o~ (7R(t+ AL) — 7%t — A1)\
Emean :2Z< )QAt( )> . (336)

Once the mean K.E. is found, we can find the appropriate electronic stopping at that particular
energy of the muon. If the stopping is given by S, we incorporate it in the trajectory by reducing

di(t+At/2)

the velocity of the particle by an amount Aw given in section 3.3.5. Let p = vpi/2, and the

unit vector of va;/p be vynit. The new position of the particle is then given by

Tt + At) = 7(t) + Ot (Jvaise] — Av) Vuna (3.37)

3.3.9 Determining the Current Block

The symmetry of body centered cubic or face centered cubic crystals provides us a unique way to
reduce the computation time and memory. Instead of storing many neighbor atoms’ positions, we
track the projectile’s position and determine (at the end of its travel after every time step) where
it is in the simulation cell. If it goes out of the cell, we determine where it emerges in the next
simulation cell by using modulus of the displacement and the length of the simulation cell. Since
the arrangement of the neighbor atoms are still the same for the next cell, we use the same force
field calculations done for the initial cell to calculate the new trajectories of the projectile in the

next cell, and the process continues.
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If the new position of the particle is given by 7(t + At), or simply 7, then the relative position

in the cell is given by

reelly = ry, mod L (3.38)

where k = 1, 2, 3 (for x, y and z) and rcelly, represents displacements inside the simulation cell
in the x, y and z directions. L is the length of one edge of the simulation cell. In this case, L is the

lattice dimension.

3.3.10 Time Step

We use the same formula for time step described in section 3.2.1.

My,
dt = 0.05 Lo/ =2, .
0.05 o (3.39)

where M,,— mass of muon, and E; = initial kinetic energy. Advanced MD simulations use
variable time steps to achieve better accuracy for more complicated setup of crystals, but for our
purpose a fixed time step should be good enough. We can modify this time step formula to establish
a lower limit based on the design of our simulation. The particles with maximum velocity should

travel more than the dimension of a small block in the cell, i.e.

L. M,
dt > — 4
> . \/ oF, (3.40)

with np being the number of blocks in the cell. If np is variable (different values for the x, y and z

axes), then the lowest value of ng should be chosen. This limit ensures that the projectile does not
experience the same force field by remaining in the same block for the next step. In our case, with
a lattice constant of 2.87 A for Iron, np = 25 should be enough number of blocks to use equation

(3.39) that will give a dt value well above the lower limit.

3.3.11 Keeping Track of Channeling

All the basic quantities are taken care of by now. Now, as the simulation progresses, it is our goal

to keep track of muons which are channeling at a certain plane. The idea of several brute-force
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methods are presented here that keeps track of a muon’s direction and tries to determine whether
the particular muon is channeling.

At each time step, the particle traverses a variable distance along the direction of its velocity.
In order for the particle to stay in a path that is devoid of major deflections, we would expect that
its trajectory is almost straight when it channels. From the raw trajectory data, it is possible to
determine whether the particle channeled for some time by discretizing its trajectory into pieces
and finding the angles between consecutive pieces. If the angles remain under a certain angle, e.g.
0.01 radian (as determined by the TRIM authors to estimate collision free flight path [Zeigler, 118]),
then we conclude that the muon was channeling.

An easier alternative is to compare the initial and final velocity directions, find the angle between
them and look at the distribution of the spread of angles. The standard deviation should give us
a good estimate of whether the particle channeled from the initial to the final position. However,
there can be a good possibility that a particle enters a channel much after it enters the crystal.
Thus, the above method should work better.

However, in practice, we found that the trajectory of a projectile can be very random. None
of the above methods may correctly describe channeling. The first method may find channeling at
different parts of the trajectory of a muon, but such information is not useful for our purpose. We
are mainly interested in transmission of muons out of the sample due to channeling. The easiest
way is to manually change the incident direction of the muons and run the simulation to collect
data regarding the average range reached and number of transmitted particles. This is done in
chapter 4 where we compare the data of three different simulation runs with different incident beam

directions.

3.3.12 Bookkeeping: What Quantities are of Interest?

Careful memory usage may reduce the computation time greatly. We are not dealing with low
level memory management here, but we want to keep track of quantities which are useful to us for
analysis, and at the same time we want to get rid of extraneous data that are generated for each
particle and are not useful later. Ounly a few important data are saved during the simulation. We are
mostly interested in keeping track of the trajectory itself, along with the energy of the particle. Thus

all the position data at each step are saved so that we can build and analyze a precise trajectory.
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The final stopping position should be stored in order to analyze the spatial distribution. Information

regarding backscattering and transmission of particles also needed to be stored for our purpose.

3.3.13 Implementation of Another Method

In order to compare and validate our discretization methods, we have written another version of
the MD algorithm that employs recoil interaction approximation and all the other assumptions we
made for the discretization techniques, except discretizing the simulation cell volume. The force
acting on a particle is calculated in real time as the particle moves through the solid, as opposed
to using precalculated force fields. The advantage of using this method mostly concerns accuracy.
Although it is slower to calculate the force field in every step of the trajectory, we no more have
to approximate the center as the representative of all the points present in a certain unit volume.
Every other calculation remains same in the code. With this code, now we have a platform to

compare our discretization approximations.

3.3.14 Results and Analysis

All three MD programs produce histogram outputs that show stopping depth distributions. In ad-
dition, the programs produce trajectory plots, which is useful in studying the behavior of channeled
particles. Programs based on the discretization method produce a 3-d vector plot of the force fields,
which proved to be useful in debugging the program.

Figure 3.7 shows a typical force field produced by the discrete MD program for a bcc iron
lattice. Many vectors appear as dots in this plot. This is due to the automatic adjustments of
relative magnitude (done my Mathematica) to show all the vectors in the same plot. This gives us

a sense about the regions where the force is stronger.
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Figure 3.7. Force field vector plot for bcc iron lattice.

When the vectors are forced to be shown equal in magnitude using another command, the
following plot (figure 3.8) is produced. This kind of plot is useful for studying the direction of the
force field, and also for verifying the neighbor atoms positions. We have used such plots to see
whether we left out any neighbor atom in our calculation. In that case, the direction of the fields at
certain region changes, which is enough information to find out a discrepancy in the neighbor list.

The density of vectors in this plot can be adjusted to make such debugging easier.
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Figure 3.8. Force field vectors with unit magnitude, showing their directions only

Figure 3.9 shows a typical trajectory plot produced by the MD programs. This plotter program
is not a built-in command in Mathematica. A custom program is written to collect all the trajectory

data produced during the simulation, and plot each list in the same Graphics object in Mathematica.
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Figure 3.9. A trajectory plot for 500 eV muons going into iron. The red dot shows the entry area

(the dot size is exaggerated).

A typical depth distribution produced by the programs is shown below. This particular run of
the simulation was set up for 500 eV muons going into a bcc iron sample. The thickness of the
sample is 500 A. A total of a thousand particles were simulated in this case. The time taken for the

simulation was around 15 minutes using the program that employs the method described in 3.3.13.
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Figure 3.10. Range distribution produced from our molecular dynamics program. Depth is given

in meters.

After running a few simulations using all three programs, we were certain that our methods are
only valid with an incident energy lower than ~600 - 700 eV. Below this approximate threshold, the
results come out to be remarkably close to TRIM or MARLOWE. Over this threshold, the particles
do not tend to stop where they are supposed to stop, and continues much farther into the crystal.
A possible explanation for such behavior is that we left out many factors and properties associated
with the solid in order to keep our model simple. Phonon excitation of the lattice atoms could
be taken into account, which would complicate the model. Our guess is that muons with incident
energy below the threshold value cannot affect the lattice vibration significantly, whereas the ones

coming in with greater energy may contribute more to the vibration.
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4 Evaluation

4.1 Methods of Evaluation

In order to compare the models we designed and implemented, we ran simulations to collect key
data, such as average depth reached in the sample, number of backscattered particles (particles that
go out of the sample through the surface they come in initially) and the number of transmitted
particles (particles that come out of the sample by processes other than backscattering). We do not
evaluate the models we developed using BCA methods in crystalline samples as they were not really
successful. The MD programs’ outputs are compared with the data we collected from MARLOWE
and TRIM. The MD programs are the two types of discretization (Method 1 & 2 in 3.3.4) and the
recoil interaction approximation without discretization described in 3.3.13 (we will call it Method
3 from now on). Finally, we attempt to characterize channeling through different crystallographic

directions in a body centered cubic metal.

4.2 Comparison of the Models

Simulations with the following properties were run for all five programs we are considering:
e Incident energy = 500 eV
e bcc iron sample
e Sample thickness = 500 A (in the x direction)

e Incident angle = 0
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e Number of muons = 1000

e Number of runs = 5

The following table summarizes the average values we obtained from the 5 runs.

Method Average Depth (A) | Backscattered Particles | Transmitted Particles
MD Method 1 76.0149 78 34
MD Method 2 83.9288 53 22
MD Method 3 69.3726 16 7
MARLOWE 68.786 81 N/A

TRIM 71 26 0

Table 4.1. Comparison of binary collision approximation and molecular dynamics programs.

The molecular dynamics methods 1 & 2 (the discretization techniques) make the muons pene-
trate more into the sample compared to other methods. The number of backscattered particles and
transmitted particles are also higher. Method 2 gives rise to the highest average depth among all
programs. Method 3, MARLOWE and TRIM seem to be producing consistent and similar values
when it comes to average depth. As TRIM and MARLOWE are de facto standards in ion beam
physics due to their consistency with experimental data, we may conclude that Method 3 is more
accurate among all the MD techniques we employed. Method 1 & 2 may not have performed very
well as they are only approximations, and it seems that channeling was more prominent in these
simulations (as they produced the highest numbers of transmitted particles).

MARLOWE does not report the number of transmitted particles as we could not find a way to
set the thickness of the sample in this program. However, it gave rise to more backscattering than
any other programs. Comparing MD method 3 and TRIM, we can say that they agree very well in
general. Some particles are transmitted when we use method 3, whereas none is transmitted in case
of TRIM. This shows that channeling does occur when we consider the molecular dynamics model,
but it is not very significant. The ratio of transmitted particles to the total number of particles is

very small.
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4.3 Channeling

We choose the bee crystal iron for our investigation of channeling. We choose several crystallographic
directions as incident directions of the particles. Other than the change in direction, the properties

of the incoming muons are the same as before. The following table summarizes our findings.

Crystallographic Direction | Transmitted | Backscattered | Average Depth (A)

[100] 9 16 69.3846
[110] 4 58 47.3662
[111] 27 71 89.2488

Table 4.2. Comparison of Crystallographic directions that are likely to give rise to channeling of

muons.

The directions are given using Miller indices. Due to the symmetry of a bcc crystal, we may
substitute the direction [110] with any of [101], [110] and [101] etc. So we should treat the result for
[110] similar to the results produced for any of the other directions mentioned. Along [100], there
is a little bit of channeling as 9 particles are transmitted. Channeling is least through the [110]
direction because the average depth reached is the lowest. However, incident beams in the [111]
direction are more likely to channel as suggested by the higher number of transmitted particles and
higher average depth.

The following histograms compare the distribution produced for [100] direction with those for

[110] and [111].
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Figure 4.1. Stopping distributions for muons incident at [100] and [110] directions. The

transparent histogram represents muons at [110] direction.
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Figure 4.2. Stopping distributions for muons incident at [100] and [111] directions. The

transparent histogram represents muons at [111] direction.

The depth is given in meters in both the graphs. As seen in figure 4.1, the peak of the distribution
for [100] muons is located at a higher depth. On the other hand, muons incident at [111] angle does
not have a sharp peak in their stopping distribution (figure 4.2). After around 100 A (1.0 x 108
m), they dominate over the muons coming in at [100] direction in terms of reaching higher depth.

This suggests that channeling is more prominent for the muons incident at [111] direction.

4.4 Conclusion

Based on the comparison of different programs, we can state that accurate molecular dynamics
methods (in our case, method 3) do not provide significantly different results from those given
by the BCA programs. The brute force recoil interaction approximation MD method (method 3)
provided good results, whereas the discrete approximations were not very accurate. In general,
we have confirmed that channeling of muons does occur, but we have also established that it does
not have a very significant effect on the stopping distribution. Since MD programs take longer
computation time, we have good reasons to use BCA programs for our needs. Nonetheless, MD

programs can be useful in the investigation of channeling of muons in complex crystal structures.

76



4.5 Future Work

MUSCLE can be used to investigate the effect of channeling in multi layered, complex crystal
structures; something we could not do due to time constraints. The MD programs can be changed
to do parallel processing in order to take advantage of multiple CPU cores present in most computers
nowadays. An attempt is taken to include parallelism in MUSCLE using the MPI (Message Passing
Interface) library, but it is not yet finished. Simulation time can be greatly reduced once the parallel

version is complete.
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Appendix A

The appendix contains the simulation code we have written in Mathematica and C++ for the

following programs:

e MD method 3 (brute force MD recoil interaction approximation)

MD method 1 (Discretization method 1)

MD method 2 (Discretization method 2)

Evaluation of number of blocks in simulation cell

Evaluation of Born-Mayer potential for different elements.

Binary Collision Approximation neighbor selection code (as described in section 2.6).
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MJUSCLE: Mbl ecul ar

Dynam cs Met hod #3 (Brute Force Met hod)
Mat hemat i ca Code

data =

ReadLi st ["C:\\ User s\ \ Saqui b\ \ Docunent s\ \ sp\ \ Seni or _proj ect _2nd\\ scoef 1. dat",
Nunber, RecordLi sts -> True];
get At onProperties[z_]:=Mdul e[
{property = {}},
property =data[[z]];
Ret urn[property]
]

get At onProperties[6]
(6, 12, 12., 12.011, 2.2662, 11.364, 1., 1.03}

(*Proton Stopping Coefficientsx)
get PCoef [z_] : = Modul e[

{pcoef = {1},

For[i =2, i <=Length[data[[z +92]]1], | ++,

pcoef = AppendTo[pcoef, data[[z +92]1][[i1]]
1

Ret ur n[pcoef ]
1

get PCoef [8]

{0. 75253, 0. 0050314, 4.0824, 0.30067, 2455.8, 1.0181, 5069.7, 0.017426}
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(xCal cul ate el ectroni c stoppi ngx)
getSe[z_, eekev_] : = Mdul e[

1

{pcoef = {}, se={}, ML =0.114, e0=0.0, e=0.0, PEO =25.0, pe =0.0,
sl =0.0, sh=0.0, sed =0.0, vel pw =0.45, atrho =0.0, dummy = {}},
pcoef = get PCoef [z];
dunmmy = get At onProperties[z];
atrho =dumy [[6]] » 107 22;
(xPrint [pcoef ]; *)
e =eekev /ml; (% per atm maSS unit? =)
pe = Max [PEQ, e];
sl = pcoef [[1]] = (pe” (pcoef [[2]])) +pcoef [[3]] * (pe” pcoef [[4]]);
sh = (pcoef [[5]] / (pe”pcoef [[6]])) =Log[ (pcoef [[7]] / pe) +pcoef [[8]] *pe];
(»sh=pcoef [[5]1]xLog[ (pcoef [[7]1]/pe) +pcoef [[8]]=*pe]l= (pe”pcoef [[6]1]); *)
sed = ((sl xsh) / (sl +sh));
I f [e > PEQ
Return[sed xatrho % 10" -23]
If[z<6, vel pwr = 0. 25, vel pwr = 0. 457;
(xPrint [sed,"” ", (e/PEO)"vel pw 1; %)
sed =sed » ((e / PEO) “vel pw);
Return[sed xatrho = 10" -23]
1

t =getSe[26, 1]
10. 7606
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get ESt opLi st [z_, eekev_]: = Mdul e[

1

{pcoef = {}, se={}, mL=0.114, e0=0.0, e =0.0, PEO = 25.0, pe =0.0,
sl =0.0, sh=0.0, sed =0.0, vel pwr =0.45, atrho =0.0, dunmy = {}},
pcoef = get PCoef [2];
dummy = get At onProperties([z];
atrho =dummy [[6]] » 107 22;
I f [eekev < 10" -10,
For[i =1, i <1000, i ++,
se = AppendTo[se, 0]
1
Return[se]
I
e0 = 0. 001 » eekev / n;
For[i =1, i <1000, i ++,
e=e0xi;
pe = Max [PEQ, e];
sl = pcoef [[1]1] = (pe” pcoef [[2]]1) +pcoef [[3]] % (pe” pcoef [[4]]);
sh = (pcoef [[5]] / (pe”pcoef [[6]])) =Log [ (pcoef [[7]] /pe) +pcoef [[8]] »pel;
sed = ((sl #sh) / (sl +sh));
I f [e > PEQ,
se = AppendTo[se, sed xatrho % 10" -23]

If[z <6, vel pww = 0. 25, vel pwr = 0. 457;
sed = sed % ((e / PEO) *vel pw);
se = AppendTo[se, sed xatrho 10" -23]
]
1
Return[se]

es = get ESt opLi st [26, 0.57;
es[[1000]1]

7.

87725
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(xCGenerate a list of electronic stopping |istx)
get ESt opping[z_, e_, eOkev_, estopList_]:=Mdule[
{ie=0, see =0.0},
ie=Round[ (e /eOkev)];

I f [ie> 1000,
(*Print [*">1000t h el enent doesn't exist, using the 1000th value for -> e
e," eV, eOkev = ", elkev]; %)
(xPrint [">1000t h el ement doesn't exist, using the getSe[]

function for -> e = ",e," eV, eOkev = ", eOkev]; %)
Return[get Se[z, e /1000]]
1;
see =estopList [[ie]];
I f [e < eOkev,
see =estopList [[1]] *Sqrt [e / eOkev]
1;
Return[see]
1

get ESt oppi ng[26, 500, 0.5, es]
7.87725

(xLi ndhard Scharff stoppings)
LSSt opping[zl_, z2_, eev_] : = Modul e[
{rl =0.114, e0 =0.0, se =0.0, dumy = {}, atrho =0. 0},
dummy = get At onProperties[z2];
atrho =dumy [[6]] %10/ 22;
e0 = eev / ni;
z17/8 x z2 eev

se=1.21+% * :
(212/3 +Z22/3)3/2 mlL

se =sexatrhox (10" -23);
Return[se/10](* /10 to nmake it ev/ang from ev/nm -
see lon solid interaction (Nastasy, Mwyer) pg 110 sanple cal cul ati onsx)

]

LSSt oppi ng[1, 26, 1000]
8. 1769
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(xbasi ¢ const ant s*)

sec =1.0;
m=1.0;

ang = 10" -10 » m
J=(kg*m2) /sec"2;
eV=(16%10"(-19)) %J
MeV = eV %1076
c=(3.0%x10"8) mxsec”"-2

1.6x1071°
1.6x10713
3. x108

(xprelimnariesx)

muonMass = 105. 65836668 « MeV / c" 2

at omMass = 0. 055847 / (6. 02 + 10?°) x kg

| atti ceConstant = 2. 87 xang

total Volune =1 atti ceConstant =l atti ceConstant =l atti ceConst ant
Zmuon =1

ZFe = 26

ZC=6

ToeV[e_]:=e/ (1.6 10" -19)

FromeV[e_]1:=ex (1.6 % 10" -19)

84



(xnei ghbor atons in the unit cubex)

I x = {latticeConstant /2, 0, 0}

ly = {0, latticeConstant /2, 0}

lz={0, O, latticeConstant /2}

nei ghborl onsBCC = Li st [];

nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC, {0, 0, 0}1;

nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC, 2 x| x7;

nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC, 2 %1 y];

nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC, 2 %1 z7;

nei ghbor 1 onsBCC = AppendTo [nei ghborl onsBCC, | x +ly +12z1;
nei ghbor | onsBCC = AppendTo [nei ghbor1 onsBCC, 2 xly +2 %1 2z];
nei ghbor 1 onsBCC = AppendTo [nei ghborl1 onsBCC, 2 x| x +2 %1 z];
nei ghbor | onsBCC = AppendTo [nei ghbor1 onsBCC, 2 I x+2xly];
nei ghbor 1 onsBCC = AppendTo [nei ghborl onsBCC, 2 I X +2xly +2 %1 2z];
nei ghbor | onsBCC = AppendTo [nei ghbor 1 onsBCC, -ly +Ix +12z];
nei ghbor 1 onsBCC = AppendTo [nei ghborl onsBCC, 3*ly +|x +12z1;
nei ghbor | onsBCC = AppendTo [nei ghbor 1 onsBCC, | x +1y -12z7;
nei ghbor 1 onsBCC = AppendTo [nei ghborl onsBCC, | X +ly +3 x12z1;
nei ghbor | onsBCC = AppendTo [nei ghbor 1 onsBCC, -Ix +ly +12z];
nei ghbor 1 onsBCC = AppendTo [nei ghborl onsBCC, 3 I x +ly +12z1;
topLeft =2=x12z

topright =2xly+2=xlz

bottonlLeft = {0, 0, 0};

bottonRi ght =2 %1vy;

topLeft [[2]]

(*NDx)

Cl ear [distribution, d, dList, allDList, ol dd, dbox,
vv, ol dvv, vvdir, trackHi story, selist, vmaglist, ke, FJ;

Absol ut eTi m ng[

nunmvuons = 50;

Tot al Dept h = 600 % ang;

en =500 xeV; (xenergy in evsx)

vthol d = v/2 5+ eV / nuonMass

ethold =5 =xeV,;

dt =0.1«latticeConstant =+ muonMass / (2 +en) =sec; (xtime stepx)

Print [en, " ", ethold, " ", dt];

del v = 0. 0;

|s =0. 0;

se =0.0;
currkE=0.0;

vimag = 0. 0,

currEev =0.0;

numlr ansni ssi on = 0;
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nunBackscatter = 0;

reducedv = {};

vvdir = {};

trackHi story = {};
selist = {};
vmagl i st = {};
ke = {0.0, 0.0, 0.0};
distribution=List[];
dept hLi st = {};
d={};

dLi st =List[];

al | DLi st =List[];
oldd =List[];
dbox = Li st [];
vv = {};

ol dvv = List [];
F={}

(xFil e Operationx)
f =
penWite["C \\Users\\ Saqui b\\ Docunent s\\ sp\\ Seni or _proj ect _2nd\\raw data.txt",
For mat Type » Qut put For m];

(xPotential propertiesx)
(xBorn-Mayer par anet er sx)
Abm=52. 0 % (Zmuon » ZFe)3/% x eV,
abm= 0. 219 * ang;

I\/bnitor[

For [nh =1, nh < numMions, nh =nh+1,

nunScatter = 0;

transmtted = Fal se;

Cl ear [dLi st, selist, vmaglist, neanvSq, FI;
dList =List[];

selist = {};

vmagl i st = {};

meanvSq = {0.0, 0.0, 0.0};

(xgenerate random vx)
currkE=en;

di ry = RandonReal [{0.0, 0.5}1;
di rz = RandonReal [{0.0, 0.5}];
(*

di ry=0.0;
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di rz=0. 0,

*)

vr =2 xen / muionMass ;

vy =vr xdiry;

vz =Vvr =dirz;

VX = \/(vr"Z— (Vy"2+vzn2)) ;

vV = {VX, Vy, VZ};
ol dvv = {vX, vy, vz};

d = {0. 0, RandonReal [{0.0, latticeConstant }],
RandonReal [{0.0, latticeConstant }]};

dpdt =d;
dmdt = dpdt;
dbox =d;
F={}
currT=0.0;
count =0;
m nE = en;
(*

Print ["Initializing Mion #",n,

" velocity vector: ",vv, vr:
Wite[f,"Initializing Mion #",n,
"ovr:

,vr, " Threshold vel.: ",vthold];

velocity vector: ",
",vr, " Threshold vel.: ",vthold];

vV,

*)

(*l oop until energy drops bel ow threshol d«)
Wil e[ (currE>ethold) & (d[[1]] < Total Dept h),

| f [count > 2,

For [k =1, k <3, kK++,
meanvSq[[k]l] = ((dList [[count J]1[[k]] -dList [[count -2]][[k]])/ (2%dt))"2
1

currE = (muonMass /2) »= Tot al [meanvSq];

I f [m nE>currE,
m nE=currE
1
1
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(xCal cul ate the force acting on the nuonx)

fx =0.0;
fz=0.0;

(*Go through each nei ghbor atom and add their potential contributions)
For [n =1, n < Length[neighborlonsBCC], n=n+1,
curr Nei ghbor = nei ghbor | onsBCC[ [n]];

di st =~/ ((dbox[[1]] -currNeighbor [[1]])? +
(dbox [ [2]] - curr Nei ghbor [[2]])? + (dbox [[3]] - curr Nei ghbor [[3]11)?);

(*Born-Mayer potential %)
dvdr = (-Abm/ abm) % e-di st/abm

from=currNei ghbor - dbox;

withs=1Kx;

(»cs=Cos [VectorAngl e[fromwi th]]; %)

cs = (Dot [from with]) /7 ((Norm[from]) * (Norm[with]));
fx =fx+dvdr %cs;

with=1y;

(xcs=Cos [VectorAngl e[fromwi th]]; )

cs = (Dot [from with]) /7 ((Norm[from]) = (Norm[with]));
fy =fy +dvdr %cs;

withs=1z;

(»cs=Cos [VectorAngl e[fromwi th]]; %)

cs = (Dot [from with]) /7 ((Norm[from]) * (Norm[with]));
fz =fz+dvdr xcs;

F=(-fx, -fy, -fz};
For [k =1, k <3, k++,
(%V (t +dt /2) = x)

VvV [[k]] =oldvv[[k]] +dt »xF[[k]] / nuonMass
1

(I ncorporate estopping, reduce vel ocitys)
vvdir = Normal i ze[vv];

(* Zeigler stopping =)
currEev = ToeV[currE];
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(»seev=get ESt oppi ng[ZFe, currEev, 1. 0, es]; (xin eV/angx) =)
seev = get Se[26, currEev];

(*

(*LS stopping =)

curr Eev=ToeV[currE];

seev=LSSt oppi ng[1, 26, currEev];

*)

(xsel i st =AppendTo[selist, se]; %)
(xPrint [se]; *)
se =seev % (1.6 %10" (-19)) / (10" -10);

(xreduce vel ocityx)

del v = dt *se / nuonMass;
vimag = Nor m[vv];

vv = (vimag -del v) xvvdir;

(xnew d =*)

For [k =1, k<3, K+4+,

(%Vv (t +dt /2) = x)

dpdt [[k]] =d[[k]]+dt xvv[[K]]
1

dLi st = AppendTo[dLi st, dpdt;

I f [dpdt [[1]] <O,

nunBackscatter = numBackscatter +1;
(xPrint ["Particle backscattered"]; %)
Break[]

] ’

(»abs[ls] might have solved the problem of getting stuck at a placex)
| s = Abs [Nor m[dpdt ] - Norm[d]];

(*

Print["e = ",currE," se = ",se," se(eV/ang) = ", get ESt oppi ng[ZC, ToeV[currE],
1.0,es]," Is = ",Is," del v. = ",delv," Norm[vv] = ", Norm[vv]];

*)

(*Check Transmi ssionx)

| f [dpdt [[1]] = Tot al Dept h,
transmtted = True;
nunilr ansmi ssi on = numlr ansm ssi on +1;
Break[];
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I

(»find the position in the simulation cell using nodul usx)

dbox[[1]] = Mod [dpdt [[1]], | atti ceConstant ];
dbox[[2]] = Mod [dpdt [[2]], | atticeConstant ];
dbox[[3]] = Mod [dpdt [[3]], | atti ceConstant ];

currT=currT+dt;
nunBScatter = nunScatter +1;

count =count +1;

(xnew v = old v - del v + force in new bl ock,

which will be calculated in the next |oopx)
ol dvv = vv;

(xPrint ["final velocity: ", Norm[vv]]; =)
(¥Print ["final depth: ",d[[1]1]];
Print ["Nunber of scatters: ",nunScatter]; )

(¥Print ["x: ",d[[11]," y: ",d[[2]11," z: ",d[[3111; %)

(xsave coord. for distribution datax)
If[transmitted == True,

trackH story = AppendTo[trackH story, {n, vmaglist, selist}]

1

di stribution = AppendTo[distribution, di;
dept hLi st = AppendTo [dept hLi st, d[[1]1]1];
al | DLi st = AppendTo[al | DLi st, dLi st 1;

]

{"Muon #", nh, "distance: ", d,

Pr ogr essl ndi cat or [Norm[d], {0, Total Depth}], "Estopping:
"Resultant Velocity: ", Progresslndicator [Norm[vv], {0,
"Current Energy:", Progresslndicator [currE, {0, en%x2}], "Mn.

(»di stributionx)
(*Aver age dept hx)

Print ["Average range = ", Total [distribution] /numVions];

(*Transni ssi on and backscatterings)
Print [nunilransm ssion, " particles transmtted,
nunBackscatter, " particles backscattered"];
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Cl ose[f]

]

Average range = {5.60003x107° 1.2745x10°° 1.82551x10°}

0 particles transmtted, O particles backscattered

(xCode to plot all the trajectories togetherx)
Mani pul at e[
Show[
Flatten[
Tabl e[
G aphi cs3D[{{Col orData[3, "ColorList"], Line[al IDList [[n]]]},
{Red, PointSize[Large], Point [allDList [[n]][[currpt]]]}},
Axes - True, Pl ot Range -» Aut onati c,
AxeslLabel - {x, vy, z},
Pl ot RangePaddi ng -» None,
FaceGi ds » None]
, {n, nMax}]
1
1,
{{currpt, 1}, 1, Length[al | DLi st [[nMax]1]], 2},
{{zoom Max[allDList]}, Mn[allDList], Max[al | DList], 1},
{{nMax, numVuons}, 1, nunmMuons, 1}
1

(xPl ot depth distributions)
H st ogram[dept hLi st, 50]

““H““\““\““\‘“‘\““\““\““

| |

5.x107° 1.x10°8 1.5x10°8 2.x10°8
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MUSCLE: Ml ecul ar Dynami cs Method #1 (Discretization nmethod 1)

Mat hemat i ca code

ToeV[e_]:=e/ (1.6 %10"-19)
FromeV[e_]:=e=x (1.6%10"-19)

data =
ReadLi st ["C:\\ User s\ \ Saqui b\ \ Docunent s\ \ sp\ \ Seni or _proj ect _2nd\\ scoef 1. dat",
Nunber, RecordLi sts -> True];

get At onProperties[z_]:=Mdul e[
{property = {}},
property =dataf[[z]];
Ret urn[property]
1

get At onProperties[6]
(6, 12, 12., 12.011, 2.2662, 11.364, 1., 1.03}

get PCoef [z_] : = Modul e[

{pcoef = {}},
For[i =2, i <=Length[data[[z +92]1], | ++,
pcoef = AppendTo[pcoef, data[[z+92]][[i1]]

1;
Ret ur n[pcoef ]

1
get PCoef [8]
{0. 75253, 0.0050314, 4.0824, 0.30067, 2455.8, 1.0181, 5069.7, 0.017426}
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get Se[z_, eekev_] : = Modul e[
{pcoef = {}, se={}, mL=0.114, e0=0.0, e =0.0, PEO = 25.0, pe =0.0,
sl =0.0, sh=0.0, sed =0.0, vel pwr =0.45, atrho =0.0, dunmy = {}},
pcoef = get PCoef [2];
dummy = get At onProperties([z];
atrho =dummy [[6]] » 107 22;
(*Print [pcoef 1; *)
e =eekev /nl; (*x per atm mass unit? =x)
pe = Max [PEQ, e];
sl = pcoef [[1]] * (pe” (pcoef [[2]])) +pcoef [[3]] » (pe” pcoef [[4]1]);
sh = (pcoef [[5]] / (pe”pcoef [[61])) =Log[(pcoef [[7]1] /pe) +pcoef [[8]] % pe];
(¥sh=pcoef [[5]1]*Log [ (pcoef [[7]1]/pe) +pcoef [[8]]xpe] = (pe”pcoef [[6]1]); *)
sed = ((sl #sh) / (sl +sh));
I f [e > PEQ
Return[sed xatrho = 10" -23]

If[z <6, vel pwr = 0. 25, vel pwr = 0. 457;
(xPrint [sed," ", (e/PEO)"vel pw ]; %)
sed = sed x ((e / PEO) “vel pwr);
Return[sed xatrho % 10" -23]
]
1

t =getSe[6, 0.1]
5.75291
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get ESt opLi st [z_, eekev_]: = Mdul e[

1

{pcoef = {}, se={}, mL=0.114, e0=0.0, e =0.0, PEO = 25.0, pe =0.0,
sl =0.0, sh=0.0, sed =0.0, vel pwr =0.45, atrho =0.0, dunmy = {}},
pcoef = get PCoef [2];
dummy = get At onProperties([z];
atrho =dummy [[6]] » 107 22;
I f [eekev < 10" -10,
For[i =1, i <1000, i ++,
se = AppendTo[se, 0]
1
Return[se]
I
e0 = 0. 001 » eekev / n;
For[i =1, i <1000, i ++,
e=e0xi;
pe = Max [PEQ, e];
sl = pcoef [[1]1] = (pe” pcoef [[2]]1) +pcoef [[3]] % (pe” pcoef [[4]]);
sh = (pcoef [[5]] / (pe”pcoef [[6]])) =Log [ (pcoef [[7]] /pe) +pcoef [[8]] »pel;
sed = ((sl #sh) / (sl +sh));
I f [e > PEQ,
se = AppendTo[se, sed xatrho % 10" -23]

If[z <6, vel pww = 0. 25, vel pwr = 0. 457;
sed = sed % ((e / PEO) *vel pw);
se = AppendTo[se, sed xatrho 10" -23]
]
1
Return[se]

es = get ESt opLi st [26, 11;
es[[1000]]

10. 7606
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get ESt oppi ng[z_, e_, eOkev_, estoplList_]

{ie=0, see =0.0},
ie=Round[ (e /eOkev)];
I f [ie> 1000,

(*Print [">1000th el enrent doesn't exist,

e," eV, elOkev = ", eOkev]; *)

(*Print [">1000th el enrent doesn't exist,

function for -> e =
Return[get Se[z, e /1000]]
1
see =estopList [[ie]];
| f [e < eOkev,
see =estopList [[1]] *Sqgrt [e / eOkev]
1
Return[see]
1

get ESt oppi ng[26, 1000, 1, es]
10. 7606

(*basi c const ant sx)

kg = 1;

sec = 1;

m=1;

ang = 10" (-10) » ny
J=(kg*m2) /sec”?2
eV=(1.6%10"(-19)) %J
MeV = eV %1076
C=(3.0%10"8) mxsec”-2

1
1.6x101°
1.6x10713

3. x 108
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(xprelimnariesx)

muonMass = 105. 65836668 « MeV / c" 2

at omMass = 0. 055847 / (6. 02 + 10%°) x kg

| atti ceConstant = 2. 87 xang

total Volune =1 atti ceConstant =l atti ceConstant =l atti ceConst ant
xBound = 25

yBound = 25

zBound = 25

vol Step = (l atti ceConstant / xBound)
nunni t Cube = (l atti ceConstant /vol Step)?
Zmuon =1

ZFe = 26

ZC=6
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(xnei ghbor atons in the unit cubex)
I x = {latticeConstant /2, 0, 0}

ly = {0, latticeConstant /2, 0}
lz={0, O, latticeConstant /2}

nei ghborl onsBCC = Li st [];

nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,

topLeft =2=x12z
topright =2xly+2=xlz
bottomLeft = {0, 0, 0};
bottonRi ght =2 %1vy;
topLeft [[2]]

1.435x10°'°, 0, 0}

0, 1.435x10°", 0}

{
{
{0, 0, 1.435x10'%}
{
{0, 2.87x10°"°, 2.87x107'%}
0
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{0, 0, 0}1;
2%l Xx];
2x1yl;
2xlz];
Ix+ly+lz];
2xly+2=x12z];
2xlx+2x%12];
2%l Xx+2%ly];
2xIX+2%xly+2=xl2]7;
-ly+Ix+l2z];
3xly+lx+lz];
Ix+ly-12z];
IX+ly+3=xl2z];
-Ix+ly+lz];
3xlx+ly+lz];



(Bl ock coordi nates inside the sinulation cell %)
C ear [sc, sc2]

(»sc={0, 0, 0}; *)
sc = List[];
sc2 =List[];
For [xc =1, xc < xBound, xc =xc +1,

For [zc =1, zc < zBound, zc = zc + 1,

For [yc =1, yc <yBound, yc =yc +1,
sc = AppendTo[sc, {topLeft [[1]] +XxC *Vvol Step,
topLeft [[2]] +YyCc *vol Step, bottonleft [[3]] +zCc »xvol Step}]
1

1
1
For[i =1, i <Length[sc], i =i +1,

sc2 = AppendTo[sc2,

{sc[[i11[[1]1]-volStep/2, sc[[i]11[[2]]-volStep/2, sc[[i]11[[3]1]-volStep/2}]

1
Li st Poi nt Pl ot 3D[sc, AxeslLabel - {x, y, z}]
sc;
Lengt h[sc2]
sc2;

(*, Pl ot Range-{-1. 435, 1. 435}, Dat aRange-{{0, 2. 87}, {-1.435,1.435}}]%*)

15625
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(x*Returns the index of the bl ockx)
det Node[num_, vstep_]:=Mdule[{g=0, r =0, eps = (10" (-5)) »ang},
g = Quoti ent [num vstep];
(*r =Mbd [num | att Const ]; *)
r = num-q = vst ep;
(xPrint [q," ",r1; %)
VWi ch[
r >eps, Return[qg+1],
r 0&&q >0, Return[ql,
r >0&&q =0, Return[l],
True, Print ["Unable to determine the cell"]; Print[qg, " ", r]; Return[-1]
1
1

(xDetermine the block i ndex based on x, y, and z val ues of a pointx)
nodeCoord([x_, Y_, z_, spacing_]:=Mdule[{xk =0, yk =0, zk =0},
xk = det Node [x, spacing];
yk = det Node [y, spaci ng];
zk = det Node [z, spacing];
I f [(yk + (zk -1) % zBound + (xk -1) = (xBound) *2) > xBound » yBound %= zBound,
Print ["Went Over ", xk, " ", X, "Lyk, "ty "ty zk, T, z]
I
Wi ch[
xk > 0&&yk > 0&&zk >0, Return[yk + (zk - 1) »zBound + (xk - 1) » (xBound) * 2],
Xk == 0 && Yk == 0 &&zk == 0, Returnf[l],
xk == 0 &&yk == 0 &&zk == 1, Return[zBound + 17,
yk == 0 &&zK == 0 && Xk == 1, Return[xBound”2 + 1]
1
1

(xPotential and force field Cal cul ati onsx)

(#»Bor n-Mayer par amnmet ers)
Abm = 52. 0 % (Zmuon  ZFe)3/4 x eV
abm=0.219 % ang

(»Morse par anet er Sx)
(xFor Fex)

DeV = 0. 4174 x eV

al phap = 1. 3885 / ang
ro=2.845 % ang

Clear [Mlist, V, forceList, vPlot]
VIist =List[];

V =List[];

forceList =List[];

For [i =1, i slLength[sc2], i =i +1,
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d ear [V];
V =List[];
(*Go through each nei ghbor atom and add their potential contributionx)
For [n =1, n < Length[nei ghborlonsBCC], n=n+1,
currbPt =sc2[[i]];
cur r Nei ghbor = nei ghborl onsBCC[[n]];

dist =+/((currPt [[1]] -currNeighbor [[1]])? +

(currPt [[2]] -currNeighbor [[2]])?+ (currPt [[3]] -currNei ghbor [[3]1])?);
(xBorn-Mayer potenti al %)
V = AppendTo [V, Abmax e % st/2bm]

(xMorse Potential )
(*V=AppendTo [V, (DeV*e('z*al phap=* (di st -r0)) —2*D€V*e('a| phapx (di st -r0)) ) ] *)

I;

sunV = Tot al [V];
Vi st = AppendTo[M i st, sunV];

Length[VlIi st ]

(*Now to force fields)
For[i =1, i <Length[sc2], i =i +1,
currx =sc2[[i11[[111;
curry =sc2[[i 11[[2]11;
currz =sc2[[i11[[311;
(xDet er mi ne x-Boundaryx)
If[sc2[[i]]1[[1]] +vol Step >|atticeConstant,
(xdeeper -x-boundary )
fx=(Vlist[[i]]-VMist[[nodeCoord[currx -vol Step, curry, currz, vol Step]1]) /
(vol Step);

I f[sc2[[i]]1[[1]1] -vol Step <O,
(xnear er -x-boundar y )
fx = (Mist[[nodeCoord[currx +vol Step, curry, currz, vol Step]1]1-Vist[[i]])/
(vol St ep);
(*Not in the x-Boundarys)
fx = (VMist[[nodeCoord[currx +vol Step, curry, currz, vol Stepl]1] -
VI i st [[nodeCoord[currx -vol Step, curry, currz, vol Step]1]) / (2 %vol Step);
1
1;

(xDet er mi ne y-Boundaryx)
I f[sc2[[i]]1[[2]] +vol Step > atticeConstant,
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(*ri ght -y-boundary =)
fy=(Mist[[i]]-Mist[[nodeCoord[currx, curry -vol Step, currz, vol Stepl11) /
(vol St ep);

If[sc2[[i1]1[[2]]-Vol Step <O,
(x|l ef t -y-boundaryx)
fy = (Vlist [[nodeCoord[currx, curry +vol Step, currz, vol Step]]]-Mist[[i]])/
(vol Step);

(*Not in the y-Boundarysx)
fy = (Vlist[[nodeCoord[currx, curry +vol Step, currz, vol Step]]] -
VIi st [[nodeCoord[currx, curry -vol Step, currz, vol Step]11) / (2=*vol Step);
1
1

(xDet ermi ne z-Boundaryx)
I f[sc2[[i]1]1[[3]] +vol Step >latticeConstant,
(xupper -z-boundary )
fz=(Mist[[i]]-VMist[[nodeCoord[currx, curry, currz -vol Step, vol Step]1]) /
(vol Step);

I f[sc2[[i]]1[[3]]-vol Step <O,
(=l ower -z-boundary =)
fz = (VMist[[nodeCoord[currx, curry, currz +vol Step, vol Step11]1-Vist[[i]])/
(vol St ep);
(*Not in the z-Boundarys)
fz = (Mist[[nodeCoord[currx, curry, currz +vol Step, vol Step11] -
VI i st [[nodeCoord[currx, curry, currz -vol Step, vol Step]1]) / (2 =vol Step);
1
I
I f [ (Not [Nunber Q[fx]1]1) || ( Not [Number Q[fy11) || (Not [NurmberQ[fz]1),
Print ["Not Nuneric in Node ", i]];
forceLi st = AppendTo[forceList, {fx, fy, fz}]

Length[Vli st ]
Lengt h[f orcelLi st ]
vPl ot =List[];

For[i =1, i <Length[forceList], i =i +1,
vPl ot = AppendTo[vPlot, {sc2[[i]], forceList[[i]]1}];
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(*Code to plot the force field vectorsax)

Mani pul at e[

Li st Vect or Pl ot 3D[VPI ot, VectorScal e » {Automatic, Autonmatic, Autonmatic},
Pl ot Range -» {{l ox, hi x}, {loy, hiy}, {loz, hiz}}, AxesLabel -» {x, y, z}1,
{{lox, 0.0}, 0.0, latticeConstant /2, 0.2 xang},

{{hix, 2.87 xang}, latticeConstant /2, latti ceConstant, 0.2 xang},

{{loy, 0.0}, 0.0, latticeConstant /2, 0.2 xang},

{{hiy, 2.87 xang}, latticeConstant /2, |latticeConstant, 0.2 xang},

{{loz, 0.0}, 0.0, latticeConstant /2, 0.2 xang},

{{hiz, 2.87 xang}, latticeConstant /2, |atti ceConstant, 0.2 xang}

(*Mai n nol ecul ar dynam cs sinul ationx)
Cl ear [distribution, d, dList, allDList, ol dd,

dbox, vv, oldvv, vvdir, trackH story, selist, vnaglist, kel;
Absol uteTi m ng[

numvuons = 1000;

Tot al Dept h = 1000 % ang;

en =500 xeV; (xenergy in evx)
Print [ToeV[en]];

vthol d = V2 5 eV/ nuonMass ;
ethold =5 =xeV,;

dt =0.05 x| atti ceConstant =V nuonMass / (2 xen) =sec; (xtine stepx)
Print [en, " ", ethold, " ", dt];

del v = 0. 0;

|s =0. 0;

se =0.0;
currE=0.0;

vimag = 0. 0,

currEev =0.0;

numlr ansni ssi on = 0;
nunBackscatter = 0;

reducedv = {};

vvdir = {};

trackHi story = {};
selist = {};

vmagl i st = {};

ke = {0.0, 0.0, 0.0};
distribution=List[];
dept hLi st = {};

d={};

dLi st =List[];
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al I DLi st =List[];

oldd =List[];
dbox = Li st [];
vv = {};

ol dvv = Li st [];

(xFil e Operations)
f =
OpenWite["C \\Users\\ Saqui b\\ Docunent s\\ sp\\ Seni or _proj ect _2nd\\raw _data.txt",
For mat Type -» Qut put For m];

lvbnitor[

For [n =1, n<gnumMiuons, n=n+1,

nuntcatter =0;

transmtted = Fal se;

d ear [dLi st, selist, vmagli st];
dLi st =List[];

selist = {};

vmagl i st = {};

meanvSq = {0.0, 0.0, 0.0};

(xgenerate random v=x)

(*di rx=RandonReal [{0.0, 1. 0}]; (*%*%%x%)*)
currE =en;

di ry = RandonReal [{0.0, 0.5}1;
di rz = RandonReal [{0.0, 0.5}];
(*

di ry=0. 0;

di rz=0.0;

*)

vr =42 xen /mionMass ;

vy =vr xdiry;

vz =vr xdirz;

VX = \/(vr’\2— (Vy"2+vzn2)) ;

(xchoose a cell to start from)

i ni t Boxl ndex = Randonl nt eger [ {1, yBound x zBound}];
vV = {VX, VY, vz},

ol dvv = {vx, vy, vz};

d = sc2[[initBoxlndex]];

ol dd = sc2[[i ni t Boxl ndex]1;

dbox = sc2[[i nit Boxl ndex]];

currT=0.0;
count =0;
chstep = 0;

currlndex =i nitBoxl ndex;
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(*
Print ["Initializing Mion #",n,

" velocity vector: ",vv, " vr: ",vr, " Threshold vel.: ",vthold];
Wite[f,"Initializing Mion #",n," velocity vector:
vv, " vr: ",vr, " Threshold vel.: ",vthold];

*)

(xl oop until energy drops bel ow threshol dx)
Whil e[ (currE>ethold) & (d[[1]] < Tot al Dept h),

For[k=1, k<3, k=k+1,

di[k]] =oldd[[k]]+ (v[[k]]) »dt +
(0.5« (forceList [[currlndex]][[k]]) * (dt ~#2)) / muonMass;

(¥old v, or newv (follwi ng previous |oop) see di agram)
vv[[k]] =oldvv[[k]] + (forceList [[currlndex]][[k]] »=dt) /nuonMass;

(*
Print["x: ",d[[11]," y: ",d[[211," z: ",d[[3]11," vr: ",Norm[vv],
node: ", nodeCoord[dbox[[1]], dbox[[2]], dbox[[3]], vol Step],
" currlndex: ",currlndex];

*)

I f [Not [Nunber Q[vv[[k]]11,

Print ["Not Nuneric in Node ", currlndex, " vv[[", k, "11: ", vw[[k]]]

]
I

(x*Wite[f,"x: ",drr1i1," y: ",drr211," z: ",
drr3i1," vr: ", Norm[vv]," currlndex: ",currlndex]; %)

dLi st = AppendTo[dLi st, dJi;

Ifrdrrii] <o,

nunBackscatter = numBackscatter +1;
(xPrint ["Particle backscattered"]; %)
Break[]

I

(xKi neti c energyx)
I f [count > 2,

For [k =1, k <3, k++,
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meanvSq[[k]] = ((dList [[count J][[k]] -dList [[count -2]][[k]])/ (2%dt))"2
1

currE = (muonMass /2) »= Tot al [meanvSq];
1

(xcurrE=(1/2)*xmuonMass (Nor m[vv])"2; %)
vvdir = Normal i ze[vv];

(#»abs [l s] m ght have solved the problem of getting stuck at a placex)
| s = Abs [Nor m[d] - Nor m[ol dd]1];

currEev = ToeV[curr E];

(»seev=get ESt oppi ng[ZFe, currEev, 1. 0, es]; (xin eV/angx) =)
seev = get Se[26, currEev];

sel i st = AppendTo[selist, sel;

(xPrint [se]; *)

se =seev % (1.6 %10" (-19)) / (10" -10);

currE=currE-se=xls;

del v = dt »se / muonMass;
vimag = Nor m[vv];
vv = (vimag -del v) xvvdir;

(*

del v=dt xse/nuonMass;

vvdi r=Nornmal i ze[vv];

vmag=Nor m[vv];

vv=(vhmag-del v) xvvdir;

vmagl i st =AppendTo [vmagl i st, vimag];
*)

(*
Print["e = ",currE," se = ",se," se(eV/ang) = ", get ESt oppi ng[ZC, ToeV[currE],
1.0,es]," Is = ",Is," del v. = ",delv," Norm[vv] = ", Norm[vv]];

*)

(*Check Transmi ssionx)
If[d[[1]] = Tot al Dept h,
transmtted = True;
nunilr ansmi ssi on = numlr ansm ssi on +1;
Break[];
1
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dbox[[1]] = Mod[d[[1]], | atticeConstant];

dbox[[2]] = Mbd[d[[2]], | atticeConstant ];

dbox[[3]] = Mod[d[[3]], | atticeConstant ];

(%1 f [ (Not [Number Q[fx]1) || ( Not [NumberQ[fy]1) || (Not [NunmberQ[fz]]),
Print ["Not Nuneric in Node ",i]]; %)

currl ndex = nodeCoord[dbox[[1]], dbox[[2]], dbox[[3]], vol Step];

I f [currlndex =0,

Print ["CQurrindex is 0 and dbox x, y, z: ",
dbox[[1]], " ", dbox[[2]], " ", dbox[[3]]]
(xcurrl ndex=1%)7;

currT=currT+dt;
nunScatter = nunScatter +1;
count =count +1;

ol dd =d;

(xnew v = old v - del v + force in new bl ock,

which will be calculated in the next |oopx)
ol dvv = vv;
1
(xPrint ["final velocity: ",Norm[vv]]; %)
(xPrint ["final depth: ",d[[1]]];
Print ["Nunber of scatters: ",nunBcatter]; %)

(*Print ["x: ",d[[1]1," y: ",d[[2]1," z: ",d[[3]1]; %)
(xsave coord. for distribution datax)
If [transmitted == True,
trackHi story = AppendTo[trackHi story, {n, vhaglist, selist}]
1
distribution=AppendTo[di stribution, dJ;
dept hLi st = AppendTo[dept hList, d[[1]]1];
al | DLi st = AppendTo[al | DLi st, dList];

]

{"Muon #", n, "distance: ", d,

Pr ogr essl ndi cat or [Norm[d], {0, Total Depth}], "Estopping: ", seev,
"Resul tant Velocity: ", Progresslndicator [Norm[vv], {0, vr}],

"Curent Energy:", Progresslndicator [currE, {ethold, enx2}],

"Current Block |Index: ", Progresslndicator [currlndex, {1, xBound”~3}1}

(»di stributionx)
(*Aver age dept hx)
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Print ["Average range = ", Total [distribution] /nunVuons];
(*Transm ssion and backscatteringx)

Print [numlransm ssion, " particles transmtted, "
numBackscatter, " particles backscattered"];

d ose[f]

]

500.
8. x1017 8. x1071° 1.55483 %107
Average range = {8.60232x107° 2.73856x10° 7.53652x107'%}

(*Traj ectory plotter codex)
Mani pul at e[
Show[
Flatten[
Tabl e[
G aphi cs3D[{{Col orData[3, "ColorList"], Line[al I DList [[n]]]},
{Red, PointSize[Large], Point[allDList [[n]][[currpt]]]}},
Axes -» True, Pl ot Range -» Aut onati c,
AxesLabel - {x, vy, z},
Pl ot RangePaddi ng - None,
FaceGi ds » None]
,» {n, nMax}]
]
1,
{{currpt, 1}, 1, Length[al | DList [[nMax1]1], 2},
{{zoom Max[al |l DList]}, Mnp[allDList], Max[al |l DList], 1},
{{nMax, numMuons}, 1, nunmMuons, 1}
1
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MUSCLE: Ml ecul ar Dynami cs Method #2 (Discretization Method 2)

(El ectroni c stopping and sone other code onitted)

(xPotential and force field Cal cul ati onsx)

(#»Born-Mayer par anmet ersx)
Abm=52.0 % (Znuon » ZFe)3/% x eV
abm= 0. 219 x ang

(xMbrse paranet er Sx)
(xFor Fex)

DeV = 0. 4174 xeV

al phap = 1. 3885 / ang
ro=2.845 xang

Clear [VIist, V, forceList, vPlot, dvdr]
VIist =List[];
V =List[];
forceList =List[];
dvdr = {};
For[i =1, i <length[sc2], i =i +1,
Cl ear [V, dVdr];
V=List[];
dvdr = {};
fx =0.0;
fy =0.0;
fz=0.0;
(*Go through each nei ghbor atom and add their potential contributions)
For [n =1, n < Lengt h[nei ghborlonsBCC], n=n+1,
currPt =sc2[[i]];
curr Nei ghbor = nei ghborl onsBCC[[n]];

(xNote: sign? which dir does the vector point to?xxxx%xxx%)

dist =+/((currPt [[1]] -currNeighbor [[1]])? +
(curr Pt [[211 - curr Nei ghbor [[211)2 + (curr Pt [[3]] - curr Nei ghbor [[3]1)2);
(*Born-Mayer potenti al %)
V = AppendTo [V, Abmx e-dist /abm];
(»dVdr =AppendTo [dVdr, (-Abm/abm) xe-%'st/abm]; )
dvdr = (-Abm/ abm) % @-dist /abm;

(*I f currneighbor is not equal to currpt thensx) (xx%xx)
I f [curr Nei ghbor =currPt,

Print ["caught"1;

(xcheck where currpt actually is,
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may be inportant if the particle really falls on thiSxxxxx)
currPt =sc2[[i -11]
1

from=currNei ghbor -currpt;

with=1x;

(xcs=Cos [VectorAngl e[fromwith]]; *)

cs = (Dot [from with]) /7 ((Norm[from]) = (Norm[with]));
fx =fx -dVdr %cs;

with=1y;

(xcs=Cos [Vector Angl e[fromwith]]; %)

cs = (Dot [from with]) /7 ((Norm[from]) = (Norm[with]));
fy =fy -dvdr xcs;

with=1z;

(xcs=Cos [VectorAngl e[fromwith]]; *)

cs = (Dot [from with]) /7 ((Norm[from]) = (Norm[with]));
fz=fz-dVdr %cs;

I'f [ (Not [Nunber Q[fx11) || ( Not [Nunmber Q[fy1]) || (Not [NumberQ[fz]]),
Print ["Not Nuneric in Node ", iJ;

Print [fx, " ", fy, " ", fz1;
Print [dvdr, " ", cs, " ", Norm[from], " ", Norm[wi th]]

1

(xMorse Potenti al %)
(*V=AppendTo [V, (DeV*e('z*al phapx* (di st -r0)) —2*D€V*e('al phap= (di st -r0)) ) ] *)

I;

forceLi st = AppendTo[forceList, {fx, fy, fz}1;
sunmV = Tot al [V];
VlIist = AppendTo[M i st, sunV];

Lengt h[Vli st ]

Lengt h[f or ceLi st ]
vPl ot =List[];
For[i =1, i <Length[forceList], i =i +1,
vPl ot = AppendTo[vPl ot, {sc2[[i]], forceList[[i]]1}];
1

(*Mol ecul ar dynam cs met hodx)
Cl ear [di stribution, d, dList, allDList, ol dd,
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dbox, vv, oldvv, vvdir, trackH story, selist, vmaglist, kelj;
Absol ut eTi m ng[
nunmvuons = 5;
Tot al Dept h = 1000 = ang;

en =500 xeV; (xenergy in evs)

Print [ToeV[en]];

vthol d = /2 %5 % eV / nuonMass
ethold =5 xeV,

dt =0.05 =« atti ceConstant vV nuonMass / (2 xen) xsec; (xtiMe steps)
Print [en, " ", ethold, " ", dt];

delv =0.0;

s =0.0;

se =0.0;
currE=0.0;

vimag = 0. 0;

currkev =0.0;
nunilransm ssi on = 0;
nunmBackscatter = 0;

reducedv = {};

vvdir = {};

trackH story = {};
selist = {};
vmagli st = {};
ke = {0.0, 0.0, 0.0};
distribution=List[];
dept hLi st = {};
d={};

dLi st =List[];

al | DLi st =List[];

ol dd = Li st [];
dbox = Li st [];
vv = {};

ol dvv = List [];

(xFil e Operationx)
f =
penWite["C \\Users\\ Saqui b\\ Docunment s\\ sp\\ Seni or _proj ect _2nd\\raw data.txt",
For mat Type » Qut put For m1;

I\/bnitor[

For [n =1, n<nunVuons, n=n+1,

nunScatter =0;
transmtted = Fal se;
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d ear [dLi st, selist, vmagli st ];
dLi st =List[];

selist = {};

vmagl i st = {};

meanvSq = {0.0, 0.0, 0.0};

(xgenerate random v=x)

(*di rx=RandonReal [{0.0, 1. 0}]; (*%*%%x)*)
currE=en;

di ry = RandonReal [{0.0, 0.5}1;

di rz = RandonReal [{0.0, 0.5}];

(*

di rz=0. O,

*)

vr = /2 xen / mionMass ;

vy =vr xdiry;

vz =vr xdirz;

VX = \/(vr’\Z— (Vy"2+vzn2)) ;

(xchoose a cell to start fromx)

i ni t Boxl ndex = Randonl nt eger [ {1, yBound x zBound}];
VvV = {VX, VY, VZ};

ol dvv = {vx, vy, vz};

d =sc2[[initBoxlndex]];

ol dd = sc2[[i ni t Boxl ndex]7];

dbox = sc2[[i nitBoxl ndex]1;

currT=0.0;
count = 0;
chstep = 0;

currlndex =i nitBoxl ndex;

(*

Print ["Initializing Mion #",n,

" velocity vector: ",vv, vr:
Wite[f,"Initializing Mion #",n,

velocity vector: ",

vV, vr: ",vr, " Threshold vel.: ",vthold];

*)

(xl oop until energy drops bel ow threshol dx)
Whil e[ (currE>ethold) & (d[[1]] < Tot al Dept h),

For[k=1, k<3, k=k+1,

di[k]] =oldd[[k]]+ (vv[[k]]) =dt +

,vr, " Threshold vel.:

",vtholdj;

(0.5« (forceList [[currlndex]][[k]]) * (dt ~2)) / muonMass;
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(¥old v, or newv (follwi ng previous |oop) see di agram)
vv[[k]] =oldvv[[k]] + (forceList [[currlndex]][[k]] »dt) /nuonMass;

(*

Print["x: ",d[[11]," y: ",d[[211," z: ",d[[3]11," vr: ",Norm[vv],
" node: ", nodeCoord[dbox[[1]], dbox[[2]],dbox[[3]], vol Step],
" currlndex: ",currlndex];

*)

I f [Not [Nunber Q[vv[[k]]11,
Print ["Not Nuneric in Node ", currlndex, " vv[[", k, "11: ", vw[[k]]]

]
I

(x*Witelf,"x: ",drr1i1," y: ",drr2i1," z: ",
drr3i1," vr: ", Norm[vv]," currlndex: ",currlndex]; %)

dLi st = AppendTo[dLi st, dJi;

Ifrdrriy] <o,

nunBackscatter = nunBackscatter +1;
(xPrint ["Particle backscattered"]; %)
Break[]

1
I f [count > 2,

For [k =1, k =3, K+4+,
meanvSq[[k]] = ((dLi st [[count J]1[[k]] -dList [[count -2]1]1[[k]]) / (2%dt))"2
1

currE = (muonMass /2) » Tot al [meanvSq];
1

(xcurr E=(1/2) xnuonMass* (Nor m[vv])"2; %)
vvdir = Nornmal i ze[vv];

(»abs[ls] might have solved the problem of getting stuck at a placex)
| s = Abs [Nor m[d] - Nor m[ol dd]7;

currEev = ToeV[currE];

(»seev=get ESt oppi ng[ZFe, currEev, 1. 0, es]; (xin eV/angx) =)
seev = get Se[26, currEev];

seli st = AppendTo[selist, sel;
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(xPrint [se]; %)
se =seev x (1.6 %x10" (-19)) /7 (10~ -10);

CurrE=currE-sexls;
del v = dt = se / nuonMass;

vimag = Nor m[vv];
vv = (vimag -del v) xvvdir;

(*

Print["e = ",currE," se = ",se," se(eV/ang) = ", get ESt oppi ng[ZC, ToeV[currE],
1.0,es]1," Is =",Is," del v. = ",delv," Norm[vv] = ", Norm[vv]];

*)

(*Check Transmi ssionx)
If[d[[1]] = Tot al Dept h,
transmtted = True;
numlr ansm ssi on = nunilr ansni ssi on + 1;

Break[];

1

dbox[[1]] = Mod[d[[1]], | atticeConstant ];
dbox[[2]] = Mod[d[[2]], | atticeConstant ];
dbox[[3]] = Mod[d[[3]], | atticeConstant ];

(%1 f [ (Not [Number Q[fx1]1) || ( Not [NunberQ[fy]]1) || (Not [NunmberQ[fziy),
Print ["Not Nunmeric in Node ",i]]; %)
currlndex = nodeCoord[dbox[[1]], dbox[[2]], dbox[[3]], vol Step];

I f [currlndex =0,

Print ["Currindex is 0 and dbox x, vy, z: ",
dbox[[1]], " ", dbox[[2]1], " ", dbox[[3]1]
(xcurrlndex=1x%)1;

currT=currT+dt;

nunBScatter = nunScatter +1;

count =count +1;

ol dd =d;

(xnew v = old v - del v + force in new bl ock,

which will be calculated in the next |oopx)
ol dvv = vv;

I

(xPrint ["final velocity: ", Norm[vv]]; *)

113



]

(#Print ["final depth: ",d[[1]1]];
Print ["Nunber of scatters: ",nunfScatter]; )
(#Print ["x: ", d[[1]1," y: ",d[[2]1]," z: ",d[[3]1]1; %)
(»save coord. for distribution datax)
If[transmitted == True,
trackH story = AppendTo[trackH story, {n, vmaglist, selist}]
1
di stribution = AppendTo[distribution, di;
dept hLi st = AppendTo [dept hList, d[[1]]1];
al | DLi st = AppendTo[al | DLi st, dList];
(xPause[2]; *)

]

{"Muon #", n, "distance: ", d,

Pr ogr essl ndi cat or [Norm[d], {0, Total Depth}], "Estopping: ", seev,
"Resul tant Velocity: ", Progresslndicator [Norm[vv], {0, vr}],

"Curent Energy:", Progresslndicator [currE, {ethold, enx2}],

"Current Block |Index: ", Progresslndicator [currlndex, {1, xBound”~3}1}

]:

(»di stributions)
(xAver age dept hx)
Print ["Average range = ", Total [distribution] /nunVuons];
(*Transm ssion and backscatteringx)

Print [numlransm ssion, " particles transmtted, ",

numBackscatter, " particles backscattered"];

d ose[f]
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MJUSCLE: Evaluation to find a suitable nunber

Mat hemat i ca Code

of

bl ocks for MD Discretization

met hods.

ang = 10" -10;
| atti ceConstant = 2. 87 %= ang;
eV=1.6%10"-19;

(xnei ghbor atons in the unit cubex)
I x = {latticeConstant /2, 0, 0}

ly = {0, latticeConstant /2, 0}
lz=4{0, O, latticeConstant /2}

nei ghborl onsBCC = Li st [];

nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,

{0, 0, 0}1;
2%l x7];
2xlyl;
2xlz];
Ix+ly+lz];
2xly+2=x12z];

(*wWr ong ! ->nei ghbor | onsBCC=AppendTo [nei ghbor | onsBCC, | x-l y-1z7]; *)

nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor 1 onsBCC = AppendTo [nei ghbor | onsBCC,
nei ghbor | onsBCC = AppendTo [nei ghbor | onsBCC,

{1.435x107'% 0, 0}
{0, 1.435x107'%, 0}

{0, 0, 1.435x107'%}

2%l x+2%127];
2x1x+2x%1y];
2xIX+2%xly+2x12];
-ly+lx+l2z7;
3xly+Ix+l2z];
Ix+ly-12z7;
IXx+ly+3=%l2z];
-Ix+ly+lzy;
3xlx+ly+lz];

get Nurmber O Bl ocksEval uati on[ABM , aBM , L_, nei ghbor_1 : = Modul e[
{V\r =0.0, dis =0.0, done =Fal se, nunB=1, sigl =0.0,
sig2=0.0, ep=0.0, eps =3.0%10" (-8), edgex = {}, edgey = {},
edgez = {}, corners = {}, origin={}, center = {}, eplist = {}},

(Wi | e [done=:Fal se, *)

For [i =1, i <30, i ++,
(xInitial edge |engths)
edgex = {L/nunB, 0.0, 0.0};
edgey = {0.0, L/ nunB, 0.0};
edgez = {0.0, 0.0, L/nunB};
origin={0.0, 0.0, 0.0};
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center = (edgex +edgey +edgez) / 2;

Cl ear [corners];
corners = {};

(*8 cornersx)
corners = AppendTo[corners, origin];
corners = AppendTo[cor ners, edgex];
corners = AppendTo[corners, edgey];
corners = AppendTo[corners, edgez];
corners = AppendTo[corners, edgex +edgey];
corners = AppendTo[cor ners, edgex +edgez];
corners = AppendTo[corners, edgey +edgez];
corners = AppendTo[cor ners, edgex +edgey +edgez];
Vr =0.0;
sigl =0.0;
sig2 =0.0;
For [s =1, s <Length[corners], s =s+1,
dis =
+/ ((corners[[s]11[[1]1] - neighbor [[1]])?+ (corners[[s]][[2]] - nei ghbor [[2]])%+
(corners[[s]11[[31] -nei ghbor [[3]])2);
VI = Vr + ABMx "¢/ S/3BM
|E
Vr =Vr /8;
For [s =1, s <Length[corners], s=s+1,
si gl =sigl+ (ABM« e "Prmicornerstisili/aiM_yy ) A 2;
si 92 =si 92 + (ABM*e—l\lorm[corners[[s]]]/aBM_ABM*e—Norm[center]/aBM) /\2;
|E
sigl=sigl/s8;
sigl=Sqgrt [sigl];
sig2=sig2/8;
sig2 =Sqgrt [sig2];
ep =sigl-sig2;
(xl f [ep>eps,
nunmB=nunB+5
done=True
1
1
*)
eplist = AppendTo[eplist, {nunmB, ep}];
nunB = nunB + 5
|E
Li st Pl ot [eplist, Joined - True, Mesh s Al l,
AxesLabel - {ng, €}, PlotRange » All, AxesOrigin- {0, Mn[eplist]}]
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(*Returnfeplist]=*)

]

get Nurmber O Bl ocksEval uati on [52. 0% (26)%% xeV,
0.219 /ang, 2.87, nei ghborlonsBCC[[10]] /ang]

1.x107%

8.x10°%

6.x10°%

4.x10°%

2.x10°%

T T 1 T T T [ T T T [ T 1T T [ T T T 1 T 1M
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MUSCLE: Born-Mayer Potential plot for different elenments

Mat hemat i ca Code

Show|
Flatten]
Tabl e
G aphics|
Plot [(22)%*%52.0xe™/%29, (r, 0.0, 3.0},

AxesLabel - {"r (A)", "V(r) (eV)"}, Label Style - D rective[Mdium],
Col or Function -» Function[{z2}, {z2%0.1, z2%0.5, z2%2}],
Pl ot Range -» Al |

]
],

{z2, 1, 92, 10}]

]

V(n(ev)

500

L | L L L L | L L L L | L L L L | r(A)
15 20 25 3.0
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MUSCLE: Binary Collision Approximation code (C++)

(Random nei ghbor sel ection code as presented in the |ast section of Chapter 2, |oosely
based on the Fortran code for TRIM Monte Carl o sinmul ation)

A obal s. h (global functions and vari abl es)

#i ncl ude <i ostreanr
#i ncl ude <fstreanp
/1 #i ncl ude <cstdli b>
[ | #i ncl ude <cmmat h>

#i ncl ude <nmmth. h>
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <tinme. h>

usi ng nanmespace std

#i fndef talk

#define talk O

#endi f

#i f ndef PEO

//in PSTOP (i.e. calculateSE) vel. proportional stopping below velocity PEO (Pg-219
In 1210)

#defi ne PEO 25. 000;
#endi f

voi d exitOnError(char* errnsg);

[Inuneric functions that need to be redefined
doubl e Max(doubl e a, double b);

doubl e M n(doubl e a, double b);

int Max(int a, int b);

int Mn(int a, int b);

[lint Abs(int a);

doubl e Abs(double a);

[lutilities

i nt whichBin (double e, double maxe, int nunBins);

doubl e gener at eRandon(i nt seed);

void printarray(char* arrayname, double array[], int size);
void printarray(char* arraynanme, int array[], int size);

void testarray();

d obal s. cpp
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#i ncl ude "d obal s. h"

voi d exi tOnError(char* errmsg)

{

cout << errmsg << endl
exit(1);
}

doubl e Max(doubl e a, double b)

return (b<a)? a:b;

}
doubl e M n(double a, double b)
{
return (a<b)? a:b;
}

int Max(int a, int b)

return (b<a)? a:b;

}

int Mn(int a, int b)

{ return (a<b)? a:b;

}

doubl e Abs(doubl e a)

: if(a <0.0) return -a;

//function to decide which bin an epsilon value falls into
i nt whichBin (double e, double maxe, int nunBins)

doubl e interval = maxe / nunBins;
for(int i =0; i < nunBins; i++)
{

double low = i*interval

double high = (i + 1)*interval

if((e>=low && (e<high))
return i;

void printarray(char* arraynanme, double array[], int size)

{

cout << endl << "Printing " << arraynane << endl
for (int i =0; i <= size; i++4)

{
}

cout << endl

cout << "\t << array[i];
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}

cout << "Done with printing " << arraynane << endl

void printarray(char* arrayname, int array[], int size)

{

}

cout << endl << "Printing " << arraynane << endl
for (int i =0; i <= size; i++)

{
}

cout << endl
cout << "Done with printing " << arraynanme << endl

cout << "\t << array[i];

void testarray()

{

}

int row=3, colum =7

cout << endl << "Printing array.." << endl
for (int i =0; i <=row |++)
{

cout << "row " << | << ": ;
for (int j =0; j <= colum; j++)

{

/lactivate this line with the proper array nane

[/cout << "\t " << m[i][j];
}

cout << endl

}

cout << "Done with printing array” << endl

[lint **p = zt;

//double **c = nt;
[lprint2darray("zt", p, 3, 7);
[lprint2darray("m", c, 3, 7);

doubl e gener at eRandon{i nt seed)

{

//srand(tinme(NULL));
[/ srand(seed);
srand(seed);

doubl e e;

/I random epsi | on, generates between the range (0, 1]
e = (doubl e)rand()/ ((doubl e) (RAND _MAX) +(doubl e) (1));

return e;

rstop.h (el ectronic stopping nodul e)

#i ncl ude "d obal s. h"
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struct rstopData

doubl e se[ 1000];

/I doubl e sn;

double vferm; //set this O when initialized. (for the time being, | dont
cal culate this)

}s

void getrStop(int z1, int z2, double ee, int units, double Ifctr, double vferm,
r st opbDat a& rstopdat a) ;

doubl e cal cul at er SE(doubl e ml, double nR2, int z1, int z2, double e, double pcoef[]);

rstop. cpp

#i nclude "rstop. h"
#i ncl ude "scoef.h"

/] Cal cul ate el ectronic stopping cross section using data from scoef 1. dat
//ee - ion energy in keV

//note: we won't use the paraneter |fctr and vferm b/c they are not used in the
proton cal cul ation.

void getrStop(int z1, int z2, double ee, int units, double Ifctr, double vferm,
r st opDat a& r st opdat a)

{

if (z1 > 92) exitOnError("Error: atomic nunber is greater than 92. Exiting..");
if (ee < pow(10,-10))
{

for (int i = 1; i <= 1000; i++) rstopdata.se[i] = O;

return;

}

scoef Data i onScoef, target Scoef;

get struct Scoef (z1, ionScoef, "scoefl.dat");
get struct Scoef (z2, target Scoef, "scoefl.dat");

/1 ml and mmL corrections (pg-217, line 620 and 630) are not included. we can change
it frominside if need arises.

[/l in this case is a proton
double mL = 1.0078; //ionScoef. mi;

double e0 = 0.001 * ee/nl; //for 1000 val ues of stopping

if (e0 > 100000) exitOnError("(lon Energy/atom ¢ nass)*0.001 ratio is bigger than
100000! Exiting..");

for (int i =1; i <= 1000; i++)
{
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double e = e0 * i;

/lcalculate electronic stopping with atom ¢ weight of solid (M2 columm in
scoef. dat)
/I be careful, mL and n2 are not what they seemin the fortran code (pg217). Don't
confuse between targetScoef's or ionScoef's mL and n2.

//we calculate only the proton's el ectron stopping here. (PSTOP)
rstopdata.se[i] = cal cul ater SE(ml, targetScoef.n2, zl1l, z2, e, targetScoef. pcoef);

/lconvert to ev-angstrom..|l don't care about the paraneter 'units' right now
//do the following for testing. The | ast test val ue should match the stopping
tabl e //which is in ev-angstrom

if (talk == 4)

doubl e test = rstopdata.se[i];

test = test * targetScoef.atrho * pow 10, -23);
/lprint every 10th val ue
if ((i%0)==0)
{

//cout << "bin: " << i << ", Se =" << test << "\n";
cout << test << ",";

}

}

[/trinB5 takes rstop values in ev-Ang.2, so convert to that format
rstopdata.se[i] = rstopdata.se[i] * 10

}

[/ check the pcoef values in targetData
if( talk == 2)
{

cout << "Test the PCoef values in targetScoef" << endl

cout << "\t" << target Scoef.pcoef[1] << "\t" << target Scoef.pcoef[2] << "\t"
<< target Scoef.pcoef[3] << "\t" << target Scoef.pcoef[4] << "\t" <<
target Scoef . pcoef[5] << "\t" << targetScoef.pcoef[6] << "\t" << target Scoef. pcoef[7]
<< "\t" << target Scoef.pcoef[8] << "\n" << endl

}

//we are done here.

}

/1 This is PSTOP subroutine in pg-219
doubl e cal cul at er SE(doubl e ml, double nR, int z1, int z2, double e, double pcoef[])

doubl e se
doubl e peo = (double)PEG, //had to do this because conpiler is not accepting PEO
as doubl e!

doubl e pe = Max(peo, e);
doubl e sl = pcoef[1]*(pow pe, pcoef[2])) + pcoef[3]*(pow pe, pcoef[4]));
double sh = ( pcoef[5] / ( pow pe,pcoef[6]) ) ) * log( (pcoef[7]/pe) + pcoef[8]*pe

se = ((sl*sh)/(sl+sh));

/I PEO is defined in dobals.h
if(e > peo) return se;
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el se

{
doubl e vel pwr = 0. 45;
if (z2 <= 6) velpw = 0. 25;
se = se * pow (e/peo), vel pw);
return se
}

scoef.h (to read data fromfile)

#i ncl ude "d obal s. h"

struct scoefData

-
int z1;
double mml, ml, n2, rho, atrho, vferm;
double | fctr;
doubl e pcoef[8];
b

//this was just a test function
void scoef(int z1, double mml, double nil, double n2, double rho, double atrho, double
vferm , double |Ifctr, double pcoef[]);

/l/this is the one we will be using
voi d getstruct Scoef (int zz, scoefData& scoefdata, char* filenane);

scoef. cpp

#i ncl ude "scoef.h"

voi d getstruct Scoef (int zz, scoefData& scoefdata, char* fil enane)

{

if (talk == 2) cout << "Reading scoeff data file for atnoic no. << 7z << endl

i fstreaminstream
i nstream open(fil ename);

if (linstream

{
exitOnError("Unable to open file ");
}
int j =0, i =0, z=1zz
[ dummy var

doubl e xx, zero;

/literate to the definite row- 1
for( i =1; 1 <= 92; i++)
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instream >> j >> XX >> XX >> XX >> XX >> XX >> XX >> XX;
if (j == z-1) break;

/I now i nput the desired row to our structure

instream >> scoefdata.z1l >> scoefdata. nmil >> scoefdata.nl >> scoefdata. nR2 >>
scoefdata.rho >> scoefdata.atrho >> scoefdata.vferm >> scoefdata.lfctr;

/lcout << "Testing the input.."” << endl << "Z =" << scoefdata.zl << endl << "rho

= " << scoefdata.rho << endl

i nstream cl ose();

//find proton stopping power coefficients in the second data set
i nstream open(fil ename);

if (linstream

{

exitOnError("Unable to open data file ");
}
[ dumy var

int k; double s;

[/skip 92 lines

for( i =1; i <= 92; i++)
{
instream>> Kk > s > § >> s >> § >> 5 >> 5 >> §;
}
for( i =1; i <= 92; i++)
{

instream >> j >> scoefdata.pcoef[1l] >> scoefdata.pcoef[2] >>
scoef dat a. pcoef[ 3] >> scoefdat a. pcoef[4] >> scoefdata. pcoef[5] >> scoefdata. pcoef][ 6]
>> scoef data. pcoef[7] >> scoefdata. pcoef[8];

[lcout << j << "\t" << pcoef[0] << "\t" << pcoef[1l] << "\t" << pcoef[2] <<
"\t" << pcoef[3] << "\t" << pcoef[4] << "\t" << pcoef[5] << "\t" << pcoef[6] << "\t"
<< pcoef[7] << "\n" << endl

if (j == z) break;

/lcout << "Testing the input on second data set (proton coefficients)"” << endl <<
"Z =" << scoefdata.zl << endl << "pcoef[l] = " << scoefdata.pcoef[1] << endl

i nstream cl ose();

[/multiply atrho by 10722

doubl e temprho = scoefdata. atrho;
temprho = tenmprho * 1.0 * pow(10, 22);
scoef data. atrho = tenprho;

if (talk == 2) cout << "Done |oading data from" << filenane << " for atom c no.
<< zz << endl

}
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nonte. h (BCA Monte Carlo Sinul ation)

#i ncl ude "d obal s. h"
[/ functions

void Initialize();

voi d cal cul at eAvgMassOf Layer () ;
voi d get St oppi ngFor Target () ;
voi d setlnitial Conditions();
void MonteCarl o();

void printFinalDetail s();

void witeToFile();

nmont e. cpp

/1 Nanme : nonte.cpp

/'l Aut hor : Naznus Saqui b
/1 Version :

/1 Copyright

/1 Description : BCA code in C++

#i ncl ude “d obal s. h”

#i ncl ude “scoef.h”

#i nclude “rstop. h”

#i ncl ude “nuscl e_bca. h”

#i ncl ude “vectorGeonetry. h”

const int numXBin 100;
const int numons = 1;

i nt xBi n[ numXBi n+1] = {0};
int selectedXBin = 0;

doubl e rho[ 4] ={0. 0};

int n[]={0,0,0,0};

doubl e eOkev, ml, cw, ed, |atticeConst;

int z1, hn, iy, nowout;
doubl e dx[3] = {0.0};

int zt[3][7] = {0};
double m[3][7] = {0.};
double t[3][7] = {0.};

int Layer; //use this for nunber of

|l ayers rather than the L in the program
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/lremenber this cannot be set to 0. Other |oops/arrays may start from

/10, but keep this >= 1;
//the arrays..

double nmy[3][7] =
ai [3][7]= {0},
fi[3][7]= {0},
ec[3][7]= {0},
io[3][7 {0}
{
7

{0},

k[3] =
KIT3] [

=1 nn

]
]
]
0
]

~~—
\_,_:

double vf[3][7]=
mu[ 3] = {0},
ioniz[3]= {0},
h{3] = {0},
xx[3] = {0},
n2[ 3] 0. 0},
z2[ 3] 0},
c[3]= {0},
epshbk[ 3] =
ar ho[ 3]

{0},

1= o

{0},
{0};
doubl e a[ 3] =
f[3]= {0},
I'n{3]= {0},
prex[ 3] = {0},
{0},

{0},

doubl e se[ 3][1000] =
seo[ 1000] = {0. 0},
epsdg[ 3] = {0. 0};

{0.0},

double Is = 0., lo = 0.

doubl e xsum = 0, x2sum = 0, x3sum= 0
doubl e avex = 0, vari =0, sigma = 0,
= 0, sigpl =0, avecol = 0;

int i =0, =0;

int ib=0, it =0;

double eb = 0.0, et = 0.0

int icsum= 0;

doubl e y2sum = 0, xy2sum = 0, x2y2su

doubl e tau = O;

int iii =-1;

maxi mum = 0.

Vv

= 0, y4sum

x4sum = 0, plsum= 0, pl2sum= 0

=0, v2 =0, Ganma = 0, beta = 0,

I
e
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[y dummy vars
int w, double q;

[/my custom zed data structures or vars
scoef Dat a scoefz1l;

rstopbData rstp;

//these vars (continuing fromthis line) are added | ater as needed, vars that were not
declared in the initialization of trinB5 but showed up in the mddle.

doubl e e0, ef;

int iz;

doubl e al fa, al pha;

doubl e tmn, da;

doubl e LO;

int izl;
doubl e ee;

int izt;
doubl e nh;
doubl e epso
int ih;

doubl e e;

/I bool ean for keeping track of a particle being transmtted or backscattered
int transmitted = O;
i nt backscattered = 0;

/I bool ean for keeping track of channeling
int insideChannel = 1;

/1 bool ean for determ ning whether to scatter from nei ghbor atons
i nt neighborFlag = 0;

[/ main function

int main()

{
cout << “Initializing” << endl
Initialize(“lIronlnput.dat”);
cal cul at eAvgMassCf Layer () ;
get St oppi ngFor Target () ;
setlnitial Conditions();
Mont eCar | o() ;

[* RFEEkxkkkk kKR kAKX kR x** Testing Gound for arrays and vari abl es

kkkhkkhkhkdkrkdhxhkhxkkhkx*k */

for (w=1; w<= 8, wHt) cout << “\t “ << yy[w];
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for (w=1; w<=3; w+) cout << “\n\t “ << xx[W;
cout << “CWor LO: * << LO;

/1 (trouble! The values of n[] elenents are changing |ike crazy)
cout << endl << n[0] << “\t” << n[1] << “\t” << n[2] << “\t” << n[3] << endl;

cout << endl << rho[0] << “\t” << rho[1l] << “\t” << rho[2] << “\t” << rho[3] <<
“\t” << rho[4] << endl;

Iltest z2[], n2[] arrays

for (w
for (w

1; w <= Layer; w++) cout << “\t “ << z2[w];
1, w <= Layer; wt+) cout << “\n\t “ << n2[w];

//test the se val ues
cout << endl << se[1][1000] << * " << se[2][1000] << * “ << se[3][1000] << endl;
//test the se[] values by printing 10th elenent fromthe array (to be inpl enmented)

[lfor (w=1; w<= 100; w+t+)

114
[lfor (int sss = 1; sss <= 50; sss++)
/1
[lcout << “\t” << npart[w]][sss];
11}
/1}

/* EIE R R R R End Of TeStIng Gound R R R R O S R */

cout << endl:

/I Now print values of each bin in xBin

[lfor (w=1; w<= numXBin; wt+) cout << xBin[w << “,”;
[lprint final x val ues

cout << endl;

cout << “Nunber of Backscattered lons: “ << ib << endl;
cout << “Nunber of Transmitted lons: “ << it << endl;
return O;

}

//end of main
/I Hel per functions follow from here

/linitialize variables and setup each | ayer over here
void Initialize(char* filenane)
{

// Read command file

ifstreaminstream

i nstream open(fil enane,ios::in);

cout << filenane;

if (linstream
{
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exi tOnError(fil enane);

nstream >> eOkev >> z1 >> nll >> latticeConst >> hn >> cw >> ed >> iy >> nowout;

nstream >> dx[ 1] >> rho[1];

nstream>> zt[1][1] >> m[1][1] >> t[1][1];

nstream >> n[1];

nstream >> dx[ 2] >> rho[2];

nstream>> zt[2][1] >> m[2][1] >> t[2][1];

nstream >> n[ 2];

nstream >> dx[ 3] >> rho[3];

nstream>> zt[3][1] >> m[3][1] >> t[3][1];

nstream >> n[ 3];

for (w=0; w<= 3; wt)

{if (n[w '=1) n[w =1; }

i nstream cl ose();

Layer = 3;

//done with primary (crude) setup, off to reading scoef.dat file

iz = z1;

get struct Scoef (i z, scoefzl, “scoefl.dat”); //used to get pcoef data yy in trinB5
//so we put the values in yy here inmmediately

for (w=1; w<= 8; wt)
{ yy[w = scoefzl.pcoef[w; }

/I note: although yy turns out to be just a dummy array
e0 = eOkev*1000; //convert to ev.

if (ed == 0.) ed = 25.0;

ef = Max(5.0, eOkev*0.1);

/lalfa = angle of incidence, alpha = radian of alfa

alfa 0.
al pha = al fa*Pi/ 180;

tmn = 5.0;
tau = 0.0;
da = 3.0;

if (iy ==0) iy = 16381;
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/I now cal cul ate the total depth of each layer = xx(I), and grid spacing cw

xx[1] = dx[1];

for (w=2; w<=3; w+) { xx[w dx[w] + xx[w1]; }
if (cw==0) cw = 0.01*xx[3];
LO = cw,

//take care of any customvariable or struct | made
rstp.vferm = 0.0; //set this to 0. for the tinme being (see |og for explanation)

/I now, off to avg nass of layer in the next void function

}

/lavg mass and atonic nunber of each |ayer
voi d cal cul at eAvgvassOf Layer ()

{
for (int LL = 1; LL <= Layer; LL++)
{
int ii = n[LL];
for (w=1; w<=1ii; w+)
h[LL] = h[LL] + t[LL][W;
/lcout << “testing here..” << rstp.vferm << endl
}
}
for (int LL = 1; LL <= Layer; LL++)
{
int ii = n[LL];
for (w=1; w<=1ii; w+)
{
t[LL][W = t[LL][wW/h[LL];
m2[LL] = nm2[LL] + t[LL][W * m[LL][W;
z2[LL] = z2[LL] + t[LL]I[W * zt[LL][W;
/I note: z2 wont be an integer once t has a value other than 1.0??
//so are we cal cul ating average atomi ¢ nunber here? why?
}
}
//done with this, off to finding electronic stopping powers in the next function
}
voi d get St oppi ngFor Tar get ()
{

izl = z1; ee = 0O;

for (int LL = 1; LL <= Layer; LL++)
{
arho[LL] = rho[LL] * 0.6022/(n2[LL]);
mu[ LL] = ml/ (nR[LL]);
int ii = n[LL];
for (int nn = 1; nn <= ii; nn++)
{
//set rstp.se[1..1000] = 0. Cdear it for the next |oop
for (w=1; w <= 1000; wt+)
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{ rstp.se[w] =0.; }

izt = zt[LL][nn];

[lcalling getrstop now. units, Ifctr, vferm = 1 (doesnt matter)
getrStop(izl, izt, eOkev, 1, 1., 1., rstp); //rstp defined in header

//set this anyway, though | dont calculate this in RSTOP
vf[LL][nn] = rstp.vferm; //which is just set O in the struct def.

for (w=1; w <= 1000; w++)

se[LL][W = se[LL][W + rstp.se[w] * t[LL][nn] * arho[LL];

}
}
/I now, off to setting up initial conditions next function
}
void setlnitial Conditions()
{

nh = hn; //nunmber of histories

for (int LL = 1; LL <= Layer; LL++)

{ a[LL] = 0.5292 * 0.8853 / ( pow(z1l, 0.23) + pow(z2[LL], 0.23) );
/I now cal cul ate the nean flight path with the conditions given in trinB5
fILL] = a[LL] * nR[LL] / ( z1 * z2[LL] * 14.4 * (ml + n2[LL] ) );
epso = e0 * f[LL];
epsdg[LL] = tmn * f[LL] * pow( (1.0 + mu[LL]) , 2) / (4.0 * mu[LL]);
fd[LL] = 0.01 * pow( z2[LL], (-7.0/3.0) );
} kd[LL] = 0.1334 * pow ( z2[LL], (2.0/3.0) ) / sqgrt( n2[LL] );
for (int LL = 1; LL <= Layer; LL++)
{ int ii = n[LL];
for (w=1; w<=1ii; w+)
ny[LLI[W = nml/nt[LL][W ;
ec[LL][W = 4.0 * ny[LL][W / pow( ( 1.0 + ny[LL][W ), 2);

ai [LL][W = 0.5292 * 0.8853 / ( pow(z1,0.23) + pow(zt[LL][wW,O0.23) );

fi[LL][W = ai [LLJ[W * mt[LL][wW / ( z1 * zt[LL]J[W * 14.4 * ( ml + mt[LL][wW] ) );
}

}

cout << “Setup finished. Starting Monte Carlo Loops..”;
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/loff to nonte carlo | oop in next

}

routine

voi d MonteCarl o()

{

[/ custom variables and arrays for this section

doubl e
doubl e
doubl e
int ic;
int LL

doubl e
doubl e
doubl e
doubl e
int ie,
of the
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
int ip;

/lvariables for crysta

e;
cosin = 0.0,
pl = 0.0;

siny = 0.0, sine = 0.0, cosy = 0.0;

= 1;

eps;
eeq;

p

b;

ia; //not sure if ie or ia should be double. They are used to access
n ][] array at sone point

see;
dee;

s2, c2, ct, st;

r, rr;

exl, ex2, ex3, exd4;
v, vli;

fr, fri;

qa,

roc, sqe;

cc, aa, ff;

delta, co

den;

phi, psi

x1;

cal cul ati ons

doubl e sep = 0.0;

int ionCounter = O;

doubl e pl1, p2;

doubl e Theta = 0. 0;

doubl e rTheta = 0.0, rPhi = 0.0;

doubl e thetaThreshold = 0.5;

doubl e crystal MuonY = 0.0, crystal MuonZ = 0. 0;

/lanmount of translations in y and z axes

doubl e translationY = 0.0,

/] Scatter
const
doubl e scatterPlot[ nunScatterPl ot Bins + 1]

translationZ = 0. 0;

Pl ot vari abl es
int nunScatterPl ot Bins = 5;

= {0.0};

//Vector declarations

111

doubl e | atti ceConst ant

attice constant of Target (input fromfile)
= latticeConst;

Vector3 ions[4];
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Vector3 ionsOrdered|4];

Vect or 3 nei ghbor | onsBCC] 14] ;
Vect or 3 nei ghbor | onsFC( 14] ;

Vector3 ionTransl ati onY(O, transl ationY,0);
Vector3 ionTransl ationz(0,0,transl ationz);

Vector3 unitzplus, unitzmnus, unityplus, unitym nus, unitxplus, unitxm nus;
unitzplus.z = 1;

unitzmnus.z = -1;
unityplus.y = 1;
unitymnus.y = -1;
uni txplus.x = 1;
uni txm nus. x = -1;

Vector3 initialDirection(1,0,0);

Vector3 d;
d.x = 1;
d *= |atticeConstant/ 2;

Vector3 I x(latticeConstant/2, 0, 0);
Vector3 ly(0, latticeConstant/2, 0);
Vector3 |1z(0, 0, latticeConstant/2);

Vect or 3 | anbda;

Vect or 3 | anbdaPri ne;
Vect or 3 pVector;
Vect or3 pUnit Vector;
Vect or 3 sepVect or;

Vector3 Di;
Vector3 Di Prev;
/1 Vector3 Di PrevToDi;
Vect or 3 del X;
Vector 3 del X1, del X2;
Vect or 3 dummyl, dunmy2, tenp;
Vect or 3 scatterl onPos;
[linitialize the random nunber generator
srand(tinme(NULL));

/lopen file to wite output

of stream out Stream
out St ream open(“coordsO.txt”);

if(outStreamfail ())
{

}

//wite basic information in the output file
/I nunber of ions, ion energy, total depth, depth of each |ayer
out Stream << nh << “\t” << eOkev << "\t” << xx[Layer] << “\t”7 << dx[1] << *“\t”~

exi tOnError(“Coul d not open CQutput file”);

134



<< dx[2] << “\t" << dx[3] << endl;

/lopen scatter plot file to wite current Y and Z coordi nates of nuons at designated
intervals

of stream scatter Stream
scatterStream open(“scatterQutl.txt”);

if(scatterStreamfail ())

{
}

/l open range distribution file to wite final X coordinates of nuons

exi tOnError(“Coul d not open Scatter Plot Qutput file”);

of stream rangeSt ream
rangeStream open(“rangeCQut 1. txt”);

if(rangeStreamfail())
{

}

/1 Open general information dunp file

exi tOnError(“Coul d not open Range Distribution Qutput file”);

of stream i nf oStream
i nfoStream open(“infol.txt”);

if(infoStreamfail())
{

}

exitOnError (“Could not open general information Qutput file”);

/[l Entering the target
/Il First set up for the top |ayer

for (ih =1; ih <= nh; ih++)
{
avex = xsum/ Max(1.0, (float)(ih - ib - it - 1));
if (talk == 2) cout << “Average ion range so far:
<<endl ;

<< avex << “ angstrons.”

if (talk > 2) cout << “Now starting ion nunber << ih << endl;
e = e0;

/lset scatterPlot array (the intervals)

scatterPlot[0] = 10;

scatterPlot[1] = 30;

scatterPlot[2] = 50;

scatterPlot[3] = 100;

scatterPlot[4] = 150;

scatterPlot[5] = 200;

/*

for(int ccc = 0; ccc <= nunBcatterPl ot Bi ns; ccc++)
{

cout << “scatter plot “ << ccc << “: “ << scatterPlot[ccc] << endl;
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}
*/

//1nitial lon Positions

ions[0] =d + ionTranslationZ + unitzmnus * (latticeConstant/2);
ions[1l] = d + ionTranslationZ + unitzplus * (latticeConstant/?2);
ions[2] =d * 2 + ionTranslationY + unitymnus * (latticeConstant/?2);
ions[3] =d * 2 + ionTranslationY + unityplus * (latticeConstant/2);

/'l Create a polygon that resides on the |ateral axes.
/1 The points are put on anticlockw se order, which is inportant for
//testing whether the test point lies on this polygon

ionsOrdered[0] = ions[0];
ionsOrdered[1] = ions[2];
ionsOrdered[ 2] = ions[1];
ionsOrdered[ 3] = ions[3];

// generate randomtheta and phi angl es.
rTheta = ( (doubl e)rand()/((doubl e) (RAND_MAX) +(double) (1)) ) * thetaThreshol d
rPhi = ( (double)rand()/((doubl e) (RAND MAX) +(double)(1)) ) * 2 * Pi

/1find corresponding x, y and z conponents of the direction vector
[lradius of the direction vector is 1

initialDirection.x = cos(rTheta);

initialDirection.z sin(rTheta) * cos(rPhi);

initialDirection.y sin(rTheta) * sin(rPhi);

//set the counter to O for a new ion
i onCounter = O;

0. 0;
0;

pl
ic

/lset initial DiPrev - the origin
DiPrev.x = 0.0; DiPrev.y = 0.0; DiPrev.z = 0.0;

[/set initial |anbda, the direction of notion. Nornalize it.
| anbda. cl ear () ;

lanbda = initial Direction

| anbda. normal i ze() ;

/lset initial del X to origin
del X. clear();

/lclear the dummy del X vectors, set themto origin
del X1.clear();
del X2.clear();

dummyl. cl ear ();
dummy?2. cl ear();
tenp. clear();

//set transmtted and backscattered to false
transmtted = O;
backscattered = O;
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/lset channeling to true
i nsi deChannel = 1;

nei ghbor Fl ag = 0;

[/wite the initial coordinates to the output file
outStream << DiPrev.x << “\t” << DiPrev.y << “\t” << DiPrev.z << endl

“

//cout << endl << “Initial: “;
/[/cout << DiPrev.x << “\t” << DiPrev.y << “\t” << DiPrev.z << endl

[/cout << “r1 = *“ << rl1 << endl

/lcycle for each collision until the energy of the particle beconmes too |ow, or
the particle backscatters, or it goes out of the last |layer (transm ssion)

/I needs a do while |oop here,
[Iwhich | will nention as the ‘nother |oop’ from now.

do
{

ic=1ic + 1,
eps = e * f[LL];
eeg = sqrt(eps*epsdg[LL]);

[l pmax[LL] = a[LL] / (eeg + sqgrt(eeg) + 0.125 * pow( eeg, 0.1) );
pmax[ LL] = sqrt(3) * (latticeConstant / 2) * 0.7;

/] Cal cul ate inpact paraneter and choose the atomto scatter from
//Do this for ion pairs 0,1 and 2, 3.

if (ionCounter == 0)
{
del X1
del X2

ions[0] - DiPrev;
ions[1] - DiPrev;

dumyl

del X1 % | anbda;
dummy?2 d

= del X2 % | anbda;
sqrt( dummyl. scal ar Product ( del X1 % | anbda ) );
sqgrt( dumry2. scal arProduct ( del X2 % | anbda ) );

pl
p2

if(p2 > pl)
{ //swap ion ordering
temp = ions[0];
ions[0] = ions[1];
ions[1l] = tenp;
[/cout << “Vertical |ons swapped” << endl

}
if (ionCounter == 2)

del X1
del X2

ions[2] - DiPrev;
ions[3] - DiPrev;
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del X1 % | anbda;
del X2 % | anbda;

dummyl
dummy?2

sqrt( dumyl. scal ar Product ( del X1 % | anbda ) );
sqgrt( dumry2. scal arProduct ( del X2 % | anbda ) );

pl
p2

if(p2 > pl)
{ //swap ion ordering
temp = ions[2];
ions[2] = ions[3];
ions[3] = tenp;
//cout << “Horizontal |ons swapped” << endl;

}

/I now cal cul ate inpact paraneter

i f(nei ghborFlag == 0)
del X = ions[ionCounter] - DiPrev;
dumyl = del X % | anbda,;
p = sqgrt( dunmyl. scal ar Product( del X % | anbda ) );
/1find inpact paraneter vector and it’s unit vector
pVector = dunmyl % | anbda,;
pUnit Vector = pVector.unit();

el se if(neighborFlag == 1)

{
doubl e i npact[ 13]

doubl e radi al [ 13]
double S[13] = {O.
doubl e suns = 0. 0;

{0.0};
{0.0};
}

o

doubl e Probability[13] = {0.0};
doubl e rnd_candi date = 0.0;
int selected_candidate = -1;

for(int ncount = 0; ncount <= 13; ncount ++)
del X = nei ghbor | onsBCC ncount] - Di Prev;
dummyl = del X % | anbda;
p = sqrt( dunmmyl. scal arProduct ( del X % | anbda ) );
//find inpact paraneter vector and it’s unit vector
pVector = dumyl % | anbda;
pUni t Vector = pVector.unit();
/I scatterlonPos = nei ghborlonsBCC] ncount];
i mpact[ ncount] = p;
radi al [ ncount] = del X. magni tude();
S[ncount] =1/ ( powinpact[ncount],2) * radial[ncount]

sunS += S[ ncount];

/l general schene of selecting the neighbor ion
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endl ;

<< endl ;

}

/1 if(p < pmax[LL])

11 {
/'l scatterlonPos = nei ghborl onsBC( ncount];
[l I/cout << “Neighbor “ << ncount << “ is selected” << endl;
/1 break;

I}

}

for(int ncount = 0; ncount <= 13; ncount ++)

Probability[ncount] = S[ncount] / sunsS;
}

[lprint out the probability array

cout << endl:

for(int ncount = 0; ncount <= 13; ncount ++)
/lcout << Probability[ncount] << “ *“;

i nfoStream << Probability[ncount] << * *;

}

i nfoStream << endl ;
[/ cout << endl;

[/ random nunber between 0 and 1
rnd_candidate = ( (double)rand()/((doubl e) (RAND_MAX) +(double) (1)) );
//cout << “rand_candidate: “ << rnd_candi date << endl;

/I choose the candidate for scattering
sel ect ed_candi date = whi chNonUni f or nBi n(rnd_candi date, Probability, 13);

/lcout << “lon: “ << ih << “\tSelected Candidate: “ << sel ected_candidate <<
infoStream << “lon: “ << ih << “\tSelected Candidate: " << sel ected_candi date
/lassign the scatterlonPos variable to the sel ected nei ghbor

scatterl onPos = nei ghborl onsBCC sel ect ed_candi dat €] ;

/lcout << “Scattering lon Position: “; scatterlonPos. printVector();

//find the essential quantities for the selected nei ghbor
del X = nei ghbor | onsBC(| sel ect ed_candi date] - Di Prev;

dumyl = del X % | anbda,;
p = sqgrt( dunmyl. scal ar Product( del X % | anbda ) );
/1find inpact paraneter vector and it’s unit vector

pVector = dunmyl % | anbda,;
pUnitVector = pVector.unit();

//find eps and b using fi[LL][nn], using nn that | was supposed to find from above
//here imdeliberately using nn = 1

e
b

PsS

i[LL][1] * e;
ai [LL][1];

~ —h

p
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if (eps > 10) //rutherford scattering
s2 =1.0/ (1.0 + (1.0 +b * (1.0 + b)) * pow((2.0 * eps * b), 2) );

c2

1.0 - s2;
ct =2.0* c2 - 1.0;
st = sqgrt(1.0 - ct * ct);
else //magic fornula
{
r = b;
rr =-2.7 * log(eps * b);
if (rr >> b)//note >= sign instead < in trinB5
rr =-2.7 * log(eps * rr);

if (rr >= b)//note >= sign instead <in trinB5

{
r =rr;
}
}
//do while loop that replaces line 330 |oop
do
{
exl = 0.18175 * exp(-3.1998 * r);
ex2 = 0.50986 * exp(-0.94229 * r);
ex3 = 0.28022 * exp(-0.4029 * r);
ex4 = 0.028171 * exp(-0.20162 * r);

v = (exl + ex2 + ex3 + ex4) [ r
vl = -(v + 3.1998 * exl + 0.94229 * ex2 + 0.4029 * ex3 + 0.20162 * ex4) [/ r
fr=b*b/ r +v*r/ eps-r

fri=-b*b/ (r*r) +(v+vl*r)/ eps - 1.0;

q fr [/ fri;
r=r-gaq

}
while( (Abs(q / r)) > 0.001 );

roc = -2.0* (eps - v) / vl
sge = sqrt(eps);

/15 paraneter magic scattering cal culation
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//below is for universal potenti al

cc = (0.011615 + sqge) / (0.0071222 + sqe);
aa = 2.0 * eps * (1.0 + (0.99229 / sqge) ) * ( pow(b, cc) );
ff = ( sqrt(aa * aa + 1.0) - aa) * ( (9.3066 + eps) / (14.813 + eps) );

delta = (r - b) * aa * ff / (ff + 1.0);
co = (b + delta + roc) / (r + roc);

c2 = co * co

s2 =1.0 - c2;

ct =2.0* c2- 1.0

st sqrt (1.0 - ct * ct);

}

Theta = acos(ct);
//we are done finding theta (in CMsysten). So calculate all other quantities.

//find separation and the separation vector

phi = (Pi - Theta) / 2;

sep = p / tan(phi);

sepVector = |l anbda * sep;

//find theta in | aboratory frane - ps

psi = atan(st / (ct + ny[LL][1] ) );

/Inote: change nmy[LL][1] to ny[LL][nn] when the above section is fixed.
if (psi <0 ) psi =psi + Pi; //should | do this for crystal s?

//find Di, the scattering point vector
D = DiPrev + del X + pVector - sepVector;

//find new direction of notion
| anbdaPrine = | anbda * cos(psi) + pUnitVector * sin(psi);
| ambdaPri me. normal i ze();

/1find length of step, |Is = distance of Di fromDi Prev
Is = Di.getDistance(D Prev);

/1find energy |l ost due to electronic stopping, dee
ie = (int)(el/elOkev+0.5); //should it be 0.5? or less so that ie <=1000?

see = se[LL][ie];

if (e < eOkev) see = se[LL][1] * sqgrt(e/eOkev);
dee = |s * see;

/!l den = energy transferred to recoi

den = ec[LL][1] * s2 * e; //note: | amusing ec[LL][1] here instead of [LL][nn].
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[/cout << “den = “ << den << “, dee = “ << dee << endl;

infoStream << “den = “ << den << “, dee = “ << dee << endl;
e = e - den - dee;
//cout << endl << “current ion energy: “ << e << endl;

if (dee > maxi mum) nmaxi mum = dee;
pl =pl +1s - tau;

//wite the ion position to output file
outStream << Di.x << “\t” << D.y << “\t” << Di.z << endl;

i f((i c%0)==0)

[lcout << Di.x << “\t” << Di.y << “\t” << Di.z << endl;

}

[/ determ ne which scatter plot Di's x val ue bel ongs to.
//output the y and z coordinates to scatter plot file accordingly.
for(int cc = 0; cc <= nunBcatterPlotBins; cc++)

{
if( Di.x >= (scatterPlot[cc]) )

crystal MuonY = Di.y - translationy,
crystal MuonZz Di.z - translationZz
/lcout << “scatter plot “ << ct << *: " << scatterPlot[ct] << endl;
scatterStream << scatterPlot[cc] << “\t” << crystal MionY << “\t" <<
crystal MuonZ << endl ;

/lset scatterPlot[ss] to a big nunber
scatterPlot[cc] = 10000;

/Il break out of this for |oop

br eak;

}

//determine if D is in the channeling region.
/11 nsideChannel = Di.islnsidePolygon(ionsOdered, 4);

/Ibreak out of parent loop if not inside the channel

i f(insideChannel == 0)

{
cout << “lon “ << ih << * is out of Channel” << endl;
cout << Di.x << "\t” << D.y << “\t” << Di.z << endl;
br eak;

}

[/ determ ne which layer the next collision will be in

if (D.x <0.0) //particle is backscattered
backscattered = 1; //cout << “ion number “ << ih << “ backscattered.” << endl;
infoStream << “ion nunber “ << ih << “ backscattered.” << endl;

ib=1ib + 1;
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eb = eb + e€;

break; //break out of ‘mother do |oop’ and continue with the next session of
for |oop.

}

/l'here we set the current or next layer the particle will be in
for (w=1; w <= Layer; wt+)

{
if ( (Di.x <= xx[w) && (w == 1) )

{

/lcout << endl<<"ion is in layer “ << LL << endl

br eak;
/lbreak out of this For |loop and go check if the particle is transnmtted.

}
elseif ( (D.x <= xx[W) && (Di.x > xx[w1]) )

{
LL = w

“

[lcout << “ionis in layer “ << LL <<endl

break; //break out of this For loop and go check if the particle is
transmtted.

}
}
/I now, check for particle transmission, i.e. whether the particle went out of the
| ast | ayer.
i f(Di.x >= xx[Layer])
{ /lparticle is transmtted, take care of appropriate variables and break
transmtted = 1;//cout << “ion number “ << jih << * transmitted.” << endl
it =it + 1;
et = et + e
ia = 57.295779 * acos(cosin) / da + 1.0;
ie =100 * e/ e0 + 1.0;
/lmie]l[ial] = nie][ia] + 1;//note: howis this possible? ie and ia should be
integers in order to access the elenments of the array n{][]. But we cal culate them as

doubl es here!

break; //break out of the ‘nother’ do | oop

}

/I now take care of ionCounter and other variables for the next scattering
i f (nei ghborFl ag == 0)
{

i f(ionCounter == 3)

{
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/lionCounter = O;

nei ghborFl ag = 1;
scatterlonPos = ions[3];

/lcout << endl << “got out of first two |ayers” << endl;

}
el se
{
i onCount er ++;

}

}

i f (nei ghborFlag == 1)

{
//cout << “Updating Nei ghbor lons” << endl;
nei ghborl onsBCC[ 0] = scatterlonPos + Ix - |y + |z;
nei ghborl onsBCC[ 1] = scatterlonPos + Ix + |y + |z;
nei ghborl onsBC([ 2] = scatterlonPos + Ix + |y - |z;
nei ghborl onsBC([ 3] = scatterlonPos + Ix - |y - |z;
nei ghborl onsBCC[ 4] = scatterlonPos + | x * 2;
nei ghborl onsBCC[ 5] = scatterlonPos - Ix - |y - |z;
nei ghborl onsBCC[ 6] = scatterlonPos - Ix + 1y - |z;
nei ghborl onsBCC[ 7] = scatterlonPos - Ix + 1y + |z;
nei ghborl onsBCC[ 8] = scatterlonPos - Ix - |y + |z;
nei ghborl onsBCC[ 9] = scatterlonPos + |z * 2;
nei ghbor 1 onsBCC[ 10] = scatterlonPos - |z * 2;
nei ghborl onsBCC[ 11] = scatterlonPos + |y * 2;
nei ghborl onsBCC[ 12] = scatterlonPos - |y * 2;
nei ghbor 1 onsBCC[ 13] = scatterlonPos - Ix * 2;

}

//set DiPrev to Di

D Prev = Di;

[lupdate current |anbda to | anbdaPrinme
| anbda = | anbdaPri ne;

/I now the while condition of the nmother do | oop checks if the particle has |esser
energy than our |owest energy limt, ef.

}

while(e > ef);

/lsince we are out of the nother do | oop now, the particle nmust have cone to a
stop. So, increase the final particle distributions if the particle has not been
transm tted or backscattered.

if( ((transnmtted == 0)) && ((backscattered == 0)) && ((insideChannel == 1)) )

ip=(int)(pl/cw+ 1.0);
if(ip > 100) ip = 100;
IMipl[ip] =ipl[ip] + 1;

Xxsum = xsum + Di . x;
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/1y own bin function
sel ectedXBin = whi chBi n(Di . x, xx[Layer], numXBin);

//wite the selected bin to the output file
[/ out Stream << sel ect edXBi n << endl;

[lcout << x << endl << xx[Layer] << endl << numXBin << endl << sel ectedXBin;
xBi n[ sel ect edXBi n] = xBi n[sel ectedXBin] + 1;

[lprint final x value for plotting histogram

[/cout << “ion “ << ih << * final x: “ << D .x << endl;

infoStream<< “ion “ << ih << “ final x: “ << Di.Xx << endl;

//cout << Di.x << “,7";
rangeStream << Di . x << endl;

pl sum = pl sum + pl;
icsum = icsum+ ic;

/lipl is the ion path length - the total avg. distance the ion travels
regardl ess of direction before it comes to stop

}

//that brings us to the end of one ion’s journey, now go to next ion by going back
to the for | oop’s beginning..

}

/land this ends the nonte carlo | oop function. Take care of necessary structures and
vari abl es that need to be cl eared/del eted

out Stream cl ose();

scatter Stream cl ose();

i nffoStream << “Number of Backscattered lons: “ << ib << endl;
i nfoStream cl ose();

rangeStream cl ose();

i nt whi chNonUni f or nBi n(doubl e e, double arr[], int nunmBins)

{
double low = 0, high = arr[0];

if((e>=low && (e<high))
return O;
el se

{
for(int i =0; i < nunBins; i++)

{
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low += arr[i];
high += arr[i+1];

[lcout << “\tlow “ << low << “, high:” << high << endl;

if((e>=low && (e<high))
return i;
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