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Abstract

Gross and Tucker’s voltage graph construction assigns group elements as weights to the
edges of an oriented graph. This construction provides a blueprint for inducing graph
covers. Thomas Zaslavsky studies the criteria for balance in voltage graphs. This project
primarily examines the relationship between the group structure of the set of all possible
assignments of a group to a graph, including the balanced subgroup, and the isomorphism
classes of covering graphs. We examine connectedness, planarity, and chromatic number
in the derived graph. Lastly we explain the future research possibilities involving the
fundamental group.
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1
Introduction

This project began in September of 2010 as an investigation of the combinatorial prop-

erties of the voltage graph. A voltage graph is a triple, (G,V, ϕ) where G is an oriented

graph, V is a group, and ϕ : E(G) −→ V is an assignment of group elements to edges. This

construction is called a voltage graph because of its similarities to circuit diagrams drawn

by physicists. In a circuit diagram, the voltage around any loop the current transverses

must sum to 0. Mathematical voltage graphs do not have this restriction, cycles can sum

to any group element. If all cycles in a voltage graph sum to zero, we have a condition

called balance.

The most interesting thing about voltage graphs is their use in topological graph the-

ory. It turns out that if you assign group elements as weights to the edges of a graph,

you have a blueprint for the construction of a covering graph of your first graph. These

induced covering graphs are called derived graphs. The topological graph theorists are

interested in voltage graphs as a means to solve one of the main problems in topological

graph theory: what surface does a given graph imbed in? One of the ways that they do
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that is to take a quotient of the graph in question and see if it imbeds in some quotient

of the given surface. It is useful then to know systematic ways of creating quotients which

can then be reconstructed using voltage graphs.

This project does not delve very deeply into the larger problems of topological graph

theory. We do not discuss imbedding graphs or wonder about their genus. There are two

general questions we ask about the derived graph of a voltage graph. The first is, given

a group and a graph, how many derived graphs up to isomorphism can we induce? The

second is, what graph characteristics are preserved in the derived graph?

In Chapter 2 we define basic graph theory terminology that we use throughout the rest

of the paper. In Chapter 3 we discuss the concept of a covering graph. We then introduce

the voltage graph and its induced derived graph. We show that the derived graph is a

covering graph.

In Chapter 4 we present our results concerning the number of derived graphs induced

by a given base graph and group. The number of derived graphs depends on the set T .

We define T as the set of all assignments of group elements to edges of G. It turns out

that T is a group under an operation similar to the operation in the voltage group V.

When V is abelian, the set B of balanced assignments (every cycle sums to zero) form a

subgroup. We prove that all voltage assignments in a given coset of B in T induce the same

derived graph. This result does not fully explain the number of derived graphs, however.

There are actually fewer derived graphs up to isomorphism than the number of cosets of

B for many graphs. So in Section 5.3 we define voltage isomorphisms. We show that if the

voltage assignment ϕ1 on a graph G can be rearranged via a graph automorphism into an

assignment in a different coset, ϕ2, the two assignments will induce the same derived graph.
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Chapter 5 contains our results concerning which graph characteristics are preserved in

the derived graph. We start in Section 5.1 with connectedness. Certain voltage assign-

ments induce disconnected derived graphs of connected voltage graphs. This occurs when

the base graph is a tree, the voltage assignment is completely balanced, or when all cycles

in the voltage graph sum to some element of subgroup of the voltage group. In Section

5.2 we show that the derived graph of a planar graph is planar, and in Section 5.3 we give

an upper bound for the chromatic number of the derived graph.

Chapter 6 describes possible areas of further research. This project has far reaching impli-

cations into algebraic topology. Near the end of the time alloted for senior project we found

a relationship of the fundamental group of the base graph to the quotient group T/B. For

a general topological space, there exists a relationship between the fundamental group

and the isomorphism classes of covering spaces. An interesting project for further research

would be to extend that relationship to the voltage graph derived graph method of covering

spaces. Other further research that does not depend on knowledge of topology is possible

as well. What other graph characteristics are preserved or not preserved in derived graphs?

Finally, the Appendix displays all the derived graphs up to isomorphism induced by the

assignment of Z2,Z3, and Z4 on K4.



2
Graph Theory Preliminaries

In this chapter we provide the basic graph theory background needed for this paper. All

of the following definitions can be found in West’s Introduction to Graph Theory [5].

First we’ll define a graph, an oriented graph, and a subgraph, and then provide basic

terminology.

Definition 2.0.1. A graph is an ordered pair G = (V,E) consisting of a set V of vertices

together with a set E of edges such that each edge e has vertex set {u, v} with u, v ∈ V .

We denote the set of edges of a graph by E(G) and the set of vertices of a graph by V (G).

Definition 2.0.2. An orientation of a graph is obtained by assigning a direction to each

edge, denoted by an arrow along the edge. Any graph constructed this way is called an

oriented graph. We denote the set of vertices of an oriented edge e as the ordered pair

(u, v). We call the first vertex in the pair the head and the second the tail of the edge.

Definition 2.0.3. A graph is simple if it has no more than one edge between two distinct

vertices, and no loops (edges from a vertex to itself).
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(a) K4 (b) K5

 



(c) An oriented graph

Figure 2.0.1: Examples of Graphs and Oriented Graphs

Definition 2.0.4. Two vertices v, w of a graph are called adjacent if there exists an edge

e such that v and w are both endpoints of e. We denote adjacency between two vertices

by v ∼ w.

For example, in the graph in Figure 2.0.1c, the vertices a and b are adjacent, but a and c

are not.

Definition 2.0.5. The neighborhood of a vertex v, written N(v), is the set of all vertices

adjacent to v.

For example, in Figure 2.0.1c, N(a) = {b, d}.

Definition 2.0.6. A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that for

1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. The length of a walk is its number of

edges. A walk is closed if v0 = vk. We call a closed walk a cycle. A trail is a walk in

which no edges are repeated.

Definition 2.0.7. In a graph G, two vertices u and v are connected if there exists a

walk from u to v.

Definition 2.0.8. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and if every

edge of H is also an edge of G. We call H induced if whenever e ∈ E(G) involves vertices
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(a) A tree (b) K3,4

Figure 2.0.2: A tree and a complete bipartite graph

from H, e ∈ E(H). A spanning subgraph is a subgraph that includes all of the vertices

in G.

Now we will define specific classes of graphs and their properties.

Definition 2.0.9. A tree is a simple graph with no cycles.

Example 2.0.10. The graph in Figure 3.3.1a is a tree.

Trees have many equivalent characterizations. We present only two of these from a

longer theorem in Section 2.1 in [5]:

Theorem 2.0.11. For a graph G, the following are equivalent and characterize a tree:

i) For u, v ∈ V (G), G has exactly one u, v trail.

ii) Adding one edge to a tree forms exactly one cycle.

Definition 2.0.12. A complete graph is a simple graph in which every pair of distinct

vertices is connected by an unique edge.
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We denote a complete graph with n vertices by Kn. The graph in Figure 2.0.1a is K4, the

complete graph on four vertices, and the graph in Figure 2.0.1b is K5.

Definition 2.0.13. A complete bipartite graph is a graph whose vertices can be

divided into two sets, U and V such that there exists an edge between any u ∈ U and

v ∈ V .

We denote a complete bipartite graph with m vertices in U and n vertices in V by Km,n.

The graph in Figure 3.3.1b is K3,4.

The notion of isomorphism extends to graphs.

Definition 2.0.14. A graph isomorphism between G and H is a bijection f : V (G) −→

V (H) such that adjacency is preserved, i.e. (a, b) ∈ E(G) if and only if edge (f(a), f(b)) ∈

E(H).

Similarly, we can define the concept of automorphism for graphs.

Definition 2.0.15. An automorphism of G is an isomorphism from G to G.

We define the concept of graph coloring and planarity, which we use in Chapter 5.

Definition 2.0.16. A k-coloring of a graph G is a labeling f : V (G) −→ S, where S

is a set and |S| = k. The labels are colors. A k-coloring is proper if adjacent vertices

have different labels. A graph is called k-colorable if it has a proper k-coloring. The

chromatic number of G, χ(G), is the least k such that G is k-colorable.

Definition 2.0.17. A planar graph is a graph that can be embedded in the plane, i.e.,

it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

For example, K4 is planar but K5 is not as can be observed in Figure 2.0.1. We use

Kuratowski’s Theorem, Theorem 2.0.19, to determine whether or not a graph is planar.

First we need to define subdivision.
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Definition 2.0.18. A subdivision of a graph G is a graph resulting from the subdivision

of edges in G. The subdivision of some edge e = {u, v} yields a graph containing one new

vertex w, and with an edge set replacing e by two new edges, {u,w} and {w, v}.

Theorem 2.0.19. (Kuratowski [1930] ) [5] A graph is planar if and only if it does not

contain a subdivision of K5 or K3,3.



3
Voltage Graphs and their Derived Graphs

Now we will define the objects that we will discuss for the rest of this paper. First we will

define a covering graph using some topological concepts. Then we will define the voltage

graph, which is an oriented graph weighted with elements of an abelian group. Next we

will show how the voltage graph is a blueprint for the construction of a derived graph,

which is a covering graph. Lastly, we will present some theorems from Gross and Tucker

[1] about lifting walks to the derived graph that we will use the next few chapters.

3.1 Covering Graphs

We will first give an intuitive description of the general theory of covering spaces in

topology. Point-set topology is concerned with the study of spaces. For our purposes,

think of a space as a region of R2 or R3 that has some nice properties. Now consider

two spaces, X and X̃. We say X̃ covers X if it is in some way larger than X but with

a similiar local structure. So the area around any point in X looks the same as the area

around a similiar point in X̃. In Figure 3.1.1 there are two subsets of R3. The larger circle

is wrapped around itself to demonstrate how it looks the same as the smaller circle locally.
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A more rigorous and complete discussion of covering spaces can be found in Section 53 of

[3].

Figure 3.1.1: A covering space of a circle

It turns out that all covering spaces of graphs are graphs. We now give a formal definition

for a covering graph that maintains the same intrinsic idea of a covering space. Essentially,

a graph covers another if it is larger and has the same local structure.

Definition 3.1.1. A graph C is a covering graph of a graph G if there exists a surjection

p : V (C) −→ V (G) and a bijection g : nbhd(v) −→ nbhd(p(v)) for v ∈ V (C).

Example 3.1.2. Consider the graph in Figure 3.1.2. The larger graph C is a covering

graph of the smaller graph G. To check, define p : V (C) −→ V (G) by p(v) = w if v and w

have the same color. Clearly this is surjective. Now observe the neighborhood around one

of the red vertices in C. This neighborhood is a yellow vertex and a blue vertex. The red

vertex in G has the same neighborhood.

The larger theory of covering spaces can be specified to discuss covering graphs. For more

about this topic, see Chapter 6.
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Figure 3.1.2: A covering graph of a smaller graph

3.2 Voltage Graphs and Balance

Voltage graphs are oriented graphs whose edges are weighted with group elements. We are

primarily interested in them because their derived graphs (which we introduce in the next

section) are covering graphs. Voltage graphs are also studied for their own merit, however.

In the more combinatorial setting they are often called gain graphs, and have been studied

extensively by Thomas Zaslavsky [4].

Definition 3.2.1. A voltage graph is a triple Λ = (G,V, ϕ ) where G is a finite oriented

graph, V is a finite abelian group, and ϕ : E(G) −→ V is an assignment of group elements

to the oriented edges of G, where if (u, v) is an oriented edge, we define ϕ(v, u) = −ϕ(u, v).

The voltage on some walk W in G is defined by ϕ(W ) =
∑k

i=1 ϕ(ei). We call the graph G

the base graph of the voltage graph and V the voltage group.
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We define all graphs to be finite and the groups to be finite and abelian for the purposes

of this paper. Many of our findings and theorems would not hold for non-abelian voltage

groups. However, non-abelian groups can indeed be used to weight the edges. A discus-

sion of voltage graphs weighted with permutation groups can be found in Chapter 2.4 of [1].

This paper includes many voltage graphs where the voltage group is Z2. In that case

we will omit the orientation on the edges of the graph, because the direction of transversal

does not affect the voltage. When we examine voltage graphs, we are most interested in

graphs with cycles. It turns out that the sum around each cycle will determine the derived

graph, which we introduce in the next section.

Definition 3.2.2. We define a balanced cycle to be a cycle of G in which the the edge

labels sum to the identity. A balanced assignment is an assignment of edges ϕ for which

every cycle is balanced.

The following example demonstrates the balanced and unbalanced case.

a b

c

ab

c

Figure 3.2.1: A balanced and an balanced assignment of K4 to Z5

Example 3.2.3. Figure 3.2.1 is an image of two different voltage graphs such that G = K4

and V = Z5. The left graph has a balanced assignment, since all cycles sum to zero, while

the right does not. We can check that this holds. In the left graph, in cycle a, 4+4+2=0,
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in cycle b, 4+3+3=0, and in cycle c, 2+1-3=0. In fact, every cycle in this graph sums

to zero. We claim that the right graph is unbalanced. Cycle c sums 2+2-3=4, so the

graph is unbalanced. An assignment needs only one unbalanced cycle to be an unbalanced

assignment, but every cycle must sum to zero for the graph to have a balanced assignment.

3.3 Derived Graphs

In 1974 Gross and Tucker [1] developed the ordinary voltage graph construction to create

covering graphs using a voltage graph. These induced covering graphs are called derived

graphs and are denoted G̃. It turns out that a voltage graph is a blueprint for the con-

struction of a covering graph.

We know that any graph has an infinite number of covers. By forming a voltage graph

with the group V,we can construct a subset of their covers. These covering graphs turn

out to be |V|-fold covers of the original graph.

The derived graph is created by taking the cartesian product of the edge set with the

voltage group and the vertex set with the voltage group. These ordered pairs form the

vertices and edges of a graph. We will see that the derived graph forms a cover of G.

Definition 3.3.1. Let Λ = (G,V, ϕ) be a voltage graph. We define the derived graph

G̃ as follows. Let V (G̃) = V × V and E(G̃) = E × V. For v ∈ V (G) and k ∈ V we

denote the vertex (v, k) ∈ V (G̃) by vk. Similarly we denote edges in E(G̃) by ek. Let

e = (u, v) ∈ E(G), and let ϕ(e) = k ∈ V. Then the head and tail of ek ∈ E(G̃) are uk and

vk+ϕ(e), i.e., ek = (uk, vk+ϕ(e)).
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(a) Voltage graph with edges labeled



















(b) Same graph with edge assignments labeled

Figure 3.3.1: Edge assignments of a voltage graph

Example 3.3.2. We will create a derived graph of the voltage graph G = K4, V = Z2

with the following edge assignment:

ϕ(a) = 1 ϕ(b) = 0 ϕ(c) = 0 ϕ(d) = 1 ϕ(e) = 1 ϕ(f) = 0

We then make a table of the edges of the derived graph to find the head and tail of each

edge:

Edge (Tail, Head)
a0 (y0, w1)
a1 (y1, w0)
b0 (x0, w0)
b1 (x1, w1)
c0 (y0, x0)
c1 (y1, x1)
d0 (w0, z1)
d1 (w1, z0)
e0 (z0, y1)
e1 (z1, y0)
f0 (z0, x0)
f1 (z1, x1)
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Connecting this produces the graph in Figure 3.3.2. Note that the edge labels are italicized

and the vertex labels are bolded. The structure of the derived graph varies according to







































Figure 3.3.2: A derived graph of K4

the chosen ϕ. However, multiple ϕ’s can give the same derived graph up to isomorphism.

The complete list of derived graphs of K4 where V = Z2 is given in Appendix A.

Lets check to see if this derived graph does indeed cover the original graph. Let p : V (G̃)

−→ V (G) such that p(v, a) = v for v ∈ V (G) and a ∈ V. This function is clearly surjective.

Then by construction, for any vertex w such that v ∼ w in G, there exists a vertex wb ∈ G̃

such that va ∼ wb. So the derived graph is a covering graph.

We now prove that all derived graphs are covering graphs.

Theorem 3.3.3. Let G be a graph with derived graph G̃ induced by voltage graph Λ =

(G,V, ϕ). Then G̃ covers G with covering function p : V (G̃) −→ V (G) defined by p(vk) = v.
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Proof. Let p : V (G̃) −→ V (G) be defined by p(vk) = v for v ∈ V (G) and k ∈ V. We claim

this is surjective. Let v ∈ V (G). Then for any k ∈ V, vk ∈ V (G̃) and p(vk) = v.

Now let any vk ∈ V (G̃). Then define g by g = p|nbhd(vk). Claim this function is bijec-

tive. Let u ∈ nbhd(p(vk)). Then u ∈ nbhd(v) so there exists an edge e = (v, u) ∈ E(G).

Then ek = (vk, uk+ϕ(e)). Then uk+ϕ(e) ∈ nbhd((vk)) and g(uk+ϕ(e)) = u. So g is surjective.

Let uj , wl ∈ nbhd(vk). So j = k + ϕ(e1) where e1 = (v, u) and l = k + ϕ(e2), where

e2 = (w, u). Let g(uj) = g(wl). Then u = w, which implies e1 = e2. Therefore j = l and

uj = wl. So g is bijective and G̃ covers G.

This previous example is the only example that we will construct explicitly. For more

examples of derived graphs, see the Appendices.

3.4 Lifting Walks to Derived Graphs

Another important concept in the general theory of topological covering spaces is the lift.

The idea is that any path in the base space has some inverse image in the covering space:

some collection of copies of the original path. But since we are studying graphs, the paths

we lift are walks. Before we define a lift, consider the case where the walk has only one

vertex. We call the inverse image of a single vertex a fiber.

Definition 3.4.1. Let G be a graph with derived graph G̃. Then the fiber of v ∈ V (G)

is p−1({v}) = {vk | k ∈ V} where p is the covering map.

In topology, the lift of a path beginning at a given point in the covering space is unique.

We have the following similiar fact about lifts from voltage graphs to their derived graphs.
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Theorem 3.4.2. [1] Let W be a walk in a voltage graph with initial vertex u. Then for

each vertex ua in the fiber over u there is a unique lift of W that starts at ua.

Proof. Consider the first oriented edge of W , e = (u, v) or e = (v, u). Assume first

e = (u, v). Then the lift of e is ẽ = (ua, va+ϕ(e)). The vertex va+ϕ(e) is the only ver-

tex in the fiber of v adjacent to ua because vb+ϕ(e) is the tail of the edge ẽ′ = (ub, vb+ϕ(e))

for all a 6= b. If the edge is e = (v, u), then ẽ = (va−ϕ(e), ua). The vertex va−ϕ(e) is again

uniquely determined.

Similarly, there is only one possible choice for a second edge of the lift of W , since the

initial point of that second edge must be the terminal point of the first edge, and since

that second edge of the lift must lie in the fiber over the second edge of the base walk W .

This uniqueness holds, of course, for all the remaining edges as well.

One of the great features of the voltage-graph construction is that you can predict where

the lift of a walk terminates in the derived graph. Consider the following example:

Example 3.4.3. Let G and G̃ be the voltage graph and derived graph in Figure 3.4.1

where V = Z3 The walk {x, z, y, z} has net voltage 2, and the lift of this walk starting at

x0 terminates at the vertex x0+2 = x2, as predicted. The following theorem makes this

explicit.

Theorem 3.4.4. [1] Let W be a walk from u to v in a voltage graph , and let b be the net

voltage on W . Then the lift Wa starting at ua terminates at the vertex va+b. [1]

Proof. Let b1, . . . , bn, such that
∑n

1 bi = b, be the successive voltages encountered on the

walk W . Then the subscripts of the vertices of Wa are

a, a+ b1, a+ b1 + b2, . . . , a+ b1 + · · ·+ bn = a+ b.

Since Wa terminates in the fiber over v, its final vertex is va+b.
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Figure 3.4.1: G and G̃ with a walk lifted in red



4
Classification of Derived Graphs

Given a graph G and a group V how many non-isomorphic derived graphs can be induced

by the set of all possible assignments of ϕ? Immediate intuition might say that every

voltage assignment lifts the graph to a unique derived graph. This is not the case. For

example, there are only three non-isomorphic derived graphs when G is K4 and V is

Z2 and 26 voltage assignments. In this chapter we explain how to determine when two

assignments will give the same derived graph. In Section 4.1 we will describe the group

structure of the voltage assignments, including the balanced subgroup. In Section 4.2 will

demonstrate that the cosets of the balanced subgroup correspond to equivalence classes

of derived graphs. Lastly, in Section 4.3, we present an additional case where two voltage

graphs in different cosets can induce the same derived graph.

4.1 Group Structure of Voltage Assignments

Consider an abelian group V and a graph G. It turns out that set of all assignments,

T : {ϕ : E(G) −→ V} forms a group under the induced group operation of V, i.e., ϕ1 +

ϕ2(e) = ϕ1(e) + ϕ2(e). Since V is abelian, we use + to denote its operation. Since we
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are free to assign edges with whichever group element we please, T ≈ Vk where k is the

number of edges of G. We will also show that the subset of balanced assignments B forms

a subgroup of T .

Theorem 4.1.1. Let G be an oriented graph and V be an abelian group. Take the set T

such that

T = {ϕ : E(G) | ϕ : E(G) −→ V}.

Then T is an abelian group.

Proof. We claim T is a group with group operation + defined by (ϕ1 + ϕ2)(e) =

ϕ1(e) + ϕ2(e).

Commutativity. Let ϕ1, ϕ2 ∈ T . Then

(ϕ1 + ϕ2)(e) = ϕ1(e) + ϕ2(e) = ϕ2(e) + ϕ1(e) = (ϕ2 + ϕ1)(e)

Closure. Let ϕ1, ϕ2 ∈ T . Then (ϕ1 + ϕ2)(e) = ϕ1(e) + ϕ2(e) ∈ V so ϕ1 + ϕ2 ∈ T .

Associativity. Let ϕ1, ϕ2, ϕ3 ∈ T . Then

((ϕ1 + ϕ2) + ϕ3)(e) = (ϕ1 + ϕ2)(e) + ϕ3(e) =

ϕ1(e) + ϕ2(e) + ϕ3(e) = ϕ1(e) + ϕ1(e) + ϕ2(e) = (ϕ1 + (ϕ2 + ϕ3))(e)

Identity. Define ϕ0 ∈ T by ϕ0(e) = 0 for all e ∈ E(G). Then take ϕ1 ∈ T . So

(ϕ0 + ϕ1)(e) = ϕ0(e) + ϕ1(e) = 0 + ϕ1(e) = ϕ1(e)



4. CLASSIFICATION OF DERIVED GRAPHS 27

and by commutativity, ϕ1 + ϕ0 = ϕ1.

Inverse. Take ϕ ∈ T . Then define −ϕ by (−ϕ)(e) = −(ϕ(e)). Then −ϕ ∈ T and

(ϕ+ (−ϕ))(e) = ϕ(e)− ϕ(e) = 0

which implies ϕ+ (−ϕ) = ϕ0, and by commutativity, (−ϕ) + ϕ = ϕ0.

Theorem 4.1.2. Let

B = {ϕ ∈ T | such that ϕ is balanced}.

Then B is a subgroup of T .

Proof. Let ϕ1, ϕ2 ∈ B. Let C be a cycle. Then ϕ1(C) = ϕ2(C) = 0 and hence:

−(ϕ1 + ϕ2)(C) = −((ϕ1 + ϕ2)(C)) = −ϕ1(C)− ϕ2(C) = 0

So −(ϕ1 + ϕ2) ∈ B and B is a subgroup by the one-step subgroup test.

We would like to be able to predict which group B is isomorphic to. In fact, in all simple

planar graphs we examined, B ≈ Vm for some m ≤ k. This makes sense if we notice that

for every graph we can select a proper subset of edge assignment that uniquely determine

the remaining assignments if we want all cycles to sum to zero. For example, consider the

partial assignment of Z2 to K4 shown in Figure 4.1.1

Given three edge assignments, there are unique values for x, y, z such that the voltage

graph is balanced. For instance, x = 0 + 1 = 1. Therefore z = 1 + 0 = 1 and y = 1 + 1 = 0.

So for K4, three edges are free variables while three edges are dependent variables. It turns

out that any assignment of voltages onto a maximal spanning tree will uniquely determine

the remaining values of a balanced assignment. This works because each edge added onto

a spanning tree will create a distinct fundamental cycle. Each fundamental cycle gives us

a simple equation where we solve for the missing edge assignment.
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Figure 4.1.1: Partial edge assignment of K4

Theorem 4.1.3. Let V and G be given. Then T ≈ Vk where k = |E(G)|.

Proof. Arbitrarily number edges of G to be e1, . . . ek. We define f : T −→ Vk by

f(ϕ) = (ϕ(e1), . . . , ϕ(er)). We claim this is a group isomorphism.

Surjective. Let (a1, . . . ak) ∈ Vk. Then define a function ϕ : E(G) −→ V where ϕ(ei) = ai

for all 1 ≥ i ≥ k. Then ϕ ∈ T and f(ϕ) = (ϕ(e1), . . . , ϕ(ek)) = (a1, . . . , ak).

Injective. Let ϕ1, ϕ2 ∈ T such that f(ϕ1) = f(ϕ2). Then (ϕ1(e1), . . . , ϕ1(ek)) =

(ϕ2(e1), . . . , ϕ2(ek)) implies ϕ1(ei) = ϕ(ei) for all i so ϕ1 = ϕ2.

Homomorphism. Let ϕ1, ϕ2 ∈ B. Then

f(ϕ1) + f(ϕ2) = (ϕ1(e1), . . . , ϕ1(er)) + (ϕ2(e1), . . . , ϕ2(er)) =

(ϕ1(e1) + ϕ2(e1), . . . , ϕ1(ek) + ϕ2(ek)) = ((ϕ1 + ϕ2)(e1), . . . , (ϕ1 + ϕ2)(ek)) = f(ϕ1 + ϕ2)
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Theorem 4.1.4. Let V and G be given. Then B ≈ Vr where r = |E(R)| where R is a

maximal spanning tree of G.

Proof. Choose some maximal spanning tree R of G. Then arbitrarily number the edges of

R by e1, . . . er. Now define f : B −→ Vr by f(ϕ) = (ϕ(e1), . . . , ϕ(er)). We claim this is an

isomorphism of groups.

Surjective. Let (a1, . . . , ar) ∈ Vr. Then let ϕ : E(R) −→ V be defined by ϕ(ei) = ai

for ei ∈ R. We claim that this can be extended to a function ϕ : E(G) −→ V such that

ϕ ∈ B.

We present a proof by induction on n = |E(G) − E(R)|. First observe the assignment

ϕ : E(R) −→ V. Now add an ege e ∈ G−R to R. This connects to some walk W to create

a cycle C by Theorem 2.0.11. Let ϕ(e) = −ϕ(W ), so ϕ(e) + ϕ(W ) = ϕ(C) = 0 and the

cycle is balanced.

Now assume we have added n edges to R from G−R and assigned voltages such that all

cycles are balanced. Next add a (n+ 1)st edge from G−R called e. Adding this edge can

create multiple cycles. Say e connects to W and W ′ to create cycles C and C ′ respectively.

Assign ϕ(e) = −ϕ(W ) and ϕ(e)′ = −ϕ(W ′). We claim that ϕ(e) = ϕ(e)′. Since W −W ′ is

a cycle, ϕ(W−W ′) = 0 and ϕ(W ) = ϕ(W ′) and ϕ(e) = ϕ(e)′. So the function is surjective.

Injective. Assume f(ϕ1) = f(ϕ2). Then ϕ1(ei) = ϕ2(ei) for all ei ∈ E(R). Now consider

e ∈ E(G−R). Adding this edge creates some cycle with walk W ∈ R. So

ϕ1(W ) + ϕ1(e) = 0 = ϕ2(W ) + ϕ2(e).
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Therefore ϕ1(e) = ϕ2(e) for all e ∈ E(G) and ϕ1 = ϕ2.

Homomorphism. Let ϕ1, ϕ2 ∈ B. Then

f(ϕ1) + f(ϕ2) = (ϕ1(e1), . . . , ϕ1(er)) + (ϕ2(e1), . . . , ϕ2(er)) =

(ϕ1(e1) + ϕ2(e1), . . . , ϕ1(er) + ϕ2(er)) = (ϕ1 + ϕ2(e1), . . . , ϕ1 + ϕ2(er)) = f(ϕ1 + ϕ2)

4.2 Coset Classification

Consider the balanced subgroup B. Because the voltage groups we are dealing with are

abelian, B is a normal subgroup of T . It turns out that derived graphs of assignments

in the same coset of B are in the same isomorphism class. We have to be careful with

this, because two assignments that induce the same derived graph are not necessarily in

the same coset of B. As Appendix A shows, K4 has only three non-isomorphic derived

graphs with Z2, even though |T |/|B| = 8. However, this number is an upper bound on the

number of derived graph isomorphism classes. We will prove the fact that assignments in

the same coset induce the same derived graph with the help of the following lemma. More

implications of this lemma are discussed in Section 5.1.

Lemma 4.2.1. Let W1 and W2 be walks from v to w in a balanced voltage graph with

assignment ϕ : E −→ V. Then ϕ(W1) = ϕ(W2).

Proof. Let W1 be walks from v to w with voltage a, and let W2 be another walk from v

to w. Because G is totally balanced, ϕ(W1)− ϕ(W2) = 0, so ϕ(W1) = ϕ(W2) = a.

Theorem 4.2.2. Let ϕ1, ϕ2 : E −→ V be two assignments of voltages on some graph G

that are in the same coset of B. Then the derived graphs G̃1 and G̃2 are isomorphic.
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Proof. Since ϕ1 and ϕ2 are in the same coset of B, there exists some ϕ0 ∈ B such that

ϕ0 + ϕ1 = ϕ2. Let v ∈ G. Then define f : V (G̃1) −→ V (G̃2) by f(wb) = wc+b where b ∈ V

and the walk W from v to w has ϕ0 = c.

We claim f is bijective. Let f(ua) = f(wb). Then xc+a = xc+b so u = w and c+ a = c+ b

and a = b. We know c is unique by Lemma 4.2.1. Therefore f is injective. Let wa ∈ G̃2

Then f(wa−c) = wa−c+c = wa. So f is bijective.

Now we show that f preserves adjacency. Let ẽ = (xa, ya+b) ∈ G̃1. So e = (x, y) ∈ G.

Then f(xa) = xa+c and f(ya+b) = ya+b+c+ϕ0(e). Since b + ϕ0(e) = (ϕ1 + ϕ2)(e) = ϕ2(e),

(xa+c, ya+c+ϕ0(e)) ∈ G̃2. Define f−1 : V (G̃2) −→ V (G̃1) by f−1(wa) = wa−c where the walk

W from v to w has assignment ϕ(W ) = c. The proof for adjacency in this direction is

similar.

This result easily gives us the following corollary:

Corollary 4.2.3. Let k be the number of distinct derived graphs of G induced by voltages

from a group V. Then k ≤ |T |/|B| where T is the set of all possible voltage assignments

and B is the set of all possible balanced voltage assignments.

For some graphs, k = |T |/|B|, as seen in the following example.

Example 4.2.4. Let G be the graph in Figure 4.2.1, and let V = Z2. Since G has six

edges, there are 26 possible assignments ϕ : E(G) −→ Z2, so |T | = 64. The bolded span-

ning tree has four edges, so 24 ϕ’s such that the voltage graph is balanced, and |B| = 16.

Therefore there are 4 cosets of B in T . We will describe the derived graph induced by each

of the four cosets.

In Figure 4.2.2 we show an assignment (a) and the resulting derived graph (b). We do the
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Figure 4.2.1: Non-symmetric base graph with bolded spanning tree

same for Figures 4.2.3, 4.2.4, and 4.2.5. In each case we have take the assignment ϕ in (a)

to be one element of the coset B + ϕ.












(a) (b)

Figure 4.2.2: Voltage graph and its derived graph I












(a) (b)

Figure 4.2.3: Voltage graph and its derived graph II
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(a) (b)

Figure 4.2.4: Voltage graph and its derived graph III












(a) (b)

Figure 4.2.5: Voltage graph and its derived graph IV

We see that there are four non-isomorphic derived graphs corresponding to each of the

four cosets of B. The four cosets correspond to four cases: both cycles of G are balanced

(Figure 4.2.2a), only the square cycle is balanced (Figure 4.2.3a), only the triangle cycle

is balanced (Figure 4.2.4a), or no cycles are balanced (Figure 4.2.5a). The two cycles are

a basis for the cycle space, so they determine all other cycle assignments.
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This example gives us another way to think about the criteria for voltage graphs to

have isomorphic derived graphs. A coset of B in T has the property that for any pair

ϕi, ϕj ∈ ϕ+B, ϕi(C) = ϕj(C) for all cycles C in G. We prove this fact below:

Theorem 4.2.5. The assignments ϕ1, ϕ2 are in the same coset ϕk + B if and only if

ϕ1(C) = ϕ2(C) for all cycles C ∈ G.

Proof. Let ϕ1, ϕ2 ∈ ϕk + B. Then there exists ϕo ∈ B such that ϕ1 = ϕ2 + ϕ0. Let C be

a cycle.

ϕ1(Ci) = (ϕ2 + ϕo)(Ci) = ϕ2(Ci) + ϕo(Ci) = ϕ2(Ci) + 0.

Let ϕ1, ϕ2 ∈ T such that ϕ1(C) = ϕ2(C) for all C ∈ G. Then define ϕ = ϕ1 − ϕ2. Then

ϕ(C) = 0 for all C ∈ G. So ϕ ∈ B. So ϕ1, ϕ2 are in the same coset of B.

4.3 Voltage Isomorphism Classification

In Example 4.2.4 in the previous section we showed a graph with a one-to-one correspon-

dence between isomorphism classes of derived graphs and cosets of the balanced subgroup.

We can find examples of graphs, however, where two voltage graphs in different cosets

can induce the same derived graph. For example, consider the following two assignments

of Z2 on K4 in Figure 4.3.1. They both induce the derived graph in Figure 4.3.1c. Clearly,

the two assignments are not in the same coset because they don’t have the same sums on

each cycle, but they have the same derived graph.

This is not surprising because the voltage graphs in Figure 4.3.1 are symmetric with the

voltages flipped over the central axis of the graph. We expand on this idea and define an

automorphism for voltage graphs.

Definition 4.3.1. Let Λ1 = (G,V, ϕ1) and Λ2 = (G,V, ϕ2) be voltage graphs with the

same base graph and voltage group, and let σ : V (G) −→ V (G) be a graph isomorphism.
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(a)








(b)

(c)

Figure 4.3.1: Two assignments of K4 with the same derived graph
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The voltage graphs are called voltage isomorphic if for all (u, v) ∈ E(G), ϕ1(u, v) =

ϕ2(σ(u), σ(v)).

Theorem 4.3.2. Let Λ1 and Λ2 be voltage isomorphic. Then their derived graphs G̃1 and

G̃2 are isomorphic.

Proof. Let Λ1 = (G,V, ϕ1) be a voltage graph with derived graph G̃1 and Λ2 = (G,V, ϕ2)

be a voltage graph with derived graph G̃2. Define f : V (G̃1) −→ V (G̃2) by f(va) = (σ(v))a.

Because σ is bijective, f is bijective. We claim that f preserves adjacency.

Let (ua, va+b) ∈ G̃1. Then e = (u, v) ∈ G such that ϕ1(u, v) = b. Now consider

f(ua) = (σ(u))a and f(va+b) = (σ(u))a+b. Since Λ1 and Λ2 are voltage isomorphic,

b = ϕ1(u, v) = ϕ2(σ(u), σ(v)) and thus ((σ(u))a, (σ(v))a+b) ∈ G̃2.

The inverse function f−1 : V (G̃2) −→ V (G̃1) is f(va) = (σ−1(v))a. Because σ−1 is an

automorphism, the proof of adjacency for f−1 is similar. Therefore f preserves adjacency

and G̃1 and G̃2 are isomorphic.

Now let’s go back to an earlier example. Clearly, the graph in Figure 4.2.1 has some

symmetry. We can flip the graph over its horizontal axis. So why do none of the cosets of

B induce graphs isomorphic to graphs derived from assignments from other cosets? Take

the example of the following two voltage assignments on the graph G shown in Figure 4.3.2.

They are voltage isomorphic but they are also in the same coset, since their difference is

the balanced assignment shown in Figure 4.3.2c. Additionally, in this case there are no

cycles that are symmetric to one another.
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(c)

Figure 4.3.2: Three voltage graphs with assignments ϕ1, ϕ2, and ϕ1 − ϕ2



5
The Structure of Derived Graphs

In this chapter we investigate the structure of the derived graph. In Section 4.1, we examine

the case where the derived graph is disjoint. It turns out that this depends entirely on the

specific voltage assignment and the notion of balance is again crucial. In Section 4.2, we

prove that the derived graph of a planar graph is planar. In Section 4.3 we find an upper

bound for the chromatic number of the derived graph. These theorems presented in the

last two sections will not depend of the particular voltage assignment at all, but hold for

all derived graphs.

5.1 Connectivity

Sometimes, a derived graph of a connected graph is disconnected. In this section we ex-

plore three cases where this occurs: when the base graph G is a tree, when the voltage

graph Λ is balanced, and when every cycle of Λ sums to an element in a subgroup of V.

First, let’s think about how two vertices in a derived graph can be connected. If

v, w ∈ V (G) and a, b ∈ V, then va, wb ∈ G̃ are connected if and only if there exists a
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walk between v and w in G with net voltage b− a. So it is perhaps more surprising that

so many derived graphs are connected. For a graph to be connected, there must exist a

walk from va to wi for all wi ∈ p−1({w}). This means that there must exists at least as

many possible walks from v to w in G with distinct net voltages as there are elements of V.

With this in mind, our first case, that of the derived graph of a tree, is easy.

Example 5.1.1. Consider the voltage graph and derived graph with V = Z2 shown in

Figure 5.1.1a and Figure 5.1.1b. The fact that G̃ consists of two disjoint copies of G is











(a) (b)

Figure 5.1.1: Voltage graph and derived graph of a tree

not surprising. There exists a unique walk between any two vertices of a tree with some

net voltage. So every walk from u to v lifted to ua terminates at the same vb ∈ p−1({v}).

Therefore each ui is connected to only one vj in G̃. So the derived graph will always be

|V| disjoint copies of the tree.

Theorem 5.1.2. Let R be a tree, and let Λ = (R,ϕ,V) be a voltage graph for some

assignment ϕ and group V. Then the derived graph R̃ consists of |V| disjoint copies of R.
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Proof. First we will prove that R̃ is disjoint. Let ua, ub ∈ R̃ such that a 6= b. Define two

subgraphs induced by the following sets of vertices:

Sa = {vc | such that there exists a walk from ua to vc}

Sb = {vd | such that there exists a walk from ub to vd}

We claim Sa and Sb are disjoint. First assume contrary. Then there exists a vc such that

vc ∈ Sa∩Sb. Then there exists a walk from ua to vc and a walk from ub to vc in R̃. However,

Theorem 2.0.10 states that there exists a unique trail L from u to v in R. So ϕ(L) = d

and the lift of La terminates at va+d and the lift Lb terminates at vb+d by Theorem 3.4.4.

So the subgraphs are disjoint by contradiction and are size |R| because no two vertices in

the same fiber can be connected.

Now we claim the subgraph induced by Sa is isomorphic to R. Define f : V (R) −→ Sa by

f(v) = va+b where ϕ(L) = b for the unique trail L from u to v in R.

Let vc ∈ Sa. Then there exists a trail L from u to v in R with ϕ(L) = c − a. So

f(v) = va+c−a = vc and the function is surjective. Let f(v) = f(w). Then by the def-

inition of the derived graph, v = w. So the function is bijective.

Lastly, we claim f preserves adjacency. Let e = (v, w) ∈ V (R). So the walk L from u

to v has assignment ϕ(: +L) = b and ϕ(e) = c. So f(v) = va+b and f(w) = wa+b+c and

(va+b, wa+b+c) is an edge in R̃.

Now define f−1 : Sa −→ V (R) by f−1(va) = v. Let (va, wa+b) ∈ Sa. Then (v, w) ∈ R

by the definition of the derived graph. So f preserves adjacency.
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The derived graph of any totally balanced voltage graph is |V| copies of the base graph.

Here is an example.

Example 5.1.3. Consider the balanced assignment of edges on K4 where V = Z2 shown

in Figure 5.1.2.

  







Figure 5.1.2: Balanced voltage assignment on K4

This produces the derived graph shown in Figure 5.1.3.

The fact that the derived graph is disjoint follows from Lemma 4.2.1. Lemma 4.2.1

states that any two walks between vertices u and v in a blanced voltage graph will have

the same net voltage. so if u and v in a blanced voltage graph are connected by a walk

with net voltage b, the lift of any walk Wa from u to v will terminate at va+b. In fact, for

a vertex vc where c 6= a + b, there is now walk in the derived graph between ua and vc.

We will use this notion to prove the net theorem.

Theorem 5.1.4. Let Λ = (G,V, ϕ) be a totally balanced voltage graph.. Then G̃ is |V|

disjoint subgraphs isomorphic to G.
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Figure 5.1.3: The derived graph of a balanced voltage graph

Proof. Define Sa to be the induced subgraph of G̃ such that

V (Sa) = {vb ∈ G̃ | there exists a path ua to vb}

We claim that Sa is isomorphic to G.

Let f : V (Sa) −→ V (G) such that f(vb) = v. We claim f is bijective. Let v ∈ V (G).

Any walk W from u to v in G has a unique assignment ϕ(W ) = c by Lemma 5.1.4. So the

lift Wa terminates at va+c. Therefore f(va+c) = v, and f is surjective.

Assume f(vc) = f(vd) ∈ G. By Lemma 5.1.4., every walk from u to v has the same

voltage, namely b. So every path from u to v lifted to ua terminates at va+b, and va+b is

the only lift of the vertex v in Sa. Therefore f(wc) = f(wd) implies that c = d. Therefore

f is bijective. It is also clearly adjacency preserving because the derived graph preserves

adjacency.

We claim that f−1 : V (G) −→ V (Sa) define by f−1(v) = va+b where the walk W from u to v

has assignment ϕ(W ) = b. So let e = (v, w) ∈ G. Then f(v) = va+b and f(w) = va+b+ϕ(e).
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So (va+b, wa+b+ϕ(e)) ∈ Sa.

So there exists an induced subgraph Sb isomorphic to G for each b ∈ V such that

V (Si = {vb ∈ G̃ | there exists a path ui to vc}

Lastly we show these Sbs are disjoint. First assume vc ∈ V (Sa) and vc ∈ V (Sb). Then

there exists paths vc −→ ua and vc −→ ub. By our argument for the injectivity of f we find

ua = ub. So the Sis are disjoint.

Now consider a voltage graph Λ where ϕ : E(G) −→ V such that ϕ(C) ∈ W for all cycles

C ∈ G where W ( V is a subgroup. Similarily to the case where Λ is totally balanced,

there are certain pairs of vertices in the derived graph that do not have a walk between

them. For instance, ua and ua+b where b /∈ W cannot be connected. Observe the next

example.

Example 5.1.5. First observe the voltage graph with ϕ : E(G) −→ Z4 and corresponding

derived graph in Figure 5.1.4. Note that all cycles sum to an element in {0, 2} = W ( V

and that the derived graph is disjoint.

Theorem 5.1.6. Let Λ = (G,V, ϕ) be a voltage graph such that ϕ(C) ∈ W for all cycles

C ∈ G where W ⊆ V is a subgroup. Then the derived graph G̃ has |V|/|W| disjoint

components.

Proof. Choose some ua ∈ G̃. Then define the subset of vertices Sa that induces the sub-

graph Ha by

Sa = {vb | there exists a walk from ua to vb}.

First we show there are |V|/|W| such components. Examine the fiber p−1({u})∩Sa. There

exists a walk from the vertex ua to vb in G̃ if b− a ∈ W. So ub ∈ Sa if b is in a coset of W

generated by a. So |W| = |p−1({u}) ∩ Sa|.
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Figure 5.1.4: A voltage graph and its disjoint derived graph



5. THE STRUCTURE OF DERIVED GRAPHS 45

Now examine p−1({v}) ∩ Sa. The walk u to v in G has net voltage c. So va+c ∈ Sa.

Additionally, va+c is connctd to va+c+d for all d ∈ W. So vb ∈ Sa if b is in the coset of W

generated by a+ c. So |W| = |p−1({v}) ∩ Sa|. This follows for all vertices in G. Therefore

|Sa| = |V (G)| · |W|, and there are |V|/|W| such components in G̃.

Now let Sa and Sb with a 6= b be defined by

Sa = {vc | there exists a walk from ua to vc}

Sb = {vd | there exists a walk from ub to vd}

We claim the subgraphs Ha and Hb induced are disjoint. Let vc ∈ Sa and vc ∈ Sb. So c

is in the coset of W generated by c− a and in the coset of W generated by c− b. We have

reached a contradiction, and the Hi’s are disjoint.

The fact that a totally balanced voltage graph induces a derived graph with |G| disjoint

components as proved in Theorem 5.1.5 actually follows from Theorem 5.1.7.

5.2 Planarity

The derived graph, along with quotient graphs which we have not discussed, is often used

to determine the surface a given graph can be imbedded into In general, the genus of a

derived graph—the minimum number of handles in the plane required for the graph to

have a drawing without crossings—can be either higher or lower than the base graph. [DO

I WANT AN EXAMPLE?] We consider the case when G is planar, and thus G has genus

0. The derived graph cannot have smaller genus than the base graph, so it must have
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genus the same or larger. For more information on genus and imbedding see Chapter 3 of

[5]. In the next theorem, we show that a planar graph must have planar derived graphs.

To prove this, we use Kuratowski’s theorem, introduced in Chapter 2.

Theorem 5.2.1. The derived graph G̃ of a simple planar graph G is planar.

Proof. Recall Theorem 2.0.19, which states that a graph is planar if and only if it does

not contain a subdivision of K5 or K3,3. Suppose G̃ is not planar. Assume there exists an

induced subgraph of G̃ that is homeomorphic to K3,3. So for some v1, . . . , v6 ∈ VG and for

some π1, . . . π6 ∈ V there exists the following subgraph of G̃.

(v1, π1)

�� %%KKKKKKKKK

**UUUUUUUUUUUUUUUUUUU (v2, π2)

yysssssssss

�� %%KKKKKKKKK
(v3, π3)

ttiiiiiiiiiiiiiiiiiii

yysssssssss

��
(v4, π4) (v5, π5) (v6, π6)

We claim that vi 6= vj for all i, j ∈ {1, 6}. For example, consider v1. Since (v1, π1) ∼ (vj , πj)

for all 4 ≤ j ≤ 6, v1 6= vj for 4 ≤ j ≤ 6. Also, (v1, π1) ∼ (v4, π4) ∼ (v2, π2). Since G is

simple, there exists a unique lift of the edge e = (v1, v4) in G̃. So v1 6= v2. By similar rea-

soning, v1 6= v3. The same argument can be made to show that no vertex in the induced

subgraph of G̃ has the same base vertex in G.

Because (v1, π1) ∼ (v4, π4) ∈ G̃, v1 ∼ v4 ∈ G. By similar logic we find the following

subgraph in G:

v1

��   BBBBBBBB

((PPPPPPPPPPPPPPP v2

~~||||||||

��   BBBBBBBB v3

vvnnnnnnnnnnnnnnn

~~||||||||

��
v4 v5 v6

Therefore G is not planar and we have reached a contradiction. Now assume there exists

an induced subgraph isomorphic to K5 in G̃ as follows:
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(v1, π1)

xxqqqqqqqqqqqqqqqqqqqqqqq



���������������������������������������

��)
))))))))))))))))))))))))))))))))))))))

&&MMMMMMMMMMMMMMMMMMMMMMM

(v5, π5) //

��/
/////////////////////////

$$IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
(v2, π2)

zzuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

����������������������������

(v4, π4) // (v3, π3)

with vi ∈ V (G) and πi ∈ Π. So (vi, πi) ∼ (vj , πj) for all vertices in the subgraph. So we

reach a contradiction by the argument above. Thus G̃ is planar.

5.3 Coloring the Derived Graph

Recall the definitions of proper coloring and chromatic number from Chapter 2. One might

first assume that the derived graph would have the same chromatic number as the base

graph. The next example demonstrates otherwise.

Example 5.3.1. Recall that the cubic graph is a derived graph of K4. The chromatic

number of K4 is 4, while the chromatic number of the cubic graph is 2 as you can see from

Figure 5.3.1.

The next theorem shows that the chromatic number of the base graph is an upper bound

for the chromatic number of the derived graph.

Theorem 5.3.2. Let G be a graph with chromatic number χ(G) and let G̃ be a derived

graph of G with chromatic number χ(G̃). Then χ(G̃) ≤ χ(G).
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Figure 5.3.1: Proper coloring of K4 and its derived graph

Proof. Let V (G) = v1, . . . , vn and let the set c1, . . . cn be a minimal coloring of V (G) such

that the color of any vertex vi is ci

Now induce a derived graph G̃ using some group V and assignent ϕ. Create a color-

ing of G̃ such that any vertex (vi, πj) ∈ G̃ is assigned color ci. We claim that this is a

proper coloring of G̃.

Take any two adjacent points (va, πi) and (vb, πj) in G̃ with the given color assignments ca

and cb respectively. Because va ∼ vb in G, ca 6= cb. Therefore there exists a proper coloring

of G̃ of size χ(G). So χ(G̃) ≤ χ(G).



6
Further Research

Theorem 4.2.5 states that graphs with the same net voltage around each cycle will induce

the same derived graphs. The dependence on the voltage around the cycle rather than the

voltage on individual edges creates an intuitive connection between the set of possible cycle

assignments and the fundamental group of the graph. In algebraic topological there are

many known connections between the fundamental group of a space and the isomorphism

classes of covering spaces. In this section we will define the fundamental group of a graph

and show the relationship between the quotient group T/B and the fundamental group.

By doing this we will demonstrate areas of possible future research.

We will define the fundamental group, called π1, of a graph via an example. Consider

oriented K4 in Figure 6.0.1. The fundamental group is the set of all possible cycles of a

graph. Choose x as a base point. Now observe the cycles based at x. All these cycles form

the cycle space which is generated by the three minimal cycles which form the basis of the

cycle space.
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Figure 6.0.1: Proper colorings of K4 and its covering graph

The fundamental group of a graph is always a free group. This free group is the free

product of any number of copies of Z, and is denoted ∗. Here is the definition from

Hatcher’s Algebraic Topology [2]:

Definition 6.0.3. As a set, the free product of α copies of Z, ∗αZ, consists of all words

z1z2 · · · zm of arbitrary finite length m ≥ 0, where each letter zi belongs to a copy of Z and

is not 0, and adjacent letters zi and zi+1 belong to different copies of Z, that is, αi 6= αi+1.

The fundamental group of a single cycle is Z, because it can be transversed as many

times as desired in either direction. When we attach cycles together, we have two cycles

to transverse. Since our basis of K4 is three cycles, π1(K4) = Z ∗ Z ∗ Z. Hatcher gives us

a theorem to predict the structure of the derived graph for any group:

Theorem 6.0.4. (Hatcher [2]) For a connect graph G with maximal tree R, π1(X) is a

free group with basis corresponding to the edges of X −R.

Recall that the subgroup of balanced assignments is isomorphic to Vr and the group of

all assignments of cycles with group elements is isomorphic to Vk where k = IX −R|. So
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this group looks like a finite abelian version of the fundamental group of the space. We

claim that there exists the following relation:

Theorem 6.0.5. Let G be a graph and V be an abelian group. Then T/B ' Hom(π1,V).

There are several theorems in Hatcher’s Algebraic Topology about the connection be-

tween the fundamental group and covering spaces. If T/B is this finite subset of π1, what

relationships between covering spaces and the fundamental group will be preserved in the

relationship between T/B and the derived voltage graphs? For example, take the following

theorem, which explains that every subgroup of π1(X) corresponds to a covering space of

X:

Theorem 6.0.6. (Hatcher) Let X be path-connected, locally path-connected, and semilo-

cally simply-connected. Then there is a bijection between the set of isomorphism classes

of path-connected covering spaces p : (X̃, x̃0) −→ (X,x0) and the set of subgroups of

π1(X,x0), obtained by associating the sbgroup p∗(π1(X̃, x̃0)) to the covering space (X̃, x̃0).

If basepoints are ignored, this correspondence gives a bijection between isomorphism classes

of path-connected covering spaces p : X̃ −→ X and conjugacy classes of subgroups of

π1(X,x0).

This theorem had promise to answer more fully our question about number of derived

graphs. However, it doesn’t take into account voltage isomorphism anymore than the coset

classification does. For example, take K4. In this case, T/B ≈ (Z2)3. This group has eight

subgroups, but we know that the voltages induce only three non-isomorphic graphs. The

fundamental group only cares about number of cycles, not about size of cycles.

After discovering the relation between π1 and T/B, I found a brief discussion of it in

Chapter 2.5. of [1]. The authors state that ”From the correspondence just described, one

may obtain for graphs all of the standard topological theorems on the relationship between

fundamental groups and covering spaces.” They do not go on to obtain all the topological
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theorems. So although a future senior project student would not be breaking any new

ground by investigating this question, we can guarantee that it is true.



Appendix A
Derived Graphs of K4

A.1 Derived Graphs of K4 with Z2

There are 64 assignments of Z2 to K4. The group of balanced assignments, B, is of order

8. . In this appendix we have one assignment ϕ that generates the derived graph.
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ϕ G̃

  





  





  





A.2 Derived Graphs of K4 with Z3

There are 729 assignments of Z3 to K4. The group of balanced assignments, B, is of order

27. In this appendix we have an assignment ϕ that generates each derived graph
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ϕ G̃
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A.3 Derived Graphs of K4 with Z4

There are 4069 assignments of Z3 to K4. The group of balanced assignments, B, is of order

64. In this appendix we have an assignment ϕ that generates each derived graph
ϕ G̃
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