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Abstract

The main purpose of an election is to generate a “fair” end result in which everyone’s
opinion is gathered into a collective decision. This project focuses on Voting Theory, the
mathematical study of voting systems. Because different voting systems yield different
end results, the challenge begins with finding a voting system that will result in a “fair”
election. Although there are many different voting systems, in this project we focus on the
Partial Borda Count Voting System, which uses partially ordered sets (posets), instead of
the linearly ordered ballots used in traditional elections, to rank its candidates. We intro-
duce the Generalized Partial Borda Count Voting System, and explore which properties
of Partial Borda are still satisfied in this general setting.
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1
Introduction

In a typical election, we have a set of candidates and a set of voters. Each voter reports

their preference for the candidates in the form of a vote.

The study of voting systems, known as Voting Theory, is the mathematical treatment

of the process by which democratic societies, or groups resolve the many and conflicting

opinions of the members of the group into a general consensus. A valid voting method

is a voting system that enforces rules to measure how votes are accumulated in order to

generate a “fair” end result. While the process of voting is “fair” and simple when it

involves two candidates, it becomes more difficult to assess which voting systems are fair

when we increase the number of candidates.

In this project we explore the different ways of selecting a winning candidate in a given

election. We focus on examining a voting system based on the unique properties analyzed

in “A Borda Count For Partially Ordered Ballots”[1]. We modify the weight function

used in their paper and distinguish the different outcomes obtained with our new weight

function. To begin, we start with an example.
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Figure 1.0.1. 2 Candidate Election(A) vs. 3 candidate Election(B)

The following example illustrates the difference between a two candidate election and a

three candidate election.

Example 1.0.1. Suppose a voter has the choice to make a decision between two candi-

dates {a, b}. Based on his preference, the voter will always choose one candidate over the

other as illustrated in Figure 1.0.1(A), i.e., the voter will pick a over b, or b over a. Then

the candidate the voter prefers most is the winner.

However, if the voter has to choose between three candidates, {a, b, c}, as illustrated

in Figure 1.0.1(B), the notion of ranking the candidates becomes challenging. Hence,

increasing the number of candidates in the election makes the decision more complicated.

♦
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Generally speaking, there are many different ways of selecting the winning candidates

in an election. For illustrative purposes, we provide an informal example.

Example 1.0.2. Four students in the Bard Student Government committee are asked to

pick a color that best represents the Bard student body and will serve as the new school

color. The color choices are: red, yellow, blue and orange. Each student on the committee is

asked to pick a color based on their preferences. Table 1.0.1 shows each students preference

in descending order. We interpret this election in various ways below:

Table 1.0.1. School Colors

Student 1 Student 2 Student 3 Student 4

red red red yellow

yellow yellow yellow orange

orange orange blue blue

blue blue orange red

First, if we pick the winning color based on the students first choice, then red is the

winner. Note that in the first row red has 3 votes, while yellow only has 1.

Second, if we pick the winning color based on the students least number of last place

votes, then yellow is the winner. Note that yellow wins since it has 0 last place votes. In

this case none of the students will be disappointed because none of them picked yellow as

their last place vote. However, if the color red is chosen, we will have one student student

disappointed, which does not result in a fair election.

♦

Example 1.0.2 demonstrates how different voting methods yield different results. The

conflict in Voting Theory lies behind conducting a “fair” election using different voting

methods.

According to American economist Kenneth Arrow, there is no consistent method of

making a fair choice among three or more candidates with preferential voting, as in the
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examples above. Arrow defines a preferential voting method to be a social welfare function

that ranks social states as less desirable, more desirable, or indifferent for every possible

pair of social states.

According to Arrow, a social welfare function must satisfy [2] :

Pareto Condition: If every voter prefers candidate x over candidate y, then the group

prefers x over y.

Independence of Irrelevant Candidates: If every voters preference between x and

y remains unchanged, then the group’s preference between x and y will also remain

unchanged (even if voter’s preferences between other pairs like x and z, y and z, or

z and w change).

Non-dictatorship: No single voter possesses the power to always determine the group’s

preference.

Theorem 1.0.3. (Arrow’s Impossibility Theorem) If C has at least three elements

and the set P of individuals is finite, then it is impossible to find a social welfare function

for C satisfying the Pareto condition, Independence of Irrelevant Candidates, and

non-dictatorship.[2]

There are many different voting systems used to conduct an election. In this project

we focus on a specific method of voting called Partial Borda Count Voting, where we use

a weight function to determine the outcome of an election. This project was motivated

by the results of Cullinan, et.al.[1] on the properties of the Partial Borda Count Voting

system. Exploring this voting method and its properties will serve as the main focus of

this paper.

In Chapter 2, we explore different voting systems used in an election, mainly Preferential,

Plurality, and Borda Count Voting. We then introduce a specific Fairness Criteria known
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as the Majority Criterion and show its effect on these voting systems. We also introduce

partially ordered sets, and the Partial Borda Count Method.

In Chapter 3, we introduce four specific properties of voting systems and give examples

of each with respect to the Partial Borda Count weighting procedure.

In Chapter 4, we introduce the generalized weight function w = αd + βi and explore

the special case α = 3 and β = 1, to see which properties from Chapter 3 hold. We will

also see if these properties hold for any other α and β’s.

Finally in Chapter 5, we introduce the future work that can be done with the properties

explored in Chapters 3 and 4. We introduce tournaments, and apply these properties to

simple digraphs in tournaments and explore the different properties of tournaments and

their relation to posets.



2
Preliminaries

While there are many voting methods, in this section we focus on three: Preferential Vot-

ing, Plurality Voting, and Borda Count Voting. We show that each system yields different

winners and determine whether or not each election is “fair”.

2.1 A “Fair” Election

The example presented in the previous chapter, demonstrates the different effects that

various voting methods have on determining the winner of an election. In this chapter we

show the reader three different voting systems that determine different winners but do

not necessarily seem fair. This means that some of these voting systems do not satisfy the

Fairness Criteria.

In general, the Fairness Criteria determines whether or not an election is “fair”. We

give a formal definition below.

Definition 2.1.1. The Fairness Criteria is a group of mathematical criterions, namely,

Condorcet Criterion, Majority Criterion, and Pareto Condition, used to determine the

fairness of an election. 4
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Figure 2.2.1. 3 Voter election

While we listed three criterions that determine whether an election is “fair”, we focus

on the Majority Criterion.

Definition 2.1.2. The Majority Criterion selects candidates as winners that have a

majority, that is, more than half of the votes in an election. 4

The next definition tells us when a voting method violates the Majority Criterion.

Definition 2.1.3. An election violates the Majority Criterion if some candidate has a

majority of the first place votes but loses the election. 4

2.2 Voting Systems

In this section we focus on the three different voting systems: Preferential, Plurality, and

Borda Count. We begin with Preferential voting, which is the most commonly used method

of voting. In this method of voting, voters are asked to rank the candidates from most to

least preferred.

Definition 2.2.1. Preferential Voting occurs when a voter ranks all eligible candidates

from first to last place, i.e., from most to least preferred. The winner of the election is

the candidate with the most first place choices. 4

Notation: When a voter prefers a candidate a over b, then it is denoted by a > b.



2. PRELIMINARIES 13

Example 2.2.2. Figure 2.2.1 illustrates Preferential Voting with 3 candidates, {a, b, c},

and 3 voters, {v1, v2, v3}. By the Preferential Voting method, we see that v1 ,i.e., voter 1’s

preference for the candidates are as follows a > b > c. Similarly, voter 2 prefers b > a > c

and voter 3 prefers a > c > b. Since candidate a has 2 out of the 3 spots in first place,

then according to the Preferential Voting method, a is the winner.

This example illustrates that Preferential Voting satisfies the Majority Criterion since

candidate a has over 50% of the votes. ♦

Remark 2.2.3. Note that since voter 1 prefers choice a over b and b over c, this implies

a is preferred over c. This suggests transitivity within the candidates and so candidate

a wins in the voter ranking. In the same manner, voter 2 prefers b over a and a over c.

Hence, candidate b wins in the voter ranking. Similarly, voter 3 prefers a over c and c over

b which means candidate a wins the voter ranking. ♦

Notation: A Preference Table summarizes the results of all the individual preference

votes for an election.

The following example shows that we can also represent a Preferential Voting System

though a Preference Table.

Example 2.2.4. Recall the election from Example 1.0.2, where four students had to

choose between four different colors. We can interpret this election more clearly using a

preference table. Student 1, Student 2 and Student 3 picked red as their top preference

Table 2.2.1. Student Preference

2 1 1

red red yellow

yellow yellow orange

orange blue blue

blue orange red

and yellow as their second. Since 2 out of the 4 students in the committee prefer red over



2. PRELIMINARIES 14

any other color, red automatically takes 50% of the vote. Additionally, since a 3rd student

prefers red over any other color, red takes 75% of the votes.

Therefore by the Majority Criterion, red is the winner. ♦

We now introduce the second voting system, Plurality V oting. In general, Plurality

Voting refers to the largest number of votes received by one candidate out of an entire

group of candidates. Unlike Preferential Voting, in Plurality Voting candidates are not

ranked, instead each voter votes for their top candidate.

Definition 2.2.5. Let P be a set of voters and let C be a finite set of candidates. Then

Plurality Voting occurs when there exists x ∈ C such that x is the candidate who polls

the most votes. 4

The following example illustrates the Plurality Voting System.

Example 2.2.6. Suppose we conduct a survey in a small town to predict the most favor-

able holiday in the area. A group of ten people are randomly chosen to take part in this

election-based survey. We assume that our voters first choice is their top choice. The Plu-

rality System ignores the second subsequent choices in the election, thus we separate the

votes based on the voters top decisions. Using the Plurality method, each person selects

their favorite holiday. Their choices are listed in the table below:

Table 2.2.2. Plurality Election

4 3 2 1

Christmas Valentines Day Thanksgiving Halloween

Our results in Table 2.2.2 show that Christmas receives 4 votes, Valentines Day receives 3

votes, Thanksgiving receives 2 votes and Halloween receives 1 vote. Therefore by Plurality

Voting, Christmas wins as the most preferred holiday. ♦
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Notation: In Example 2.2.6, only 4 out of 10 voters picked Christmas. Since 40% < 50%,

then by Definition 2.1.2, the Plurality Method violates the Majority Criterion.

We now introduce the last voting system, Borda Count V oting.

Borda Count Voting is similar to Preferential Voting because it involves voters ranking

their candidates from highest to lowest. In addition to ranking their candidates, each voter

assigns a specific number of points to each candidate.

Definition 2.2.7. The Borda Count Voting System is a single-winner election method

in which voters rank options or candidates in order of preference. 4

Notation: These points are also referred to as weights, denoted w throughout the paper.

In the Borda Count Method, when deciding among n candidates, we give the most

preferred candidate a score n − 1. Then we give the second most preferred candidate a

score of n− 2, and the third a score of n− 3, and so on until we reach the last candidate.

The points given to a candidate by all the voters are then summed up to obtain the total

score of that candidate. The candidate with the largest sum is chosen as the winner.

We now provide an example of the Borda Count voting system.

Example 2.2.8. Suppose we have an election with 4 voters who are asked to rank their

preferences from highest to lowest. Candidates in this election are represented by {a, b, c} ∈

C. The preference ordering for each voter is as follows:

Table 2.2.3. Borda Count Election

V oter 1 V oter 2 V oter 3 V oter 4

a b c b

c a a a

b c b c

We assign points for each candidate in the following way:

• 3 points if this is a voters first choice
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• 2 points if this is a voters second choice

• 1 point if this is a voters third choice

We show our result in the table below:

Table 2.2.4. Points according to voter preference

Candidates V oter 1 V oter 2 V oter 3 V oter 4 Sum

a 3 2 2 2 9

b 1 3 1 3 8

c 2 1 3 1 7

After distributing our points to each candidate, we notice above in Table 2.2.4 that the

sum of each candidate is as follows: candidate a receives 9 points, b receives 8 points, and c

receives 7 points. Even though candidate a receives the fewest number of first place votes,

it is still declared the winner for this election using the Borda Count method. The Borda

Count voting system therefore violates the Majority Criterion. ♦

The advantage of using Borda Count method is that it incorporates all the information

from preference ballots, it takes candidates with the best average ranking and is preferable

when comparing a large number of candidates. It uses the ranking information to make

a formal decision instead of just using the voters best guess. The disadvantage of using

Borda Count voting is that it violates the Majority Criterion.

Table 2.2.5 summarizes the three voting systems based on whether or not they violate

the Majority Criterion and how the winner of an election is chosen.

2.3 Posets

In this section we introduce posets. In general Completely Ordered Sets are used to deter-

mine the linear ranking of candidates in an election. However, for this project we focus on

an alternative method called Partially Ordered Sets.
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Table 2.2.5. Compliance of Voting Systems

Voting Systems Description Relation to the Majority Criterion

Preferencial Voting

Determines the winner of
an election by ranking each
candidates from most to
least preferred.

Satisfies the Majority Criterion

Plurality Voting
Determines the winner
of an election as the candidate
with the most first place votes.

Violates the Majority Criterion

Borda Count Voting

Determines the winner
of an election by assigning a
system of points to each
candidate based on
each voters rank.

Violates the Majority Criterion

Definition 2.3.1. A Partially Ordered Set (or poset, P ) is a set together with a

binary relation denoted ≤ satisfying the following axioms [3]:

1. For all x ∈ C , x ≤ x (Reflexivity)

2. x ≤ y and y ≤ x, then x = y (Antisymmetry)

3. If x ≤ y and y ≤ z, then x ≤ z (Transitivity) 4

The following example gives a visual interpretation of Partially Ordered Sets and Com-

pletely Ordered Sets.

Example 2.3.2. Suppose we have an election with candidates C = {a, b, c, d, e, f}. The

difference between the two sets can be visualized in Figure 2.3.1 using a Hasse Diagram.

Note that in a Completely Ordered Set, the natural order of a sequence is compared by

value, this is shown in Figure 2.3.1 (P1),i.e.,

a > b > c > d > e > f.

Alternatively, Figure 2.3.1 (P2) represents a Partially Ordered Set in which candidates are

ranked such that:

a > f > c, a > b > d, and e > b > d, e > f > c.
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P1=Completely Ordered Set P2=Partially Ordered Set
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Figure 2.3.1. Complete Order and Partial Order

In this case the voter is indifferent to both a and e, and b and f , as well as b and c and

d and f . ♦

Notation: We use the notation x ≥ y to mean y ≤ x, we use x < y to mean x ≤ y

and x 6= y , and we use x > y to mean y < x. We say two elements x and y of P are

comparable if x ≤ y or y ≤ x ; otherwise x ∼ y, meaning x and y are incomparable, [1].

Definition 2.3.3. [1] Given a partial order≤, we define the down set and incomparable

set of x ∈ P by

Down(x) = {y ∈ P | y < x}

Incomp(x) = {y ∈ P | y is incomparable to x}.

4

Notation: We use the notation d to represent the down set of a candidate in a poset

such that d(a) = |Down(a)|. We use the notation i to represent the incomparable set in

a poset such that i(a) = |Incomp(a)|.

We now provide an example to summarize the definitions above.
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Example 2.3.4. Using the same posets P1,P2 in Figure 2.3.1 we compute d(a) and i(a)

of each poset.

In P1, Down(a) = {b, c, d, e, f} and Incomp(a) = ∅, so

d(a) = |{b, c, d, e, f}| = 5 and i(a) = ∅ = 0.

Likewise, in P2 Down(a) = {b, c, d, f} and Incomp(a) = {e}, so

d(a) = |{b, c, d, f}| = 4 and i(a) = |{e}| = 1.

♦

The terms and examples illustrated above will help us define The Partial Borda Count

voting system in the next section.

2.4 Partial Borda Count

Partial Borda Count Voting is an application of the Borda Count Method that uses par-

tially ordered posets instead of completely ordered sets to rank its candidates. Before we

discuss the approach behind using Partial Borda Count Voting, we define some terms and

concepts.

In a given election, we start by making decisions between candidates, where voters

choose the ranking of each candidate. Each voter arranges the candidates in a list according

to their preferences. These lists are known as ballots.

Definition 2.4.1. A Ballot, Bi is a poset on a set of candidates C = {a1, . . . , an}. 4

Example 2.4.2. Let C = {a, b, c, d, e, f} be candidates. Figure 2.3.1 gives two possible

ballots, P1 and P2. ♦

Definition 2.4.3. A profile (P ) is a set of ballots. 4

In a Partial Borda Count Voting method, voters are allowed to submit partially ordered

ballots whose rankings are determined by scores. This is known as the scoring procedure
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of a ballot. In a scoring procedure, a function takes as input a poset and outputs a weight

for each candidate, based on the partial order. The basic concept involves systematically

assigning weights to each candidate, then ranking them.

Notation: The points that a candidate receives is known as the weight of the candidate

and it is determined by a mathematical system of dispensing points to each candidate

known as the weight function. We give a formal definition of a weight function below.

Definition 2.4.4. Let C = {a1, . . . , an} be a set of candidates. A Weight Function is

a map from C to R. 4

Definition 2.4.5. A Scoring Procedure is a map from the set of profiles to the set of

weight functions. 4

The Borda Count method is the only method that assigns weights to candidates in an

election. A Social Choice Function associates every profile in the domain with a candidate.

This meaning it picks a chosen candidate(s) in P for every profile of preferences.

The following is a formal definition of the Social Choice Function.

Definition 2.4.6. A Social Choice Function is a map from a set of profiles to the set

of non-empty subsets of C. 4

These definitions serve as the building blocks of Borda Count Voting. We now present

an example using the Partial Borda Count method.

Before we formally define the Partial Borda Weight Function used to determine the

weight of each candidate in an election, we provide a short interpretation of the process

with the remark below:

Remark 2.4.7. Given a partial order on C, we start by giving each a ∈ C a weight n−1.

Then for every pair a, b ∈ C with a < b, we decrease the weight of a by 1 and increase the

weight of b by 1. This means that a candidate must give away one point to any candidate
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that is ranked above it. In doing so a candidate receives more points for being ranked above

another candidate. After distributing weights in this manner, the final weights assigned

to each candidate form a weight function that we will soon define below. ♦

Note: Let B be a ballot on C. This means B is a poset. We now define the Partial

Borda Weighting Procedure.

Definition 2.4.8. The Partial Borda Weighting Procedure is the weighting proce-

dure that associates a function to B such that wB : C → R given by

wB(a) = 2DownB(a) + IncompB(a).

4

Definition 2.4.9. Let P be a profile. The score of a ∈ P , denoted sp(a), is called the

Partial Borda Score of the function and using the Partial Borda Count Weighting

Function, the Score Function is given by,

sp(a) =
∑
B∈P

wB(a)

for all Ballots B and is known as the Partial Borda Scoring Procedure. 4

Definition 2.4.10. We define the Social Choice of a profile, denoted f(P) to be

f(P ) = {a ∈ C | s(a) = max s(b) ∀ b ∈ C}.

4

We now formally define the Partial Borda Count.

Definition 2.4.11. Let C be a set of candidates, and let P be a profile. The Partial

Borda Count Procedure is the weighting procedure in which:

• For each B ∈ P , we compute wB(x) = 2DownB(a) + IncompB(a)
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Figure 2.4.1. w = 2d + i Profile

• For all a ∈ C, we compute sp(a) =
∑
B∈P

wB(a)

• The winners are f(P ) = {a ∈ C | s(a) is maximal}

4

The following example illustrates the properties of a Partial Borda Count Procedure.

Example 2.4.12. Suppose in Figure 2.4.1, we conduct an election with ballots

{B1, B2, B3} ∈ P and candidates {a, b, c} ∈ C. Next to each vertex, we indicate the

weight of each candidate using the Partial Borda Count Weighting procedure, w = 2d+ i.

Note that the weights depend on the underlying poset, and not on the voter who submitted

it. Let wi(x) = wBi(x), then

• w1(a) = 2d(a) + i(a) = (2× 1) + (1× 1) = 3

• w1(b) = 2d(b) + i(b) = (2× 0) + (1× 1) = 1

• w1(c) = 2d(c) + i(c) = (2× 0) + (1× 2) = 2

We look at the Hasse Diagram in Figure 2.4.1 and note the same process for each candidate

in the second and third ballots. Then the score sp of each candidate is:

sp(a) = 3 + 3 + 4 = 10, sp(b) = 1 + 0 + 2 = 3, sp(c) = 2 + 3 + 0 = 5.

Since sp(a) > sp(b), and sp(a) > sp(c), we see f(P ) = {a} and therefore a is the

winner. ♦
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In the next section we will list some interesting observations concerning the posets of

this weight function and compare it to the posets of other similar weight functions.

2.5 Total sums of the weights in a ballot; w = 2d + i vs. w = 3d + i

In the previous section we introduced the weight function w = 2d + i, and conducted

an example outputting different weights for each candidate. If we look back at Example

2.4.12, we observe that the total sum of the weights of each ballot in the profile is equal

to 6 points all together.

In other words,
3∑

i=1
wB1(ai) = 3 + 1 + 2 = 6,

3∑
i=1

wB2(ai) = 3 + 3 + 0 = 6, and

3∑
i=1

wB3(ai) = 4 + 2 + 0 = 6.

In “A Borda Count for Partially Ordered Ballots”[1], the authors explain that the sum

of a ballot can be represented by n2− n, with n representing the number of candidates in

the ballot.

Given our weight function w = 2d + i, we can change w(x) = 2d(x) + i(x) to w(x) =

3d(x) + i(x) and short hand it to w = 3d + i. Throughout the process of modifying

our weight function, we notice some interesting observations concerning the sum of the

weights. It turns out that the sum of the weights of the candidates in each ballot in a

profile differ depending on the weight function used. In Figure 2.5.1, we compare the the

sum of the ballots in both profiles.

Example 2.5.1. Suppose we have a profile P . We notice above in Figure 2.5.1(B) that

the sum of each ballot for n = 3 using the modified weight function is:

3∑
i=1

wB1(ai) = 4 + 4 + 0 = 8,
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Figure 2.5.1. All possible ballots for n = 3

3∑
i=1

wB2(ai) = 6 + 1 + 1 = 8,

3∑
i=1

wB3(ai) = 6 + 3 + 0 = 9,

3∑
i=1

wB4(ai) = 4 + 1 + 2 = 7, and

n∑
i=1

wB5(ai) = 2 + 2 + 2 = 6

Note that we get an unequal number of total weights for each ballot in the profile. ♦

So the question now is, why do we not get consistent weights when we change our weight

function?

The following theorem, proved in [1], states that the Partial Borda Count weight function

is the only weight function that satisfies constant weights within a ballot.
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Theorem 2.5.2. The Partial Borda weighting procedure is the unique weighting procedure,

up to affine transformation, that has constant total weights and is linear in the quantities

down(a) and incomp(a).[1]

This means that constant total weights within a ballot is only satisfied with weight

function w = (α)d + (β)i, where α = 2β. This theorem can be informally proven by

looking at Remark 2.4.7 in Section 2.4 of this paper. We will omit the formal proof in

this paper as it is proven in [Pg.5 [1]].



3
Properties of Voting Theory using weight functions

3.1 Unique properties of Partial Borda Count Voting

There are a considerable number of additional properties that hold for the Borda Count

method. We define four of these properties that serve as key components in this paper.

Recall the following setup for the Partial Borda Count Voting System:

• P denotes a profile,i.e., a set of ballots.

• C denotes a set of candidates.

• f(P ) = {a ∈ C : s(a) is maximal}.

• wB(a) = 2d(a) + i(a), for a particular ballot B.

Definition 3.1.1. Let P = {B1 . . . Bm} be a profile and let a, b ∈ C. Then

πab = |B ∈ P : a > b ∈ B|,

,i.e., πab is the number of ballots that rank a over b in P . 4

We provide an example below.



3. PROPERTIES OF VOTING THEORY USING WEIGHT FUNCTIONS 27

B1 B2 B3

ac

b d

c

b

a

d

a

b

c

d

Figure 3.1.1. n=4; πab

Example 3.1.2. Suppose we have a profile P = {B1, B2, B3} with candidates C =

{a, b, c, d}. If we look at Figure 3.1.1, we see that a > b in B1 and B3, but a ∼ b in

B2, so πab = 2. ♦

Definition 3.1.3. A Social Choice Function f inputs a profile, and outputs a set of

candidates ,i.e., f : P −→ 2C , where P is a set of profiles, and 2C = all subsets of C. 4

We now define the four properties below:

We first define a term necessary for our first property.

Definition 3.1.4. If P = {B1, . . . , Bm} and P ′ = {B′1, . . . , B′m} are disjoint profiles, then

P + P ′ denotes the profile P ∪ P ′. 4

Definition 3.1.5. A social choice function satisfies the Consistency Property if for

any disjoint profiles P and P ′, if f(P ) ∩ f(P ′) 6= 0, then f(P ) ∩ f(P ′) = f(P + P ′). 4

This means that within an election if the profile is split into two mutually exclusive

groups and the intersection of the respective sets of winners is non-empty, then the can-

didates chosen by both groups are also chosen at large and vice versa.

Example 3.1.6. Consider the two disjoint profiles in Figure 3.1.2. Then using our weight

function w = 2d + i, in profile P we get, sp(a) = 3 + 2 + 2 = 7, sp(b) = 2 + 0 + 2 =

4, and sp(c) = 1+4+2 = 7. In profile P ′ we get sp(a) = 2+3+1 = 6, sp(b) = 4+0+1 =

5, andsp(c) = 0 + 3 + 4 = 7. So overall f(P ) = {a, c}, and f(P ′) = {c}. Hence we observe



3. PROPERTIES OF VOTING THEORY USING WEIGHT FUNCTIONS 28

P =

P ′ =

3

1

2

4

2

0

2 2 2

4

2

0

3 3

0

4

1 1

a

b

c c

a b

c

a

b

a b c

a

c

b

b

a

c

Figure 3.1.2. Consistency Property: w = 2d + i

with our results that f(P ) ∩ f(P ′) = {c}. When we combine both profiles P + P ′, we

compute sp(a) = 3 + 2 + 2 + 2 + 3 + 1 = 13, sp(b) = 2 + 0 + 2 + 4 + 0 + 1 = 9, and sp(c) =

1 + 4 + 2 + 0 + 3 + 4 = 14 therefore f(P + P ′) = {c}. This then satisfies the Consistency

Property. ♦

We now define the second property, the Faithfulness Property.

Definition 3.1.7. A social choice function satisfies the Faithfulness Property if for

any profile P consisting of just one ballot B, if a ∈ C and b > a ∈ B, then a 6∈ f(P ). 4

This means that in an election that consists of only one voter, the social choice preference

is that of the voters, if we have b above a in a ballot, then a cannot be the winner.

Example 3.1.8. Suppose we have an election that consist of just ballot B, as in Figure

3.1.3. We have b > a, b > c, and a ∼ c, therefore b ∈ f(P ), and a 6∈ f(P ). ♦

We now define the third property, the Neutrality Property.

Definition 3.1.9. A social choice function satisfies the Neutrality Property if for any

profile P and permutation σ of C, f(σ(P )) = σ(f(P )). 4
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This means that relabeling the candidates in a profile does not negatively affect the

outcome of the election.

Example 3.1.10. Consider the ballots B1, B2, B3 ∈ P in Figure 3.1.4. We observe in

B1, a > b, a > c, b ∼ c, in B2, a > b > c and in B3, a > c, b > c, a ∼ b . Then after

computing sp of each candidate we get f(P ) = {a}. Now let the permutation σa = c,

σb = a, and σc = b. Then we get σ{a, b, c} ∈ P ′. Note that all the candidates are in the

same order as their permutations in the new profile. Finally, we observe that σ(f(P )) =

σ(a) = {c}, and f(σ(P ′)) = {c}. Therefore the property holds. ♦

The fourth property is given in the following definition.

Definition 3.1.11. A social choice function satisfies the Cancellation Property if for

any profile P , if πab(P ) = πba(P ) for all a 6= b ∈ C, then f(P ) = C. 4
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This means for all pairs of candidates, if the number of voters preferring Ci to

Cj for all i, j ∈ R is equal to the number preferring the two Cj to Ci, then the two

candidates should be declared winners.

Example 3.1.12. Suppose we run an election with {a, b, x} ∈ C. We notice in Figure

3.1.5 that in B1, a > b > x, in B2, a > x > b, in B3, b > a > x, and in B4, b > x > a.

Then sp(a) = 4 + 4 + 2 + 0 = 10, and sp(b) = 2 + 0 + 4 + 4 = 10. In this case we have a

tie, and both a, b ∈ f(P ) ♦

According to “A Borda Count For Partially Ordered Ballots”, all four of these properties

hold for w = 2d + i. The following theorem shows that the converse is true as well.

Theorem 3.1.13. The Partial Borda choice function is the unique social choice function

that is: Consistent, Faithful, Neutral and has the Cancelation property. [1]

Now that we know for sure that these properties have been proven to hold with w =

2d + i, we consider the following question: What would happen if we change our weight

function w(a) = 2d(a) + i(a), to an arbitrary one w(a) = αd(a) + βi(a) where α and

β ∈ R? Which properties would hold? This is the topic that we will explore in the next

chapter.



4
Generalized Partial Borda Voting System

In this chapter we explore the generalized Partial Borda Count Voting System. We provide

the reader with some examples of the Partial Borda Count Voting System using w = 3d+i

instead of w = 2d+ i, as in the last chapter. We also consider a generalized weight system

w = αd + βi and seek to see if the properties stated in the previous chapter hold for this

weight function.

4.1 Partial Borda voting system properties

In Chapter 3 of this paper we introduced the Partial Borda Count Voting System with

weight function w = 2d + i. This is the unique social choice function that satisfies the

Consistency, Faithfulness, Neutrality and the Cancellation property. In this section we

modify α and β to see if these properties still hold for weight function w = αd + βi.

In Table 4.1.1 below, we show the results of our study for w = αd + βi in general and

more specifically for w = 3d + i. We will prove most of these properties in this chapter.

Recall the four unique properties of the Partial Borda Count, we restate the definitions

below for the readers convenience:
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Table 4.1.1. Generalized Partial Borda Properties

Properties w = 2d + i w = 3d + i αd + βi

Consistency Yes Yes Yes ∀ α, β
Faithfulness Yes Yes Yes ⇐⇒ α ≥ β ≥ 0 and α > 0

Neutrality Yes Yes Yes ∀ α, β
Cancellation Yes No Yes ⇐⇒ α = 2β

Definition 4.1.1. Consistency Property - For disjoint profiles P and P ′, if f(P ) ∩

f(P ′) 6= 0, then f(P ) ∩ f(P ′) = f(P + P ′). 4

Definition 4.1.2. Faithfulness Property - For any profile P consisting of just one voter,

if a ∈ C is a candidate and the voter ranks b above a for some b ∈ C, then a 6∈ f(P ). 4

Definition 4.1.3. Neutrality Property - For any profile P and permutation σ of C,

f(σ(P )) = σ(f(P )). 4

Definition 4.1.4. Cancellation Property - For any profile P , if πab(P ) = πba(P ) for

all a 6= b ∈ C, then f(P ) = C. 4

4.2 Consistency Property

We know in Table 4.1.1 that the Consistency Property holds for w = 2d + i from [1]. We

claim that this property also satisfies w = 3d + i as well as any number we choose to

represent α and β.

Example 4.2.1. In Chapter 3, example 3.1.6, we used the weight function w = 2d + i

to illustrate the Consistency Property. Using the same profiles we now change this weight

function to w = 3d + i in Figure 4.2.1 and show that we still have consistency within the

profile. We compute

sp(a) = wB1(a) + wB2(a) + wB3(a) = 4 + 3 + 2 = 9,

sp(b) = wB1(b) + wB2(b) + wB3(b) = 2 + 0 + 2 = 4 and

sp(c) = wB1(c) + wB2(c) + wB3(c) = 1 + 6 + 2 = 9,
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Figure 4.2.1. Consistency Property: w = 3d + i

hence f(P ) = {a, c}. Likewise in P ′,

sp(a) = wB′
1
(a) + wB′

2
(a) + wB′

3
(a) = 3 + 4 + 1 = 8,

sp(b) = wB′
1
(b) + wB′

2
(b) + wB′

3
(b) = 6 + 0 + 1 = 7 and

sp(c) = wB′
1
(c) + wB′

2
(c) + wB′

3
(c) = 0 + 4 + 6 = 10,

hence f(P ′) = {c}. Therefore f(P ) ∩ f(P ′) = {c} and f(P + P ′) = {c}. ♦

Theorem 4.2.2. Consistency Let w = αd + βi be the weight function where α, β ∈ Z.

Let P = {B1, . . . , Bk} and P ′ = {B′1, . . . , B′n} be disjoint profiles, where f(P ) ∩ f(P ′) 6=

∅. Then f(P )∩ f(P ′) = f(P + P ′).

Let S = f(P ) ∩ f(P ′) and let T = f(P + P ′).

Proof. We now prove S ⊆ T .

Since S 6= ∅, this means ∃a ∈ S such that a ∈ f(P ) and a ∈ f(P ′). Let w and w′ denote

the weight functions on P and P ′, and s and s′ be the total score functions for each

candidate associated with P and P ′. Let s(a) =
∑
B∈P

wB(a) and s′(a) =
∑

B′∈P ′
w′B′(a). Then
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s′(a) ≥ s′(b) and s(a) ≥ s(b) for all b ∈ C. Let s′′(a) =
∑

B′′∈P∪P ′
w′′B′′(a). Then s′′(a) = s(a)

+ s′(a) ≥ s(b)+ s′(b) = s′′(b). So a ∈ f(P + P ′), and therefore S ⊆ T.

T ⊆ S

Suppose a ∈ T . Then a ∈ f(P + P ′). This means that s′′(a) ≥ s′′(b) ∀ a, b ∈ C. Since

f(P ) ∩ (P ′) 6= ∅, ∃ x ∈ f(P ) ∩ f(P ′) such that x ∈ f(P ) and x ∈ f(P ′). This means that

s(x) ≥ s(b) and s′(x) ≥ s′(b) ∀ b ∈ C. So in particular, s(x) ≥ s(a) and s′(x) ≥ s′(a),

which then yields to s′′(x) ≥ s′′(a). But from above we stated that s′′(a) ≥ s′′(x). Hence

we have s′′(a) = s′′(x), which means that s(x) = s(a) and s′(x) = s′(a). Therefore we see

that a ∈ f(P ) ∩ f(P ′). So a ∈ S and T ⊆ S. Hence S=T.

Therefore f(P ) ∩ f(P ′) = f(P + P ′).

4.3 Faithfulness Property

We claim in Table 4.1.1 above that the Faithfulness Property holds for every α and β as

long as α ≥ β.

We illustrate an example below with α = 3 and β = 1.

Example 4.3.1. Recall in Figure 3.1.3, we used weight function w = 2d + i to find the

social choice of an election. Using the same profile, we run the example with our new

weight function w = 3d + i in Figure 4.3.1. Then because we are restricted to one ballot,

sp(b) = w(b) = 6 and sp(a) = w(a) = 1. Hence f(P ) = {b}, and so a 6∈ f(P ). ♦

Before we introduce our proof, we define a some necessary terms that will aid in the

construction of the proof.

Recall the Incomparable set in Definition 2.3.3 where,

Incomp(x) = {y ∈ P|y is incomparable to x}.

It is also the case that a ∼ x means a is Incomparable to x.
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Figure 4.3.1. Faithfulness Property: w = 3d + i

Note: Since this election is restricted to a single ballot, sp(x) = w(x) ∀ x ∈ C in this

case.

The notations below are necessary for the completion of proof.

Definition 4.3.2. Let w(a,x) be defined as follows:

w(a, x) =


α a > x
0 a < x
β a ∼ x
0 a = x

4

Note that w(a, x) keeps track of the points a gets with respect to another x ∈ C. With

this definition w(a) =
∑
x∈C

w(a, x).

Example 4.3.3. The ballot in Figure 4.3.1 shows that

w(a) = w(a, a) + w(a, b) + w(a, c) = 0 + 0 + 1 = 1.

Similarly w(b) = w(b, a) + w(b, b) + w(b, c) = 3 + 0 + 3 = 6 and

w(c) = w(c, a) + w(c, b) + w(c, c) = 1 + 0 + 0 = 1. ♦

We will need to break up the weight function in this way in order to prove the next

theorem.

Theorem 4.3.4. Faithfulness
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Let w=αd + βi where α ≥ β ≥ 0, and let a, b ∈ C. Let P = {B} be a profile with a

single ballot. If b > a ∈ B, then a 6∈ f(P ).

Proof. Case 1: Let a > x

Since a > x, w(a, x) = α. We know that b > a according to our theorem, so by the

transitive property b > x, hence w(b, x) = α. Therefore w(b, x) ≥ w(a, x).

Case 2: Let a < x

Since a < x, we have w(a, x) = 0 and w(b, x) ≥ 0. Hence we get w(b, x) ≥ w(a, x).

Case 3: Let a ∼ x

Since a ∼ x, we have w(a, x) = β. Assume w(b, x) = 0. This means that b < x, but

we already know that a < b, so by the transitive property, we have that a < x which is

a contradiction in this case because we previously stated that a ∼ x. This then leaves us

with w(b, x) 6= 0, therefore it must be equal to α or β. We also know that β ≥ β, and

α ≥ β, so we can conclude that w(b, x) ≥ w(a, x).

Case 4: Let a = x

We compute w(a, a) = 0 and w(b, a) = α > 0. Then w(a, a) < w(b, a).

Now, since w(a, x) ≤ w(b, x) for all x ∈ C and w(a, a) < w(b, a), we have w(a) =∑
x∈C

w(a, x) <
∑
x∈C

w(b, x) = w(b). So w(a) < w(b), hence s(a) < s(b). Therefore a 6∈

f(P ).

We provide a counter example for α < β.

Note: In order to provide a counterexample for the Faithfulness Property we need

to choose a weight function in which α < β.

Example 4.3.5. Counterexample :

Let w = 2d + 3i. Suppose we have a profile P = {B} consisting of one ballot. Then

sp(x) = w(x) for all x ∈ C in this case because we only have one ballot in the profile.

Then using our weight function, we see in Figure 4.3.2, w(b) = (2× 4) + (3× 0) = 8, and
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Figure 4.3.2. Faithfulness Property: w = 2d + 3i

w(a) = w(c) = w(d) = w(e) = (2×0) + (3×3) = 9. We notice that 8 < 9, so w(b) < w(a).

Therefore in this case a ∈ f(P ), even though b > a. ♦

4.4 Neutrality Property

We claim in Table 4.1.1 that the Neutrality Property holds for all α and β. The property

does not focus on the specific weight of the candidate but rather simply focuses on rela-

beling the candidates to see if we still receive the same winners. If the weights are not

affected then the winners should not be affected.

Example 4.4.1. Recall in Figure 3.1.4, we used weight function w = 2d + i to provide

an example for the Neutrality Property. Using the same profile, we run the example with

w = 3d + i, as in Figure 4.4.1, and we get:

sp(a) = wB1(a) + wB2(a) + wB3(a) = 6 + 6 + 4 = 16,

sp(b) = wB1(b) + wB2(b) + wB3(b) = 1 + 3 + 4 = 8, and

sp(c) = wB1(c) + wB2(c) + wB3(c) = 1 + 0 + 0 = 1.

Now let the permutation be defined by, σ(a) = c, σ(b) = a, σ(c) = b. Then we get:

sp(a) = wB1(a) + wB2(a) + wB3(a) = 1 + 3 + 4 = 8,

sp(b) = wB1(b) + wB2(b) + wB3(b) = 1 + 0 + 0 = 1, and

sp(c) = wB1(c) + wB2(c) + wB3(c) = 6 + 6 + 4 = 16.

Hence σ(f(P )) = σ(a) = {c}, and f(σ(P ′)) = {c}. ♦

Before we state the theorem we note a necessary term.
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Figure 4.4.1. Neutrality Property: w = 3d + i

Notation: Let σ(P ) denote the profile in which every voter re-labels the candidates

according to σ. That is, a voter prefers a over b in P if and only if that voter prefers σ(a)

to σ(b) in σ(P ).

Theorem 4.4.2. Neutrality

Let w = αd + βi ∀ α, β ∈ Z. Let P be a profile and let σ be a permutation of C. Then

f(σ(P ) = σ(f(P )).

Let N = f(σ(P )) and let M = σ(f(P )).

Proof. M ⊆ N

Let a ∈M . This means that a ∈ σ(f(P )). This means there exists b ∈ f(P ) such that

σ(b) = a. Since b ∈ f(P ), sp(b) ≥ sp(x) ∀ x ∈ C. This means that sp(σ(b)) ≥ sp(σ(x)), so

σ(b) ∈ f(σ(P )), therefore a ∈ f(σ(P )) and a ∈ N . Therefore M ⊆ N .

N ⊆M

Let a ∈ N . This means that a ∈ f(σ(P )), so we know that sp(a) ≥ sp(σ(x)) ∀ x ∈ C.

Now there exists b such that σ(b) = a. Applying the inverse of σ to this, sp(σ
−1(a)) ≥

sp(σ
−1(σ(x))). This means that sp(b) ≥ sp(x)∀x ∈ C, which means that b ∈ f(σ−1(σ(P ))).

So b ∈ f(P ), then σ(b) ∈ σ(f(P )). Therefore a ∈ σ(f(P )) and a ∈M , so N ⊆M .

Therefore M = N and f(σ(P )) = σ(f(P )).
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Figure 4.5.1. Cancellation Property: w = 3d + i

4.5 Cancellation Property

We claim in Table 4.1.1 above that the Cancellation Property holds for w = 2d + i but

does not hold for the weight function w = 3d + i.

As for which α and β this property holds for, we claim that the Cancellation Property

only holds for α = 2β.

Theorem 4.5.1. The Partial Borda weighting procedure is the unique weighting procedure,

up to affine transformation, that has constant total weights and is linear in the quantities

down(a) and incomp(a).

Proof. We omit the proof in this paper, as it is proved in Theorem 1 Pg.5 [1].

We provide a counterexample for w = 3d + i.

Example 4.5.2. Counterexample : Consider the profile in Figure 4.5.1,Using the weight

function w = 3d + i. The total score of each candidate then results in :

sp(a) = wB1(a) + wB2(a) + wB3(a) + wB4(a) = 0 + 4 + 1 + 6 = 11

sp(b) = wB1(b) + wB2(b) + wB3(b) + wB4(b) = 3 + 0 + +6 + 3 = 12

In this case we have πab = πba, but we observe that b ∈ f(P ) but a 6∈ f(P ).

Therefore the weight function w = 3d+ i does not satisfy for the Cancellation Property.

♦
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As you can see, most of these properties hold for our new weight function as well but,

but many of them are restricted to specific conditions for both α and β.



5
Future Work

My secondary goal in this project, after generalizing the Partial Borda Weight Procedure,

was to apply the function to other situations besides Voting Theory. The properties ex-

plored in the previous chapters can also be implemented in other applications such as

chess games and soccer tournaments.

How can we relate the unique properties of voting systems ,i.e., Consistency, Faithful-

ness, Neutrality, and Cancellation, to tournaments instead of posets?

In Graph Theory, a Tournament (Tournament Graph) is defined as a complete oriented

graph in which every pair of distinct vertices is connected by a single unique directed

edge. Therefore, assuming the vertices correspond to the players in a tournament, the

edge between each pair of vertices is oriented from the winner to the loser.

The term “tournament” also refers to a non linear arrangement by which teams or

players play against each other in order to determine the winner. We use N to denote the

number of players involved in a tournament. A N −vertex tournament graph corresponds

to a tournament in which each member of a group of N players plays all other N−1 players.

We will consider tournaments where ties are allowed, so essentially every tournament can
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Figure 5.0.1. 2 Player Tournament

result in a win for one player, a loss for the other player and in our case a tie. We use the

Partial Borda Generalized weighting procedure, w = αd + βi, to model different scoring

procedures to determine the winner of the tournament.

We score each player with each win = α points, each loss counting as no points and

each tie = β points. Similar to the scoring procedure of a poset in Voting Theory, the

Down set represents a win in each tournament, and the Incomparable set represents a

tie in each tournament.

The example below illustrates the difference between a win and a tie.

Example 5.0.3. Assuming we have a tournament with players {a, b}, Figure 5.0.1 illus-

trates the different possible outcomes of winning this tournament using w = 2d+ i. In the

first case, player a < b. This means that player a is the downset of player b and player b

is the winner of the tournament, so s(b) = 2 and s(a) = 0. Let f(T) represent the winner

of a tournament, then {b} ∈ f(T ) and a 6∈ f(T ).

Likewise in the second case, the tournament can result in a tie (we use the symbol,

“ = ” to represent a tie). This means that the score of player a = 1 and the score of player

b = 1, so a = b and {a, b} ∈ f(T ). ♦

Note: We define the Score Sequence of a tournament as the score vector of each tour-

nament. This means that the Score Sequence of Case 1 is (2, 0) and the Score Sequence of

Case 2 is (1, 1).

The biggest difference between a tournament and an election in a Partial Borda Count

Voting System is transitivity. In voting, if a > c and b > c, then a > c, but in a tournament
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Figure 5.0.2. 3 Player Tournaments

if player a wins over player b, and player b wins over player c, then this says nothing about

the match between player a and c.

There are many different ways one can explore tournaments. We list some reasonable

questions below:

1. How do the score sequences of a tournament vary as we increase the number of

players?

2. Is it possible to find a formula that counts all the possible N-player tournaments?

What about up to isomorphism?

3. Using the generalized weight function,w = αd+βi, or specific weight functions such

as w = 2d+ i and w = 3d+ i, can the score sequences of a tournament be compared

to that of a poset? Can we detect any similar patterns?

4. Figure 5.0.2 illustrates seven possible matches on a tournament graph with 3 un-

labeled vertices. Each vertex represents a player. Can we illustrate all the possible

combinations of a tournament with 3 players as in Figure 5.0.2 without repetition

of score sequences? If so what about for N players?
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