
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Fall 2015 Bard Undergraduate Senior Projects

Fall 2015

Phyro: Exploring an Untethered Model for Robots in CS-1 Phyro: Exploring an Untethered Model for Robots in CS-1

Philip Franchi-Pereira
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_f2015

 Part of the Artificial Intelligence and Robotics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Franchi-Pereira, Philip, "Phyro: Exploring an Untethered Model for Robots in CS-1" (2015). Senior Projects
Fall 2015. 35.
https://digitalcommons.bard.edu/senproj_f2015/35

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_f2015
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_f2015?utm_source=digitalcommons.bard.edu%2Fsenproj_f2015%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bard.edu%2Fsenproj_f2015%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_f2015/35?utm_source=digitalcommons.bard.edu%2Fsenproj_f2015%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Phyro: Exploring an Untethered Model for
Robots in CS-1

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Philip Franchi-Pereira

Annandale-on-Hudson, New York
May, 2015

Abstract

Robots are becoming more popular, both industrially and commercially. As new robots
are created, designers must choose whether to tether to a primary computer. Many robots
used in an introductory computing context, like the Scribbler robot and Fluke attachment,
are tethered. Untethering educational robots is the next step in improving the way robots
are used in CS-1. This project aims to demonstrate the advantages of untethered robots,
using the Scribbler robot and Fluke singleboard computer attachment as a model. We
developed the Phyro library to make programming an untethered Scribbler and Fluke
easier for students. By comparing program performance and function execution time, it
is shown that Phyro on an untethered Scribbler and Fluke can match and in some cases
even outperform a tethered Scribbler and Fluke.

Contents

Abstract 1

Dedication 4

Acknowledgments 5

1 Introduction 6

1.1 Motivation . 6

1.2 Educational Robotics . 7

1.2.1 Robots in the classroom . 7

1.2.2 Origins of Educational Robots . 8

1.3 Educational Robots Today . 12

1.3.1 The Scribbler and Fluke . 14

1.3.2 Advantages and Disadvantages of a Tethered and Untethered Robot 16

2 The IPRE Learning Environment: the Scribbler, Fluke, Myro and Calico 18

2.1 The Fluke . 19

2.2 Inner Workings of the Fluke Server . 21

2.3 Myro . 22

2.4 Calico . 23

2.5 Strengths and Weaknesses . 24

3 The Phyro Library 26

3.1 How Phyro Works . 26

3.2 Differences . 28

3.2.1 Scribbler Functions . 28

3.2.2 Fluke functions . 31

Contents 3

4 Results 33
4.1 Payload Sizes . 33
4.2 Micro Benchmarks . 35
4.3 Macro Benchmarks . 37

5 Conclusion 43
5.1 Improving Phyro . 43
5.2 Future Works . 44

Bibliography 46

Dedication

To my parents. Thanks for getting me this far.

Acknowledgments

First and foremost, my advisor Keith O’Hara, without whom this project never would

have gotten off the ground. To Jessica, Maya, Quincy, Katie and Darren, who helped me

write, test, and prepare both Phyro and this paper. Finally, to all my other friends and

colleagues at Bard College who offered kind words of encouragement.

1
Introduction

1.1 Motivation

Robots are used to teach students of all ages, from doctoral candidates in a robotics class

to highschoolers in CS-1 and even autistic children in therapy[5]. Many robots used in the

commercial and industrial markets are untethered, which is to say that they do not rely on

a primary computer to do their computation for them. However, many robots developed

for an educational context are still tethered in some way to a computer. As robots gain

prominence in computer science and the world at large, it becomes increasingly important

to allow them to be able to act independently from a primary computer. This project

aims to demonstrate the effectiveness of an untethered approach to programming and

controlling robots in an introductory computer science course. The Scribbler, along with

its singleboard computer attachment, the Fluke (both of which are discussed in Chapter

2), is one such example of a wirelessly tethered robot, and is the model robot used in this

project.

In order to eliminate the tethering aspect of using the Scribbler, it was neccesary to

create a new library, Phyro. Phyro allows users to execute code that would normally

1. INTRODUCTION 7

be written for the computer communicating with the Scribbler. The history of robots in

education has impacted the evolution of tethered robots, affecting how we use them in

education today.

1.2 Educational Robotics

Robots appeal to a wide variety of students due to their presence in today’s media and

the tactile, “hands on” experience they introduce to a classroom. Advertising the use

of robots in a class would most likely increase enrollment in computer science classes.

However, robots can do more than boost enrollment numbers; they have the potential to

fundamentally change the way students view their computers. The use of robots has been

shown to increase student comprehension in CS-1 classes [8]

1.2.1 Robots in the classroom

Programming with robots can change the way students approach computers by showing

them a different model of computation . Traditionally, computer science students learn to

program in a linear fashion. As Stein [15]states:

“begin with a question. Describe the answer in terms of the question. Programming is

the process of writing down the sequence of calculations required to get from a particular

instance of the question to the corresponding instance of the answer. Computation is the

process of executing those steps – the algorithm – to deduce the answer to a particular

question.”

This method of teaching reinforces the idea that programs written in the real world

adhere to a very rigid, single process model. However, most programs created today in-

teract with the real world. An App on a cell phone that constantly needs to be aware of

users tapping the screen, cars that monitor tire pressure and gas levels, or even websites

that ping servers for updates. These processes are not traditional finite procedures. They

1. INTRODUCTION 8

continually adapt to their respective surroundings. CS-1 classes taught using traditional

styles often miss opportuntites to teach students that computers interact with their world

on many different levels.

Robots present a novel platform for teaching this new, “world aware” model of computer

science. They allow students to see how the programs they write interact and affect their

surroundings. Even coding style is affected when programming for robots. While “Hello

World!” might still be the first thing students learn to write, more complicated assignments

no longer take the form “print out the batting averages of the baseball players in the list

provided” and now resemble “make this robot find its way to the next room”. This is

arguably not only a more meaningful kind of problem to solve, but can lead to more

interesting problems later on.

1.2.2 Origins of Educational Robots

Robots have long been thought of as being educational tools. Ever since the creation of

robots designed to demonstrated complex behavior (Elektro in 1939, followed by ELMER

and ELSIE in 1948), engineers and professors alike have considered using robots in an

educational environment. However, the first robotic learning platform, the LOGO Turtle

robot, would not be developed until 1967. The LOGO platform began with the LOGO

language, which was originally designed to teach young children the basics of Lisp, a

popular programming language at the time. However, after the first year of its use in a

classroom setting, LOGO’s designers chose to reinvent the language. By 1969, LOGO had

been completely rewritten to work with the new “display turtles”, which today would be

called a turtle simulator.

Shortly after the creation of the display turtle, the first turtle robot was created, and

unceremoniously dubbed the “floor turtle”. Both the robot and the simulator introduced

issues in 1970 that students and professors are still dealing with today. The display turtle

1. INTRODUCTION 9

consumed a large amount of resources and required a second, smaller computer to drive

the monitor (a problem which is thankfully no longer a concern today). The floor turtle

was physically tethered to a single, shared computer, and its sensors were too unreliable

to be used in class. In the mid 1970’s, portable graphics stations were developed to allow

schools to have multiple simulators running at once. By the end of the decade, LOGO

had been ported to multiple different computer platforms, including the TI 9900, which

allowed for up to 28 turtles to exist at once [14].

1. INTRODUCTION 10

Figure 1.2.1: The Turtle robot along with LOGO’s co-founder, Seymour Papert

With the introduction of personal computers in the 1980’s LOGO saw a shift in priority

from the physical realm of the floor turtle to the virtual simulator. Soon afterwards, the

Lego company created Lego Mindstorms. Seymour Papert’s book, Mindstorms: Childern,

Computers and Powerful Ideas, served as the namesake and inspiration for Lego Mind-

1. INTRODUCTION 11

storms[7]. Originally called LegoLoGO, Lego Mindstorms were at first exclusively sold to

schools. LegoLOGO allowed students to do more with their robots than just draw; they

could create their own robots to fit the project. Unfortunately, LegoLOGO robots were

still tethered, which led to the creation of the core “brick.” Lego robots were assembled

around this brick, which was fully programmable and thus gave students more freedom

with their assignments. The brick itself is a Lego piece, allowing it to interface with exist-

ing Lego pieces. It was made to be low cost, small and light enough to sell in a kit. While

the first prototype was made in 1987, Lego unveiled the first Mindstorms kit in 1998.

Figure 1.2.2: An example of a robot made with the Lego RCX Kit. Picture provided by
www.robotc.net

The first kit, called the Robot Command eXplorers (RCX), came with two motors, two

touch sensors and a light sensor. The brick itself boasted a 32KB of RAM and a 16 MHz

processor. In 2006, Lego released a second brick, NXT, which came with a three servo

motors, one light, sound, and distance sensor[12]. Its brick (labeled Ciara) had 64 KB

of RAM and a 48MHz processor. The most recent brick, the EV3, runs Linux on a 300

1. INTRODUCTION 12

MHz processor with 64 MB RAM and 16 MB of flash memory. EV3 kits contain two large

motors, one medium motor, two touch sensors, one color sensor, one gyroscopic sensor, and

one ultrasonic sensor[4]. Students can connect to the brick using either a USB connector,

Wifi or Bluetooth, making it easy to program remotely [16].

While Lego Mindstorms certainly made a large impact on the way computer science was

introduced to students, professors were not always thrilled to teach a class using Legos. In

a hardware course, Lego’s make for suboptimal building materials, and in a software course

the variance between different students robots would take time away from the curriculum.

One of the largest issues was that for most of the early 2000’s no simulator existed for

Lego Mindstorms, making working outside of the lab impossible for students [13]. Even

with these flaws, Lego Mindstorms remains one of the largest platforms used in computer

science education.

1.3 Educational Robots Today

In the early 2000’s, the number of students enrolling in computer science courses began to

decline. [2] Many educators took the opportunity to begin looking for new ways of exciting

students about programming and computer science in general. Research began on using

robots in an undergraduate and graduate level setting. While Lego Mindstorms was still a

viable option for undergraduate students, researchers wanted robots with a “low floor and

a high ceiling” [2]; the robot needed to be usable in both low level, introductory courses

as well as high level robotics and A.I. courses

Researchers quickly agreed that any robotic platform needed to fulfill the same set of

basic requirements. Perhaps the most important goal was that every student needed their

own personal robot which could be taken home. Sharing a single robot between multiple

students has shown to be an ineffective model for teaching [6]. Having smaller, individual

robots that could be used in a dorm allowed students to correct mistakes in their programs

1. INTRODUCTION 13

outside of lab hours, making them more comfortable with the robot, and by extension the

course material [10]. Designers also thought that the robot should be simple to use, but

powerful enough to use in higher level classes. Robots needed to be feature heavy, so that

the robot could solve more interesting problems.

The iRobot Create was the first of these robots to enter development. The Create is, for

all intents and purposes, a Roomba vacuum cleaner that trades its cleaning capabilities for

a cargo port. This cargo port happens to contain a DB-25 port for serial communications,

giving programmers more control over the robots actions. The Roomba was initially re-

leased in 2002, and was an immediate success among hackers. iRobot soon began releasing

models with features aimed at hackers, such as a new, open software interface and a Mini

DIN serial port that allow the Roomba to be easily reprogrammed leading to the Create in

2009. While the Create is an interesting platform to work on for hobbyists, it is arguably

too cumbersome to take home. Furthermore, it was seen as too complicated for a beginner

to work on, even with the help of a professor.

Figure 1.3.1: The iCreate v1, with its cargo port exposed

A study[11] conducted in 2007 used a Create paired with a Qwerk Controller to test the

effectiveness of personal robots in a classroom setting. The results of this study revealed

1. INTRODUCTION 14

the shortcomings of the Create, leading the authors of the study to develop the Finch.

The Finch is much smaller than the Create, fitting inside the average student’s backpack.

Furthermore, it comes with more sensors than the Create, with the current model including

accelerometers, obstacle detectors, light sensors and temperature gauges. In order to reduce

the cost of the robot, it was designed to be tethered to a primary computer, from which

it draws power and receives instructions. In their study, the authors found that most

professors they questioned used Java in their beginner level classes, and had no intentions

to switch languages [11]. As such, the Finch is programmed using Java, and all of its

sensors and actuators can be accessed from a single Finch class. While the Finch comes

with significant improvements over the Create in a classroom environment, it still requires

a tether to a primary computer.

Figure 1.3.2: The Finch Robot

1.3.1 The Scribbler and Fluke

The Scribbler and its successor, the Scribbler2, represent another attempt to create a

robot usable in a classroom environment. It was created by the joint effort of Parallax

1. INTRODUCTION 15

Inc., Element Products Inc., and Bueno Systems Inc. The Scribbler comes with multiple

sensors; 3 light sensors, 2 line sensors, a stall sensor, two IR sensors and an integrated

pen port. All of these (except for the integrated pen port) can be with a reprogrammable

microcontroller, and are put on display in the built in demos. Parallax created the first

Scribbler with a Stamp micro-controller, which is programmed in BASIC. BASIC is easy

to learn and gives experienced users a powerful way of creating interesting code. In 2010,

Parallax released a new Scribbler, with wheel encoders, a microphone and a Propeller

microcontroller. The Scribbler could originally be programmed in BASIC, but with the

latest model, it can be programmed using either SPIN or C. SPIN code can be written

using Parallax’s SPIN IDE, or their visual programming language.

Figure 1.3.3: The Scribbler Robot along with its Fluke attachment

The Scribbler alone does not present any distinct advantages over its competitors. How-

ever, with the Fluke single-board computer add-on and the Myro library, students can not

only program the Scribbler in Python, but can do so wirelessly over Bluetooth. Currently,

the Scribbler and its Fluke attachment is a popular choice for teaching introductory level

computer science classes, and is being used in dozens of universities.

1. INTRODUCTION 16

1.3.2 Advantages and Disadvantages of a Tethered and Untethered Robot

The Finch presents itself as a model for physically tethered robots. It derives its power

from the tether, freeing it of batteries and the variable behavior associated with their

low levels. Programs are executed on the computer, allowing the Finch to have a simple

microcontroller as its “brain”. Its creators have said that the Finch “is more of a computer

peripheral than an autonomous agent”[11]. Tethering the Finch lowers its overall cost,

making it more accessible to classrooms.

However, physically tethering a robot to a computer brings several drawbacks. The

most important of these is the tether itself. The robot’s range of freedom is limited by

the length of its tether. Untethered robots are not hampered by wires tying them to a

computer, therefore giving them a larger degree of freedom.

On the other hand, the Scribbler and Fluke add-on are a model to other wirelessly

tethered robots. Students can easily connect to the Fluke and control the robots actions in

real time from a distance using the Python interpreter. This makes creating and debugging

code much easier, as students can quickly see the changes that they made to their source

code reflected in the real world.

While untethering a robot confers many advantages, these robots come with a separate

list of issues as well. Untethered robots are generally battery operated, and the Scribbler is

no exception. The Fluke is a singleboard computer attachment that tethers the Scribbler

via Bluetooth to a computer. It makes up for this lack of power available by using less

powerful hardware. A low power system means less powerful hardware, which in turn

makes the Fluke and other devices like it less useful for a programmer. The Phyro library

attempts to provide the speed of using an untethered approach with the simplicity of the

wireless tethered approach.

1. INTRODUCTION 17

Table 1.3.1. Tethered and Untethered Robots
Tether Untethered

Unwired
IPRE
Fluke and Scribbler

NXT/Phyro

Wired Finch Scribbler

2
The IPRE Learning Environment: the Scribbler,
Fluke, Myro and Calico

In 2006, The Institute for Personal Robots in Education (IPRE) was founded. The IPRE

was the result of a coalition between Microsoft, Georgia Tech and Bryn MaWr, and was

tasked with creating a better educational experience for students new to computer science.

The IPRE approached this task by designing a robotic learning platform that was personal,

easy to use and affordable. The result of their research was bundled in a Robotic Learning

Kit: the Scribbler Robot, the Fluke attachment, the Myro library and the Calico IDE.

2. THE IPRE LEARNING ENVIRONMENT: THE SCRIBBLER, FLUKE, MYROAND CALICO19

Figure 2.0.1: the IPRE Stack

2.1 The Fluke

The Fluke is a single board computer that acts as a middleman between the user and the

Scribbler. It utilizes a 180MHz ARM9 processor, 32 MB of RAM, a 1 Megapixel camera,

and a Class 1 Bluetooth radio[1]. The purpose of the Fluke is to shore up on the Scribbler’s

weaknesses; it improves on the Scribbler by allowing its users to program it wirelessly over

Bluetooth. In this way students can create programs without needing to worry about a

wire, which limits the physical distance their robots can travel while running programs.

The Fluke can interface with any device that hosts a serial port, and many other robots

have had software written to advantage of the Fluke’s flexibility. However, the Fluke

designers created it with the Scribbler in mind, and it ships with software allowing it to

control the Scribbler by default. The Fluke also brings with it a whole new array of sensors.

It has improved IR sensors that allow it to detect obstacles in its path with higher precision,

and GPIO pins for attachments like small motors that can be easily controlled. Perhaps

the most important feature the Fluke brings to the table is the camera. The camera was

2. THE IPRE LEARNING ENVIRONMENT: THE SCRIBBLER, FLUKE, MYROAND CALICO20

added to the Fluke later on in its developement as a meaningful way of introducing two-

dimensional arrays to beginner programmers, an area instructors previously had struggled

to teach using the basic Scribbler features.

The camera can take full color JPEGs and send them off-board wirelessly.

The Fluke allows users take segmented pictures. After capturing an image, the Fluke

highlights the greatest color discrepancy and segments the picture into white, or “1”, and

the rest of the image in black, or “0”. This leads to long strings of identical pixel values

in a given row. The Fluke replaces these string with a number representing how many

consecutive occurrences of a value it saw in that row, decreasing the amount of data it

must process for an image. This process is called Run Length Encoding (RLE).

The Fluke2 has a fully functional version of Slackware Linux operating system running

on-board, meaning it can be programmed like any other Linux computer. Upon booting

up, the Fluke2 launches its Bluetooth Server process, fluke2srv, and prepares to read

incoming messages from sent from a paired computer. Upon receiving a message, the

process determines what command the user was calling by looking at the first byte of the

message, and compares it to a table specified in fluke2cmd to see which associated function

needs to be called. Many functions, like some of the sensor and camera functions, can be

run entirely on the Fluke. These are simply called and executed locally, and the Fluke

sends back a response after they have completed. Other functions need to interact with

the Scribbler, either to get data from its sensors or give it commands to move or beep.

For these, the Fluke writes the command byte it received from the user (along with any

additional bytes passed as parameters) to the Scribbler’s serial port. When the Scribbler

is given a command by the Fluke, it will reply with an “echo” of the command it was

given, along with any data it gathered during its execution. After filtering out the echo,

the Fluke writes the results back to the Bluetooth serial port. Any programming language

with support for Bluetooth communications can interface with the Fluke; however, the

2. THE IPRE LEARNING ENVIRONMENT: THE SCRIBBLER, FLUKE, MYROAND CALICO21

Myro library, written in Python, is the most common method used by professors in a

classroom.

2.2 Inner Workings of the Fluke Server

In order to understand the decisions made during the creation of Phyro, it is necessary

to understand the software that runs onboard the Fluke. The Bluetooth server on the

Fluke, fluke2srv, can monitor new camera images, Scribbler messages, and new Bluetooth

data without needing to create new processes for each. It begins running by initializing

structures that will contain error logs, camera parameters, Bluetooth communications

data and Scribbler serial port data. Before starting any Bluetooth related processes, the

server resets the Scribbler, prepares its serial port for reading and sets the camera back to

its default gain and exposure settings. Once the Scribbler and Fluke are fully initialized,

fluke2srv makes itself discoverable and begins listening for packets.

The heart of mfluke2srv is the while loop which polls the different structs it initialized

earlier for new data, and responds to each one accordingly. The first struct polled, and

perhaps the most complicated, is the camera struct. In order to capture an image, the

system first needs to read from the camera file (/dev/spidev0.0) which triggers an image

capture routine in the camera. The image is made available 0.4 seconds after the read.

After the image is made ready, the section of memory it exists in is shared with fluke2srv.

The server bypasses this delay when it polls the camera file for changes, which triggers a

read and therefore a new image capture if no new data is in the file.

If a function requests a new image from the Fluke, fluke2srv will return any image

taken in the last two seconds, and only take a new one if no such image could be found.

Although the resulting image might have been taken before the takePicture() function

was called, due to the frequency of camera reads this disparity is rarely noticed.

2. THE IPRE LEARNING ENVIRONMENT: THE SCRIBBLER, FLUKE, MYROAND CALICO22

After checking the camera for any new images, the server checks the Scribbler serial

port for any new data and copies it to the serial struct defined earlier. This serial struct is

primarily used by the function scribbler passthrough(), which is primarily responsible

for reading and writing to the serial port. The server then goes on to check for new

Bluetooth clients and any data in the receive buffer before finally transmitting data it sees

in the transmit buffer. The server is constantly checking for all of these different events

with each pass, which is not always beneficial. A function that wants to simply send a

reply to one of the Fluke’s clients needs to wait for the camera file and Scribbler serial

port to be read, new clients to be identified, and Bluetooth data to be read in.

2.3 Myro

Myro is an interface for controlling robots, written in Python. Using Myro, students can

send the Scribbler commands over Bluetooth through the Fluke. Myro was created to hide

the difficulties of connecting to the Fluke over Bluetooth from the user.

The heart of Myro is the Scribbler class. In it exists a list of all the commands, repre-

sented in character form, that control the Scribbler. Myro functions acquire control over

the port and write these characters, along with any other parameter bytes, to the Blue-

tooth serial port. It then awaits a response before relinquishing control. Most functions

in Myro look more or less identical to each other, with some functions manipulating ei-

ther the input or outputs before returning. Following this method Myro can quickly be

updated to reflect changes made to either the Fluke or the Scribbler without needing to

rewrite entire sections of the code. Having the Fluke and Scribbler handle most of the hard

work of gathering and manipulating data means that Myro itself can be changed with-

out, in theory, affecting the Scribbler and Fluke’s functionality. Myro has other functions

defined in it as well that simply make programming in python a bit easier. Students can

call wait() instead of time.sleep(), and flipCoin() instead of random.randint(0,1).

2. THE IPRE LEARNING ENVIRONMENT: THE SCRIBBLER, FLUKE, MYROAND CALICO23

These functions make it easier for students to concentrate on coding the task at hand,

rather than difficult, foreign syntax. While Myro was initially written for Python, imple-

mentations exist in C#, Java, and C. The Calico IDE goes further, and allows student to

use Myro in an even wider variety of languages.

2.4 Calico

Figure 2.4.1: Snapshot of the Calico IDE

The Calico IDE is the final piece of IPRE’s Robot Education with the Scribbler. Calico

was released in 2010, and was designed to provide a single framework for multiple pro-

gramming environments with multiple contexts so that instructors and institutions would

not need to limit their pedagogical choices. Its creators wanted an IDE students could

use to learn multiple languages without needing to also familiarize themselves with a new

work environment. Students would spend more time on their coursework and less time

adapting to the specifics of a new tool.

Calico comprises four main components: an interface for the different programming

languages it supports, an interface for different libraries, another interface for peer to peer

communication and a text editor[3]. Calico comes with support for IronPython, Scheme,

2. THE IPRE LEARNING ENVIRONMENT: THE SCRIBBLER, FLUKE, MYROAND CALICO24

F#, Ruby and Boo programming languages. However, any language that conforms to the

Common Language Infrastructure (CLI) can quickly be added in if a professor chooses

to do so. In this way, Calico can share C# Myro with any other CLI language. Any

function, and by extension library, written in one language, can switch contexts and be

run in another. It is worth noting that Calico does not copy over or translate code from

one language to another. Code written in Scheme will appear native to Scheme, even if it

uses functions and data structures only present in Ruby.

Myro was one of the main libraries the creators of Calico chose to include in their

environment. As such, Calico introduces even more features to enhance the Scribbler’s

educational utility. Calico allows students to use a graphical simulation of a Scribbler to

test their code on the go. Projects that require specific conditions to run can be simulated

and the code tweaked in response, so that students can begin the debugging process

without needing to use the physical robot. Using the simulator and the Scribbler together

means the student can always work on their projects, as long as they have their computer.

2.5 Strengths and Weaknesses

With all of the advantages that the IPRE Scribbler project brings, there are significant

compromises and drawbacks that affect its use in the classroom. Perhaps the most irksome

issue is power. The Scribbler requires six AA batteries to power itself. Batteries run out

quickly, leaving the Scribbler as useless as a paperweight until the student can spend

money to replace them. In order to mitigate this, the IPRE Robot Learning Kit comes

with rechargeable batteries, and professors are highly encouraged to purchase communal

chargers for the class.

More importantly for a classroom environment, Bluetooth is not the most eay-to-use

method of communication. There are a variety of different Bluetooth devices on a variety

of different platforms, each with their own unique instructions for interfacing with the

2. THE IPRE LEARNING ENVIRONMENT: THE SCRIBBLER, FLUKE, MYROAND CALICO25

Fluke. While it is true that most laptops sold today have Bluetooth attachments, many

desktops do not. Once again, the IPRE Robot Learning Kit fixes this issue by including

a Bluetooth dongle, compatible with all major operating systems.

Myro is one of the best libraries available for communicating with the Fluke over Blue-

tooth because of the ease with which students with little to no experience can begin pro-

gramming for the Scribbler. However, it still has flaws that cause difficulty for students.

The Fluke2 and Scribbler2 brought improvements that would make many aspects of Myro

irrelevant, as discussed in section 3.2. In order to maintain backwards compatibility Myro

had to keep this functionality.

Most of these issues are troublesome, but are not much more than inconveniences to the

average student in a beginner programming class. However, one of the complaints students

and professors have about the Scribbler and Fluke is the Bluetooth delay. Every byte of

data sent out by the Fluke has an overhead cost; sending a single picture takes over a

second. This is explored in more detail in Chapter 4. The Phyro Library aims to reduce

the amount of time a program spends waiting for a response from the Fluke by porting

Myro directly onboard.

3
The Phyro Library

The Phyro library is an attempt to untether the Scribbler and Fluke from a primary

computer. Phyro allows students to move their source code from a computer directly onto

the Fluke, which eliminates any delay caused by Bluetooth. In this library any commands

that would have been originally been function calls executed over Bluetooth are now

performed locally by the Fluke.

3.1 How Phyro Works

Phyro was created with three goals in mind, which are listed in order of priority;

1. programs must be able to be executed entirely untethered,

2. programs should be the same in Myro and Phyro

3. finally Phyro must be at least as responsive as Myro.

The first goal was easily satisfied. Phyro can only be used properly on the Fluke, and

requires no Bluetooth connection to be run. It is written using only Python and C, and

can easily be copied over to a Fluke2.

3. THE PHYRO LIBRARY 27

Phyro’s second goal is meant to make using the library easier for students to use.

Students should not need to drastically change their source code to have it run on Phyro.

Migrating code from the laptop to the Fluke should be as painless as possible, to encourage

students to make the transition for some of their assignments. For these reasons, the Phyro

interface was kept in Python, which limits its performance.

Phyro’s third goal is to perform as well as Myro. Although removing the Bluetooth

delay is a start, having Phyro run on the Fluke brings with it its own set of problems.

The Fluke is not a particularly powerful computer, and Python is not a particularly

efficient language. In order to maximize speed, Phyro functions are actually written in

C. Almost every function that interacts in any way with either the Fluke’s peripheries or

the Scribbler are actually implemented as calls to the C library phyroC. This not only

increases the speed with which Phyro programs run, but also makes Phyro accessible to

more advanced users, who would rather create programs using C, without changing the

way students interact with Phyro (through the python wrapper).

The Writer class in Phyro wraps the functions defined in phyroC.c (the portion of

Phyro written in C) into Python. The Writer begins by opening the Scribbler serial port,

the camera, initializing the error log and prepares the Scribbler for use. All the functions

that interact with either the Fluke or Scribbler capabilities make calls to functions defined

in this Writer class. In turn, the Writer class handles both reading and writing to the

Scribbler serial port, as well as things like grabbing a picture from the camera or receiving

sensor data.

Functions in Phyro divide themselves into three camps: Native functions, Scribbler

functions and Fluke functions. Native functions are the simplest, as they are implemented

entirely in Python, and they are identical in Phyro to the originals. Scribbler functions

are simply calls to writer.write() and writer.read(), which write and read to the serial port

3. THE PHYRO LIBRARY 28

on the Scribbler. Fluke functions use ctypes to call analogous in phyroC, and generally

involve either the IR sensors, Fluke LEDs, or the camera.

3.2 Differences

Phyro was designed to allow students to transfer their source code onto the Fluke. The

Myro Reference Manual was used to compare parameters and return values[9]. However,

many functions were changed, for a variety of reasons. For reference, functions that can

be called by a user in Myro are listed in Figure 3.1.1, along with descriptions of their use

and whether or not they exist in Phyro. First and foremost were functions that exist in

Myro, but were not implemented in the Fluke server. These are listed below

1. getIRMessage()

2. sendIRMessage()

3. setCommunicateLeft()

4. setCommunicateRight()

5. setCommunicateCenter()

6. setCommunicateAll()

7. setCommunicate()

These functions are defined in Myro, but their corresponding fluke2srv functions sim-

ply return 0 when called.

1. getIRMessage()

2. setIRMessage()

3. setCommunicate()

3.2.1 Scribbler Functions

For the most part, functionality remains unchanged from Myro to Phyro. However, below

is a comprehensive list of those that were excluded, and explanations as to why:

3. THE PHYRO LIBRARY 29

Figure 3.2.1: Phyro Documentation Part 1

3. THE PHYRO LIBRARY 30

Figure 3.2.2: Phyro Documentation Part 2

3. THE PHYRO LIBRARY 31

1. getState() - This function was seldom used by students, and since updating Scribbler

software was removed from Phyro, this function was removed as well.

2. getData() - This function was seldom used by students, and since updating Scribbler

software was removed from Phyro, this function was removed as well.

3. setData() - As data cannot be retrieved, it also can not be set.

4. setSingleData() - see setData().

5. setEchoMode() - This function produces no results, as the Scribbler firmware does

not respond to this command being called.

Most of these functions are only used to program the Scribbler directly, and therefore

were not included in Phyro. The only exception is setEchoMode, which was originally

intended to disable the echo the Scribbler sends back with each command. However, the

GET ALL function call is hard coded in the Scribbler’s firmware, and cannot be disabled.

3.2.2 Fluke functions

Fluke functions in Phyro can behave very differently from those in Myro, as they do not

need to either format their results in order to be sent over Bluetooth. Instead, phyroC can

hand its values directly back to Phyro without any additional manipulation. Every Fluke

function had to be rewritten to return their output to Phyro. However, some functions

were more affected than others. Those are listed below.

1. takePicture(”blob”) - While this functionality still exists, Myro implements a run-
length encoded (RLE) version of this function that speeds up transfer between the
Fluke and a primary computer. Implementing RLE in Phyro introduces an unnec-
essary step, so this function simply returns the finished picture.

2. takePicture(”jpeg—jpegfast”) - saving a picture as a JPEG images not only takes
time, but takes up too much space on an already limited system. While Phyro can
convert to JPEG, that functionality can not be accessed from Python.

3. takePicture(”grayjpg—grayjpg-fast”) - see takePicture(”jpeg”).

3. THE PHYRO LIBRARY 32

Other functions were simply removed from Phyro, as they were seldom used in intro-

ductory classes. They are listed below.

1. darkenCamera() - change camera defaults

2. autoCamera() - change camera defaults

3. manualCamera() - change camera defaults

4. setWhiteBalance() - change camera defaults

5. get cam param() - change camera defaults

6. set cam param() - change camera defaults

7. setLEDBack() - Seldom used

8. getBright() - Seldom used

9. setIRPower() - Seldom used

10. reboot() - Seldom used

11. identifyRobot() - Seldom used

12. conf window() - Seldom used

13. read mem() - Used only to program the Scribbler

14. write mem() - Used only to program the Scribbler

15. erase mem() - Used only to program the Scribbler

16. set scribbler memory() - Used only to program the Scribbler

17. get scribbler memory() - Used only to program the Scribbler

These functions typically fall into three categories; functions that involve changing the

cameras default parameters (which is typically not used by students), functions that are

used to program the Scribbler, and functions that seldom receive use by students.

4
Results

In order for Phyro to be considered viable in a classroom setting, programs using it would

need to perform at least as well as they do using Myro. To test this, the Bluetooth

delay between the Fluke and a computer was measured and quantified. Furthermore,

function call times were compared between the two libraries. Finally, sample programs

were compared both quantitatively and qualitatively using both libraries.

4.1 Payload Sizes

It is important to understand the significance of the Bluetooth delay in Myro. Every byte

sent from the computer to the Fluke takes additional time to be read, simply because

Bluetooth is a slow medium of communication. Figure 4.1.1 shows the average amount of

time needed to send payloads of information from Myro to the Fluke.

In order to take these measurements, a function was created in fluke2srv that would

read in a number bytes from the Fluke’s Bluetooth buffer, and then send back a single

byte response. The time was recorded as the computer wrote the packets to the Fluke,

and then again when it received the response. The results show that increasing the size of

4. RESULTS 34

Figure 4.1.1: Average Time Taken to Send Packets vs Packet Size from Myro to the Fluke

the payload does not dramatically increase the time spent sending the payload. In fact,

the average execution time for the largest payload of 128 bytes was only on average 0.039

seconds, which is only 0.004 seconds more than the average time taken to send 1 byte.

That being said, Myro commands rarely send more than 9 bytes of data to the Fluke.

Sequential calls to Myro functions each take upwards of .035 seconds, as they are starting

a new write to the Bluetooth serial port each time, instead of writing all their bytes in

one pass.

What is perhaps more important is the delay from the Fluke to Myro. The Fluke

frequently sends packets of 9 to 10 bytes in the form of functions like getAll() and

getName(). In comparison, functions like takePicture() can send kilobytes and even

sometimes megabytes of information at time. Figure 4.1.2 shows the average amount of

time needed for the Fluke to send a packet of increasing size back to Myro went requested.

The results of the figure show that as payload size increases, so does the amount of time

4. RESULTS 35

needed to send the data. However, the time required to send a payload of data does not

double as the payload size increased. In fact, it seems as though the amount of overhead

paid for additional bytes after is much smaller than the initial cost of sending any data at

all.

Effectively, sending larger packets of data is more efficient than sending smaller packets,

and so Myro functions, which rarely need to send more than 4 bytes back to the user, are

paying a 0.004 second overhead for the few bytes they are sending.

Figure 4.1.2: Average Time Taken to Send Packets vs Packet Size from the Fluke to a
Computer

4.2 Micro Benchmarks

One of the easiest ways of comparing the Phyro library to Myro is to compare how long

each of their functions take to execute. While a direct comparison is not ideal (programs

created in classrooms are rarely as simple as printing sensor data), function calls to a robot

can all too often become bottlenecks to performance. Comparing the amount of time a

4. RESULTS 36

call to getIR() takes to execute in Phyro and Myro will at the very least give an idea as

to how programs will perform using these libraries. Figure 4.2.1 compares the execution

time of functions that students are most likely to use, namely those that read sensor data

and control the Scribbler’s movement.

Figure 4.2.1: Execution Time for Functions

It is clear that for most functions, Phyro presents a clear performance improvement.

All but one of the functions tested saw immediate improvements in the amount of time

it took for the user to receive a response. In fact, many functions in Myro take almost 4

times as long, and for most cases the value of the increase is about 3 times longer.

However, takePicture(), a key function in Myro, shows a significant hit in performance

in Phyro. In Myro, it takes on average 1.1 seconds for takePicture to run to completion,

whereas in Phyro it takes 4.6. This 3.5 second difference can be caused for a variety of

different reasons, two of which immediately come to mind.

Firstly, the Fluke server will trigger image captures multiple times a second, meaning

that if a user calls takePicture(), there is usually a picture already in the camera, ready

to be processed. Phyro, on the other hand, will trigger the image capture only when

4. RESULTS 37

takePicture() is called, meaning that the user needs to wait at least 0.4 seconds before the

next image is taken.

Secondly, Myro uses libjpeg.h to compress images into a low quality JPEG, whose

dimensions are 427 by 266. However, Phyro uses the full, uncompressed image, which is

of size 1280 by 800. With only 32 Megabytes of RAM, the Fluke2 cannot store more than

one or two copies of the image in memory at a time. These two factors most likely explain

why Phyro is so much more inefficient than Myro at camera related functions.

4.3 Macro Benchmarks

While function call time is a good metric for comparing Phyro and Myro, students will

not neccessarily notice the few milliseconds each individual function can save. They are

perhaps more interested in the cumulative time it tooks to run their programs in each

library. In order to test how responsive Phyro is in comparison to Myro, four programs

were written that utilize some of Myro’s most commonly used sensors. They represent the

kinds of programs that students would create for a class.

As with all the programs shown below, the same code can be used in both Phyro and

Myro on their appropriate platforms. The programs were first run using Myro, and then

with Phyro. The Scribbler’s battery was changed between the Myro tests and Phyro tests,

to remove low battery as a factor affecting performance. All trials were conducted in the

same fashion for both Myro and Phyro for each program.

The first program, shown in Figure 4.3.1, will make the Scribbler move forward until

it spots an object, and then stop. Although this program is not particulary complicated,

something of this caliber of difficulty could be reasonably assigned to a student in an

introductory course. In order to compare the performance of this program using Myro to

one using Phyro, the Scribbler was placed three feet away from a wall. Table 4.3.1 contains

the results of these trials, which show that the average distance between the Scribbler and

4. RESULTS 38

the wall being 10.5 inches. In contrast, the average distance when using Phyro was 14

inches, which is a drastic improvement. This is most likely due to the Bluetooth delay in

Myro slowing down the programs response time to the Scribbler While the Phyro results

had a higher variation, the average value was much higher than Myro’s average.

Table 4.3.1. Effective Distance in Inches, of the Scribbler’s IR Sensor using Phyro and
Myro
Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg

Myro 11 12 11 11 12 9 11.5 10 10.5 11.5 10 10.5 10 10.5 11 10.7
Phyro 12 12 14 13.5 14 14 15 16 12 13 14.5 14.5 13 13.5 14 13.67

The second program, listed in Figure 4.3.2, is very similar to the first. Instead of using

the IR sensors, however, it uses the Fluke’s obstacle sensors to detect an object. For

this program, 10 trials were conducted, using the same methodology as the trials in the

previous example. The results for this trial, shown in Table 4.3.2 also suggested Phyro to

be faster than Myro. The average distance from the wall in this case was over an inch

farther with Phyro than with Myro. While getIR() showed a larger discrepancy between

the two libraries, getObstacle() has a shorter execution time in both libraries, most

likely because it is a Fluke function and does not interact with the Scribbler.

Table 4.3.2. Distance Scribbler stopped from Wall using Obstacle Sensors in Myro and
Phyro

Trial 1 2 3 4 5 6 7 8 9 10

Myro 18 17.5 16.5 17.5 17.5 18 17 18 17 18
Phyro 18 19 18.5 18 17 18.5 18 19.5 17.5 19

The third program tested is background subtraction, and is shown in 4.3.3. This program

is arguably the most complicated of the four programs tested. The Scribbler first takes a

grayscale background picture, waits for two seconds, then takes another grayscale picture

and “subtracts” the background from the new one to see what has changed in the time it

has waited. Unfortunately, written in such a poorly optimized fashion, the Phyro process

quickly runs out of memory. In fact, taking just the second picture uses up the Fluke2’s

4. RESULTS 39

limited resources. The results shown in Figure 4.3.4 were taken from Myro, which took on

average 5.7 seconds to complete when the call to wait() was removed.

Then final program is shown in Figure 4.3.5. This program will allow the Scribbler to

follow a line, and was considered by the creators to be one of the few programs that Myro

cannot effectively perform, due to the Bluetooth delay. After reading in the line sensors,

the Scribbler will move forward if both sensors see a line, rotate left or right if only one

sensor sees the line, and backwards if no line is detected. In this fashion, the Scribbler

can follow a line even through sharp turns and curves, and will retrace its steps if it

accidentally runs off the line.

Quantitative measurements for this kind of test are difficult to create. While the average

trial time was suggested as a metric, the Scribbler would often be stuck in an infinite loop,

moving backwards and forwards as it saw a line, adjusted its course, and in the process

of doing so lost the line. ther trials resulted in the Scribbler simply not seeing the line on

the page, and moving over it. This may be due to the pigment in the ink of the marker.

This program showed no dramatic differences in either Phyro or Myro. Unfortunately,

the line sensors on the Scribbler are not consistent enough to allow either program to

identify the line. Another version of the program was written in such a way that Scribbler

would not reverse when losing sight of the line. Yet a third approach would pivot along

one wheel instead of rotating in place. Neither of these produced significantly different

results. More testing would need to be done, using better markers and more complicated

logic in order to aquire more meaningful results.

4. RESULTS 40

Figure 4.3.1: Stop upon Detecting Wall Using IR Sensors

Figure 4.3.2: Stop upon Detecting Wall Using Obstacle Sensors

4. RESULTS 41

Figure 4.3.3: Background Subtraction Program

Figure 4.3.4: Images Taken using the Background Subtraction Program. In order from left
to right; old, new, result

4. RESULTS 42

Figure 4.3.5: Get Line Program

5
Conclusion

It is clear based on the results of the previous chapter that untethering the Scribbler and

Fluke from a primary computer is a very real possibility. The Phyro library has shown

improved performance in many areas over Myro. The results highlight Phyro’s strengths

and limitations; while it can gather data faster onboard than a computer could using

Bluetooth, the computer can manipulate data much faster than Phyro programs can on

a Fluke2.

Additionaly, while functions in Phyro are generally faster than their Myro counterparts,

programs written in Phyro do not demonstrate the same level of improvement. All of the

camera’s functionality in Phyro relies on its ability to call takePicture(), and with that

process taking 4.6 seconds, it is unlikely that this family of functions will ever surpass

their Myro counterparts on the Fluke2.

5.1 Improving Phyro

Phyro shows improvements over Myro in many regards, but there are still areas which need

more development. The most glaring issue in the library is camera functionality. While it

5. CONCLUSION 44

is possible to take a picture with Phyro, the process is painfully slow. Future iterations

of Phyro must prioritize improving the execution time of camera functions. One possible

method of improvement could have Phyro constantly triggering camera captures in much

the same way that fluke2srv does. Further more, Phyro could compress a captured

image into a JPEG before returning it to the Python wrapper, decreasing its size from the

megabyte range to the kilobyte range and perhaps making manipulation of the image less

resource intensive. While these techniques might improve on Phyro’s ability to manipulate

pictures, the most severe bottleneck is the Fluke2 itself. Unfortunately, the Fluke has a

very limited set of resources, which severely limits Phyro’s ability to take pictures. Later

iterations of the Fluke2, which would most likely increase the amount of available RAM

(or perhaps even enough storage space for swap) might also allow Phyro to make use of

the camera.

5.2 Future Works

While Myro’s main market is the Scribbler and Fluke, it does have support for other robots

as well. In the future, Phyro could also be made to work with other robots as well. Similarly,

Phyro will eventually be integrated with either Calico or Jyro (Jupyter Myro). This will

allow students to use Bluetooth to move a portion of their code over to the Fluke, and then

use that code from their computer. This kind of functionality has two distinct advantages

over Phyro’s current system. First, this would make the process of using Phyro easier for

students, as they would not need to mount the Fluke2’s SD card to their computer to

transfer their code. Second, and perhaps more importantly, is that users would be able

to have the benefit of Phyro’s enhanced performance while still being able to use their

computers’ resources for more intensive processes, like image manipulation. Students could

use Phyro to move their Scribbler autonomously while taking and manipulating pictures

with Myro. Allowing students to take advantage of the speed of Phyro’s function response

5. CONCLUSION 45

time with the power of a desktop computer would likely have a significant impact on the

kinds of programs students could make in class.

Bibliography

[1] BetterBots, Fluke 2 Product Information, http://www.betterbots.com/cshop/

fluke2.

[2] Tucker and Summet Balch Jay and Blank, Designing Personal Robots for Education:
Hardware, Software, and Curriculum, IEEE Pervasive Computing 7 (2008), no. 2,
5–9.

[3] Douglas and Kay Blank Jennifer S. and Marshall, Calico: A Multi-programming-
language, Multi-context Framework Designed for Computer Science Education, Pro-
ceedings of the 43rd ACM Technical Symposium on Computer Science Education,
2012, pp. 63–68.

[4] Jordan Crook, LEGO Mindstorms EV3: The Better, Faster, Stronger Genera-
tion Of Robotic Programming, available at http://techcrunch.com/2013/01/06/

lego-mindstorms-ev3-the-better-faster-stronger-generation-of-robotic-programming/.

[5] Kerstin Dautenhahn and Werry Iain, Towards Interactive Robots in Autism Therapy,
Pragmat Cogn, 2007, pp. 1–35.

[6] Barry and Merkle Fagin Laurence, Measuring the Effectiveness of Robots in Teaching
Computer Science, Technical Report 1, New York, NY, USA, 2003.

[7] Seymour Papert, Mindstorms: Children, Computers, and Powerful Ideas, 1st ed., Ba-
sic Books, 1980.

[8] Keith J. O’Hara, Leveraging Distribution and Heterogeneity in Robot Systems Archi-
tecture (2011). AAI3500586.

[9] Myro Reference Manual, available at http://wiki.roboteducation.org/Myro_

Reference_Manual.

[10] Jay and Kumar Summet Deepak and O’Hara, Personalizing CS1 with Robots, Pro-
ceedings of the 40th ACM Technical Symposium on Computer Science Education,
2009, pp. 433–437.

Bibliography 47

[11] Tom Lauwers and Illah Nourbakhsh, Designing the Finch: Creating a Robot Aligned
to Computer Science Concepts, AAAI-10, 2009.

[12] Charlotte Simonsen, Whats NXT? LEGO Group Unveils LEGO MIND-
STORMS NXT Robotics Toolset at Consumer Electronics Show, available at
http://wayback.archive.org/web/20101109061128/http://www.lego.com/eng/

info/default.asp?page=pressdetail&contentid=17278&countrycode=2057&

yearcode=&archive=false.

[13] Elizabeth Sklar, Simon Parsons, and M Q Azhar, Robots Across the Curriculum
(2007).

[14] Cynthia Solomon, Logo, Papert and Constructionist Learning, https://logothings.
wikispaces.com/.

[15] Lynn Andrea Stein, Rethinking CS101: Or, How Robots Revolutionize Introductory
Computer Programming (2007).

[16] Audrey Watters, Lego MindStorms: A Histroy of Educational Robotics, http://

hackeducation.com/2015/04/10/mindstorms/.

	Phyro: Exploring an Untethered Model for Robots in CS-1
	Recommended Citation

	tmp.1448916406.pdf.BoI4w

