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Abstract

In this paper we will be mathematically exploring low-dimensional gravitational physics
and, more specifically, what it tells us about low-dimensional black holes and if there
exists a Schwarzschild solution to Einstein’s field equation in 2+1 dimensions. We will be
starting with an existing solution in 3+1 dimensions, and then reconstructing the classical
and relativistic arguments for 2+1 dimensions. Our conclusion is that in 2+1 dimensions,
the Schwarzschild solution to Einstein’s field equation is non-singular, and therefore it
does not yield a black hole. While we still arrive at conic orbits, the relationship between
Minkowski-like and Newtonian forces, energies, and geodesics in 2+1 dimensions is
different than the relationship between Schwarzschild and Newtonian forces, energies,
and geodesics in 3+1 dimensions.
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1
Introduction

Physics behaves in strange ways near a black hole, a consequence of the metric. This

metric is a mathematical representation of the geometry of spacetime, specifically at the

Schwarzschild radius. At this radius, the physics that results is very non-classical. If we

tweak the model and change some of its characteristics, do the laws of physics as we

know them still hold? How predictable are the results?

Einstein’s field equation gives the relationship between the geometry of spacetime

and the mass present in that spacetime. Karl Schwarzschild worked on a solution to the

Einstein field equation that holds for a static, spherically symmetric, and asymptotically

flat vacuum. Known as the Schwarzschild solution, it allows us to find the gravitational

field in a vacuous spacetime outside a black hole. The Schwarzschild radius gives the

boundary between the massive black hole and vacuous spacetime. We define a black hole

as a massive spherically symmetric object, characterized by the Schwarzschild radius,

that causes distortions in the geometry of spacetime at the boundary of the Schwarzschild

radius.
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We will be exploring the characteristics and behaviors of tensors, forces, energies and

motion at this boundary in 3+1- and 2+1-dimensional spacetime. We say that we are

working in “3+1” and “2+1” dimensions instead of “4” and “3” dimensions because we

want to emphasize that one of the dimensions is time. Thus, the relativistic cases we

will be exploring have three space dimensions and one time dimension, and two space

dimensions and one time dimension. In the classical cases time is not considered as a

dimension, so we may refer to those as “3-space” and “2-space”.

There are a number of conventions of general relativity and differential geometry that

we will be using throughout this paper.

i. The reader will notice that we frequently use multiple indices. Roman indices range

from 1 − 2 or 1 − 3, depending on the dimension, denoting spatial spherical polar

variables r = 1, θ = 2, and φ = 3. Greek indices range from 0 − 2 or 0 − 3, again

depending on the dimension, and they denote time plus spatial coordinates where

t = 0, r = 1, θ = 2, and φ = 3.

ii. When an expression has repeated indices with one as a superscript and one as a

subscript, we sum over the pair of indices. So

xixi =
n
∑
i=0

xixi.

This is referred to as Einstein summation notation.

iii. A vector or tensor with lower indices, such as Abc, is referred to as a covariant vector

or tensor. We also have vectors or tensors with upper indices, such as Abc, that are

referred to as contravariant vectors or tensors.

iv. When differentiating, the reader will occasionally observe the notation ∂xF. This is

simply a shorthand way of writing ∂F/∂x.
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v. In relativistic physics, the constant c, the speed of light in a vacuum, frequently appears

in computations. We will usually change units to set c = 1 to simplify the expression.

We initially began this project hoping to discover how an ellipsoidal relativistic black

hole behaved in 3+1 dimensions. We started off with an elliptical relativistic model in

2+1 dimensions, as lowering the dimension reduces the amount of information we have

to work with, to help establish an intuition for ellipsoidal black holes. As we progressed,

it became clear that we would need to work through the dynamics of 3+1- and 2+1-

dimensional spherical and circular models of relativistic black holes as well as classical

systems in 3-space and 2-space to contextualize and verify our solutions.

In Chapter 2, we lay a foundation for both the 2+1 classical and 3+1 relativistic cases

by summarizing the argument in [5] for finding the equation of motion for a circular

orbit in a plane and the energy of an orbit in 3-space with spherical polar coordinates.

In Chapter 3, we develop a model of classical mechanics in 2-space to serve as a basis

for comparison to our eventual 2+1-dimensional relativistic model of a black hole. In

Chapter 4, we give an overview of the mathematical argument in [4] for the Schwarzschild

solution in 3+1-dimensional spherical polar coordinates. This sets up the methodology

we will be applying to our 2+1-dimensional model and establish the relationship between

the 3-space classical model and 3+1-dimensional relativistic model that we hope to find

between our 2-space classical model and 2+1-dimensional relativistic model. In Chapter 5,

we build a relativistic model of a black hole in 2+1-dimensional circular polar coordinates

and find a Schwarzschild-like solution to Einstein’s field equation. Chapter 6 contains our

conclusions, and in Chapter 7 we state possibilities for future research using what we have

already found. Throughout the paper, we assume that the reader is familiar with classical

mechanics, multivariable calculus, and linear algebra, and has had some exposure to

general relativity and differential geometry.



2
Classical Spherical Motion in 3+1 Dimensions

We start by looking at classical motion in 3+1 dimensions to provide a context for 3+1-

dimensional relativistic motion. Furthermore, 3+1-dimensional classical motion will pro-

vide a basis of comparison for 2+1-dimensional classical motion, so that we can see how

the motion differs both from classical to relativistic and from 3+1 dimensions to 2+1 di-

mensions. The following derivation of the equations of motion for an orbit is a summary

of [5, §§6.5, 6.10].

2.1 Kepler’s Law of Ellipses

We start with Newton’s equation for a force, using polar coordinates:

mr̈ = F(r)er. (2.1.1)

In 3-space, we have

F(r) = k
r2 , (2.1.2)
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where k is some constant. This yields two differential equations of motion in a circle,

m(r̈ − rθ̇2) = k
r2 and (2.1.3)

m(2ṙθ̇ + rθ̈) = 0. (2.1.4)

By the product rule, Equation 2.1.4 is equivalent to the conservation of angular momen-

tum,

d
dt
(r2θ̇) = 0,

so

l = r2θ̇, (2.1.5)

where l is a constant. Using this constant, if we change variables to u = 1
r , we have

ṙ = −l
du
dθ

and (2.1.6)

r̈ = −l2u2 d2u
dθ2 . (2.1.7)

Plugging (2.1.6) and (2.1.7) into Equation 2.1.3, we get

m(−l2u2 d2u
dθ2 −

1
u
(l2u4)) = ku2. (2.1.8)

Rearranging this, we have a differential equation of the orbit,

d2u
dθ2 + u = − k

ml2
. (2.1.9)

Solutions to this differential equation are of the form

u = A cos(θ − θ0) +
k

ml2
, (2.1.10)

where A and θ0 are constants of integration. This same solution in terms of r instead of u

is

r = 1
A cos(θ − θ0) + k/(ml2)

. (2.1.11)
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We set θ0 = 0 and rewrite Equation 2.1.11 as

r = ml2/k
1 + (Aml2/k) cosθ

. (2.1.12)

We define constants α and ε such that

α = ml2/k and ε = Aα = Aml2/k,

so

r = α

1 + ε cosθ
. (2.1.13)

For our orbit, α measures the distance of the focus from from a point on the ellipse,

perpendicular to the semimajor axis, and εmeasures the eccentricity of the orbit such that

the foci are displaced from the center of the semimajor axis a by a distance εa.

Equation 2.1.13 describes any orbit shaped like a conic section. For a perfectly circular

orbit, we expect to have ε = 0. Values of ε in the range 0 < ε < 1 give elliptical orbits, ε = 1

gives parabolic orbits, and values of ε > 1 give hyperbolic orbits [5, p 234].

2.2 Orbital Equation of Motion

The total energy of a system is its kinetic energy plus its potential energy. This quantity is

conserved for conservative forces, meaning that the total energy E is constant. Since we

have a conservative force, we can say

E = T +V = 1
2 m (ṙ2 + r2θ̇2) +V(r). (2.2.1)

We want to eliminate the time derivatives and change from r to u = 1
r , so we take

ṙ = −l
du
dθ

and θ̇ = lu2 (2.2.2)

and plug them into Equation 2.2.1, which yields

E = 1
2 ml2 ((du

dθ
)

2

+ u2) +V(u−1). (2.2.3)
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This gives a first order differential equation for u(θ).

Accounting for the potential

V(r) = −k
r
= −ku, (2.2.4)

the orbit equation is

E = 1
2 ml2 ((du

dθ
)

2

+ u2) − ku. (2.2.5)

After extensive manipulation and some integration, we have

u =
√

b2 − 4ac
−2a

cos (
√
−a(θ − θ0)) +

b
−2a

, (2.2.6)

where a = −1, b = (2k)/(ml2), and c = (2E)/(ml2). Changing back from u to r and more

algebraic manipulation yields

r = ml2

k (1 +
√

1 + 2Eml2/k2 cos(θ − θ0))
. (2.2.7)

This is the orbit equation. If we set θ0 = 0 and define constants χ and ξ such that

χ = ml2/k and ξ =
√

1 + 2Eml2/k,

we get the general form of the orbit equation,

r = χ

1 + ξ cos(θ)
. (2.2.8)

Again, we see that this orbit is a conic section.



3
Classical Circular Motion in 2+1 Dimensions

This is our own derivation. We want to find classical expressions for the gravitational

force, potential, orbit equation, and vertical free-fall that we can compare to the relativistic

results in Chapter 5.

3.1 Generalized Coordinate System

Changing from three spatial dimensions to two spatial dimensions does not mean that we

can simply exclude the third dimension—we must rebuild the model. In addition, since we

are working in two spatial dimensions, angular momentum cannot be determined using

the cross product. In order to define the equations of motion in a way that is independent

of the coordinate system, we turn to Hamilton’s equations to define angular momentum

and the energy equation in a system of ith-dimensional generalized coordinates, qi and q̇i.

For a kinetic energy T(q̇i) and a potential energy V(qi), the Lagrangian is defined as

L = L(qi, q̇i) = T(q̇i) −V(qi). (3.1.1)
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Through a Legendre transformation, we change from coordinates (qi, q̇i) to (qi,pi), where

pi is the generalized momenta

pi =
∂L
∂q̇i
. (3.1.2)

We can now define the Hamiltonian as

H = H(pi, qi) = T(pi) +V(qi). (3.1.3)

From the Lagrangian and the Hamiltonian we have Hamilton’s canonical equations of

motion,
∂H
∂pi

= q̇i and
∂H
∂qi

= −ṗi. (3.1.4)

These equations of motion hold for any dimension and any coordinate system, which

makes them valuable for our non-standard system. We are using the spatial coordinate

system q1 = r and q2 = θ, with p1 and p2 as the momentum terms pr and pθ.

3.2 Forces in Two Spatial Dimensions

In a standard three-dimensional spatial coordinate system, we have a gravitational force

F(r) = −Cm
r2

on a test mass for a mass m, with some constant C. However, in two spatial dimensions,

we want to have a force

F(r) = −km
r
, (3.2.1)

for some constant k. A demonstration of why we are using and how we arrived at a 1
r

force is given in Appendix A.

This new force changes the potential. For a 1
r force, we have a potential energy

V(r) = −∫ F(r)dr = km ln(r) + β, (3.2.2)

where k is a constant from the force, m is the mass, and β is a constant of integration.
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In 3-space the constants k and m are given experimentally by Newton and Cavendish

such that

F(r) = G
mm0

r
and V(r) = −Gmm0 ln(r) + β,

where m0 is a test mass and G is the gravitational constant that corresponds to our

k. However, in the 2-dimensional case we have no clear idea of a ”two-dimensional

experiment ” or “two-dimensional mass”, so we leave the values of k and m unspecified.

3.3 Hamilton’s Equations

For our two-dimensional force, the Lagrangian is

L = 1
2 m(ṙ2 + r2θ̇2) − (km ln(r) + β) . (3.3.1)

The generalized momenta for the generalized polar coordinates r and θ are

pr =
∂L
∂ṙ

= mṙ and pθ =
∂L
∂θ̇

= mr2θ̇, (3.3.2)

so

ṙ =
pr

m
and θ̇ =

pθ
mr2 . (3.3.3)

The Hamiltonian is

H = 1
2m
(p2

r +
p2
θ

r2 ) + km ln(r) + β. (3.3.4)

For our coordinate system, Hamilton’s equations are

∂H
∂pr

= ṙ,
∂H
∂pθ

= θ̇, (3.3.5)

∂H
∂r

= −ṗr,
∂H
∂θ

= −ṗθ. (3.3.6)

It follows from the Hamiltonian that

∂H
∂r

= km
r
−

p2
θ

mr3 = −ṗr (3.3.7)
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and
∂H
∂θ

= 0 = −ṗθ. (3.3.8)

We now have pθ = constant = mr2θ̇. This allows us to define a two-dimensional angular

momentum. For convenience, we define

l = r2θ̇ (3.3.9)

as an ‘angular momentum per unit mass’ term, so pθ = ml. From Equation 3.3.3 we know

mr̈ = ṗr

and from Equation 3.3.7 we have

ṗr = −
km
r
+

p2
θ

mr3 = −km
r
+ (ml)2

mr3 ,

and so

mr̈ = −km
r
+ m(l)2

r3 , (3.3.10)

which yields the differential equation of motion. Rather than solving this equation, we

pursue an energy equation to the same end.

3.4 Orbital Energies

Now that we have shown the conservation of angular momentum in two spatial di-

mensions, we can move onto the energy equation. We assume conservation of angular

momentum and conservation of energy.

The energy equation is

E = 1
2 m(ṙ2 + r2θ̇2) + km ln(r) + β = constant. (3.4.1)

We rewrite this with a change of variables, u = 1/r, such that ṙ = −u̇/u2 and ln(r) = − ln(u).

So we have

E = 1
2 m (ṙ2 + r2θ̇2) + km ln(r) + β. (3.4.2)
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Substituting θ̇ = l/r2 = lu2, we get

E = 1
2 m( u̇2

u4 + l2u2) − km ln(u) + β. (3.4.3)

Rearranging this equation, we have

E = 1
2 ml2 ((du

dθ
)

2

+ u2) − km ln(u) + β. (3.4.4)

Rearranging again, we get

(du
dθ
)

2

+ u2 = (E − (−km ln(u) + β)) 2
ml2

,

du
dθ

=
√

2E
ml2

+ 2km ln(u)
ml2

−
2β
ml2

− u2. (3.4.5)

We approximate this differential equation by substituting in for ln(u) the first two terms

of its Taylor series expansion near u = 1:

du
dθ

=

¿
ÁÁÀ 2E

ml2
+ 2km

ml2
((u − 1) − (u − 1)2

2
) −

2β
ml2

− u2

=
√

2E
ml2

+ 2km(u − 1)
ml2

− 2km(u − 1)2
2ml2

−
2β
ml2

− u2

=
√

2E − 2β − km
ml2

+ 4km
ml2

u − km +ml2

ml2
u2. (3.4.6)

Now, let us define constants a, b, c such that

a = −km +ml2

ml2
, b = 4km

ml2
, and c =

2E − 2β − km
ml2

.

This gives the equation
du
dθ

=
√

au2 + bu + c, (3.4.7)

so

dθ = du√
au2 + bu + c

. (3.4.8)

Integrating gives us

θ − θ0 =
1√
−a

cos−1 (− b + 2au√
b2 − 4ac

) .
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Solving for u:

(θ − θ0)
√
−a = cos−1 ( −b + 2au√

b2 − 4ac
) ,

cos ((θ − θ0)
√
−a) = ( −b + 2au√

b2 − 4ac
) ,

√
b2 − 4ac cos ((θ − θ0)

√
−a) = −b + 2au,

√
b2 − 4ac cos ((θ − θ0)

√
−a) + b

2a
= u. (3.4.9)

Substituting back in for r and accounting for some small perturbation ζ (since this is an

approximation), we get

r = 2a√
b2 − 4ac cos ((θ − θ0)

√
−a) + b

+ ζ. (3.4.10)

Thus we have the orbital motion under conservation of energy. Note that a < 0, hence
√
−a does not pose a problem.

If we let θ0 = 0 and define constants α, β, γ such that

α = 2a√
b2 − 4ac

, β =
√
−a, γ = b√

b2 − 4ac
,

we can rewrite the orbital energy equation as

r = α

cos(βθ) + γ
+ ζ, (3.4.11)

which is of a similar form as compared to the 3-dimensional case.

3.5 Classical Free-Fall

To gain some understanding of the 2-dimensional system, we decided to solve for some

characteristic solutions [2]. We begin at time t = 0 with a particle of mass m and a speed

v = 0 at a distance from the center r = r0. Under a potential

V = V0 ln( r
r0
) , (3.5.1)



3. CLASSICAL CIRCULAR MOTION IN 2+1 DIMENSIONS 18

we want to know how long it will take for the particle to reach the center of the circle.

Notice that this potential is of a slightly different form than our previous 2-space potential,

but if we take Equation 3.2.2 and let β = −V0 ln(r0) then we have the same equation.

The total energy of the system is

E = T +V = 1
2 mv2 +V0 ln(r/r0), (3.5.2)

so at time t = 0 we have E = 0. Under conservation of energy, it follows that

1
2 mv2 +V0 ln(r/r0) = 0.

Solving for the velocity v and taking the negative root, since the motion is inward, gives

v = −
√

2
m V0 ln(r/r0). (3.5.3)

Since velocity is defined as v = dr/dt, it follows that dt = dr/v. We integrate this and find

∫
τ

0
dt = ∫

0

r0

dr
v
.

Plugging in for v and integrating yields

τ = −
√

m/2V0∫
0

r0

1√
∣ ln(r/r0)∣

dr. (3.5.4)

For ease of computation, we now change variables from r to y such that y = r/r0 and

dy = dr/r0. This gives

τ = −r0
√

m/2V0∫
0

1

1√
− ln(y)

dy,

which can be solved numerically, and therefore the time for free-fall is

τ = r0

√
mπ
2V0

. (3.5.5)

We compare this to the the time for classical free-fall in 3 dimensions,

τ = r0
π

2

√
m

−2V0
, (3.5.6)

and we observe that they are similar results.



4
Relativistic Spherical Motion in 3+1
Dimensions

This derivation follows the one described in [4].

4.1 Measuring Spacetime

We begin by setting up the mathematical framework for spacetime

Definition 4.1.1. An m-manifold is an m-dimensional space S where each point s has a

neighborhood that looks like Rm [6, p 225]. In our case, the manifold is spacetime.

In a standard orthogonal spherical coordinate system, the position vector r is

r(t, r, θ,φ) = t h + r sinθ cosφ i + r sinθ sinφ j + r cosθk. (4.1.1)

Since we are not necessarily in Cartesian flat space, we define the natural basis vectors

from the position vector. In other words, we define how to measure a quantity based on

how it moves on the manifold.

Definition 4.1.2. A natural basis vector eu is defined as [4, p 9]

eu ≡ ∂r/∂u. (4.1.2)
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The basis vectors of a coordinate system span the tangent space to the manifold. As a

result, they are tangent to the curve at any point (t0, r0, θ0, φ0).

It follows that

et = h

er = sinθ cosφ i + sinθ sinφ j + cosθk

eθ = r cosθ cosφ i + r cosθ cosφ j − r sinθk

eφ = −r sinθ sinφ i + r sinθ cosφ j

A metric defines how measurements are to be taken on a manifold for quantities like

lengths, distances, and angles. For black holes, it also is a way of measuring the curvature

of spacetime near the singularity.

Definition 4.1.3. The covariant metric tensor gµν is defined as [4, p 32]

gµν = ηµνeµ ⋅ eν. (4.1.3)

The contravariant metric tensor gµν is defined as

gµν = (gµν)
−1
. (4.1.4)

The coefficient ηµν corresponds to the elements of the Minkowski metric,

ηµν = ηµν =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
. (4.1.5)

A covariant metric tensor, also just known as a metric, is defined on a manifold. We will

mainly be dealing with diagonal metrics, where µ = ν.

A metric allows us to measure the length of a quantity ξ on the manifold by

∣∣ξ∣∣2 = gµµ(ξµ)2.
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We will say that a “singular” metric is one that yields a physical singularity, and therefore

is a metric that will produce a black hole.

The Schwarzschild solution to the Einstein equations holds for a static, spherically

symmetric, and asymptotically flat vacuum spacetime. The metric for the Schwarzschild

solution is of the form

gµν =

⎛
⎜⎜⎜⎜
⎝

A(r) 0 0 0
0 −B(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎟⎟
⎠

. (4.1.6)

The functions A(r) and B(r) tell us how the spacetime warps as r → rs, where rs is the

Schwarzschild radius. We will solve for A and B when we solve for the Ricci tensor in the

Einstein field equation.

Definition 4.1.4. A line element is the length of an infinitesimal distance on the manifold.

The line element of a spatial manifold is defined as

ds2 = gabdxadxb, (4.1.7)

where a, b = 1,2,3 refers to the r, θ and φ coordinates [4, p 45].

Similarly, in a manifold with both time and space components, we have

c2dτ2 ≡ gµνdxµdxν, (4.1.8)

where τ is the proper time, and µ, ν = 0,1,2,3 correspond to t, r, θ and φ [4, p 84].

The Schwarzschild line element is [4, p 116]

c2dτ2 = A(r)dt2 − B(r)dr2 − r2 dθ2 − r2 sin2 θdφ2. (4.1.9)

4.2 Geodesics

Definition 4.2.1. A geodesic is the curve that minimizes the length of a line connecting

two points, and locally it looks like a straight line even though it follows the curves of the

manifold. It is the differential geometry equivalent to a straight line in Euclidean space.
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Definition 4.2.2. Christoffel symbols tell us how much a chosen path deviates from

a geodesic on the manifold. We represent a Christoffel symbol as Γ
µ
νρ, and Christoffel

symbols are symmetric, so Γ
µ
νρ = Γ

µ
ρν.

There are three ways we can find the Christoffel symbols.

(i) Lagrangian method We construct the Lagrangian from the metric with the equation

L(ẋρ,xρ) ≡ 1
2 gµν(xρ)ẋµẋν. (4.2.1)

For a 3+1-dimensional Schwarzschild metric the Lagrangian is

L ≡ 1
2 (A(r) ṫ2 − B(r) ṙ2 − r2 θ̇2 − r2 sin2 θ φ̇2) . (4.2.2)

The partial derivatives of this Lagrangian are

∂L
∂ ṫ

= A ṫ,
∂L
∂t

= 0, (4.2.3a)

∂L
∂ṙ

= −B ṙ,
∂L
∂r

= A′

2
ṫ2 − B′

2
ṙ2 − r θ̇2 − r sin2 θ φ̇2, (4.2.3b)

∂L
∂θ̇

= −r2 θ̇,
∂L
∂θ

= −r2 sinθ cosθ φ̇2, (4.2.3c)

∂L
∂φ̇

= −r2 sin2 θ φ̇,
∂L
∂φ

= 0. (4.2.3d)

Note that the shorthand notation A,B,A′, and B′ refers to A(r),B(r),A′(r), and B′(r).

We take the Euler-Lagrange equation,

d
du
( ∂L
∂ẋµ
) − ∂L

∂xµ
= 0, (4.2.4)

where d/du indicates taking the total derivative, and µ = 0,1,2,3 refers to t, r, θ,

and φ. The Euler-Lagrange equation gives the equations of motion for the manifold

based on the Lagrangian.
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Plugging 4.2.3a, 4.2.3b, 4.2.3c, and 4.2.3d into Equation 4.2.4 gives the four Euler-

Lagrange equations

A ẗ +A′ ṫṙ = 0, (4.2.5a)

−B r̈ − A′

2
ṫ2 − B′

2
ṙ2 + r θ̇2 + r sin2 θ φ̇2 = 0, (4.2.5b)

−r2 θ̈ − 2r ṙθ̇ + r2 sinθ cosθ φ̇2 = 0,and (4.2.5c)

−r2 sin2 φ̈ − 2r sin2 θ ṙφ̇ − 2r2 sinθ cosθ θ̇φ̇ = 0. (4.2.5d)

Observe that these are almost of the form of the geodesic equation,

ẍρ + Γ
ρ
µνẋµẋν = 0. (4.2.6)

In order to get the geodesic equations from the Euler-Lagrange equations, we must

solve for ẍρ. This yields the geodesic equations

ẗ + A′

A
ṫṙ = 0, (4.2.7a)

r̈ + A′

2B
ṫ2 + B′

2B
ṙ2 − r

B
θ̇2 − r sin2 θ

B
φ̇2 = 0, (4.2.7b)

θ̈ + 2
r

ṙθ̇ − sinθ cosθ φ̇2 = 0, and (4.2.7c)

φ̈ + 2
r

ṙφ̇ + 2 cotθ θ̇φ̇ = 0. (4.2.7d)

The Γ terms are the Christoffel symbols. Note that when the subscripts are unequal,

so µ ≠ ν, we must halve the Christoffel symbol to avoid counting it twice. Therefore,
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we have

Γt
tr =

A
2A
, (4.2.8a)

Γr
tt =

A′

2B
, (4.2.8b)

Γr
rr =

B′

2B
, (4.2.8c)

Γr
θθ =

−r
B
, (4.2.8d)

Γr
φφ =

−r sin2 θ

B
, (4.2.8e)

Γθrθ =
1
r
, (4.2.8f)

Γθφφ = − sinθ cosθ, (4.2.8g)

Γ
φ
rφ =

1
r
, (4.2.8h)

Γ
φ
θφ = cotθ, (4.2.8i)

with the rest of the Christoffel symbols being zero [4, p 117].

(ii) Derivative of metric This is a straightforward yet tedious computation from the

equation [4, p 70]

Γl
ki =

1
2 gl j (∂kgi j + ∂ig jk − ∂ jgki) . (4.2.9)

We get the same results.

(iii) Change of coordinates This method involves two sets of coordinates. An example

of this method is in Appendix D.

We have shown that we can find the Christoffel symbols from the mechanics of the system,

the metric directly, or how the coordinates and tensors transform. This means that we

can find how curved the paths in the space are from the fundamental measurements of

the manifold, from the equations governing movement across that manifold, or from the

process of getting from Cartesian space to the curved manifold.
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4.3 Tensors

Definition 4.3.1. A tensor of rank n is an n-dimensional block of numbers that transforms

according to its indices. More precisely, a tensor T̃ of rank p + q transforms to a tensor T

of rank p + q by

Ti1...ip
j1... jq

= ∑
(k),(l)

T̃k1...kp

l1...lq
∂xi1

∂zk1
⋯∂xip

∂zkp

∂zl1

∂x j1
⋯ ∂zlq

∂x jq
,

where x1⋯xn are the coordinates relative to the tensor T and z1⋯zn are the coordinates

relative to the tensor T̃ [3, p 152]. The indices of T and T̃ tell us the specific component of

the tensor.

We mainly deal with tensors of rank 2. Think of them like a higher-order vector or an

array. We find that the tensors are all symmetric, and all have a divergence of zero due

to equations of continuity, equations of motion, and Maxwell’s equations [4, p 101]. A

symmetric tensor means that Tab = Tba and Tab = Tba.

The first tensor we consider is the stress tensor Tµν. The stress tensor is a mathematical

representation of the relationship between energy, momentum, and stress in a distribution

of matter. We can think of the vacuum of space surrounding the black hole as a “perfect

fluid” with no pressure and no velocity, since by definition there is no matter in a vacuum.

Thus

Tµν = 0. (4.3.1)

This gives physical conservation laws of energy and momentum. We next look at the

Einstein field equation and Einstein tensor Gµν. The Einstein field equation is

Gµν = κTµν, (4.3.2)

where κ is the coupling constant experimentally found to be −8πG/c4. Qualitatively, we

can think of Tµν as the physical character and Gµν as the geometric character in this region.
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Since we set Tµν = 0, it follows that

Gµν = 0. (4.3.3)

One key tensor is the Riemann tensor, also known as the curvature tensor. It is given

by the formula

Rσµνρ ≡ ∂ν Γσµρ − ∂ρ Γσµν + Γ
η
µρ Γσην − Γ

η
µν Γσηρ. (4.3.4)

This tells us specifically how curved the manifold itself is, not just the paths on it.

Definition 4.3.2. A manifold is flat if Rµνρσ = 0 at each point (t,u,v,w) on the manifold

[4, p 103]. In other words, the Riemann tensor measures how much the manifold locally

deviates from flat space.

A more specific variation of the Riemann tensor that we want to focus on is the Ricci

tensor, given by

Rµν = Rρµνρ. (4.3.5)

The process above is called contraction. If we contract again, we get the curvature scalar

R ≡ Rµµ = gµνRµν. (4.3.6)

The Einstein tensor Gµν is defined by the Ricci tensors and the curvature scalar. Einstein

chose this formulation of Gµν so the geometric tensor would have zero curvature when

Tµν = 0. Defining the Einstein tensor only in terms of Rµν, the contravariant version of

Rµν, does not give this due to a particular method of differentiation known as covariant

differentiation [4, pp 76, 113], so we have

Gµν ≡ Rµν − 1
2 Rgµν. (4.3.7)

As previously stated, we have Gµν = 0, so by [4, p 113] and [3, p 400] it follows that

Rµν = 0. (4.3.8)
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Note that Rµν = 0 implies Rµν = 0 as well [7].

We now compute the Ricci tensor components. The non-zero Ricci tensor components

for our four-dimensional Schwarzschild metric are

Rtt = −
A′′

2B
+ A′

4B
(A′

A
+ B′

B
) − A′

rB
= 0, (4.3.9)

Rrr =
A′′

2A
− A′

4A
(A′

A
+ B′

B
) − B′

rB
= 0, (4.3.10)

Rθθ =
1
B
− 1 + r

2B
(A′

A
− B′

B
) = 0, (4.3.11)

Rφφ = Rθθ sin2 θ = 0. (4.3.12)

To find functions A and B we must decouple these differential equations in order to

solve Rµν = 0. We take Rrr + B
A Rtt = 0, which simplifies to

A′B +AB′ = 0. (4.3.13)

So by the product rule it must be that AB = constant. As we move away from the black

hole, we want our metric to look like Minkowski space, so for our boundary conditions

we let A→ c2 and B→ 1 as r→∞.

We let the constant above be c2, so B = c2/A. We plug this into Rθθ and find that

A(r) = c2(1 + k
r) and B(r) = (1 + k

r)
−1, (4.3.14)

where k is a constant of integration. Based on the Newtonian mechanics and gravitational

potential of the system, we find that k = −2GM/c2, where G is the gravitational field

constant and M is the mass of the object producing the gravitational field.

Therefore the Schwarzschild line element is

c2dτ2 = c2 (1 − 2GM
rc2 ) dt2 − (1 − 2GM

rc2 )
−1

dr2 − r2 dθ2 − r2 sin2 θdφ2 (4.3.15)
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and the metric is

gµν =

⎛
⎜⎜⎜⎜
⎝

c2 (1 − 2GM
rc2 ) 0 0 0

0 − (1 − 2GM
rc2 )

−1
0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎟⎟
⎠

. (4.3.16)

4.4 Dynamics

4.4.1 Relativistic orbit equation

We now want to analyze how objects move along time-like geodesics in spacetime. First,

we will look at the orbit equation in the equatorial plane, which shows how the radius r

changes with φ.

We start with Equation 4.1.9 for the line element,

c2dτ2 = c2 (1 − 2m/r) ṫ2 − (1 − 2m/r)−1 ṙ2 − r2 φ̇. (4.4.1)

For simplicity, we can set dτ2 = 1 and assume that we are moving along the manifold at

unit time. Assuming φ̇ ≠ 0, we divide through by φ̇2 and get

c2

φ̇2
= c2 (1 − 2m

r
) ṫ2

φ̇2
− (1 − 2m

r
)
−1 ṙ2

φ̇2
− r2.

Due to the spherical symmetries of t and φ, we can set

∂L
∂ṫ

= (1 − 2m
r
) ṫ = k and

∂L
∂φ̇

= r2 φ̇ = h (4.4.2)

for some constants k and h, and let m = GM/c2. In addition, we let θ = π/2, which is akin

to picking the specific geodesic around the equator and computing the orbit equation for

a particle moving along that geodesic. We plug these in and get

c2r4

h2 = c2 (1 − 2m
r
) k2r4ṫ2

h2(1 − 2m/r)2
− (1 − 2m

r
)
−1
( dr

dφ
)

2

− r2. (4.4.3)

Observe that instead of plugging in for φ̇2 in the ṙ2 term, we instead make use of the fact

that
ṙ2

φ̇2
= ( ṙ

φ̇
)

2

= ( dr
dτ

dτ
dφ
)

2

= ( dr
dφ
)

2

,
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which will later allow us to solve a differential equation. We can rewrite the previous

equation as

( dr
dφ
)

2

+ r2 (1 + c2r2

h2 )(1 −
2GM
rc2 ) −

c2k2r4

h2 = 0. (4.4.4)

We now change variables from r to u, with u = 1/r, to make the computation easier. This

gives

( du
dφ
)

2

+ u2 = c2(k2 − 1)
h2 + 2GM

h2 u + 2GM
c2 u3. (4.4.5)

If we let E = c2(k2 − 1)/h2, we notice that this equation is in the same form as the classical

Newtonian orbit equation, plus a relativistic correction 2GMu3/c2.

4.4.2 Objects falling into the black hole

We return to Equation 4.4.1. However, since we want to find the equation of motion for a

particle falling radially from its orbit into a black hole, we set φ̇ = 0 instead of assuming it

is nonzero like we did previously. With this new condition, and substituting in Equation

4.4.2 for ṫ, we have [4, p 137]

ṙ2 − c2k2 + c2(1 − 2m/r) = 0. (4.4.6)

Now, we want to find a value for the constant k. We look at a particular case of this

equation, when the particle is at rest, so when r = r0,we have ṙ = 0. Plugging this in, we

find that k = +
√

1 − 2m/r0. Notice that we take the positive square root of k, since we

follow the convention of time moving positively forward. In addition, we note that k is

not a universal constant, since it changes based on the starting radius r0.

When deriving equations of motion, we aim for something resembling a classical force

equation, meaning that it has a second derivative of a position variable. Hence we differ-

entiate both sides of (4.4.6), which gives, with rearranging and setting c = 1,

r̈ +GM/r2 = 0. (4.4.7)
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This equation is in the same form as the classical Newtonian equation for vertical free

fall, [5, p 63]

ẍ +GM/r2 = 0,

but the relativistic r is not the vertical distance and the relativistic derivatives are with

respect to proper time τ, not coordinate time t [4, p 138].

4.4.3 Motion in a circle

We start with the radial Euler-Lagrange equation,

−B r̈ − A′

2
ṫ2 − B′

2
ṙ2 + r θ̇2 + r sin2 θ φ̇2 = 0. (4.4.8)

Plugging in the values for A and B from (4.3.14), we have

(1 − 2m
r
)
−1

r̈ + mc2

r2 ṫ2 − (1 − 2m
r
)
−2 m

r2 ṙ − r φ̇2 = 0. (4.4.9)

Assuming this motion is taking place in the equatorial plane, we let θ = π
2 . Additionally,

since a circle has a constant radius, we let ṙ = r̈ = 0. This yields

mc2

r2 ṫ2 − r φ̇2 = 0, (4.4.10)

which rearranges to

mc2 ṫ2 = r3 φ̇2. (4.4.11)

It follows that

(
dφ
dt
)

2

= mc2

r3 (4.4.12)

since
φ̇2

ṫ2 = (
φ̇

ṫ
)

2

= (
dφ
dτ

dτ
dt
)

2

= (
dφ
dt
)

2

.

Solving this differential equation and setting φ = 2π, φ0 = 0, and t0 = 0 gives

t = 2π

√
r3

GM
, (4.4.13)
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the time it takes for one revolution about the equator. This is of the same form as Kepler’s

third law,

τ = 2π

√
a3

GMsun
,

where a is the semimajor axis [5, p 239]. Classically, coordinate time is proper time, so

relativistically it is OK that this is τ and not t.



5
Relativistic Circular Motion in 2+1
Dimensions

We now build a relativistic framework for a black hole in 2+1 dimensions. This is our

own derivation, following similar steps as in Chapter 4.

5.1 Metric and Line Element

In two space dimensions and one time dimension, the Schwarzschild line element looks

like

c2dτ2 = A(r)dt2 − B(r)dt2 − r2 dθ2, (5.1.1)

where A(r) and B(r) are functions of r to be determined later [4, p 116].

Therefore the metric is of the form

gµν =
⎛
⎜
⎝

A(r) 0 0
0 −B(r) 0
0 0 −r2

⎞
⎟
⎠
, (5.1.2)

with µ, ν = 0,1,2 corresponding to t, r, and θ coordinates.
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5.2 Geodesic Equation

We determine the geodesic equation using the Lagrangian method as outlined in §4.2.

We set up the Lagrangian from the metric to find the equations of motion:

L = 1
2 (A ṫ2 − B ṙ2 − r2θ̇2) , (5.2.1)

where the Newtonian dot notation indicates taking a derivative with respect to proper

time τ [4, p 60]. Taking the partial derivatives, we get

∂L
∂ṫ

= A ṫ,
∂L
∂t

= 0, (5.2.2a)

∂L
∂ṙ

= −B ṙ,
∂L
∂r

= A′

2
ṫ2 − B′

2
ṙ2 − r θ̇2, (5.2.2b)

∂L
∂θ̇

= −r2 θ̇,
∂L
∂θ

= 0. (5.2.2c)

Note that a prime indicates a derivative with respect to r.

The Euler-Lagrange equation is

d
du
( ∂L
∂ẋµ
) − ∂L

∂xµ
= 0, (5.2.3)

where µ = 0,1,2 such that x0 = t, x1 = r, and x2 = θ [4, p 60]. We plug in the partial

derivatives to get the Euler-Lagrange equations:

Aẗ +A′ṫṙ = 0, (5.2.4a)

−Br̈ − B′ṙ2 − A′

2
ṫ2 − B′

2
ṙ2 − rθ̇2 = 0, (5.2.4b)

−r2θ̈ − 2rṙθ̇ = 0. (5.2.4c)

We now solve the Euler-Lagrange equations for ẍµ. This gives the geodesic equations

ẗ + A′

A
ṫṙ = 0, (5.2.5a)

r̈ + A′

2B
ṫ2 + B′

2B
ṙ2 − r

B
θ̇2 = 0, (5.2.5b)

θ̈ + 2
r

ṙθ̇ = 0. (5.2.5c)
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Using the geodesic equation,

ẍρ + Γ
ρ
µνẋµẋν = 0, (5.2.6)

we are able to pluck out the nonzero Christoffel symbols

Γt
tr =

A′

2A
, Γr

tt =
A′

2B
, Γr

rr =
B′

2B
, Γr

θθ =
−r
B
, Γθrθ =

1
r
. (5.2.7)

Note that for Γt
tr and Γθrθ, since they have subscripts µ ≠ ν, we must halve the Christoffel

symbol so as to not count it twice.

5.3 Ricci Tensor

We now find the Ricci tensor components. The Ricci tensor component formula is

Rµν = ∂νΓσµσ − ∂σΓσµν + Γ
ρ
µσΓ

σ
ρν − Γ

ρ
µνΓ

σ
ρσ, (5.3.1)

where the indices µ, ν = 0,1,2 correspond to t, r and θ, and ρ, σ = 0,1,2. We plug this

equation into Sage to solve for the Ricci tensor components, as seen in Appendix E. We

find that

Rtt =
(A′)2

4AB
− A′′

2B
+ A′B′

4B2 − A′

2rB
, (5.3.2)

Rrr = −
A′B′

4AB
+ A′′

2A
− (A

′)2

4A2 − B′

2rB
, (5.3.3)

Rθθ =
rA′

2AB
− rB′

2B2 , (5.3.4)

and the rest are trivial. Following the logic of §4.3, we let Rtt = Rrr = Rθθ = 0. We take

(Rtt ⋅ B/A) +Rrr = 0, to eliminate the second derivatives, which yields

−A′B = AB′. (5.3.5)

This implies that AB = constant, assuming A,B ≠ 0. With the boundary conditions A→ c2,

B→ 1 as r→∞, we let

AB = c2, (5.3.6)
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so

B = c2

A
. (5.3.7)

We substitute this into Rθθ, which gives

rA′

2AB
− rB′

2B2 = 0,

A′

2A
− B′

2B
= 0,

A′

A
+ c2A′

A2
A
c2 = 0,

A′

A
+ A′

A
= 0. (5.3.8)

Since A ≠ 0, it must be that A′ = 0, so A = constant. Thus

A = c2 and B = 1. (5.3.9)

This produces the line element

c2 dτ2 = c2 dt2 − dr2 − r2 dθ2 (5.3.10)

and a flat Minkowski-like metric

gµν =
⎛
⎜
⎝

c2 0 0
0 −1 0
0 0 −r2

⎞
⎟
⎠
, (5.3.11)

the implications of which are explored further in §6.

5.4 Dynamics

Since our manifold is flat, we expect that the dynamics of the system will behave like they

would in Minkowski space.

5.4.1 Orbit Equation

Looking back at the Lagrangian, which gives us equations of motion, we take ∂L/∂ṫ =

constant and ∂L/∂θ̇ = constant, so we have the relationship between coordinate time t
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and proper time τ,

c2ṫ = k, (5.4.1)

and an equation analogous to the conservation of angular momentum,

r2θ̇ = h, (5.4.2)

where k and h are constants of integration [4, p 137].

We start with the equation for the line element of the metric,

c2ṫ2 − ṙ2 − r2θ̇2 = c2, (5.4.3)

with dτ = 1, so that we are moving along the manifold at unit time.

Since we want orbital motion, we know θ̇ ≠ 0, so we can divide (5.4.3) through by θ̇2,

which gives
c2ṫ2

θ̇2
− ( dr

dθ
)

2

− r2 = c2

θ̇2
. (5.4.4)

We substitute in (5.4.1) and (5.4.2) for θ̇ and ṫ and get

k2r4

c2h2 − (
dr
dθ
)

2

− r2 = c2r4

h2 . (5.4.5)

Rearranging yields

( dr
dθ
)

2

− k2r4

c2h2 + r2 + c2r4

h2 = 0. (5.4.6)

We let u = 1/r, so dr/dθ = −du/(u2dθ). It follows that

(du
dθ
)

2

+ k2

c2h2 − u2 + c2

h2 = 0. (5.4.7)

We rewrite this as

(du
dθ
)

2

= u2 − k2 + c4

c2h2 . (5.4.8)

This is the relativistic orbital energy equation for 2+1 dimensions. If we compare it with

the approximated classical equation for 2+1 dimensions,

(du
dθ
)

2

= au2 + bu + c,
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we notice that the two equations are similar, but the relativistic equation is missing a

linear term. In 3+1 dimensions, the relativistic equation is the classical equation plus a

cubic correction term. However in this case, the relativistic equation is missing a term, or

would have a correction term that is negative the linear term.

5.4.2 Vertical Free-Fall

We now want to find the radius r as a function of proper time τ to give an equation of

motion for an object starting a radius r.

We return to Equation 5.4.3. For vertical free-fall, we set θ̇ = 0, and we let ṫ = k with

c = 1 as per Equation 5.4.1. This gives

ṙ =
√

k2 − 1,

where ṙ = dr/dτ. Solving this differential equation yields

r =
√

k2 − 1τ + γ, (5.4.9)

where γ is a constant of integration. This means that the vertical free-fall is a constant

linear function of the proper time τ. If we start the particle at a radius r0 and solve for the

time τ, we find

τ = r0

√
1

k2 − 1
− γ, (5.4.10)

which is somewhat similar to the classical vertical free-fall time.

5.4.3 Motion in a Circle

We begin with the radial Euler-Lagrange equation,

−Br̈ − B′ṙ2 − A′

2
ṫ2 − B′

2
ṙ2 − rθ̇2 = 0.

Substituting in (5.3.9) for A and B gives

−r̈ − r2θ̇2 = 0. (5.4.11)
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Since a circle has constant radius, we have r̈ = 0, so

−r2θ̇2 = 0. (5.4.12)

This gives
dθ
dτ

= 0. (5.4.13)

This is not to be interpreted that there is no circular orbit, but that the circular orbit

is not a geodesic in 2+1-dimensional flat space. The difference between this argument

and the 3+1-dimensional argument is that a circle is a geodesic in the 3+1-dimensional

spherical model, so the Euler-Lagrange equation gives the geodesic equation. However, a

straight line is a geodesic in 2+1-dimensional flat space, which is why the Euler-Lagrange

equation gives us a straight line. Here, the Euler-Lagrange equations do not necessarily

yield the coordinate equations of motion. Instead, they yield the geodesic equations, and

in this case a circular orbit is not a geodesic.



6
Conclusion

In 3 total dimensions, all the information about the curvature of the manifold is encoded

in the Ricci tensor [3, p 309]. The act of setting the Ricci tensor equal to zero in 2+1

dimensions (which results from setting the stress tensor equal to zero) effectively forces

the manifold to be flat. We are therefore guaranteed to get a Minkowski-like metric if we

are working in a vacuum.

We will now show that our metric is Minkowski-like in 2+1-dimensional polar coordi-

nates. Plugging our values for A and B into the metric, we have

gµν =
⎛
⎜
⎝

1 0 0
0 −1 0
0 0 −r2

⎞
⎟
⎠

(6.0.1)

with c = 1.

We choose to isolate the spatial part of the metric,

gr,θ
ab = (1 0

0 r2) , (6.0.2)

so that the total metric is written as

gr,θ
µν = (

1 0
0 −gr,θ

ab
) . (6.0.3)
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We now employ a coordinate change to switch from polar coordinates to Cartesian

coordinates. We have the coordinate transformation formulas

r2 = x2 + y2 and θ = arctan(y/x),

and the transformation equation

gx,y
ab = PT gr,θ

ab P , (6.0.4)

where P = ( x/r y/r
−y/r2 x/r2) and PT is its transpose. We solve this equation and find that

gx,y
ab = (x/r −y/r2

y/r x/r2 )(
1 0
0 r2)(

x/r y/r
−y/r2 x/r2) = (

1 0
0 1
) (6.0.5)

Following the same logic as above, we let

gx,y
µν = (

1 0
0 −gx,y

ab
) , (6.0.6)

which yields

gx,y
µν =

⎛
⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠
. (6.0.7)

This is a Minkowski-like metric in 2+1 dimensions. Since a Minkowski-like metric means

that the space is flat, we therefore do not have a black hole solution.

Hence there are no non-singular Schwarzschild-like solutions in 2+1 dimensions for

Einstein’s equations. If we want to get a black hole-like solution, we will need to modify

Einstein’s equations with a different cosmological constant. We explore this possibility

further in §7.1.



7
Future Research

7.1 Modifying Einstein’s Field Equations

We have found that a Schwarzschild solution to Einstein’s field equations does not yield

a black hole in 2+1 dimensions. However, we could modify Einstein’s field equation with

a cosmological constant Λ so that a Schwarzschild solution would be non-singular.

Einstein’s modified field equation is [4, p 201]

Gµν +Λgµν = κTµν. (7.1.1)

Researchers have found a solution to this for a charged Einstein-Maxwell field with a

negative cosmological constant [1]. It is possible that Einstein’s field equation modified by

a cosmological constant might allow for a 2+1-dimensional non-singular Schwarzschild

solution.

7.2 Relaxing Schwarzschild’s Assumptions

Schwarzschild found his solution to Einstein’s field equations based on four assumptions:

a) the field was static, b) the field was spherically symmetric, c) the spacetime was empty,
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and d) the spacetime was asymptotically flat. Relaxing one or more of these assumptions

could result in a black hole solution to Einstein’s field equation in 2+1 dimensions.

a. If the field was not static, we could let the metric vary with t, which would have us

solving for functions A(t, r) and B(t, r). The mathematics of dynamical systems may

prove useful in pursuing a solution of this nature.

b. See §7.3.

c. Relaxing this condition is tantamount to a Robertson-Walker-type approach that in-

cludes radiation and mass-density in the stress tensor, which would require time-

dependent modifications of the metric.

d. This condition is what gives the boundary conditions A(r) = c2 and B(r) = 1 as r→∞.

It is quite possible that there exists a Schwarzschild solution to Einstein’s field

equations in 2+1 dimensions that satisfies a different set of boundary conditions,

one that would not necessarily have an asymptotically flat spacetime.

7.3 Relativistic Elliptical Motion in 2+1 Dimensions

Initially, we were pursuing a 2+1-dimensional Schwarzschild solution in elliptical polar

coordinates that we could then rotate about the major axis to give an ellipsoidal polar

solution in 3+1 dimensions.

7.3.1 Metric and Line Element

The equation for an ellipse is

x2

a2 +
y2

b2 = r2,

or

x = ar cosθ, y = br sinθ
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for two constants a, b. Let a = α and b = 1, where α is some nonzero stretching constant.

Note that when α = 1, the elliptical case will reduce to the circular case. So we have

x = αr cosθ and y = r sinθ. This gives the position vector

r = αr cosθ i + r sinθ j. (7.3.1)

The natural basis vectors are

er =
∂r
∂r

= α cosθ i + sinθ j (7.3.2)

and

eθ =
∂r
∂θ

= −αr sinθ i + r cosθ j. (7.3.3)

We take the dot products of the natural basis vectors to find the elements of the spatial

metric:

er ⋅ er = α2 cos2 θ + sin2 θ, (7.3.4a)

er ⋅ eθ = (1 − α2)r sinθ cosθ, (7.3.4b)

eθ ⋅ er = (1 − α2)r sinθ cosθ, (7.3.4c)

eθ ⋅ eθ = r2(α2 sin2 θ + cos2 θ). (7.3.4d)

Therefore our spatial metric is

gi j = (
α2 cos2 θ + sin2 θ (1 − α2)r sinθ cosθ
(1 − α2)r sinθ cosθ r2(α2 sin2 θ + cos2 θ)) , (7.3.5)

which reduces to the circular correctly.

At r→∞, we expect that an ellipse will be circularly symmetric. Therefore, our bound-

ary conditions will be A(r)→ c2 and B(r)→ 1 as r→∞, the same as the circle.

Including the time component, we have

gγδ =
⎛
⎜
⎝

1 0 0
0 −(α2 cos2 θ + sin2 θ) −(1 − α2)r sinθ cosθ
0 −(1 − α2)r sinθ cosθ −r2(α2 sin2 θ + cos2 θ)

⎞
⎟
⎠
, (7.3.6)
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which gives the line element

c2dτ2 = A(r)dt2−B(r)(α2 cos2 θ+sin2 θ)dr2−2((1−α2)r sinθ cosθdrdθ−r2(α2 sin2 θ+cos2 θ)dθ2.

(7.3.7)

We include functions A and B to account for time dilation and the radius of the event

horizon.

7.3.2 Lagrangian

Following the same method as in §4.2, the Lagrangian for our line element is

L = 1
2 (A ṫ2 − B(α2 cos2 θ + sin2 θ) ṙ2 − 2(1 − α2)r sinθ cosθ ṙθ̇ − r2(α2 sin2 θ + cos2 θ) θ̇2) .

(7.3.8)

The partial derivatives of this Lagrangian are

∂L
∂ṫ

= A ṫ, (7.3.9a)

∂L
∂t

= 0, (7.3.9b)

∂L
∂ṙ

= −B(α2 cos2 θ + sin2 θ) ṙ, (7.3.9c)

∂L
∂r

= A′

2
ṫṙ − B′

2
(α2 cos2 θ + sin2 θ) ṙ2 − (1 − α2) sinθ cosθ ṙθ̇ − r(α2 sin2 θ + cos2 θ) θ̇2,

(7.3.9d)
∂L
∂θ̇

= −r(1 − α2) sinθ cosθ ṙ − r2(α2 sin2 θ + cos2 θ) θ̇, (7.3.9e)

∂L
∂θ

= −B(1 − α2) sinθ cosθ ṙ2 − r(1 − α2)(cos2 θ − sin2 θ) ṙθ̇ − r2(α2 − 1) sinθ cosθ θ̇2.

(7.3.9f)

We take Equation 5.2.3, the Euler-Lagrange equation, and plug in the partial derivatives.

This yields

A ẗ +A′ ṫṙ = 0, (7.3.10)

−B(α2 cos2 θ + sin2 θ) r̈ − A′

2
ṫṙ − B′

2
(α2 cos2 θ + sin2 θ) ṙ2

− 2B(1 − α2) sinθ cosθ ṙθ̇ + r(α2 cos2 θ + sin2 θ) θ̇2 = 0, (7.3.11)
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−r2(α2 sin2 θ + cos2 θ) θ̈ − r(1 − α2) sinθ cosθ r̈ + (B − 1)(1 − α2) sinθ cosθ ṙ2

− 2r(α2 sin2 θ + cos2 θ) ṙθ̇ − r2(α2 − 1) sinθ cosθ θ̇2 = 0. (7.3.12)

We notice that the third Euler-Lagrange equation has two second derivatives in it. This

poses a problem, because we do not know how to put it into the geodesic form so that we

can find the Christoffel symbols. However, each Euler-Lagrange correctly reduces to the

corresponding equation in circular polar coordinates.

7.4 Relativistic Ellipsoidal Motion in 3+1 Dimensions

We have slightly higher hopes for a 3+1 dimensional ellipsoid to produce a black hole

than a 2+1 dimensional ellipse, but an ellipsoid isn’t spherically symmetric. Since a

Schwarzschild solution requires spherical symmetry, we might not be able to produce an

ellipsoidal black hole solution.



Appendix A

We begin by explaining the derivation of Gauss’ law for three spatial dimensions [7]. In

three dimensions, the inverse square field allows us to write the “joint form” of Newton’s

law of gravity.

The flux of the field through the surface will be

{
G ⋅ n da. (A.1.1)

With the divergence theorem, we have

{
G ⋅ n da =

*
∇ ⋅G dτ, (A.1.2)

where dτ is an interior volume element. For a point mass at the center of the sphere, we

have

G = −km
r2 er

for some constant k, and the surface element is

n da = err2 sinθdθdφ.
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Thus

{
G ⋅ er da =

{
(−km

r2 ) r2 sinθdθdφ

= −4πkm (A.1.3)

since the mass density is ρ = dm/dτ. We can write

m =
*

ρdτ,

so the divergence theorem gives

−4πk
*

ρdτ =
*

∇ ⋅G dτ. (A.1.4)

It follows that

∇ ⋅G = −4πkρ, (A.1.5)

and so for some potential Ξ, since G = ∇Ξ, we have

∇2Ξ = −4πkρ, (A.1.6)

known as Poisson’s equation.

In general relativity, the coupling constant in Einstein’s field equation is determined

by requiring the field potential in the “curved” manifold to reduce to the Newtonian

potential in flat Minkowski space via the equivalent to Poisson’s equation in “curved”

space, where ∇2 is modified by the chosen metric.

We reproduce this argument in two-dimensional space, replacing m by a 2-mass m′, k

by an empirical gravitational constant k′, mass-volume density ρ by the surface density σ,

and the 3-space divergence theorem with the 2-space version of the divergence theorem,

∮ G′ ⋅ n dl =
{

∇ ⋅G′ dσ. (A.1.7)



48

A brief demonstration of how we arrived at this 2-space divergence theorem is given in

Appendix B. The flux through a circle surrounding a 2-mass will be

∮ G′ ⋅ n dl = ∮ G′ ⋅ n(r dθ) (A.1.8)

=
{

∇ ⋅G da. (A.1.9)

To provide the necessary constant flux, we choose

G = −k′m′

r
(A.1.10)

so that

∮ G ⋅ n r dθ = −k′m′∮ dθ

= −2πk′m′ =
{

∇ ⋅G da. (A.1.11)

Now writing the surface mass density as

σ = dm′

da
or m′ =

{
σda,

we have

∇ ⋅G = −2πk′σ. (A.1.12)

Therefore, for a potential Ξ, we have

∇2Ξ = −2πk′σ. (A.1.13)

The derivation of how we obtain the potential is in Appendix C.



Appendix B

We want to define the divergence theorem in two spatial dimensions to find the flux of a

field through an area. We begin with a field H and a differential box with side lengths ∆x

and ∆y.

The flux in the x-direction is

Φx = Hout∆y −Hin∆y. (B.1.1)

We can calculate the field leaving the box,

Hout = Hin +
∆H
∆x

∆x, (B.1.2)



50

and plug this in Equation B.1.1, which gives

Φx = (Hin +
∆H
∆x

∆x)∆y −Hin∆y. (B.1.3)

We notice that ∆x∆y is the area of the differential box, so we will call it dA. Therefore

Φx =
∆H
∆x

dA = Hx ⋅ n dy, (B.1.4)

where Hx is the x-component of the field. Finding the flux in the y-direction and the

y-component of the field is done in the same way.

For a finite area composed of multiple differential boxes, we sum over all the differential

boxes, which yields

∑
circumference

H ⋅ n dl = ∑
interior areas

∇ ⋅H dA. (B.1.5)

The total flux is a summation of the flux through each box, each of which is a sum of the

four sides. We see that the fluxes around neighboring sides effectively cancel each other

out, so the total flux is an integral around the perimeter of the area.

Thus

∮ H ⋅ n dl =
{

∇ ⋅H dA. (B.1.6)



Appendix C

We begin with a 2-dimensional classical circular orbit, which has

r̈ = (r̈ − r θ̇2)er + (r θ̈ + 2 ṙθ̇)eθ. (C.1.1)

For a force F(r) = f (r)er, we have

f (r) = r̈ − r θ̇2 (C.1.2)

and an angular momentum

L = mr2 θ̇, (C.1.3)

which can be rewritten as

θ̇2 = L2

m2r4 . (C.1.4)

Since we are using a 1
r force

F(r) = m r̈ er = −
k
r

er, (C.1.5)

and

m(r̈ − L2

m2r3) = −
k
r
,
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then our equation for a two-dimensional force becomes

F(r) = m r̈ = L2

mr3 −
k
r
. (C.1.6)

To find the pseudo-potential, we can treat this as a one-dimensional problem with an

attractive force −k/r plus a fictional “centrifugal” repulsive force L2/mr3.

As a one-dimensional problem, we have a pseudo-potential

V(r) = −∫ F(r)dr

= −∫ (
L2

mr3 −
k
r
) dr

= −(− L2

2mr2 − k ln(r)) + β

= L2

2mr2 + k ln(r) + β, (C.1.7)

where β is a constant of integration.

The stable circular orbit will be where V(r) is a minimum, so

dV(r)
dr
∣
r=r0

= −F(r)∣
r=r0

= ( L2

mr3 −
k
r
) ∣

r=r0

= 0. (C.1.8)

It follows that
L2

m(r0)3
= k

r0
, (C.1.9)

so

r0 =
L√
km
. (C.1.10)

Solving for and plugging in for L with a constant radius r0 we have

θ̇ = 1
r0

√
k
m
, (C.1.11)

so

θ = τ

r0

√
k
m
+ γ (C.1.12)

where γ is a constant of integration. This gives a linear equation of motion.



Appendix D

To define the Christoffel symbols via coordinate transformation, we will be changing from

Cartesian coordinates x, y to circular polar coordinates r, θ.

We begin with expressions for x and y in terms of r and θ,

x = r cosθ and y = r sinθ, (D.1.1)

and expressions for r and θ in terms of x and y, which are

r =
√

x2 + y2 and θ = arctan(
y
x
) . (D.1.2)

We use the transformation rule [3, p 283]

Γk′
p′q′ =

∂zk′

∂zk (Γ
k
pq
∂zp

∂zp′
∂zq

∂zq′ +
∂2zk

∂zp′∂zq′ ) , (D.1.3)

where k,p, q = 1,2 and z1,⋯, zn is the set of coordinates such that primed coordinates are

circular polar and unprimed coordinates are Cartesian, so z1 = x, z2 = y, z1′ = r, z2′ = θ.

All Christoffel symbols in Cartesian coordinates are trivial, so this gives a more specific

transformation rule [3, p 285]

Γk′
p′q′ =

∂zk′

∂zk
∂2zk

∂zp′∂zq′ . (D.1.4)



Change of coordinates method of computing
Christoffel symbols - Cartesian to Circular Polar
# VARIABLES
x = var('x')        # Euclidean coordinate x
y = var('y')        # Euclidean coordinate y
r = var('r')        # polar coordinate, radius
q = var('theta')    # polar coordinate, angle

# EQUATIONS OF MOTION
x = r * cos(q)
y = r * sin(q)

# FIRST DERIVATIVES
dxdr = x.derivative(r)
dxdq = x.derivative(q)
dydr = y.derivative(r)
dydq = y.derivative(q)

# SECOND DERIVATIVES
ddxdrdr = dxdr.derivative(r)
ddxdrdq = dxdr.derivative(q)
ddxdqdr = dxdq.derivative(r)
ddxdqdq = dxdq.derivative(q)
ddydrdr = dydr.derivative(r)
ddydrdq = dydr.derivative(q)
ddydqdr = dydq.derivative(r)
ddydqdq = dydq.derivative(q) 
       
# VARIABLES
x = var('x')        # Euclidean coordinate x
y = var('y')        # Euclidean coordinate y
r = var('r')        # polar coordinate, radius
q = var('theta')    # polar coordinate, angle

# EQUATIONS OF MOTION
r = sqrt(x^2 + y^2)
q = arctan(y / x)

# FIRST DERIVATIVES
drdx = r.derivative(x)
drdy = r.derivative(y)
dqdx = q.derivative(x)
dqdy = q.derivative(y)



# No second derivatives needed 

       
We will now plug into the transformation rule

!

to obtain the Christoffel symbols. Note: Gmns = ! .

Grrr = drdx * ddxdrdr + drdy * ddydrdr
show(Grrr) 

       0

Grrq = drdx * ddxdrdq + drdy * ddydrdq
show(Grrq) 

       -

Grqr = drdx * ddxdqdr + drdy * ddydqdr
show(Grqr) 

       -

Grqq = drdx * ddxdqdq + drdy * ddydqdq
show(Grqq) 

       -

Gqrr = dqdx * ddxdrdr + dqdy * ddydrdr
show(Gqrr) 

       0

Gqrq = dqdx * ddxdrdq + dqdy * ddydrdq
show(Gqrq) 

       

Gqqr = dqdx * ddxdqdr + dqdy * ddydqdr

k′
p q′ ′ = "zk

"zk′ " z2 k

"z "zp′ q′

m
ns

x sin (#)

!x2 + y2
+
y cos (#)

!x2 + y2

x sin (#)

!x2 + y2
+
y cos (#)

!x2 + y2

!x2 + y2

rx cos (#) -
!x2 + y2

ry sin (#)

 
cos (#)

x( x2
y2

+ 1)
+

y sin (#)

x( x2
y2

+ 1) 2



show(Gqqr) 

       

Gqqq = dqdx * ddxdqdq + dqdy * ddydqdq
show(Gqqq) 

       

 
cos (!)

x( x2
y2

+ 1)
+

y sin (!)

x( x2
y2

+ 1) 2

-  
r sin (!)

x( x2
y2

+ 1)
+
ry cos (!)

x( x2
y2

+ 1) 2



Appendix E

To avoid algebraic errors due to long computations, we plug in the Christoffel symbols

for 2+1 spatial dimensions, previously found via the Euler-Lagrange method in §5.2, into

Sage to find the Ricci tensor components.



Ricci tensor components for 2+1 dimensions
# VARIABLES
t = var('t')           # 0, time
r = var('r')           # 1, radius
q = var('theta')       # 2, angle

# FUNCTIONS that determine the how the spacetime warps under a 
Schwarzschild metric
A = function('A', r)   # the time dilation coefficient
Ap = A.derivative(r)   # A', the first derivative of A with 
respect to r
B = function('B', r)   # gives the Schwarzschild radius
Bp = B.derivative(r)   # B', the first derivative of B with 
respect to r

# the CHRISTOFFEL SYMBOLS - previously found via the Euler-
Lagrange method
G000 = 0
G001 = Ap / (2*A)
G010 = Ap / (2*A)
G011 = 0
G002 = 0
G020 = 0
G012 = 0
G021 = 0
G022 = 0
G100 = Ap / (2 * B)
G101 = 0
G110 = 0
G111 = Bp / (2 * B)
G102 = 0
G120 = 0
G121 = 0
G112 = 0
G122 = -r / B
G200 = 0
G201 = 0
G210 = 0
G211 = 0
G202 = 0
G220 = 0
G212 = 1 / r
G221 = 1 / r
G222 = 0 

       

a



Note: Gabc = ! . We compute the Ricci tensor components by

where ", , ,  go from 0 to 2, where t , , . In the following results, note that .

R00 = derivative(G000,t) - derivative(G000,t) + G000 * G000 - 
G000 * G000 + G100 * G010 - G100 * G010 + G200 * G020 - G200 * 
G020 + derivative(G101,t) - derivative(G100,r) + G001 * G100 - 
G000 * G101 + G101 * G110 - G100 * G111 + G201 * G120 - G200 * 
G121 + derivative(G202,t) - derivative(G200,q) + G002 * G200 - 
G000 * G202 + G102 * G210 - G100 * G212 + G202 * G220 - G200 * 
G222

show(R00) 

       

R11 = derivative(G010,r) - derivative(G011,t) + G010 * G001 - 
G011 * G000 + G110 * G011 - G111 * G010 + G210 * G021 - G211 * 
G020 + derivative(G111,r) - derivative(G111,r) + G011 * G101 - 
G011 * G101 + G111 * G111 - G111 * G111 + G211 * G121 - G211 * 
G121 + derivative(G212,r) - derivative(G211,q) + G012 * G201 - 
G011 * G202 + G112 * G211 - G111 * G212 + G212 * G221 - G211 * 
G222

show(R11) 

       -

R22 = derivative(G020,q) - derivative(G022,t) + G020 * G002 - 
G022 * G000 + G120 * G012 - G122 * G010 + G202 * G022 - G222 * 
G020 + derivative(G121,q) - derivative(G122,r) + G021 * G102 - 
G022 * G101 + G121 * G112 - G122 * G111 + G221 * G122 - G222 * 
G121 + derivative(G222,q) - derivative(G222,q) + G022 * G202 - 
G022 * G202 + G122 * G212 - G122 * G212 + G222 * G222 - G222 * 
G222

show(R22) 

       

a
bc

R ! ! ! ! , "# = $# %
"% - $% %

"# +!&"% %
&#- !&"# %

&%

# & % = 0 r = 1 ' = 2 D[0]A A dr p = d / = A

4A (r)B (r)
D[0] (A) (r)2

-
2B (r)

D[0, ]0 (A) (r)
+

4B (r)2
D[0] [0](A) (r)D (B) (r) -

2 Br (r)
D[0] (A) (r)

4A (r)B (r)
D[0] [0](A) (r)D (B) (r)

+
2A (r)

D[0, ]0 (A) (r) -
4A (r)2

D[0] (A) (r)2

-
2 Br (r)

D[0] (B) (r)

2A (r)B (r)
rD[0] (A) (r) -

2B (r)2
rD[0] (B) (r)
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