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Abstract

In this paper we will be mathematically exploring low-dimensional gravitational physics
and, more specifically, what it tells us about low-dimensional black holes and if there
exists a Schwarzschild solution to Einstein’s field equation in 2+1 dimensions. We will be
starting with an existing solution in 3+1 dimensions, and then reconstructing the classical
and relativistic arguments for 2+1 dimensions. Our conclusion is that in 2+1 dimensions,
the Schwarzschild solution to Einstein’s field equation is non-singular, and therefore it
does not yield a black hole. While we still arrive at conic orbits, the relationship between
Minkowski-like and Newtonian forces, energies, and geodesics in 2+1 dimensions is
different than the relationship between Schwarzschild and Newtonian forces, energies,
and geodesics in 3+1 dimensions.
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Introduction

Physics behaves in strange ways near a black hole, a consequence of the metric. This
metric is a mathematical representation of the geometry of spacetime, specifically at the
Schwarzschild radius. At this radius, the physics that results is very non-classical. If we
tweak the model and change some of its characteristics, do the laws of physics as we
know them still hold? How predictable are the results?

Einstein’s field equation gives the relationship between the geometry of spacetime
and the mass present in that spacetime. Karl Schwarzschild worked on a solution to the
Einstein field equation that holds for a static, spherically symmetric, and asymptotically
flat vacuum. Known as the Schwarzschild solution, it allows us to find the gravitational
field in a vacuous spacetime outside a black hole. The Schwarzschild radius gives the
boundary between the massive black hole and vacuous spacetime. We define a black hole
as a massive spherically symmetric object, characterized by the Schwarzschild radius,
that causes distortions in the geometry of spacetime at the boundary of the Schwarzschild

radius.
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We will be exploring the characteristics and behaviors of tensors, forces, energies and
motion at this boundary in 3+1- and 2+1-dimensional spacetime. We say that we are
working in “3+1” and “2+1” dimensions instead of “4” and “3” dimensions because we
want to emphasize that one of the dimensions is time. Thus, the relativistic cases we
will be exploring have three space dimensions and one time dimension, and two space
dimensions and one time dimension. In the classical cases time is not considered as a
dimension, so we may refer to those as “3-space” and “2-space”.

There are a number of conventions of general relativity and differential geometry that

we will be using throughout this paper.

i. The reader will notice that we frequently use multiple indices. Roman indices range
from 1 -2 or 1 - 3, depending on the dimension, denoting spatial spherical polar
variables r =1, 0 = 2, and ¢ = 3. Greek indices range from 0 - 2 or 0 - 3, again
depending on the dimension, and they denote time plus spatial coordinates where

t=0,r=1,0=2,and ¢ =3.

ii. When an expression has repeated indices with one as a superscript and one as a

subscript, we sum over the pair of indices. So
. n .
x'xi = x'x;.
i=0
This is referred to as Einstein summation notation.

iii. A vector or tensor with lower indices, such as Ay, is referred to as a covariant vector
or tensor. We also have vectors or tensors with upper indices, such as A”, that are

referred to as contravariant vectors or tensors.

iv. When differentiating, the reader will occasionally observe the notation Jd,F. This is

simply a shorthand way of writing JF/dx.
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v. Inrelativistic physics, the constant ¢, the speed of light in a vacuum, frequently appears

in computations. We will usually change units to set ¢ = 1 to simplify the expression.

We initially began this project hoping to discover how an ellipsoidal relativistic black
hole behaved in 3+1 dimensions. We started off with an elliptical relativistic model in
2+1 dimensions, as lowering the dimension reduces the amount of information we have
to work with, to help establish an intuition for ellipsoidal black holes. As we progressed,
it became clear that we would need to work through the dynamics of 3+1- and 2+1-
dimensional spherical and circular models of relativistic black holes as well as classical
systems in 3-space and 2-space to contextualize and verify our solutions.

In Chapter 2, we lay a foundation for both the 2+1 classical and 3+1 relativistic cases
by summarizing the argument in [5] for finding the equation of motion for a circular
orbit in a plane and the energy of an orbit in 3-space with spherical polar coordinates.
In Chapter 3, we develop a model of classical mechanics in 2-space to serve as a basis
for comparison to our eventual 2+1-dimensional relativistic model of a black hole. In
Chapter 4, we give an overview of the mathematical argument in [4] for the Schwarzschild
solution in 3+1-dimensional spherical polar coordinates. This sets up the methodology
we will be applying to our 2+1-dimensional model and establish the relationship between
the 3-space classical model and 3+1-dimensional relativistic model that we hope to find
between our 2-space classical model and 2+1-dimensional relativistic model. In Chapter 5,
we build a relativistic model of a black hole in 2+1-dimensional circular polar coordinates
and find a Schwarzschild-like solution to Einstein’s field equation. Chapter 6 contains our
conclusions, and in Chapter 7 we state possibilities for future research using what we have
already found. Throughout the paper, we assume that the reader is familiar with classical
mechanics, multivariable calculus, and linear algebra, and has had some exposure to

general relativity and differential geometry.
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Classical Spherical Motion in 3+1 Dimensions

We start by looking at classical motion in 3+1 dimensions to provide a context for 3+1-
dimensional relativistic motion. Furthermore, 3+1-dimensional classical motion will pro-
vide a basis of comparison for 2+1-dimensional classical motion, so that we can see how
the motion differs both from classical to relativistic and from 3+1 dimensions to 2+1 di-

mensions. The following derivation of the equations of motion for an orbit is a summary

of [5, §§6.5, 6.10].

2.1 Kepler’s Law of Ellipses

We start with Newton’s equation for a force, using polar coordinates:
m¥ = F(r)e,. (2.1.1)

In 3-space, we have

F(r) = = (2.1.2)
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where k is some constant. This yields two differential equations of motion in a circle,

m(i - r6) = rkz and (2.1.3)

m(2i0 +r0) = 0. (2.1.4)

By the product rule, Equation 2.1.4 is equivalent to the conservation of angular momen-

tum,
d, o
—(r°0) =0,
5(r0)
SO
1=1%6, (2.1.5)
where | is a constant. Using this constant, if we change variables to u = %, we have
du
= —l— 2.1.6
7=-1 70 and ( )
d?u
s 2.2
¥=-lI‘u ﬁ (217)
Plugging (2.1.6) and (2.1.7) into Equation 2.1.3, we get
m —lzuZdZ—u - 1(12Lt4) = ku? (2.1.8)
T2 . 1.
Rearranging this, we have a differential equation of the orbit,
d?u k
d—62+u:—ﬁ. (219)
Solutions to this differential equation are of the form
u—Acos(9—9)+L (2.1.10)
- 0 le’ 1.

where A and 0 are constants of integration. This same solution in terms of r instead of u

is

1
"= Acos(6 - 60) + kj(mB)’

(2.1.11)
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We set 0 = 0 and rewrite Equation 2.1.11 as

"ty (AZZZZZIkc) cos 6’ (2112)
We define constants a and € such that
a=mP/k and e=Aa=AmP/k,
SO
r= ﬁ. (2.1.13)

For our orbit, @ measures the distance of the focus from from a point on the ellipse,
perpendicular to the semimajor axis, and € measures the eccentricity of the orbit such that
the foci are displaced from the center of the semimajor axis a by a distance ea.

Equation 2.1.13 describes any orbit shaped like a conic section. For a perfectly circular
orbit, we expect to have € = 0. Values of € in the range 0 < € < 1 give elliptical orbits, € = 1

gives parabolic orbits, and values of € > 1 give hyperbolic orbits [5, p 234].

2.2 Orbital Equation of Motion

The total energy of a system is its kinetic energy plus its potential energy. This quantity is
conserved for conservative forces, meaning that the total energy E is constant. Since we

have a conservative force, we can say

E=T+V=1m(i?+r0*) +V(r). (2.2.1)
We want to eliminate the time derivatives and change from r to u = %, so we take
d .
P = -1% and 0 =l (2.2.2)

and plug them into Equation 2.2.1, which yields

2
E = lmp? ((Z—g) . u2) SV, (2.2.3)
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This gives a first order differential equation for 1(0).

Accounting for the potential

V(r) = —I; = —ku,

the orbit equation is

2
E = %ml2 ((Z—g) + uz) — ku.

After extensive manipulation and some integration, we have

Vb2 - 4ac

W=——p— cos (v/=a(6-6p)) + —

11

(2.2.4)

(2.2.5)

(2.2.6)

where a = -1, b = (2k)/(mI?), and ¢ = (2E)/(ml?). Changing back from u to r and more

algebraic manipulation yields

ml?

k(1+ /T+2EmE[k cos(0 - 0p) )

Y=

This is the orbit equation. If we set 6y = 0 and define constants x and & such that

x=mP/k and &= +/1+2EmP2/k,

we get the general form of the orbit equation,

- X
1+&cos(0)’

Again, we see that this orbit is a conic section.

(2.2.7)

(2.2.8)



3

Classical Circular Motion in 2+1 Dimensions

This is our own derivation. We want to find classical expressions for the gravitational
force, potential, orbit equation, and vertical free-fall that we can compare to the relativistic

results in Chapter 5.

3.1 Generalized Coordinate System

Changing from three spatial dimensions to two spatial dimensions does not mean that we
can simply exclude the third dimension—we must rebuild the model. In addition, since we
are working in two spatial dimensions, angular momentum cannot be determined using
the cross product. In order to define the equations of motion in a way that is independent
of the coordinate system, we turn to Hamilton’s equations to define angular momentum
and the energy equation in a system of it"-dimensional generalized coordinates, g; and 4;.

For a kinetic energy T(4;) and a potential energy V(g;), the Lagrangian is defined as

L =L(qi,4:) = T(4:) - V(4i)- (3.1.1)
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Through a Legendre transformation, we change from coordinates (g;, 4;) to (g;, pi), where

pi is the generalized momenta

JL
i= = 3.1.2
G (312)
We can now define the Hamiltonian as
H=H(pi,q:) = T(p:) + V(q:)- (3.1.3)

From the Lagrangian and the Hamiltonian we have Hamilton’s canonical equations of
motion,
JH JH

= = '1' and — =- .i- 3.14
opi 7 94 p ( )

These equations of motion hold for any dimension and any coordinate system, which
makes them valuable for our non-standard system. We are using the spatial coordinate

system q; = r and g, = 0, with p; and p; as the momentum terms p, and pyp.

3.2 Forces in Two Spatial Dimensions

In a standard three-dimensional spatial coordinate system, we have a gravitational force

Cm
F(V) = _1"_2

on a test mass for a mass m, with some constant C. However, in two spatial dimensions,
we want to have a force

F(r) = —@, (3.2.1)

for some constant k. A demonstration of why we are using and how we arrived at a %
force is given in Appendix A.

This new force changes the potential. For a % force, we have a potential energy

V(r)=- [ F(r)dr =kmIn(r) + B, (3.2.2)

where k is a constant from the force, m is the mass, and f is a constant of integration.
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In 3-space the constants k and m are given experimentally by Newton and Cavendish

such that

F(r) = G@ and V(r) = -GmmgIn(r) + 8,

where mg is a test mass and G is the gravitational constant that corresponds to our

k. However, in the 2-dimensional case we have no clear idea of a ”"two-dimensional

experiment ” or “two-dimensional mass”, so we leave the values of k and m unspecified.

3.3 Hamilton’s Equations
For our two-dimensional force, the Lagrangian is
L =im(#* +7°0%) - (kmIn(r) + B).

The generalized momenta for the generalized polar coordinates r and O are

prz—lf:mi’ and pgza—L mr?0,

o 90
SO

7= and sz—az.
m mr

The Hamiltonian is

2
H=— (p% + %) +kmIn(r) +B.

For our coordinate system, Hamilton’s equations are
y

8_H = 8_H -0
oy dpg
JH JH

or —Prs 20 —Po-
It follows from the Hamiltonian that

JH _km g L
or =P

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)
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and

27 _ 0= —pp. (3.3.8)

We now have pg = constant = mr?0. This allows us to define a two-dimensional angular

momentum. For convenience, we define
=126 (3.3.9)

as an ‘angular momentum per unit mass’ term, so pg = ml. From Equation 3.3.3 we know

mi = py
and from Equation 3.3.7 we have
_ km 3 _ km  (ml)?
A R -
and so
k 1)?
mi = -2 m(S) ) (3.3.10)
r r

which yields the differential equation of motion. Rather than solving this equation, we

pursue an energy equation to the same end.

3.4 Orbital Energies

Now that we have shown the conservation of angular momentum in two spatial di-
mensions, we can move onto the energy equation. We assume conservation of angular
momentum and conservation of energy.

The energy equation is
E= %m(i’2 +7%60%) + kmIn(r) + p = constant. (3.4.1)

We rewrite this with a change of variables, u = 1/, such that # = —i1/u? and In(r) = - In(u).
So we have

E=:sm (r'z + 1’292) +kmIn(r) + B. (3.4.2)

NI=
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Substituting 0 = I/r* = [u?, we get

E=sm (Z—i + lzuz) —kmlIn(u) +B. (3.4.3)

1
2
Rearranging this equation, we have

E-= %ml2 ((%)2 + uz) —kmIn(u) +p. (3.4.4)

Rearranging again, we get

2
(Z—g) +12 = (E = (=kmn(x) +ﬁ))%,

du 2E  2kmlIn(u) 2f
- Nwe' me mp " (3.4.5)

We approximate this differential equation by substituting in for In(u) the first two terms

of its Taylor series expansion near u = 1:

du \J 2F +2km((u_1)_(u—21)2)_ﬁ_u2

0~ \| m2 " mz
_ \/£+ 2km(u-1) 2km(u-1> 26,
mil? mil? 2ml? mil?
~ \/ZE—Zﬁ—km . 4kmu ~ km+mlzu2
- mi2 mi? mi? '

(3.4.6)

Now, let us define constants 4, b, ¢ such that

2 —28—
a:_km+ml’b:4km andc:ZE 2B km'
mi? m

This gives the equation

du = Vau? +bu+c, (3.4.7)

SO

du

- 348
Vau? + bu +c ( )

do =

Integrating gives us

0-9)= cosl(— b+ 2au )

Vb2 - 4ac
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Solving for u:

1 -b+2au
(9—90) —a = COS 1(\/ﬁ),
—-b +2au
s (0000~ (5250 )

Vb2 —4daccos ((0 - 69) V/-a) = b + 2au,
Vb2 —4daccos ((6 - 69) v/-a) +b )

2a

(3.4.9)

Substituting back in for  and accounting for some small perturbation C (since this is an

approximation), we get

2a
= . 3.4.10
' \/b2—4accos((6—80)\/—a)+b+C ( )

Thus we have the orbital motion under conservation of energy. Note that 2 < 0, hence
\/—a does not pose a problem.

If we let 0y = 0 and define constants &, §, such that

oo 2a =, y- b
Vb2~ dac’ ' Vb2~ 4ac’
we can rewrite the orbital energy equation as
o
=————+( 3.4.11
g cos(BO) +y e ( )

which is of a similar form as compared to the 3-dimensional case.

3.5 C(lassical Free-Fall

To gain some understanding of the 2-dimensional system, we decided to solve for some
characteristic solutions [2]. We begin at time ¢ = 0 with a particle of mass m and a speed

v =0 at a distance from the center r = ryp. Under a potential

V=V, 1n(1), (35.1)
L40]
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we want to know how long it will take for the particle to reach the center of the circle.
Notice that this potential is of a slightly different form than our previous 2-space potential,
but if we take Equation 3.2.2 and let f = -V In(rp) then we have the same equation.

The total energy of the system is

E=T+V =1mo* + VoIn(r/ro), (3.5.2)

so at time f = 0 we have E = 0. Under conservation of energy, it follows that
%mzﬂ + VolIn(r/rg) = 0.

Solving for the velocity v and taking the negative root, since the motion is inward, gives

v=-\/2VoIn(r/r). (3.5.3)

Since velocity is defined as v = dr/dt, it follows that dt = dr/v. We integrate this and find

0
/Tdt: dr.
0 10} 0

Plugging in for v and integrating yields

(3.5.4)

1
—dr.
STl

For ease of computation, we now change variables from r to y such that y = r/ry and
dy = dr[rg. This gives

o1
T=-rg\/m/2V)y —dy,
1 V()

which can be solved numerically, and therefore the time for free-fall is

T=rpy /%. (3.5.5)

We compare this to the the time for classical free-fall in 3 dimensions,

Tt m
EPANAONY 35.6
T2\ v, (3.56)

and we observe that they are similar results.
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Relativistic Spherical Motion in 3+1
Dimensions

This derivation follows the one described in [4].

4.1 Measuring Spacetime

We begin by setting up the mathematical framework for spacetime

Definition 4.1.1. An m-manifold is an m-dimensional space S where each point s has a

neighborhood that looks like R™ [6, p 225]. In our case, the manifold is spacetime.

In a standard orthogonal spherical coordinate system, the position vector r is
r(t,7,0,¢) =th+rsinOcospi+rsinOsingj+rcosOk. 4.1.1)

Since we are not necessarily in Cartesian flat space, we define the natural basis vectors
from the position vector. In other words, we define how to measure a quantity based on

how it moves on the manifold.

Definition 4.1.2. A natural basis vector e, is defined as [4, p 9]

e, = dr/du. (4.1.2)
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The basis vectors of a coordinate system span the tangent space to the manifold. As a

result, they are tangent to the curve at any point (o, 7o, 8o, ¢0).
It follows that
e = h
e, =sinfcos@i+sinOsingj+cosOk
eg=rcos@cospi+rcosOcospj—-rsinOk

ey = -rsinfsingi+rsinOcosdj

A metric defines how measurements are to be taken on a manifold for quantities like
lengths, distances, and angles. For black holes, it also is a way of measuring the curvature

of spacetime near the singularity.

Definition 4.1.3. The covariant metric tensor Quv is defined as [4, p 32]

S =1n"e, e, (4.1.3)
The contravariant metric tensor g" is defined as

g = (gw) . (4.1.4)

The coefficient n* corresponds to the elements of the Minkowski metric,

1 0 0 0
0 -1 0 O

nyv = T]‘uv = 0 0 _1 O (415)
0 0 0 -1

A covariant metric tensor, also just known as a metric, is defined on a manifold. We will

mainly be dealing with diagonal metrics, where p = v.

A metric allows us to measure the length of a quantity & on the manifold by

€1 = g (£")%.
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We will say that a “singular” metric is one that yields a physical singularity, and therefore
is a metric that will produce a black hole.

The Schwarzschild solution to the Einstein equations holds for a static, spherically
symmetric, and asymptotically flat vacuum spacetime. The metric for the Schwarzschild

solution is of the form
A(r) 0 0 0
0 -B(r) O 0
Sw=l o 0o -2 0
0 0 0 -r%sin%0

(4.1.6)

The functions A(r) and B(r) tell us how the spacetime warps as r — r;, where 75 is the
Schwarzschild radius. We will solve for A and B when we solve for the Ricci tensor in the

Einstein field equation.

Definition 4.1.4. A line element is the length of an infinitesimal distance on the manifold.

The line element of a spatial manifold is defined as
ds? = gupdx"dx’, (4.1.7)

where a,b = 1,2, 3 refers to the r, 0 and ¢ coordinates [4, p 45].

Similarly, in a manifold with both time and space components, we have
ctdt? = Suvdxtdx’, (4.1.8)
where 7 is the proper time, and 1,v =0, 1,2, 3 correspond to t,7, 0 and ¢ [4, p 84].

The Schwarzschild line element is [4, p 116]

Adt® = A(r) dt* - B(r) dr* - r*d6* — 1* sin® 0 d¢°. (4.1.9)

4.2 Geodesics

Definition 4.2.1. A geodesic is the curve that minimizes the length of a line connecting
two points, and locally it looks like a straight line even though it follows the curves of the

manifold. It is the differential geometry equivalent to a straight line in Euclidean space.
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Definition 4.2.2. Christoffel symbols tell us how much a chosen path deviates from
a geodesic on the manifold. We represent a Christoffel symbol as va, and Christoffel

symbols are symmetric, so Fﬁp = ng.

There are three ways we can find the Christoffel symbols.

(i) Lagrangian method We construct the Lagrangian from the metric with the equation
L(P,x) = $gu (xP) 51" (4.2.1)
For a 3+1-dimensional Schwarzschild metric the Lagrangian is
L= % (A(r) 2 - B(r) i 0% - r*sin® 0 ¢ ) (4.2.2)

The partial derivatives of this Lagrangian are

‘3_Lt, Al ‘3& 0, (4.2.3a)
% = -B7, ‘;—i = %t 1; ' ~r6% - rsin® 0¢?, (4.2.3b)
% =10, gg ~r*sin 0 cos 0 ¢?, (4.2.3¢)
;LJ - Psin? 6, % 0. (423d)

Note that the shorthand notation A, B, A’, and B’ refers to A(r), B(r), A’(r),and B'(r).

We take the Euler-Lagrange equation,

d [ JdL JL
au (ﬂ) o (424

where d/du indicates taking the total derivative, and u = 0,1,2,3 refers to t,7,0,
and ¢. The Euler-Lagrange equation gives the equations of motion for the manifold

based on the Lagrangian.
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Plugging 4.2.3a, 4.2.3b, 4.2.3c, and 4.2.3d into Equation 4.2.4 gives the four Euler-

Lagrange equations

At+ At =0, (4.2.5a)
—Bf—%ﬁz—%ﬂ2+w?+rgn%hﬁzo, (4.2.5b)
20 - 2r#0 + r*sin O cos O = 0,and (4.2.5¢)
—r*sin® ¢ — 2rsin O 7 — 2r* sin O cos 0 O = 0. (4.2.5d)

Observe that these are almost of the form of the geodesic equation,

P+ T, 43" = 0. (4.2.6)

In order to get the geodesic equations from the Euler-Lagrange equations, we must

solve for %°. This yields the geodesic equations

. A

f+ ” tr=0, (4.2.7a)
A/ 2 B/ ) Y] TSinZG )

S N s e 42.

r+2B +2Br BQ B ¢ =0, (4.2.7b)

0 + % #6 — sin O cos O qu =0, and (4.2.7¢)

.2 . ..

¢+ P 7P +2cot0 O = 0. (4.2.7d)

The I' terms are the Christoffel symbols. Note that when the subscripts are unequal,

so u # v, we must halve the Christoffel symbol to avoid counting it twice. Therefore,
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we have

tr=5a” (4.2.8a)
= %, (4.2.8b)

r = %, (4.2.8¢)
00 = %, (4.2.8d)
2)@ = %?26, (4.2.8¢)
rf, = % (4.2.8)
F$¢ =-sinfcos 0, (4.2.8g)
r‘j; - % (4.2.8h)
ré , = coto, (4.2.8i)

with the rest of the Christoffel symbols being zero [4, p 117].

(ii) Derivative of metric This is a straightforward yet tedious computation from the

equation [4, p 70]
Ty = 387 (9kgij + 9igjk — 9j8ki) - (4.2.9)

We get the same results.

(iii) Change of coordinates This method involves two sets of coordinates. An example

of this method is in Appendix D.

We have shown that we can find the Christoffel symbols from the mechanics of the system,
the metric directly, or how the coordinates and tensors transform. This means that we
can find how curved the paths in the space are from the fundamental measurements of
the manifold, from the equations governing movement across that manifold, or from the

process of getting from Cartesian space to the curved manifold.
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4.3 Tensors

Definition 4.3.1. A tensor of rank 7 is an n-dimensional block of numbers that transforms

according to its indices. More precisely, a tensor T of rank p + g transforms to a tensor T

of rank p + g by
e 3 T e e
GX0) Z It Jxh
where x!.--x" are the coordinates relative to the tensor T and z'---z" are the coordinates

relative to the tensor T [3, p 152]. The indices of T and T tell us the specific component of

the tensor.

We mainly deal with tensors of rank 2. Think of them like a higher-order vector or an
array. We find that the tensors are all symmetric, and all have a divergence of zero due
to equations of continuity, equations of motion, and Maxwell’s equations [4, p 101]. A
symmetric tensor means that T,, = T, and T = b2,

The first tensor we consider is the stress tensor T#". The stress tensor is a mathematical
representation of the relationship between energy, momentum, and stress in a distribution
of matter. We can think of the vacuum of space surrounding the black hole as a “perfect
fluid” with no pressure and no velocity, since by definition there is no matter in a vacuum.

Thus

TH = 0. (4.3.1)

This gives physical conservation laws of energy and momentum. We next look at the

Einstein field equation and Einstein tensor G*”. The Einstein field equation is
G =«TH, (4.3.2)

where « is the coupling constant experimentally found to be —-8nG/c*. Qualitatively, we

can think of T*" as the physical character and G*" as the geometric character in this region.
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Since we set T*" = 0, it follows that

G = 0. (4.3.3)

One key tensor is the Riemann tensor, also known as the curvature tensor. It is given
by the formula
Ry, =9y T5, =0, Ty, + T, T, - T, Th . (4.3.4)
This tells us specifically how curved the manifold itself is, not just the paths on it.
Definition 4.3.2. A manifold is flat if R,’fpg = 0 at each point (¢,u,v,w) on the manifold

[4, p 103]. In other words, the Riemann tensor measures how much the manifold locally

deviates from flat space.

A more specific variation of the Riemann tensor that we want to focus on is the Ricci
tensor, given by

Ryv = wap- (435)
The process above is called contraction. If we contract again, we get the curvature scalar
R =R} = g"" Ry (4.3.6)

The Einstein tensor G*" is defined by the Ricci tensors and the curvature scalar. Einstein
chose this formulation of G*V so the geometric tensor would have zero curvature when
T#" = 0. Defining the Einstein tensor only in terms of R*", the contravariant version of
R, does not give this due to a particular method of differentiation known as covariant

differentiation [4, pp 76, 113], so we have
G" = R" - IRg"". (4.3.7)
As previously stated, we have G*” = 0, so by [4, p 113] and [3, p 400] it follows that

R™ = 0. (4.3.8)
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Note that R*" = 0 implies Ry, = 0 as well [7].
We now compute the Ricci tensor components. The non-zero Ricci tensor components

for our four-dimensional Schwarzschild metric are

A// A/ A/ B/ A/

R - - - J— _— = O, 4.3-9
” 2B+4B(A+B) B #3.9)

A// A/ A/ B/ B/
R, AT _A(A B B 43.10
"T2A 1A (A ’ B) rB (43.10

1 r (A" B

Rop= L 14 (A B\ o 43.11
00=B 728 (A B ) (43.11)
Ry = Rggsin® 0 = 0. (4.3.12)

To find functions A and B we must decouple these differential equations in order to

solve Ry, = 0. We take Ry, + %Rtt = 0, which simplifies to
A'B+AB' =0. (4.3.13)

So by the product rule it must be that AB = constant. As we move away from the black
hole, we want our metric to look like Minkowski space, so for our boundary conditions
weletA > c?and B> 1asr — oo.

We let the constant above be c?, so B = ¢2/A. We plug this into Rgg and find that
A(r)=(1+%) and B(r)=(1+%57, (4.3.14)

where k is a constant of integration. Based on the Newtonian mechanics and gravitational
potential of the system, we find that k = ~2GM/c?, where G is the gravitational field
constant and M is the mass of the object producing the gravitational field.

Therefore the Schwarzschild line element is

c2dt? = ¢ (1 - ZGM) dr? - (1 -

2GM
rc2 2

-1
- ) dr* — r* d0* - 1* sin® 0 d¢p* (4.3.15)
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and the metric is

(1- %) 0 0 0
rc 1
0 -(1-2&M" 9 0
Suv = 0 ( Orc2 ) o 0 (4.3.16)
0 0 0 -r2sin’0

4.4 Dynamics

4.4.1 Relativistic orbit equation

We now want to analyze how objects move along time-like geodesics in spacetime. First,
we will look at the orbit equation in the equatorial plane, which shows how the radius r
changes with ¢.

We start with Equation 4.1.9 for the line element,
2dr? = 2 (1-2mfr) 2 - (1-2mfr)™" P -2 . (4.4.1)

For simplicity, we can set d7* = 1 and assume that we are moving along the manifold at
unit time. Assuming ¢ # 0, we divide through by ¢* and get

c? 2(1 Zm) 2 (1 Zm)‘1 ?

¢ @ ) @
Due to the spherical symmetries of t and ¢, we can set
JL 2my dL 5,
oL (™) g2 T Pd= 442
at( r)tkandaqbrcph (4.42)

for some constants k and , and let m = GM/c?. In addition, we let 0 = 71/2, which is akin
to picking the specific geodesic around the equator and computing the orbit equation for

a particle moving along that geodesic. We plug these in and get

At 2m k2142 2m\7 (dr\’ ”
- 1-=] ——— =~ _|1-== — | -7 44.
2 c ( y ) 12(1 = 2m/r)2 ( y ) (dcp) g (14.3)

Observe that instead of plugging in for ¢? in the 7 term, we instead make use of the fact

)G (o)

that
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which will later allow us to solve a differential equation. We can rewrite the previous

equation as

ar\* cr? 2GM\ c*k*r

We now change variables from r to u, with u = 1/r, to make the computation easier. This

gives

2 2012
(du) cut = (-1) + 2GMu+ ZGMu3. (4.4.5)

d 12 h? c2

If we let E = ¢?(k* -~ 1) /h?, we notice that this equation is in the same form as the classical

Newtonian orbit equation, plus a relativistic correction 2GMu?/c?.

4.4.2  Objects falling into the black hole

We return to Equation 4.4.1. However, since we want to find the equation of motion for a
particle falling radially from its orbit into a black hole, we set ¢ = 0 instead of assuming it
is nonzero like we did previously. With this new condition, and substituting in Equation

4.4.2 for {, we have [4, p 137]
= k> + (1 -2m/r) = 0. (4.4.6)

Now, we want to find a value for the constant k. We look at a particular case of this
equation, when the particle is at rest, so when r = rp,we have 7 = 0. Plugging this in, we
find that k = +/1 - 2m/ry. Notice that we take the positive square root of k, since we
follow the convention of time moving positively forward. In addition, we note that k is
not a universal constant, since it changes based on the starting radius ry.

When deriving equations of motion, we aim for something resembling a classical force
equation, meaning that it has a second derivative of a position variable. Hence we differ-

entiate both sides of (4.4.6), which gives, with rearranging and setting c =1,

i+ GM/r* = 0. (4.4.7)
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This equation is in the same form as the classical Newtonian equation for vertical free

fall, [5, p 63]

i+GM/r* =0,

but the relativistic r is not the vertical distance and the relativistic derivatives are with

respect to proper time 7, not coordinate time t [4, p 138].

4.4.3 Motion in a circle

We start with the radial Euler-Lagrange equation,

A, B : :
—Bf—7t2—5r'2+r62+rsin26¢2:0.

Plugging in the values for A and B from (4.3.14), we have

2m\! mc? 2 2m\ 2 m \9
(1—7) 7’+r—2t —(1—7) r—zr—r¢) =0.

Assuming this motion is taking place in the equatorial plane, we let 0 = 7.
since a circle has a constant radius, we let 7 = # = 0. This yields

1’l’lC2

5 P?-rp*=0,

which rearranges to

mc® 12 = r° 2.
dp)*_me
t)]

R ) ()

Solving this differential equation and setting ¢ = 27, 9 = 0, and fy = 0 gives

o/
= r
"\ oM

It follows that

since

(4.4.8)

(4.4.9)

Additionally,

(4.4.10)

(4.4.11)

(4.4.12)

(4.4.13)
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the time it takes for one revolution about the equator. This is of the same form as Kepler’s

third law,
PR

T=2T ,
GMsun

where 4 is the semimajor axis [5, p 239]. Classically, coordinate time is proper time, so

relativistically it is OK that this is 7 and not t.



D

Relativistic Circular Motion in 2+1
Dimensions

We now build a relativistic framework for a black hole in 2+1 dimensions. This is our

own derivation, following similar steps as in Chapter 4.

5.1 Metric and Line Element

In two space dimensions and one time dimension, the Schwarzschild line element looks

like

2dt® = A(r)dt* - B(r) dt* - * d6?, (5.1.1)

where A(r) and B(r) are functions of r to be determined later [4, p 116].

Therefore the metric is of the form

A(r) 0 0
Suv =( 0 -B(r) 0 ) (5.1.2)
0 0 -

with y,v =0, 1,2 corresponding to t, 7, and O coordinates.
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5.2 Geodesic Equation

We determine the geodesic equation using the Lagrangian method as outlined in §4.2.

We set up the Lagrangian from the metric to find the equations of motion:
L=1(AP-Bi*-r6%), (5.2.1)

where the Newtonian dot notation indicates taking a derivative with respect to proper

time 7 [4, p 60]. Taking the partial derivatives, we get

% AL % _o, (5.2.2a)
% _ B/, % _ %’fz_%'r-z_re% (52.2b)
g_g -76,95 -0 (5.2.20)
Note that a prime indicates a derivative with respect to 7.
The Euler-Lagrange equation is
% (a%) . ;TL# _0, (5.2.3)

where u = 0,1,2 such that =t xl =r and x* = 6 [4, p 60]. We plug in the partial

derivatives to get the Euler-Lagrange equations:

Af+ A'ii =0, (5.2.4a)
/ !/
BroB-Ap_Ba_ e 0, (5.2.4b)
2 2
1?6 -2ri0 = 0. (5.2.4¢)

We now solve the Euler-Lagrange equations for ¥*. This gives the geodesic equations

. A
t+ —tr=0, 525
+ " A ( a)
. A B 5 1.,
— — - =0 = .2.5b
r+2Bt +ZBr BQ 0, 5 )
2

6+7i6=0. (5.2.5¢)
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Using the geodesic equation,

=0 p.‘u.v_
Vv 7 Lo
¥+ T, xf% =0 (5.2.6)

we are able to pluck out the nonzero Christoffel symbols

A’ A’ B’

A A —r 1
247 “HToB”

O=op 0 Too=5 - 9, = o (5.2.7)

I, = 2B’

Note that for I't, and I'),, since they have subscripts y # v, we must halve the Christoffel

symbol so as to not count it twice.

5.3 Ricci Tensor

We now find the Ricci tensor components. The Ricci tensor component formula is

Ry = T = 96T, + Tholh, =~ T, (5.3.1)

where the indices u,v = 0,1,2 correspond to t,r and 0, and p,o = 0,1,2. We plug this
equation into Sage to solve for the Ricci tensor components, as seen in Appendix E. We

find that

(A/)Z A// A/B/ A/

Ry = 4 L 532

“T4AB 2B ' 4B 2B (5:32)
A/B/ A// (A/)Z B/

_2ea vy 5 533

"ZT3AB " 2A  4A?  2rB (5:3.3)

rA’  rB’
Rgp= 2 -2 534
907 24B  2B2 (634

and the rest are trivial. Following the logic of §4.3, we let Ry = R, = Rgg = 0. We take

(Rt - BJA) + R,y = 0, to eliminate the second derivatives, which yields
-A'B=AB. (5.3.5)

This implies that AB = constant, assuming A, B # 0. With the boundary conditions A — ¢?,

B —1asr— oo, welet

AB=¢?, (5.3.6)



5. RELATIVISTIC CIRCULAR MOTION IN 2+1 DIMENSIONS

SO
2
c
B=—.
A
We substitute this into Rgg, which gives
A B
2AB 2B2
A" B
-,
2A 2B
A PATA
—+ — =0,
A A% 2
A A
A + A =0.
A A

Since A # 0, it must be that A’ =0, so A = constant. Thus

A=c?| and

This produces the line element

’02 dt® = Adt* —dr* - 1* d6> ‘

2 0 0
gw=|0 -1 0],
0 0 -2

the implications of which are explored further in §6.

and a flat Minkowski-like metric

5.4 Dynamics
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(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)

Since our manifold is flat, we expect that the dynamics of the system will behave like they

would in Minkowski space.

5.4.1 Orbit Equation

Looking back at the Lagrangian, which gives us equations of motion, we take JdL/df =

constant and 8L/89 = constant, so we have the relationship between coordinate time ¢



5. RELATIVISTIC CIRCULAR MOTION IN 2+1 DIMENSIONS

and proper time 7,

and an equation analogous to the conservation of angular momentum,
r0=h,

where k and h are constants of integration [4, p 137].

We start with the equation for the line element of the metric,
A -2 -0 =2,

with dt =1, so that we are moving along the manifold at unit time.

36

(5.4.1)

(5.4.2)

(5.4.3)

Since we want orbital motion, we know 6 # 0, so we can divide (5.4.3) through by 62,

which gives
e (ﬂ)z p.e
62 \do 02
We substitute in (5.4.1) and (5.4.2) for 6 and f and get

k24 (dr )2 2 c2rt

2nz \do 2

Rearranging yields
r\* Kt , At
We let u = 1/, so dr/dO = —du/(u*d0). It follows that

du\> K, 2
(%) tap T et

We rewrite this as

(d_u)z_uZ_k2+C4
do) c2h?

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)

(5.4.8)

This is the relativistic orbital energy equation for 2+1 dimensions. If we compare it with

the approximated classical equation for 2+1 dimensions,

2
(;l_g) =au’ +bu+c,
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we notice that the two equations are similar, but the relativistic equation is missing a
linear term. In 3+1 dimensions, the relativistic equation is the classical equation plus a
cubic correction term. However in this case, the relativistic equation is missing a term, or

would have a correction term that is negative the linear term.
5.4.2 Vertical Free-Fall

We now want to find the radius r as a function of proper time 7 to give an equation of
motion for an object starting a radius r.
We return to Equation 5.4.3. For vertical free-fall, we set 6 = 0, and we let { = k with

c =1as per Equation 5.4.1. This gives
P=Vkr-1,
where 7 = dr/dt. Solving this differential equation yields

r=vVkX-1t+y, (5.4.9)

where y is a constant of integration. This means that the vertical free-fall is a constant
linear function of the proper time 7. If we start the particle at a radius ry and solve for the

time 7, we find

1

(5.4.10)

which is somewhat similar to the classical vertical free-fall time.
5.4.3 Motion in a Circle

We begin with the radial Euler-Lagrange equation,

A, B .
-Bi - B'#* - ?tz - E# - 6% =0.

Substituting in (5.3.9) for A and B gives

-i-1r20% = 0. (5.4.11)
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Since a circle has constant radius, we have # = 0, so

—20%=0. (5.4.12)
This gives
46 _ 0. (5.4.13)
dt

This is not to be interpreted that there is no circular orbit, but that the circular orbit
is not a geodesic in 2+1-dimensional flat space. The difference between this argument
and the 3+1-dimensional argument is that a circle is a geodesic in the 3+1-dimensional
spherical model, so the Euler-Lagrange equation gives the geodesic equation. However, a
straight line is a geodesic in 2+1-dimensional flat space, which is why the Euler-Lagrange
equation gives us a straight line. Here, the Euler-Lagrange equations do not necessarily
yield the coordinate equations of motion. Instead, they yield the geodesic equations, and

in this case a circular orbit is not a geodesic.
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Conclusion

In 3 total dimensions, all the information about the curvature of the manifold is encoded
in the Ricci tensor [3, p 309]. The act of setting the Ricci tensor equal to zero in 2+1
dimensions (which results from setting the stress tensor equal to zero) effectively forces
the manifold to be flat. We are therefore guaranteed to get a Minkowski-like metric if we
are working in a vacuum.

We will now show that our metric is Minkowski-like in 2+1-dimensional polar coordi-
nates. Plugging our values for A and B into the metric, we have

(1 0 0 )
gw=(0 -1 0 (6.0.1)
0 0 -r?

with ¢ =1.

We choose to isolate the spatial part of the metric,

o (1 0
g;b = (O ],.2) ’ (602)
so that the total metric is written as
1 0
,0 _
hv = (0 _ 82’5’) : (6.0.3)
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We now employ a coordinate change to switch from polar coordinates to Cartesian

coordinates. We have the coordinate transformation formulas

?=x*+y* and 6 = arctan(y/x),

and the transformation equation

g =Plg"p, (6.0.4)
where P = (_3;//;2 xy//r rz) and P7 is its transpose. We solve this equation and find that
vy (x/r =y (1 O\( x/r y/r\ (1 O
Sab = (y/r x/r? ) (O P \~y/r* x/r*) \0 1 (6.0.5)
Following the same logic as above, we let
’ 1 0
S = (0 ~ g;,;y), (6.0.6)
which yields
1 0 0
g =10 -1 0. (6.0.7)
0 0 -1

This is a Minkowski-like metric in 241 dimensions. Since a Minkowski-like metric means
that the space is flat, we therefore do not have a black hole solution.

Hence there are no non-singular Schwarzschild-like solutions in 2+1 dimensions for
Einstein’s equations. If we want to get a black hole-like solution, we will need to modify
Einstein’s equations with a different cosmological constant. We explore this possibility

further in §7.1.
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Future Research

7.1 Moditying Einstein’s Field Equations

We have found that a Schwarzschild solution to Einstein’s field equations does not yield
a black hole in 2+1 dimensions. However, we could modify Einstein’s field equation with
a cosmological constant A so that a Schwarzschild solution would be non-singular.

Einstein’s modified field equation is [4, p 201]
Gyv + Agyv = KT‘uv- (711)

Researchers have found a solution to this for a charged Einstein-Maxwell field with a
negative cosmological constant [1]. It is possible that Einstein’s field equation modified by
a cosmological constant might allow for a 2+1-dimensional non-singular Schwarzschild

solution.

7.2 Relaxing Schwarzschild’s Assumptions

Schwarzschild found his solution to Einstein’s field equations based on four assumptions:

a) the field was static, b) the field was spherically symmetric, c) the spacetime was empty,
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and d) the spacetime was asymptotically flat. Relaxing one or more of these assumptions

could result in a black hole solution to Einstein’s field equation in 2+1 dimensions.

a. If the field was not static, we could let the metric vary with f, which would have us
solving for functions A(t,r) and B(t, r). The mathematics of dynamical systems may

prove useful in pursuing a solution of this nature.
b. See §7.3.

c. Relaxing this condition is tantamount to a Robertson-Walker-type approach that in-
cludes radiation and mass-density in the stress tensor, which would require time-

dependent modifications of the metric.

d. This condition is what gives the boundary conditions A(r) = ¢* and B(r) = 1 as r - co.
It is quite possible that there exists a Schwarzschild solution to Einstein’s field
equations in 2+1 dimensions that satisfies a different set of boundary conditions,

one that would not necessarily have an asymptotically flat spacetime.

7.3 Relativistic Elliptical Motion in 2+1 Dimensions

Initially, we were pursuing a 2+1-dimensional Schwarzschild solution in elliptical polar
coordinates that we could then rotate about the major axis to give an ellipsoidal polar

solution in 3+1 dimensions.

7.3.1 Metric and Line Element

The equation for an ellipse is

2 2
x Yy 2

+ =
a2 b2
or

x=arcos8, y=>brsin0
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for two constants a,b. Let 2 = @ and b = 1, where «a is some nonzero stretching constant.
Note that when a = 1, the elliptical case will reduce to the circular case. So we have

x = arcos 0 and y = rsin 0. This gives the position vector

r=arcos@i+rsin0j. (7.3.1)
The natural basis vectors are
d
e = a =acos0i+sin0j (7.3.2)
ar
and
or e .
eg = 30~ —arsin @i+ rcos 0j. (7.3.3)

We take the dot products of the natural basis vectors to find the elements of the spatial

metric:

e -e = a? cos® O + sin® o, (7.3.4a)
e -eg=(1- az)r sin 6 cos 0, (7.3.4b)
eg-e,=(1- az)r sin @ cos O, (7.3.4¢)
e - eg = r*(a*sin® 0 + cos? 0). (7.3.4d)

Therefore our spatial metric is

2.2 ) 2N s
a”cos“ 6 +sin“ 6 1-a“)rsinBcosB
8ij = (( ( ) ) (7.3.5)

1-a?)rsinOcosO 1*(a?sin® O + cos? 0)
which reduces to the circular correctly.
Atr — oo, we expect that an ellipse will be circularly symmetric. Therefore, our bound-
ary conditions will be A(r) - ¢? and B(r) — 1 as r — oo, the same as the circle.
Including the time component, we have

1 0 0
Sy = (0 —(a?cos? 0 +sin?0) —(1-a?)rsinBcosb ) , (7.3.6)
0 —(1-a?)rsinBcos@ —r*(a®sin®6 + cos®0)
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which gives the line element

c2dt? = A(r) d*~B(r)(a® cos? B+sin? 6) dr*-2((1-a?)rsin 6 cos 6 drd0—r*(a? sin® B+cos> 6) d6>.
(7.3.7)
We include functions A and B to account for time dilation and the radius of the event

horizon.

7.3.2  Lagrangian

Following the same method as in §4.2, the Lagrangian for our line element is

L=1(A#-B(a*cos’ 0 +sin’ 0)#* - 2(1 - a*)rsin 0 cos 070 - r*(a’ sin” 0 + cos” 0) 67).

(7.3.8)
The partial derivatives of this Lagrangian are
% _Af (7.3.9a)
aa_i _o, (7.3.9b)
% = —B(a?cos® 0 +sin® 0) 7, (7.3.9¢)
% = I%Iir' - BE,( 2 c0s? 0 +sin® 0) 7 — (1 - a®) sin B cos O70 — r(a®sin” 0 + cos? 6) 62,
(7.3.9d)
% = —7(1-a?)sin B cos O — r*(a?sin® O + cos” 6) 6, (7.3.9¢)
g—g = —B(1-a?)sin B cos 87 — r(1 - a?®)(cos? 6 — sin? ) 70 — r*(a* — 1) sin 6 cos 6 6.

(7.3.91)

We take Equation 5.2.3, the Euler-Lagrange equation, and plug in the partial derivatives.
This yields

At+A'tr=0, (7.3.10)

! /
-B(a?cos® 0 +sin® 6) i — % t - %(az cos? 6 + sin’ 0) #

~2B(1 - a?)sin B cos 070 + r(a’cos® O +sin?0) 6> =0, (7.3.11)
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—r*(a?sin® 0 + cos® 0) B — (1 - a*) sin O cos O 7 + (B - 1)(1 - a*) sin O cos O 7

—2r(a*sin® @ + cos? 0) 70 — r*(a® - 1) sinBcos B 0% = 0. (7.3.12)

We notice that the third Euler-Lagrange equation has two second derivatives in it. This
poses a problem, because we do not know how to put it into the geodesic form so that we
can find the Christoffel symbols. However, each Euler-Lagrange correctly reduces to the

corresponding equation in circular polar coordinates.

7.4 Relativistic Ellipsoidal Motion in 3+1 Dimensions

We have slightly higher hopes for a 3+1 dimensional ellipsoid to produce a black hole
than a 2+1 dimensional ellipse, but an ellipsoid isn’t spherically symmetric. Since a
Schwarzschild solution requires spherical symmetry, we might not be able to produce an

ellipsoidal black hole solution.



Appendix A

We begin by explaining the derivation of Gauss’ law for three spatial dimensions [7]. In
three dimensions, the inverse square field allows us to write the “joint form” of Newton’s
law of gravity.

The flux of the field through the surface will be

@SG -nda. (A.1.1)

With the divergence theorem, we have

@G-ndazggggvﬂd@ (A.1.2)

where d7 is an interior volume element. For a point mass at the center of the sphere, we

have

G=-—e¢

for some constant k, and the surface element is

nda = e,r*sin 0dOde.
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Thus

{fG-erda={f (—kr—’f)rzsinededqj
= —4mtkm (A.1.3)

since the mass density is p = dm/dt. We can write

o gl

so the divergence theorem gives

—4nk9§§6pdT = 95@5V -Gdr. (A.14)

It follows that

V-G = —-4nkp, (A.1.5)

and so for some potential Z, since G = VE, we have
V2E = —4rkp, (A.1.6)

known as Poisson’s equation.

In general relativity, the coupling constant in Einstein’s field equation is determined
by requiring the field potential in the “curved” manifold to reduce to the Newtonian
potential in flat Minkowski space via the equivalent to Poisson’s equation in “curved”
space, where V2 is modified by the chosen metric.

We reproduce this argument in two-dimensional space, replacing m by a 2-mass n’, k
by an empirical gravitational constant k’, mass-volume density p by the surface density o,

and the 3-space divergence theorem with the 2-space version of the divergence theorem,

y{ G ndi=(fv-Gdo. (A.1.7)
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A brief demonstration of how we arrived at this 2-space divergence theorem is given in

Appendix B. The flux through a circle surrounding a 2-mass will be

ng'-ndl = 5Z§G’-n(rd6)
=@V-Gda.

To provide the necessary constant flux, we choose

K'm'

r

G-=

so that

%G‘nrdez—k’m’ﬁde

= _onk'm’ = @5 V- Gda.

Now writing the surface mass density as

dm’ ,
o= oy or m:ﬁada,

we have

V-G =-2nk'c.

Therefore, for a potential E, we have

V2E = 271k o.

The derivation of how we obtain the potential is in Appendix C.

(A.1.8)

(A.1.9)

(A.1.10)

(A.1.11)

(A.1.12)

(A.1.13)



Appendix B

We want to define the divergence theorem in two spatial dimensions to find the flux of a
tield through an area. We begin with a field H and a differential box with side lengths Ax

and Ay.

Ay

ol HsA—

AX

The flux in the x-direction is
@y = HowtAy — HinAy. (B.1.1)
We can calculate the field leaving the box,

Hout = Hin + A—HAX, (812)
Ax
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and plug this in Equation B.1.1, which gives
D, = (Hin + %Ax) Ay - HinAy. (B.1.3)

We notice that AxAy is the area of the differential box, so we will call it 4A. Therefore

AH
@x = EdA = Hx . ndy, (B.1.4)

where H, is the x-component of the field. Finding the flux in the y-direction and the
y-component of the field is done in the same way.
For a finite area composed of multiple differential boxes, we sum over all the differential
boxes, which yields
> H-ndl= )  V-HdA (B.1.5)

circumference interior areas

The total flux is a summation of the flux through each box, each of which is a sum of the
four sides. We see that the fluxes around neighboring sides effectively cancel each other

out, so the total flux is an integral around the perimeter of the area.

A

Q
QA

gee

)
Y

HOIQD

Thus

fH-ndl:@v-HdA. (B.1.6)



Appendix C

We begin with a 2-dimensional classical circular orbit, which has
i=(F-r0%)e, + (r6+270)eq.

For a force F(r) = f(r)e,, we have

f(r)=#-r6?
and an angular momentum
L =mr? 9,
which can be rewritten as
2 L?
C om2rt
. . 1
Since we are using a . force
F(r)=mie,=——e,,

and

(C.1.1)

(C.1.2)

(C.1.3)

(C.1.4)

(C.1.5)
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then our equation for a two-dimensional force becomes

. L2k
f(r):mr:ﬁ—;. (C16)

To find the pseudo-potential, we can treat this as a one-dimensional problem with an
attractive force —k/r plus a fictional “centrifugal” repulsive force L?/mr>.

As a one-dimensional problem, we have a pseudo-potential

V(r)z—f}"(r)dr

2
:—f(L—s—lf)dr
mr r

2
=- (—ﬁ - kln(r)) +B
LZ
=5t kin(r) + B, (C.1.7)

where § is a constant of integration.

The stable circular orbit will be where V(7) is a minimum, so

2
4] RSN (L—3 _ ’f) -0, (C.18)
dr r=ro r=ro mr 4 r=ro
It follows that
L> k
— =, C.19
m(ro)® 1o ( )
SO
L
rg = ——. C.1.10
Solving for and plugging in for L with a constant radius 7y we have
0= L 5, (C.1.11)
ro m
SO
o- /5.y (C.1.12)
To m

where y is a constant of integration. This gives a linear equation of motion.



Appendix D

To define the Christoffel symbols via coordinate transformation, we will be changing from
Cartesian coordinates x, y to circular polar coordinates r, 0.

We begin with expressions for x and y in terms of r and 0,
x=rcosf and y=rsin0, (D.1.1)
and expressions for r and 6 in terms of x and y, which are

r=1/x*+y? and Q:arctan(%). (D.1.2)

We use the transformation rule [3, p 283]

o 82"'( . 02F 971 9*F )

P09k \ TP gz 9z " dzP' 9z (D-1.3)

where k,p,q =1,2 and z! ... 2" is the set of coordinates such that primed coordinates are

. . . . 4 U
circular polar and unprimed coordinates are Cartesian, so z! = x, z> = y, z!' =1, 22 = 0.

All Christoffel symbols in Cartesian coordinates are trivial, so this gives a more specific

transformation rule [3, p 285]
07 %K

r ! /:_f.
Pa 9zk 9zP' 9z

(D.1.4)



Change of coordinates method of computing
Christoffel symbols - Cartesian to Circular Polar

IR S QB KX 3%
I

VARIABLES
= var('x"')
= var('y")
= var('r')
var ( 'theta')

EQUATIONS OF MOTION
= r * cos(q)
r * sin(q)

# FIRST DERIVATIVES

# Euclidean coordinate x
# Euclidean coordinate y
# polar coordinate,
# polar coordinate,

radius
angle

# Euclidean coordinate x
# Euclidean coordinate y

# polar coordinate,

dxdr = x.derivative(r)

dxdgq = x.derivative(q)

dydr = y.derivative(r)

dydgq = y.derivative(q)

# SECOND DERIVATIVES

ddxdrdr = dxdr.derivative(r)
ddxdrdg = dxdr.derivative(q)
ddxdqgdr = dxdg.derivative(r)
ddxdqdq = dxdg.derivative(q)
ddydrdr = dydr.derivative(r)
ddydrdg = dydr.derivative(q)
ddydgdr = dydg.derivative(r)
ddydqdqg = dydg.derivative(q)
# VARIABLES

X = var('x")

y = var('y')

r = var('r")

g = var('theta')

QK3

EQUATIONS OF MOTION
= sqgrt(x"2 + y"2)
= arctan(y / X)

# FIRST DERIVATIVES

drdx =
drdy =
dqgdx
dgdy =

r
r
q
q

# polar coordinate,

.derivative(x)
.derivative(y)
.derivative(x)
.derivative(y)

radius
angle



# No second derivatives needed

We will now plug into the transformation rule

y _azk azzk
PO 9zk 9zp'0z4

to obtain the Christoffel symbols. Note: Gmns = ..

Grrr = drdx * ddxdrdr + drdy *
show(Grrr)

0

Grrq = drdx * ddxdrdg + drdy *
show (Grrq)

__xshl(G) +;ycos(6)
A2 +y2 A2 +)y?

Grqr = drdx * ddxdqdr + drdy *
show (Grqgr)

X sin (0) N ycos (0)
A2 +y2 X2 +)?

Grqq = drdx * ddxdgdg + drdy *
show (Grqq)

__nxcos(e)__ ry sin (0)
A2 +y2 A2 +)?

Ggrr = dqgdx * ddxdrdr + dqdy *
show (Gqgrr)

0

Ggqrgq = dqgdx * ddxdrdg + dqdy *
show (Ggrq)

cos (0) N ysin (0)
()yc—z + 1>x @—j + 1)x2

Ggqgr = dqdx * ddxdgdr + dqdy *

ddydrdr

ddydrdqg

ddydqgdr

ddydqgdqg

ddydrdr

ddydrdqg

ddydqgdr



show (Gqqgr)
cos (0) N ysin (0)
()yc—z + 1>x <)yc—§ + 1)x2

Ggqgq = dgdx * ddxdqgdg + dqdy * ddydqdq
show (Ggqq)

rsin(0)  rycos(0)

(Eey (Zei)e




Appendix E

To avoid algebraic errors due to long computations, we plug in the Christoffel symbols
for 2+1 spatial dimensions, previously found via the Euler-Lagrange method in §5.2, into

Sage to find the Ricci tensor components.



Ricci tensor components for 2+1 dimensions

# VARIABLES
t = var('t'")
r = var('r'")
g = var('theta')

# FUNCTIONS that determine the how the spacetime warps under a

Schwarzschild metric
A = function('A', r)
Ap = A.derivative(r)
respect to r

B = function('B', r)
Bp = B.derivative(r)
respect to r

# the time dilation coefficient
# A', the first derivative of A with

# gives the Schwarzschild radius
# B', the first derivative of B with

# the CHRISTOFFEL SYMBOLS - previously found via the Euler-

Lagrange method
G000 =
G001 =
G010 =
GO1l1
G002
G020
G012
G021
G022
G100
G101
G110
Gll1
Gl02 =
G120
Gl21
Gl12
Gl22 =
G200
G201
G210
G211
G202
G220
G212
G221
G222 =

/ (2*A)
/ (2*A)

/ (2 * B)

/ (2 * B)

Il
OO O0OO0OWOoOOPOOOOOO P P O
o e} 'O 'O

|
[a]
~

B

~N
R R

I
oOrRrHFHOOOOOOo



Note: Gabc = ch' We compute the Ricci tensor components by

where W, V,0,0 go from 0 to 2, where = 0,7 = 1,0 = 2.1n the following results, note that D[0]A = dAldr = Ap.
- derivative(G000,t) + GO0OO * GOOO -

ROO =

R”N = avrﬁ(j - a(jrﬁ\/ + rﬁcrgv - Fﬁvrgo,

derivative (G000, t)

G000 * GO0OO + G100 * GO1O

G020
G000
Gl21
G0O0O
G222

+
*

+
*

derivative(G1l01l,t)
G101 + G101 * G110
derivative(G202,t)
G202 + G102 * G210

show (R0O0)

G100 * G010 + G200
derivative(G100,r)
G100 * G111 + G201
derivative(G200,q)
G100 * G212 + G202

* + % + %

G020
G001
G120
G002
G220

D[0] (A) (r)° _ DI0,0]1(A) (r) N D[0](A) (r) DIO](B) (r)  D[O](A) ()
4A(r)B(r)

R11 =

2B(r)

derivative (G010, r)

G011 * G000 + G110 * GO1l1

G020
G011
Gl21
G011
G222

+
*

+
*

derivative(Gl1ll,r)
G101 + G111 * G111
derivative(G212,r)
G202 + G112 * G211

show(R11)

4B (r)

Gl1ll * G010 + G210
derivative(Glll,r)
Glll * G111 + G211
derivative(G21l1,q)
Glll * G212 + G212

2rB(r)

* + % + *

G021
G011
Gl21
G012
G221

*

*

_ DI[0] (A) () DIO] (B) (r) N D[0,0](A) (r)  DI[O](A) (r)’ _ DIO](B)(r)
2rB(r)

R22 =

4A(r)B(r)

derivative(G020,q)

G022 * GOOO + G120 * GO12

G020
G022
Gl21
G022
G222

+
*

+
*

derivative(G1l21,q)
G101 + G121 * G112
derivative(G222,q)
G202 + G122 * G212

show(R22)

rD[0](A) (r)  rD[0](B) (r)

2A(r)B(r)

2B ()’

2A(r)

4A(r)

Gl22 * G010 + G202
derivative(Gl22,r)
Gl22 * G111 + G221
derivative(G222,q)
Gl22 * G212 + G222

* 4+ ok 4+ *

G022
G021
Gl22
G022
G222

*

- G200

G100
G200
G200
G200

- derivative(GO01l1l,t) + G010 * GOOl -
- G211

Gl01
G211
G201
G211

- derivative(G022,t) + G020 * G002 -
- G222

Gl02
G222
G202
G222

* |

* |

* |

* |

* |

* |
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