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Abstract

In this project we work with integer splines on graphs with positive integer edge labels. We
focus on graphs that are n-cycles for some natural number n. We find an explicit condition
for when a set of splines can form a module basis for n-cycle splines. In general, a set of
splines forms a Z-module basis if and only if their determinant is equal to the product of
the edge labels divided by the greatest common divisor of those edge labels.
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1
Introduction

Splines appear in many branches of mathematics and have many applications in several

fields. Originally, the word spline referred to a thin strand of wooden beam or thin metal

used in the construction of ships and aircraft. A metal weight was placed at specific control

points to keep the spline steady. Once the spline was secured in place, it was then shaped

according to the desired form.

Mathematically, a spline is a special type of curve, formed by a collection of piece-

wise polynomial functions joined together at key points to achieve a certain degree of

smoothness. In particular, we say F is a spline over an internal I = (−∞, a] ∪ [a,∞), if

f1(a) = f2(a). We denote a spline as F = (f1, f2).

Example 1.0.1. Consider the following piecewise function:

F (x) =

{
f1 = x2 : x ≤ 0
f2 = x : x ≥ 0

.

Clearly, F = (x2, x) is a spline over I = (−∞, 0]∪[0,∞) since, f1(0) = f2(0). Note, Figures

1.0.1 and 1.0.2 depict two ways we can visually represent F. ♦
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Figure 1.0.1. The polynomial spline F = (x2, x).

x = 0 f2 = xf1 = x2

Figure 1.0.2. A second way to represent a polynomial spline.

In addition, we are interested in the degree of smoothness of a spline. In general, the

degree of smoothness is equal to the number of continuous derivatives of a spline. These

splines are referred to as Cr splines.

Definition 1.0.2. [3, Definition 3.0.15] A Cr spline over I is a spline with r continuous

derivatives. 4

The following theorem tells us when a spline is Cr.

Theorem 1.0.3. [3, Theorem 3.0.18] Let F = (f1, f2) be a spline defined over the interval

I = I1 ∪ I2 = (−∞, a] ∪ [a,∞). Then,

F is Cr ⇐⇒ f1 ≡ f2 mod kr+1,

where k(x) = x − a is the linear polynomial defining the boundary x − a = 0 between I1

and I2.
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In our example, f1 = x2, f2 = x and kr+1 = (x − 0)r+1. Theorem 1.0.3 tells us that F

is C0 since x2 ≡ x mod (x− 0)0+1, but F is not C1 since x2 6≡ x mod (x− 0)1+1.

Aside from Figures 1.0.1 and 1.0.2, we can represent a Cr spline as a graph, where f1

and f2 are the vertices and (x− a)r+1 is the edge. This is shown in Figure 1.0.3.

f2 f1

(x− a)r+1

Figure 1.0.3. A graph representation of a Cr spline.

Furthermore, we can have the following Cr spline, F = (f1, f2, f3), on an interval I.

Similarly, we illustrate this spline as a graph in Figure 1.0.4 (a).

As it turns out, we can generalize the theory of polynomial splines to what are called

integer splines. Hence, instead of working with polynomials over R, we work over the ring

of integers. This transition is shown in Figure 1.0.4 (b), where we label the vertices with

integers, whereas before, they were labeled with polynomials. Similarly, we label the edges

with natural numbers. If the following is satisfied:

f1 ≡ f2 mod a1, f2 ≡ f3 mod a2, and f3 ≡ f1 mod a3,

then F = (f1, f2, f3) is called a generalized integer spline.

(a) (b)

f3

f1

(x− c)r+1

f2(x− a)r+1

(x− b)r+1

f3

f1

a3

f2a1

a2

Figure 1.0.4. (a) illustrates a polynomial spline and (b) illustrates a generalized integer
spline.
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In this project, we focus on generalized integer splines called n-cycle splines. These are

splines on an n-cycle graph and are illustrated in Figure 1.0.5.

f1

f2
f3

f4

f5

f6

f7

f8

f9
f10

f11

f12

f13

fn

a1

a2
a3

a4

a5

a6

a7

a8

a9a10

a11

a12

an

Figure 1.0.5. F = (f1, . . . , fn) is an n-cycle spline.

Our work builds on the study done by Handschy et al. [1]. They construct a special

type of n-cycle splines called flow-up classes. They identify the smallest flow-up class as

having the smallest elements in a flow-up class and show that the smallest flow-up classes

form a module basis for n-cycle splines over the integers.

While Handschy et al. show that a group of splines form a basis for n-cycle splines, our

main finding shows that there is a criterion for when a set of splines form a Z-module

basis.

We list a brief outline of our chapters:

In Chapter 2, we introduce the reader to some basic number theory.

In Chapter 3, we give a conventional definition for generalized integer splines as well as

n-cycle splines. Then, we introduce flow-up classes and smallest flow-up classes as defined

by Handschy et al.



1. INTRODUCTION 10

In Chapter 4, we present the majority of our findings. We focus on 3-cycle splines and

show that the determinant of the set of the smallest flow-up classes is equal to the product

of the edge labels divided by the greatest common divisor of those edges. Then, in Section

4.3 we present our main result and show that a set of splines form a module basis for

3-cycle splines if and only if their determinant is equal to plus or minus the product of

the edge labels divided by the greatest common divisor of those edges.

In Chapter 5, we generalize our findings from Section 4.3 for n-cycle splines.



2
Preliminaries

The purpose of this chapter is to introduce the reader to some basic number theory. We

define basic terminology as well as present proofs that will be useful in the forthcoming

chapters.

2.1 Elementary Number Theory

Definition 2.1.1. [2, Chapter 1, Section 1.5] Let a, b ∈ Z. We say b divides a, if there

exists an x ∈ Z such that a = bx. 4

Notation: We denote b divides a by b|a and we call b the divisor/factor of a.

Note that b|a does not say the same thing as
b

a
. The former is a statement, while

the latter is an expression. When we say b divides a, we are implicitly stating that the

remainder is zero. When we say b over a, we are not assuming that the remainder is zero.

Definition 2.1.2. [2, Chapter 3, Section 1.1] Let a and b be integers and m be a positive

integer. We say a is congruent to b modulo m, denoted a ≡ b mod m, if m|a− b. 4
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It follows from Definition 2.1.2 that two integers are congruent each other modulo m if

there exists an x ∈ Z such that mx = a− b or a = b + mx.

The following are some important properties of congruences.

Theorem 2.1.3. [2, Theorem 4.2] Let m be a positive integer. Congruences modulo m

satisfy the following properties:

(i) Reflexive Property : If a is an integer, then a ≡ a mod m.

(ii) Symmetric Property : If a and b are integers such that a ≡ b mod m,

then b ≡ a mod m.

(iii) Transitivity Property : If a, b, and c are integers with a ≡ b mod m

and b ≡ c mod m, then a ≡ c mod m.

We now define the greatest common divisor of two integers.

Definition 2.1.4. [2, Chapter 2, Section 2.1] The greatest common divisor (gcd) of two

integers a and b, where both integers are not zero, is the largest integer that divides both

a and b. 4

Notation: We denote the gcd of two integers as (a, b).

We can also define the gcd of more than two integers.

Definition 2.1.5. [2, Chapter 3, Section 3.2] Let a1, a2, . . . , an be integers not all 0. The

gcd of these integers is the largest integer that is a divisor of all the integers in the set.

The gcd of a1, a2, . . . , an is denoted by (a1, a2, . . . , an). 4

Example 2.1.6. We easily see that (2, 10, 12) = 2 and (4, 8, 12) = 4. ♦

Next, we state some useful properties of the gcd.
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Theorem 2.1.7. [2, Theorem 3.8 ]The greatest common divisor of integers a and b, not

both 0, is the least positive integer that is a linear combination of a and b i.e. (a, b) = ax+by

for some x, y ∈ Z.

It is an easy exercise to see that Theorem 2.1.7 can be generalized for more that two

integers. We omit the proof.

Theorem 2.1.8. Let a, b, and g be positive integers. If d = (a, b), g|a and g|b, then g|d.

Proof. From Theorem 2.1.7, we know that for some x, y ∈ Z, ax+by = d. From Definition

2.1.1, we know that there exists some s, t ∈ Z such that gs = a and gt = b. Substituting

this in the first equation we see that, d = ax + by = (gs)x + (gt)y = g(sx + ty). Hence,

g|d.

We can extend Theorem 2.1.8 for more than two integers. The proof is omitted but

follows the same method as above.

Theorem 2.1.9. [2, Theorem 3.6 ] If d = (a, b), then
(a
d
,
b

d

)
= 1.

Now, we define the least common multiple of two integers.

Definition 2.1.10. [2, Chapter 2, Section 2.3] The least common multiple (lcm) of two

integers a and b is the smallest positive integer that is divided by both a and b. 4

Notation: We denote the lcm of two integers as [a, b].

Example 2.1.11. We have the following least common multiples: [5, 10] = 10, [12, 20] =

60, and [2, 13] = 26. ♦

We can also define the lcm of more than two integers.

Definition 2.1.12. [2, Chapter 3, Section 3.4] The lcm of the integers a1, a2, . . . , an

which are not all zero, is the smallest positive integer that is divisible by all the integers

a1, a2, . . . , an; it is denoted by [a1, a2, . . . , an]. 4
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In general, we can write every natural number uniquely as a product of one or more

primes. This is known as The Fundamental Theorem of Arithmetic.

Theorem 2.1.13. [2, Theorem 2.3] Every positive integer greater than 1 can be writ-

ten uniquely as a product of primes i.e. n = pa11 pa22 . . . pamm for some distinct primes

p1, p2, . . . , pm and a1, a2, . . . , am ≥ 0.

The reader should keep Theorem 2.1.13 in mind for it is used in some of our proofs.

The next example summarizes what we have discussed so far.

Example 2.1.14. We compute [234, 552] and (234, 552). First, we find the prime factor-

ization of each integer: 234 = 2 · 32 · 13 and 552 = 23 · 3 · 23. By definition of gcd and

lcm, (234, 552) = 2 · 3 and [234, 552] = 23 · 32 · 13 · 23. Note that (234, 552) · [234, 552] =

24 · 33 · 13 · 23 = 234 · 552. ♦

Example 2.1.14 illustrates an interesting relationship between the gcd and lcm. As it

turns out, the product of two positive integers is equal to the product of their gcd and

lcm.

Theorem 2.1.15. [2, Theorem 2.8] If a and b are positive integers, then (a, b)[a, b] = ab.

We now expand Theorem 2.1.15 for three positive integers. This fact will be useful in

Chapter 4. Before we continue, we provide an example.

Example 2.1.16. Let’s compute (6, 10, 12) and [6, 10, 12]. We see that 6 = 2 ·3, 10 = 2 ·5,

and 12 = 22 · 3. By definition, (6, 10, 12) = 2 and [6, 10, 12] = 22 · 3 · 5 = 60. However, note

that (6, 10, 12) · [6, 10, 12] = 23 · 3 · 5 6= 24 · 32 · 5 = 6 · 10 · 12. ♦

While we would expect the relationship for three positive integers to be similar to

Theorem 2.1.15, as Example 2.1.16 illustrates, the same method does not hold for three

integers. Example 2.1.16 motivates the following theorem.

Theorem 2.1.17. If a, b, and c are positive integers, then (a, b, c)[ab, bc, ca] = abc.



2. PRELIMINARIES 15

Before we prove Theorem 2.1.17, we will need some lemmas.

Lemma 2.1.18. If a, b, and c are positive integers, then

max (a, b, c) = a + b + c−min (a, b)−min (b, c)−min (a, c) + min (a, b, c).

Proof. Without loss of generality, let c ≤ b ≤ a. Then,

max(a, b, c) = a + b + c − b − c − c + c = a + b + c −min (a, b) −min (b, c) −min (a, c) +

min (a, b, c).

Lemma 2.1.19. If a, b, and c are positive integers, then max (a + b, b + c, c + a) = a +

b + c−min(a, b, c).

Proof. Let A = max (a + b, b + c, c + a) and B = a + b + c −min(a, b, c). From Lemma

2.1.18, we know A = (a + b) + (b + c) + (c + a) −min (a + b, b + c) −min (b + c, c + a) −

min (a + b, c + a)+min (a + b, b + c, c + a). Without loss of generality, let c ≤ b ≤ a. Then,

b ≤ a implies b + c ≤ a + c and c ≤ b implies a + c ≤ a + b. Hence, b + c ≤ a + c ≤ a + b.

Now,

A = (a + b) + (b + c) + (c + a)−min (a + b, b + c)−min (b + c, c + a)

−min (a + b, c + a) + min (a + b, b + c, c + a)

= (a + b) +����(b + c) +����(c + a) +�����(−b− c) +�����(−b− c) +�����(−c− a) +����(b + c)

= (a + b + c)− c

= (a + b + c)−min(a, b, c)

= B.

Proof of Theorem 2.1.17. By the Fundamental Theorem of Arithmetic, we can ex-

press a, b, and c uniquely as a product of primes. Hence, a =
∏n

i=1 p
ai
i , b =

∏n
i=1 p

bi
i ,
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and c =
∏n

i=1 p
ci
i , where ai, bi, ci ≥ 0. For simplicity, let xi = ai + bi, yi = bi + ci,

and zi = ai + ci , where 1 ≤ i ≤ n. By definition of lcm, we know [ab, bc, ca] =[∏n
i=1 p

xi
i ,
∏n

i=1 p
yi
i ,
∏n

i=1 p
zi
i

]
=
∏n

i=1 p
max (xi,yi,zi)
i . From Lemma 2.1.19, we know that

max (xi, yi, zi) = ai + bi + ci −min (ai, bi, ci). In other words,

[ab, bc, ca] =
∏n

i=1 p
max (xi,yi,zi)
i =

∏n
i=1 p

ai+bi+ci−min (ai,bi,ci)
i .

By definition of gcd , we know that (a, b, c) =
∏n

i=1 p
min (ai,bi,ci)
i . This implies that

n∏
i=1

p
min (ai,bi,ci)
i

∣∣∣ n∏
i=1

pai+bi+ci
i

and so,

abc

(a, b, c)
=

∏n
i=1 p

ai+bi+ci
i∏n

i=1 p
min (ai,bi,ci)
i

=

n∏
i=1

p
ai+bi+ci−min (ai,bi,ci)
i = [ab, bc, ac].

Hence, (a, b, c)[ab, bc, ca] = abc.

The following example illustrates Theorem 2.1.17.

Example 2.1.20. Refer back to Example 2.1.16, where it was shown that [6, 10, 12](6, 10, 12) 6=

6 · 10 · 12. Now from Theorem 2.1.17, we know that [60, 120, 72](6, 10, 12) = 6 · 10 · 12. To

see this, lets compute the multiples of 60, 120, and 72, respectively:

multiples of 60 : 60, 120, 180, 240, 300,360, 420, . . .

multiples of 120 : 120, 240,360, 480, 600, . . .

multiples of 72 : 72, 144, 216, 288,360, 432, 504, . . .

Hence, [60, 120, 72] = 360 = 23 ·32 ·5. Now, [60, 120, 72](6, 10, 12) = 24 ·32 ·5 = 6·10·12. ♦

The next lemma shows that an associative property for the gcd holds.

Lemma 2.1.21. Let a, b, and c be positive integers. Then, (a, b, c) = (a, (b, c)).
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Proof. Let K = (a, b, c), M = (a,m), where m = (b, c). This means that K|a,K|b and

K|c. Since, M |a and M |m implies that M |a,M |b and M |c, then by an extended version

of Theorem 2.1.8, M |K. Now, we know that K|a,K|b and K|c. Since K|b and K|c, then

by Theorem 2.1.8, K|m. Then, since K|m and K|a, from Theorem 2.1.8, K|M. Hence,

M |K and K|M implies K = M.

Similarly, it can be shown that Lemma 2.1.21 holds for a1, a2, . . . , an ∈ N such that

(a1, a2, . . . , an) = (a1, (a2, . . . , an)). Although the proof is omitted, the reader is encour-

aged to verify this.

The following theorem is known as The Chinese Remainder Theorem (CRT).

Theorem 2.1.22. [2, Theorem 3.12]

Let m1,m2, . . . ,mr be pairwise relatively prime positive integers. Then, the system of

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ar mod mr,

has a unique solution module M = m1m2 . . .mr.

As it turns out, we can generalize Theorem 2.1.22.

Theorem 2.1.23. The system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ an mod mn,
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has a solution if and only if (mi,mj)|ai − aj for all pairs of integers (i, j), where 1 ≤ i <

j ≤ n. If a solution exists, then it is unique modulo [m1,m2, . . . ,mn].

Before we prove Theorem 2.1.23, we will show that it holds for two system of congru-

ences. The resulting lemma will guide the proof for Theorem 2.1.23.

Lemma 2.1.24. The system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2,

has a solution if and only if (m1,m2)|(a1 − a2). The solution is unique modulo [m1,m2].

Proof. ⇐ Suppose that (m1,m2)|a1 − a2. From Theorem 2.1.7, we know that for some

n1, n2 ∈ Z, m2n2 − m1n1 = a1 − a2 or equivalently, a1 + m1n1 = a2 + m2n2. Now, let

x = a1 + n1m1. Then,

a1 + m1n1 ≡ a1 mod m1 (1)

a1 + m1n1 ≡ a2 mod m2 (2).

Equation (1) can be written as a1 + m1n1 ≡ a1 mod m1
(m1,m2)

. From Theorem 2.1.9, this

means ( m1
(m1,m2)

,m2) = 1. Then, according to Theorem 2.1.22, a unique solution exists and

is congruent modulo m1
(m1,m2)

m2 = [m1,m2].

⇒ Suppose that x is a solution. This means that x ≡ a1 mod m1 and x ≡ a2 mod m2.

Then, for some n1, n2 ∈ Z, m1n1 = x−a1 and m2n2 = x−a2. In other words, m1n1+a1 =

m2n2 + a2 or m2n2−m1n1 = a1− a2. Multiplying the latter equation by (m1,m2)
(m1,m2)

, we get:

(m1,m2)
( m2n2

(m1,m2)
− m1n1

(m1,m2)

)
= a1 − a2.

Note that (m1,m2) divides m1 and m2, hence the equation on the left is still an integer.

If x is a solution then (m1,m2)|(a1 − a2).
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Proof of Theorem 2.1.23. From Lemma 2.1.24, we know that x is congruent to

some Q mod [m1,m2]. Then, applying Lemma 2.1.24 to x ≡ Q mod [m1,m2] and

x ≡ a3 mod m3, we know a solution exists and that it is congruent to some Q′

mod [[m1,m2],m3] = [m1,m2,m3]. This step can be repeated multiple times until we

note that x is congruent to mod [m1,m2, . . . ,mn]. Hence, there is a solution as long as

(mi,mj)|(ai − aj) for 1≤i and j ≥ n.



3
Generalized Integer Splines

In Section 3.1 we give a formal definition of generalized integer splines and introduce n-

cycle splines. In Section 3.2 we show that n-cycle splines form a Z-module. Finally, in

Section 3.3 we discuss flow-up classes and define the smallest flow-up class.

3.1 Definitions and Examples of Integer Splines

We begin by defining an edge-labeled graph, which is simply assigning a label to an edge.

Definition 3.1.1. [1, Defintion 2.1] Let G be a graph with k edges e1, e2, . . . , ek and n

vertices v1, v2, . . . , vn. For 1 ≤ i ≤ k, let ai ∈ N be the label on edge ei and let A =

{a1, . . . , ak} be the set of edge labels. Then,(G,A) is called an edge-labeled graph. 4

(a) (b)

v3

v1

e3

v2
e1

e2

v3

v1

a3

v2
a1

a2

Figure 3.1.1. (a) is a graph while (b) is an edge-labeled graph .
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Figure 3.1.1 illustrates Definition 3.1.1.

Definition 3.1.2. [1, Defintion 2.2] Let (G,A) be an edge-labeled graph. A generalized

integer spline is a vertex labeling (f1, . . . , fn) ∈ Zn such that if vi and vj are connected by

an edge ek, then fi ≡ fj mod ak. We denote the set of all splines on (G,A) by S(G,A). 4

The following figure illustrates Definition 3.1.2.

(a) (b)

v3

v1

a3

v2
a1

a2

f3

f1

a3

f2
a1

a2

Figure 3.1.2. (a) is an edge-labeled graph, while (b) is a graphical representation of a
generalized integer spline.

Note: From now on we refer to generalized integer splines as splines.

In this project, we label the edges with natural numbers and the vertices with integers.

Example 3.1.3. In Figure 3.1.3 (a), we see that F = (12, 25, 9, 2, 13) is a spline since

13 ≡ 12 mod 1, 25 ≡ 12 mod 13, 25 ≡ 9 mod 2,

9 ≡ 12 mod 3, 2 ≡ 12 mod 5, and 13 ≡ 2 mod 11.

Similarly in graph (b), G = (34, 65, 11, 29) is a spline. However, in graph (c), H =

(11, 23, 63, 89) is not a spline since 11 6≡ 23 mod 8. ♦

We now introduce a particular type of spline called an n-cycle spline. As the name

indicates, these are splines on (G,A), where G is an n-cycle graph. Our project focuses

on n-cycle splines.
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(a) (b) (c)

2

13

11
12

1

5

9

2

25

3

13

29

34

5
65

2

31

11

6

89

11

6

238

63

10

13

Figure 3.1.3. (a) and (b) are examples of splines, where F = (12, 25, 9, 2, 13) and G =
(34, 65, 11, 29), respectively. Graph (c) is not a spline.

Let A = {a1, a2, . . . , an} be the ordered set of edge-labels on an n-cycle graph with

ordered vertices {v1, v2, . . . , vn}. If the following conditions are satisfied

f1 ≡ f2 mod a1

f2 ≡ f3 mod a2

...

fn−1 ≡ fn mod an−1

fn ≡ f1 mod an,

then F = (f1, f2, . . . , fn) is an n-cycle spline.

Notation: We denote the set of all n-cycle splines by Sn(A). In other words, Sn(A) =

S(G,A), where G is an n-cycle.

Note: From now on a graph G refers to an n-cycle graph.

Before we continue, we use a conventional way to number the vertices and edges on an

n-cycle graph. In general, ei = {vi, vi+1} for 1 ≤ i ≤ n − 1 and en = {vn, v1}. This is

shown in Figure 3.1.4.

The following is an example of n-cycle splines.
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v6

vn−1

vn

v1

v2

v3

v4

v5
e5 e4

e3

e2

e1en

en−1

Figure 3.1.4. An n-cycle Graph.

Example 3.1.4. Figure 3.1.5 (a) represents a 3-cycle spline, where F = (5, 8, 30).

Similarly, in Figure 3.1.5 (b), G = (24, 16, 26, 5) is a 4-cycle spline. In graph (c),

H = (12, 18, 30, 56, 23) is a 5-cycle spline. ♦

(a) (b) (c)

30

5

5

83

11

5

24

19

168

26

10

7 56

23

11

12

1

186

30

12

13

Figure 3.1.5. (a), (b), and (c) illustrate 3-cycle, 4-cycle, and 5-cycle splines, respectively.

3.2 n-cycle Splines form a Z-module

Before we go any further, we show that the set of all integer splines on (G,A) form a

Z-module. While modules can be thought of as vector spaces, where the scalars are from

a ring R instead of a field F , there is no guarantee that a module defined over R will have

a basis. However, before we can state whether or not Sn(A) has a basis, we will show that
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it forms a Z-module. This is equivalent to showing that Sn(A) ⊆ Zn [4]. In other words,

we must show that n-cycle splines are a subgroup of Zn.

Below we recall the definition of a subgroup.

Definition 3.2.1. A subset H of a group G is a subgroup if

1. e ∈ H;

2. if x, y ∈ H, then x ? y ∈ H;

3. if x ∈ H, then x−1 ∈ H.

4

Theorem 3.2.2. Fix the edge labels on (G,A), where A = {a1, a2, . . . , an}. Then, Sn(A)

is a subgroup of Zn.

Proof. According to Definition 3.2.1, we must show the identity element of Zn, E =

(0, . . . , 0), is in Sn(A). As well as show that, Sn(A) is closed under addition and the

inverse of Zn, F−1 = (−f1,−f2, . . . ,−fn), is in Sn(A).

Clearly, E = (0, . . . , 0) ∈ Sn(A) since ai|0− 0, for 1 ≤ i ≤ n.

Now, let F = (f1, f2, . . . , fn), G = (g1, g2, . . . , gn) ∈ Sn(A). This means that for 1 ≤ i ≤

n− 1:

xiai = (fi+1 − fi) and xnan = (fn − f1), where xi, xn ∈ Z (3.2.1)

yiai = (gi+1 − gi) and ynan = (gn − g1), where yi, yn ∈ Z. (3.2.2)

Adding the equations in 3.2.1 with the ones in 3.2.2, we get:

ai(xi + yi) = aixi + aiyi = (fi+1 − fi) + (gi+1 − gi) = (fi+1 + gi+1)− (fi + gi) (3.2.3)

and

an(xn + yn) = anxn + anyn = (fn − f1) + (gn − g1) = (fn + gn)− (f1 + g1). (3.2.4)
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Hence, ai|(fi+1 + gi+1)− (fi + gi) and an|(fn + gn)− (f1 + g1). Therefore, F +G ∈ Sn(A)

which implies that Sn(A) is closed under addition.

Now, suppose F = (f1, f2, . . . , fn) ∈ Sn(A). If we multiply the equations in 3.2.1 by

−1, we get:

−xiai = −(fi+1 − fi) = −fi+1 − (−fi) and − xnan = −(fn − f1) = −fn − (−f1).

In other words, ai|−fi+1−(−fi) andan|−fn−(−f1). Hence, F−1 = (−f1,−f2, . . . ,−fn) ∈

Sn(A).

Therefore, Sn(A) is a subgroup of Zn.

How do we know if Sn(A) has a basis? We defer to the following theorem, which we

include without a proof.

Theorem 3.2.3. [6, Theorem 6.1] Let F be a free module over a principal ideal domain

R and G a submodule of F. Then, G is a free R-module and rank G ≤ rank F.

Since Z is a principal ideal domain and finitely generated modules over a principal ideal

domain are free, then according to Theorem 3.2.3, Sn(A), which is a Z−submodule of Zn,

is also free. Hence, we know a basis for Sn(A) exists.

3.3 Flow-Up Classes

A flow-up class is an n-cycle spline with i, where 0 ≤ i < n, leading zeros. We provide a

formal definition below.

Definition 3.3.1. [1, Defintion 2.3] Fix the edge labels on (G,A). Fix i, where

0 ≤ i < n. A flow-up class is any spline in Sn(A) with i leading zeros, i.e. Fi =

(0, . . . , 0, fi+1, . . . , fn). 4

Notation: We denote the set of all flow-up classes with i fixed leading zeros as F i(A).

The following theorem tells us that flow-up classes exist in Sn(A).
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Theorem 3.3.2. [1, Theorem 4.3] Fix the edge labels on (G,A). Let 0 ≤ i < n. There

exists a flow-up class Fi ∈ Sn(A).

In the following example, we illustrate Theorem 3.3.2 for S3(A).

Example 3.3.3. Fix the edges on (G,A), where A = {5, 12, 13}. Let F0 = (1, 1, 1), F1 =

(0, 5, 65), and F2 = (0, 0, 156). Clearly, F0, F1, and F2 are flow-up classes in S3(A). F0, F1

and F2 are visually represented in Figure 3.3.1. ♦

1

F0

1

13 1

5

12

65

F1

0

13 5

5

12

156

F2

0

13 0

5

12

Figure 3.3.1. Flow-up classes F0, F1, and F2.

Next, we define the smallest flow-up class. We say a spline is the smallest flow-up class

if its entries are the smallest relative to another flow-up class.

Definition 3.3.4. [1, Defintion 2.4] Fix the edge labels on (G,A). Let Fi ∈ F i(A), then Fi

is the smallest flow-up class if for every Hi ∈ F i(A), fj+1 ≤ hj+1, where i ≤ j < n. 4

The following theorem states that we can algebraically identify the smallest leading

element of a flow-up class.

Theorem 3.3.5. [1, Theorem 4.5] Fix the edge labels on (G,A), where A= {a1, a2, . . . , an}.

Let 1 ≤ i ≤ n − 1 and let Fi = (0, . . . , 0, fi+1, fi+2, . . . , fn) be a flow-up class in

Sn(A). Then, the leading element, fi+1, is a multiple of [ai, (ai+1, . . . , an)] and fi+1 =
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[ai, (ai+1, . . . , an)] is the smallest positive value satisfying the ai and ai+1 edge labeled

conditions.

The following proposition states that the smallest flow-up class exists in F0(A).

Proposition 3.3.6. [1, Proposition 2.5] Fix the edge labels on (G,A). Then, F0 =

(1, . . . , 1) is the smallest flow-up class in F0(A) and is in Sn(A).

Note: Any flow-up class in F0(A) is a multiple of F0 = (1, . . . , 1).

The next theorem tells us that the smallest flow-up classes exist in Sn(A).

Theorem 3.3.7. [1, Theorem 4.6] Fix the edge labels on (G,A). Let 1 ≤ i < n. There

exists a smallest flow-up class Fi = (0, . . . , 0, fi+1, . . . , fn) ∈ Sn(A).

Example 3.3.8. Refer back to Example 3.3.3. Not only are F0, F1, and F2 flow-up classes,

but they are the smallest flow-up classes in F0(A), F1(A), and F2(A), respectively. To

see this, we know from Proposition 3.3.6, that the smallest flow-up class in F0(A) is

F0 = (1, 1, 1). By Theorem 3.3.5, we know that the smallest leading element of F1 is equal

to [5, (12, 13)] = 5. Now, the third element in F1, f3, must be such that:

f3 ≡ 5 mod 12 and f3 ≡ 0 mod 13.

The smallest number that satisfies this condition is 65. Hence, F1 = (0, 5, 65) is the smallest

flow-up class in F1(A). A similar application of Theorem 3.3.5 tells us that [12, 13] = 156

is the smallest leading element of F2. Hence, F2 = (0, 0, 156) is the smallest flow-up class

in F2(A). ♦

The following theorem tells us that any n-cycle spline on (G,A) can be written as a

linear combination of the smallest flow-up classes, F0, . . . , Fn−1. In other words, if F ∈

Sn(A), then there exist x0, . . . , xn−1 ∈ Z such that, F = x0F0 + x1F1 + · · ·+ xn−1Fn−1.

Theorem 3.3.9. [1, Theorem 4.7] The smallest flow-up classes, F0, F1, . . . , Fn−1 form a

basis over the integers for the module of splines Sn(A).
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We illustrate Theorem 3.3.9 with an example.

Example 3.3.10. We showed in Example 3.3.8 that F0 = (1, 1, 1), F1 = (0, 5, 65), and

F2 = (0, 0, 156) were the smallest flow-up classes in S3(A), where A = {5, 12, 13}. Ac-

cording to Theorem 3.3.9, to show that F = (3, 28, 328) ∈ span{F0, F1, F2}, we must find

an x0, x1, x2 ∈ Z such that

x0

1
1
1

+ x1

 0
5
65

+ x2

 0
0

156

 =

 3
28
328

 .

In other words we must solve,1 0 0
1 5 0
1 65 156

x0x1
x2

 =

 3
28
328

 .

Using elementary row reduction we get:1 0 0 3
1 5 0 28
1 65 156 328

 ∼
1 0 0 3

0 5 0 25
0 65 156 325

 ∼
1 0 0 3

0 5 0 25
0 0 156 0

 .

Hence, x0 = 3, x1 = 25
5 = 5, and x2 = 0. Thus, F is a linear combination of F0, F1, and

F2. ♦



4
Bases for 3-cycle splines

In this chapter we present the majority of our results. In Section 4.3, we prove that we

do not need to find the smallest flow-up classes in order to span S3(A). In fact, all we

need are a set of splines in S3(A) that fulfill a certain criteria. Sections 4.1 and 4.2 are

the building blocks needed to arrive at this result.

4.1 Flow-Up Classes on 3-cycle Splines

We omit the proof showing that the smallest flow-up class in F0(A) is F0 = (1, 1, 1) and

that F0 ∈ S3(A) since this is easily verifiable. Hence, we start by determining when a

flow-up class, F1 ∈ S3(A). The following theorems are from Handschy et al.[1]. We simply

present alternative proofs.

Theorem 4.1.1. Fix the edge labels on (G,A). Then, a flow-up class, F1 = (0, f2, f3),

exists in S3(A) if and only if f2 is a multiple of [a1, (a2, a3)].
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Proof. In order for F1 ∈ S3(A) we must show that f2 and f3 exist. In other words, f2

and f3 must satisfy:

0 ≡f2 mod a1 (4.1.1)

f3 ≡f2 mod a2 (4.1.2)

0 ≡f3 mod a3. (4.1.3)

From Theorem 2.1.22, we know that f3 exists if and only if (a2, a3)|f2. In other words,

f2 ≡ 0 mod (a2, a3). In addition, Equation 4.1.1 tells us that f2 ≡ 0 mod a1. Now, from

Theorem 2.1.22, we know f2 exists if and only if f2 is congruent 0 mod [a1, (a2, a3)]. In

other words, f2 is a multiple of [a1, (a2, a3)]. Hence, F1 ∈ S3(A) as long as f2 is a multiple

of [a1, (a2, a3)].

Note: Theorem 4.1.1 implies that f3 exists since (a2, a3)|f2.

The next theorem guarantees that a flow-up class F2 exists in S3(A).

Theorem 4.1.2. Fix the edge labels on (G,A). Then, the flow-up class F2 = (0, 0, f3)

exists in S3(A) iff f3 is a multiple of [a2, a3].

Proof. From Theorem 2.1.22, we know that a solution to f3 ≡ 0 mod a2 and f3 ≡ 0

mod a3 exists and this solution is unique congruent 0 mod [a2, a3]. In other words, f3

exists iff it is a multiple of [a2, a3]. Hence, F2 ∈ S3(A).

The following theorems show that the smallest flow-up classes exist in S3(A).

Theorem 4.1.3. Fix the edge labels on (G,A). Then, the smallest flow-up class F1 exists

in S3(A).

Proof. From Theorem 4.1.1, we know that the leading element of a flow-up class in F1(A)

is a multiple of [a1, (a2, a3)]. The smallest such element is when f2 = [a1, (a2, a3)]. Theorem

4.1.1 also tells us that f3 exists as long as (a2, a3)|f2. Rewriting f2 we see that, for some
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x ∈ N, f2 =
x · a1 · (a2, a3)
(a1, (a2, a3))

=
x · a1

(a1, (a2, a3))
· (a2, a3). Hence, f3 exists and by the Well

Ordering Property, we know that in the set of all possible f3, the smallest element exists.

Now, let the smallest possible value of f3 be f ′3. Then, F1 = (0, [a1, (a2, a3)], f
′
3) is the

smallest flow-up class in S3(A).

Theorem 4.1.4. Fix the edge labels on (G,A). Then, the smallest flow-up class F2 exists

in S3(A).

Proof. From Theorem 4.1.2, we know that the leading element of a flow-up class in F2(A)

is a multiple of [a2, a3]. In other words f3 = x · [a2, a3], where x ∈ N. The smallest number

in N is 1. Hence, F2 = (0, 0, [a2, a3]) is the smallest flow-up class in S3(A).

For now, we omit the proof showing that the smallest flow-up classes form a module

basis for S3(A). We give a formal proof in Section 4.3.

We provide additional examples, similar to Example 3.3.8 and Example 3.3.10, to

demonstrate the theorems once again.

1

1

F0

12 1

2

7

72

F1

0

12 2

2

7

84

F2

0

12 0

2

7

Figure 4.1.1. The smallest flow-up classes on (G,A), where A = {2, 7, 12}, are F0 =
(1, 1, 1), F1 = (0, 2, 72) and F2 = (0, 0, 84).

Example 4.1.5. Fix the edge labels on (G,A), where A = {2, 7, 12}. From Theorem 4.1.3

and Theorem 4.1.4, we know that the smallest flow-up classes exist in S3(A). In addition,
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Theorem 4.1.3 tells us that the smallest leading element of F1 is [2, (7, 12)] = 2. With

some additional computation, we find that if f3 = 72, then F1 = (0, 2, 72) is the smallest

flow-up class. From Theorem 4.1.4, we know that F2 is the smallest flow-up class when

the leading element is [7, 12] = 84. Hence, F2 = (0, 0, 84). Additionally, we know that the

smallest flow-up class for F0 is (1, 1, 1). Figure 4.1.1 illustrate the smallest flow-up classes,

F0, F1 and F2. ♦

Example 4.1.6. From Example 4.1.5, we know that F0 = (1, 1, 1), F1 = (0, 2, 72), and

F2 = (0, 0, 74) are the smallest flow-up classes in S3(A), where A={2, 7, 12}. To find out

if F = (12, 6, 39) ∈ span{F0, F1, F2} we solve for,1 0 0
1 2 0
1 72 84

x0x1
x2

 =

12
6
39

 .

Using elementary row reduction we get:1 0 0 12
1 2 0 6
1 72 84 39

 ∼
1 0 0 12

0 2 0 −6
0 72 84 27

 ∼
1 0 0 12

0 1 0 −3
0 0 84 243

 .

Since x2 =
243

84
6∈ Z, then (12, 6, 39) 6∈ span{F0, F1, F2}. Note, it is really easy to eyeball

that F 6∈ S3(A) since, 39 6≡ 6 mod 7. ♦

4.2 Determinant of Flow-Up Classes

Before we continue, consider the following example.

Example 4.2.1. Recall Example 4.1.5, where the edge labels on (G,A) were A =

{2, 7, 12} and F0 = (1, 1, 1), F1 = (0, 2, 72), and F2 = (0, 0, 84) were the smallest flow-up

classes. Now, let

M = [F0, F1, F2] =

1 0 0
1 2 0
1 74 84

 .

Since M is a lower triangular matrix, it follows that |M | = 1 · 2 · 84 = 2 · 7 · 12. Note, |M |

is equal to the product of the edge labels. ♦
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As Example 4.2.1 demonstrates, the determinant of the smallest flow-up classes in S3(A)

follows a particular pattern. In fact, the following theorem was motivated by this pattern.

Theorem 4.2.2. Fix the edge labels on (G,A), where A = {a1, a2, a3}. Let F0, F1 and F2

be flow-up classes in S3(A). Then |F0, F1, F2| = c · a1a2a3
(a1, a2, a3)

, where c ∈ N.

Proof. Let F0, F1 and F2 be flow-up classes in S3(A). Then, from Theorem 4.1.1, we know

that the leading element of F1 is a multiple of [a1, (a2, a3)] and from Theorem 4.1.2, we

know that the leading element of F2 is a multiple of [a2, a3]. We also know that the flow-up

class F0 is a multiple of the trivial case, namely (1, 1, 1). Hence, for some x0, x1, x2 ∈ N,

we have:

F0 = x0

1
1
1

 , F1 =

 0
x1 · [a1, (a2, a3)]

f3

 and F2 =

 0
0

x2[a2, a3]

 ,

where f3 is an integer that satisfies the necessary conditions for F1 ∈ S3(A). Now, let

F0 F1 F2

M =

x0 0 0
x0 x1[a1, (a2,a3)] 0
x0 f3 x2[a2,a3]

 .

Since M is a lower triangular matrix, it follows that |M | = x0x1x2[a1, (a2, a3)][a2, a3].

Let c = x0x1x2, then

|M | = c · [a1, (a2, a3)] · [a2, a3] (4.2.1)

= c · a1 · (a2, a3)
(a1, (a2, a3))

· a2 · a3
(a2, a3)

By Theorem 2.1.15 (4.2.2)

= c · a1 · (a2, a3)
(a1, a2, a3)

· a2 · a3
(a2, a3)

By Lemma 2.1.21 (4.2.3)

= c · a1a2a3
(a1, a2, a3)

. (4.2.4)

Hence, |M | is a multiple of
a1a2a3

(a1, a2, a3)
.

We now generalize Theorem 4.2.2.



4. BASES FOR 3-CYCLE SPLINES 34

Theorem 4.2.3. Fix the edge labels on (G,A), where A= {a1, a2, . . . , an}. Let

F0, F1, . . . , Fn−1 be flow-up classes in Sn(A). Then, |F0, F1, . . . , Fn−1| = c· a1a2 · · · an
(a1, a2, . . . , an)

,

where c ∈ N.

Proof. Let F0, F1, . . . , Fn−1 be flow-up classes in Sn(A) defined by,

Fi =

{
(0, . . . , 0, f i

i+1, f
i
i+2, . . . , f

i
n) for 1 ≤ i ≤ n− 1

x0(1, 1, . . . , 1, 1) where x0 ∈ N, i = 0
.

From Theorem 3.3.5, we know that the leading entry of any flow-up class, excluding

F0, is a multiple of [ai, (ai+1, . . . , an)]. In other words, for 1 ≤ i ≤ n − 1 and xi ∈ N,

f i
i+1 = xi[ai, (ai+1, . . . , an)]. Now, let

F0 F1 F2 · · · Fn−1

M =


x0 0 0 · · · 0
x0 x1[a1, (a2, . . . ,an)] 0 . . . 0
x0 f1

3 x2[a2, (a3, . . . ,an)] . . . 0
...

...
...

. . .
...

x0 f1
n f2

n . . . xn−1[an−1,an]

 .

Since M is a lower triangular matrix we have,

|M | = x0x1 · · ·xn−2xn−1[a1, (a2, . . . , an)][a2, (a3, . . . , an)] · · · [an−2, (an−1, an)][an−1, an].

Let c = x0x1 · · ·xn−2xn−1. Then,

|M | = c · a1(a2, . . . , an)

(a1, (a2, . . . , an))
· a2(a3, . . . , an)

(a2, (a3, . . . , an))
. . .

an−2(an−1, an)

(an−2, (an−1, an))
· an−1an

(an−1, an)
(4.2.5)

= c · a1(a2, . . . , an)

(a1, a2, . . . , an)
· a2(a3, . . . , an)

(a2, . . . , an)
. . .

an−2(an−1, an)

(an−2, an−1, an)
· an−1an

(an−1, an)
(4.2.6)

= c · a1a2 · · · an
(a1, a2, . . . , an)

· (a2, . . . , an)

(a2, . . . , an)
· · · (an−2, an−1, an)

(an−2, an−1, an)
· (an−1, an)

(an−1, an)
(4.2.7)

= c · a1a2 · · · an
(a1, a2, . . . , an)

. (4.2.8)

Hence, |M | is a multiple of
a1a2 · · · an

(a1, a2, . . . , an)
.

Note: To get from Equation 4.2.5 to 4.2.6, we use an extended version of Lemma 2.1.21.

To get from Equation 4.2.7 to 4.2.8, we see that every numerator of the form (ai, . . . , an)
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for 2 ≤ i ≤ n − 1 has an equivalent and accompanying denominator, hence the terms

cancel each other out.

It follows from Thereom 4.2.3, that the determinant for the smallest flow-up classes in

Sn(A) follow a similar pattern. We present this below.

Corollary 4.2.4. Fix the edge labels on (G,A), where A={a1, a2, . . . , an}. Let F0, F1 . . . , Fn−1

be the smallest flow-up classes in Sn(A). Then, |F0, F1, . . . , Fn−1| =
a1a2 · · · an

(a1, a2, . . . , an)
.

Proof. Let F ′0, F
′
1, . . . , F

′
n−1 be flow-up classes in Sn(A). From Theorem 4.2.3, we know

|F ′0, F ′1, . . . , F ′n−1| = c · a1a2 · · · an
(a1, a2, . . . , an)

, where c = x0x1 · · ·xn−1. Now, c is equal to the

product of the multiple of each leading entry in a flow-up class, i.e x0 is the multiple of

the leading entry in F ′0, x1 is the multiple of the leading entry of F ′1, x2 is the multiple

of the leading entry of F ′2 and etc. Since F0, F1, F2, . . . , Fn−1 are the smallest flow-up

classes, then x0 = x1 = x2 = · · · = xn−1 = 1 ⇒ c = 1. Therefore, |F0, F1, . . . , Fn−1| =

a1a2 · · · an
(a1, a2, . . . , an)

.

4.3 Basis Criteria for 3-cycle splines

As we showed in Section 4.2, the determinant of a basis matrix follows a certain pattern.

In this section we prove that any set of splines form a module basis for S3(A) if and only

if their determinant is equal to ± a1a2a3
(a1, a2, a3)

.

Before we prove our big theorem, we need a couple of lemmas.

Lemma 4.3.1. Fix the edge labels on (G,A), where A = {a1, a2, a3}. Let Q =
a1a2a3

(a1, a2, a3)

and F,G,H,D ∈ S3(A). Suppose
∣∣F,G,H

∣∣ = ±Q. Then, QD is in the span of {F,G,H}.

Proof. Let F = (f1, f2, f3), G = (g1, g2, g3), H = (h1, h2, h3) and D = (d1, d2, d3). Let

M =

f1 g1 h1
f2 g2 h2
f3 g3 h3

 and suppose |M | = ±Q. In order to show that QD ∈ span{F,G,H},

we must show that QD is a linear combination of F,G, and H. In other words, show that
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there exists some x1, x2, x3 ∈ Z, such that the following can be solved:f1 g1 h1
f2 g2 h2
f3 g3 h3

x1x2
x3

 =

Qd1
Qd2
Qd3

 .

Using Cramer’s Rule over Q, we get:

x1 =

∣∣∣∣∣∣
Qd1 g1 h1
Qd2 g2 h2
Qd3 g3 h3

∣∣∣∣∣∣∣∣M ∣∣ =

Q

∣∣∣∣∣∣
d1 g1 h1
d2 g2 h2
d3 g3 h3

∣∣∣∣∣∣
±Q

= ±

∣∣∣∣∣∣
d1 g1 h1
d2 g2 h2
d3 g3 h3

∣∣∣∣∣∣ .
Similarly,

x2 =

∣∣∣∣∣∣
f1 Qd1 h1
f2 Qd2 h2
f3 Qd3 h3

∣∣∣∣∣∣∣∣M ∣∣ =

Q

∣∣∣∣∣∣
f1 d1 h1
f2 d2 h2
f3 d3 h3

∣∣∣∣∣∣
±Q

= ±

∣∣∣∣∣∣
f1 d1 h1
f2 d2 h2
f3 d3 h3

∣∣∣∣∣∣
and

x3 =

∣∣∣∣∣∣
f1 g1 Qd1
f2 g2 Qd2
f3 g3 Qd3

∣∣∣∣∣∣∣∣M ∣∣ =

Q

∣∣∣∣∣∣
f1 g1 d1
f2 g2 d2
f3 g3 d3

∣∣∣∣∣∣
±Q

= ±

∣∣∣∣∣∣
f1 g1 d1
f2 g2 d2
f3 g3 d3

∣∣∣∣∣∣ .
Since all the entries in these matrices are in Z, we have that x1, x2, x3 ∈ Z. Hence, QD ∈

spanZ{F,G,H}. Note this implies QD ∈ S3(A).

We illustrate Lemma 4.3.1 with an example.

Example 4.3.2. Fix the edge labels on (G,A), where A = {2, 3, 4}. Let F = (1, 3, 9), G =

(0, 6, 0), and H = (0, 10, 4). Clearly, F ∈ S3(A) since 3 ≡ 1 mod 2 , 9 ≡ 3 mod 3, and 9 ≡

1 mod 4. Similarly, G,H ∈ S3(A). Let Q =
2 · 3 · 4
(2, 3, 4)

= 24 and M =

1 0 0
3 6 10
9 0 4

 . Then,

|M | = 1 · (6 · 4− 10 · 0) = 24 = Q.

Let D = (10, 6, 18). We see that D ∈ S3(A) since 6 ≡ 10 mod 2 , 18 ≡ 6 mod 3, and 10 ≡

18 mod 4. To show that QD = (240, 144, 432) ∈ span{F,G,H}, we need to find
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x1, x2, x3 ∈ Z such that 1 0 0
3 6 10
9 0 4

x1x2
x3

 = 24

10
6
18

 .

We see that x1 = 240, x2 = 624, and x3 = −432 is a solution. Hence, QD ∈ span{F,G,H}.

♦

Next we show that each edge label divides the determinant of F,G,H ∈ S3(A).

Lemma 4.3.3. Fix the edge labels on (G,A), where A = {a1, a2, a3}. Let F,G,H ∈

S3(A). Then, a1
∣∣|F,G,H|, a2

∣∣|F,G,H|, and a3
∣∣|F,G,H|.

Proof. Since F ∈ S3(A), we know that a1|(f1−f2), a2|(f2−f3), and a3|(f3−f1). Similarly

for G,H ∈ S3(A). Now, let M =
∣∣F,G,H

∣∣. Then,

M =

∣∣∣∣∣∣
f1 g1 h1
f2 g2 h2
f3 g3 h3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f1 − f2 g1 − g2 h1 − h2

f2 g2 h2
f3 g3 h3

∣∣∣∣∣∣ = a1

∣∣∣∣∣∣
x1 x2 x3
f2 g2 h2
f3 g3 h3

∣∣∣∣∣∣ ,
for some x1, x2, x3 ∈ Z. Similarly,

M =

∣∣∣∣∣∣
f1 g1 h1
f2 g2 h2
f3 g3 h3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f1 g1 h1

f2 − f3 g2 − g3 h2 − h3
f3 g3 h3

∣∣∣∣∣∣ = a2

∣∣∣∣∣∣
f1 g1 g1
y1 y2 y3
f3 g3 h3

∣∣∣∣∣∣
and

M =

∣∣∣∣∣∣
f1 g1 h1
f2 g2 h2
f3 g3 h3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f1 g1 h1
f2 g2 h2

f3 − f1 g3 − g1 h3 − h1

∣∣∣∣∣∣ = a3

∣∣∣∣∣∣
f1 g1 h1
f2 g2 h2
z1 z2 z3

∣∣∣∣∣∣
where y1, y2, y3, z1, z2, z3 ∈ Z. Hence, a1|M,a2|M and a3|M.

We can strengthen the statement of Lemma 4.3.3. This fact will be useful in the following

theorem.

Lemma 4.3.4. Fix the edge labels on (G,A), where A = {a1, a2, a3}. Let F,G,H ∈

S3(A), then a1a2
∣∣|F,G,H|, a2a3

∣∣|F,G,H|, and a3a1
∣∣|F,G,H|.
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Proof. Let M =
∣∣F,G,H

∣∣. From Lemma 4.3.3, we know that

M = a1

∣∣∣∣∣∣
x1 x2 x3
f2 g2 h2
f3 g3 h3

∣∣∣∣∣∣ = a1

∣∣∣∣∣∣
x1 x2 x3

f2 − f3 g2 − g3 h2 − h3
f3 g3 h3

∣∣∣∣∣∣ = a1a2

∣∣∣∣∣∣
f1 g1 h1
k1 k2 k3
f3 g3 h3

∣∣∣∣∣∣ ,
for some k1, k2, k3 ∈ Z. Hence, a1a2

∣∣|F,G,H|. By a similar argument, a2a3
∣∣|F,G,H| and

a3a1
∣∣|F,G,H|.

The following theorem is an adaptation of Proposition 2.2 from Rose [5].

Theorem 4.3.5. Fix the edge labels on (G,A), where A = {a1, a2, a3}. Let Q =

a1a2a3
(a1, a2, a3)

. If F,G,H ∈ S3(A), then Q
∣∣|F,G,H|.

Proof. For simplicity, let M =
∣∣F,G,H

∣∣. From Lemma 4.3.4, we know that a1a2|M ,

a2a3|M , and a3a1|M. This implies that [a1a2, a2a3, a3a1]
∣∣M. From Theorem 2.1.17, we

know that we can rewrite this as
a1a2a3

(a1, a2, a3)

∣∣∣M. Hence, Q|M.

The next example highlights Theorem 4.3.5.

Example 4.3.6. Fix the edge labels on (G,A), where A = {2, 3, 4}. It is easily verifiable

that F = (6, 4, 22), G = (5, 3, 9), and H = (11, 5, 23) are in S3(A). Now,

|F,G,H| =

∣∣∣∣∣∣
6 5 11
4 3 5
22 9 23

∣∣∣∣∣∣
= 6(3 · 23− 9 · 5)− 5(4 · 23− 22 · 5) + 11(4 · 9− 22 · 3)

= 144 + 90− 330

= −96.

Since, Q =
2 · 3 · 4
(2, 3, 4)

= 24 and 24| − 96, this verifies Theorem 4.3.5. ♦

Lemma 4.3.7. Fix the edge labels on (G,A), where A = {a1, a2, a3}. If F,G, and H

form a basis for S3(A), and J,K, and L are linear combinations of F,G, and H, then

|F,G,H|
∣∣∣|J,K,L|.
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Proof. Since, F,G, and H form a basis for S3(A) and J,K, and L are linear combinations

of F,G, and H, then

J = aF + bG + cH for some a,b,c ∈ Z,

K = dF + eG + fH for some d,e,f ∈ Z,

and L = gF + hG + iH for some g,h,i ∈ Z.

Now,

[
J, K, L

]
=

af1 + bg1 + ch1 df1 + eg1 + fh1 gf1 + hg1 + ih1
af2 + bg2 + ch2 df2 + eg2 + fh2 gf2 + hg2 + ih2
af3 + bg3 + ch3 df3 + eg3 + fh3 gf3 + hg3 + ih3


=

f1 g1 h1
f2 g2 h2
f3 g3 h3

 ·
a d g
b e h
c f i

 .

By the properties of determinants, we know that |AB| = |A||B|. Hence,

|J,K,L| =

∣∣∣∣∣∣
f1 g1 h1
f2 g2 h2
f3 g3 h3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣
=
∣∣F, G, H

∣∣ ·
∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣ .

Therefore, |F,G,H|
∣∣∣|J,K,L|, since a, b, . . . , i ∈ Z implies

∣∣∣∣∣∣
a d g
b e h
c f i

∣∣∣∣∣∣ ∈ Z.

Lemma 4.3.8. Fix the edge labels on (G,A), where A = {a1, a2, a3}. If {F,G,H} is a

basis for S3(A) and {J,K,L} is another basis for S3(A), then |F,G,H| = ±|J,K,L|.

Proof. Let |F,G,H| = D. From Lemma 4.3.7, we know that D
∣∣|J,K,L|. Hence, for some

x ∈ Z, Dx = |J,K,L|. Now, since {J,K,L} is another basis, then from Lemma 4.3.7,

|J,K,L|
∣∣|F,G,H|. Hence, for some y ∈ Z, we have:

|J,K,L| · y = |F,G,H| ⇒ Dxy = D ⇒ xy = 1⇒ y = ±1.

Hence, |F,G,H| = ±|J,K,L|.
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The following theorem and techniques were inspired by Theorem 2.3 from Rose [5].

Theorem 4.3.9. Fix the edge labels on (G,A), where A = {a1, a2, a3}. Let Q =

a1a2a3
(a1, a2, a3)

and let F,G,H ∈ S3(A). Then, {F,G,H} form a module basis for S3(A)

if and only if
∣∣F,G,H

∣∣ = ±Q.

Proof. ⇒ From Theorem 3.3.9, we know that the smallest flow-up classes, {F0, F1, F2},

form a module basis for S3(A). From Corollary 4.2.4, we know that |F0, F1, F2| =

a1a2a3
(a1, a2, a3)

. Now, from Lemma 4.3.8, we know that |F0, F1, F2| =
a1a2a3

(a1, a2, a3)
= ±|F,G,H|,

where F,G,H is another module basis for S3(A). Hence, ±|F,G,H| =
a1a2a3

(a1, a2, a3)
, or

|F,G,H| = ±Q.

⇐ To show that {F,G,H} form a basis for S3(A) we must show that {F,G,H} is

linearly independent and spans S3(A).

We see that F,G and H are linearly independent since ±Q 6= 0. Now, let D ∈ S3(A).

To show that {F,G,H} span S3(A), we need to show that D is a linear combination of

{F,G,H}. From Lemma 4.3.1, we know that

QD = x1F + x2G + x3H

for some x1, x2, x3 ∈ Z. Now,

±x1Q =x1|F,G,H|

=|x1F,G,H|

=|(x1F + x2G + x3H), G,H|

=|QD,G,H|

=Q|D,G,H|.

This implies x1 = ±|D,G,H|. Now, from Theorem 4.3.5, we know that Q
∣∣|D,G,H|. Hence,

for some s1 ∈ Z, s1Q = |D,G,H| ⇒ x1 = ±s1Q. Similarly, x2 = ±s2Q and x3 = ±s3Q,
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where s2, s3 ∈ Z. Now,

QD = x1F + x2G + x3H

⇒QD = ±(s1Q)F ± (s2Q)G± (s3Q)H

⇒QD = Q(±s1F ± s2G± s3H)

⇒D = ±s1F ± s2G± s3H.

Hence, D is a linear combination of F,G, and H, and {F,G,H} span S3(A).

We now show that the smallest flow-up classes form a module basis for S3(A).

Corollary 4.3.10. Fix the edge labels on (G,A), where A = {a1, a2, a3}. Let F0, F1 and

F2 be the smallest flow-up classes in S3(A). Then, {F0, F1, F2} form a module basis for

S3(A).

Proof. From Theorem 4.3.9, we know that F0, F1 and F2 form a basis for S3(A) if and

only if
∣∣F0, F1, F2

∣∣ = ± a1a2a3
(a1, a2, a3)

. From Corollary 4.2.4, we know that
∣∣F0, F1, F2

∣∣ =

a1a2a3
(a1, a2, a3)

. Hence, the smallest flow-up classes, F0, F1, and F2, form a module basis for

S3(A).

The next example incorporates Theorem 4.3.9 and Corollary 4.3.10.

Example 4.3.11. Lets find the smallest flow-up classes for Example 4.3.2, where the edge

labels of the 3-cycle graph were A= {2, 3, 4}. We know that , F0 = (1, 1, 1) is the smallest

flow-up class in F0(A). Through several applications of Theorem 4.1.3 and Theorem 4.1.4,

we find that the smallest flow-up classes in F1(A) and F2(A) are F1 = (0, 2, 8) and

F2 = (0, 0, 12), respectively. Hence, we verify D = (3, 11, 47) ∈ span{F0, F1, F2} by finding

x0, x1, x2 ∈ Z such that x0F0+x1F1+x2F2 = D. Now, if we let x0 = 3, x1 = 4 and x2 = 1,

then

3

1
1
1

+ 4

0
2
8

+ 1

 0
0
12

 =

 3 + 0 + 0
3 + 8 + 0

3 + 32 + 12

 =

 3
11
47

 .
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Hence, we see that D = (3, 11, 47) ∈ span{F0, F1, F2}. Now, Theorem 4.3.9 tells us that we

do not need to find the smallest flow-up classes in order to span S3(A). All we need is a set

of three arbitrary splines, whose determinant is equal to +24 or −24. Now, from Example

4.3.2, we saw that if F = (1, 3, 9), G = (0, 6, 0), and H = (0, 10, 4) then, |F,G,H| = 24.

The next step is to show that D is a linear combination of F,G, and H, i.e. show that

there exists y1, y2, y3 ∈ Z, such that, D = y1F + y2G + y3H. We see that,1 0 0 3
3 6 10 11
9 0 4 47

 ∼
1 0 0 3

0 6 10 2
0 0 4 20

 ∼
1 0 0 3

0 6 0 −48
0 0 1 5

 ∼
1 0 0 3

0 1 0 −8
0 0 1 5

 .

Hence, when y1 = 3, y2 = −8 and y3 = 5, D = 3 ·F −8 ·G+5 ·H thus, D ∈ span{F,G,H}.

♦



5
Bases for n-cycle splines

In this chapter, we generalize our findings from Section 4.3 for n-cycle splines.

5.1 Basis Criteria for n-cycle Splines

Before we expand Theorem 4.3.9, we extend the lemmas from Section 4.3. We start off by

expanding Lemma 4.3.4.

Lemma 5.1.1. Fix the edge labels on (G,A), where A = {a1, a2, . . . , an}. Let

F 1, . . . , Fn ∈ Sn(A). Define âj = a1a2 · · · aj−1aj+1 · · · an, where 1 ≤ j ≤ n. Then,

âj
∣∣|F 1, . . . , Fn|.

Proof. Without loss of generality, choose âj and let M = |F 1, . . . , Fn|. Let F i =

(f i
1, f

i
2, · · · , f i

n), where 1 ≤ i ≤ n. Let

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1
1 f2

1 f3
1 . . . fn

1

f1
2 f2

2 f3
2 . . . fn

2

f1
3 f2

3 f3
3 . . . fn

3
...

...
...

. . .
...

f1
n−1 f2

n−1 f3
n−1 . . . fn

n−1
f1
n f2

n f3
n . . . fn

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.1.1)
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Applying the rules of determinants to Equation 5.1.1, we get:

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1
1 − f1

2 f2
1 − f2

2 f3
1 − f3

2 . . . fn
1 − fn

2

f1
2 − f1

3 f2
2 − f2

3 f3
2 − f3

3 . . . fn
2 − fn

3

f1
3 − f1

4 f2
3 − f2

4 f3
3 − f3

4 . . . fn
3 − fn

4
...

...
...

. . .
...

f1
j−1 − f1

j f2
j−1 − f2

j f3
j−1 − f3

j · · · fn
j−1 − fn

j

f1
j f2

j f3
j · · · fn

j

f1
j+1 − f1

j+2 f2
j+1 − f2

j+2 f3
j+1 − f3

j+2 · · · fn
j+1 − fn

j+2
...

...
...

. . .
...

f1
n−1 − f1

n f2
n−1 − f2

n f3
n−1 − f3

n . . . fn
n−1 − fn

n

f1
n − f1

1 f2
n − f2

1 f3
n − f3

1 . . . fn
n − fn

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.1.2)

Note, for clarity we box the entries that are not subtracted by anything. Now, since

F 1, . . . , Fn ∈ Sn(A), this means that for all 1 ≤ k ≤ n− 1, ak|f i
k − f i

k+1 and an|f i
n − f i

1.

Let s denote the row number of an entry and t denote the column number of an entry,

then there exists xs,t ∈ Z such that Equation 5.1.2 can be rewritten as:

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1x1,1 a1x1,2 a1x1,3 . . . a1x1,n
a2x2,1 a2x2,2 a2x2,3 . . . a2x2,n
a3x3,1 a3x3,2 a3x3,3 . . . a3x3,n

...
...

...
. . .

...
aj−1xj−1,1 aj−1xj−1,2 aj−1xj−1,3 · · · aj−1xj−1,n

f1
j f2

j f3
j · · · fn

j

aj+1xj+1,1 aj+1xj+1,2 aj+1xj+1,3 · · · aj+1xj+1,n
...

...
...

. . .
...

an−1xn−1,1 an−1xn−1,2 an−1xn−1,3 · · · an−1xn−1,n
anxn,1 anxn,2 anxn,3 · · · anxn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.1.3)

Once we factor out the common multiples, we see that Equation 5.1.3 can be written as,

M = âj

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 x1,2 x1,3 . . . x1,n
...

...
...

. . .
...

f1
j f2

j f3
j · · · fn

j

...
...

...
. . .

...
xn,1 xn,2 xn,3 · · · xn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.1.4)

Hence, âj |M, since the determinant from Equation 5.1.4 is also an integer.

The following lemma is an extension of Theorem 2.1.17.
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Lemma 5.1.2. Let a1, a2, . . . , an be integers not all zero. Define âi = a1 · · · ai−1ai+1 · · · an,

for 1 ≤ i ≤ n. Then [â1, â2, . . . , ân] =
a1a2 . . . an

(a1, a2, . . . , an)
.

Proof. Let p be a prime occurring in a1, . . . , an. Let xi be the power of p in ai. Then in

âi, the power of p is
∑n

j=1 xj − xi. Then, in [â1, â2, . . . , ân], p occurs with power

max
i

[( n∑
j=1

xj

)
− xi

]
=

n∑
i=1

xi −
n

min
j=1

xj ,

Denote

[â1, â2, . . . , ân] =

r∏
k=1

p
∑n

i=1 x
(k)
i −minnj=1 x

(k)
j

(k) .

Then,

[â1, â2, . . . , ân] =
r∏

k=1

p
∑n

i=1 x
(k)
i −minnj=1 x

(k)
j

(k)

=

∏r
k=1 p

∑n
i=1 x

(k)
i

(k)∏r
k=1 p

minnj=1 x
(k)
j

(k)

=
a1a2 · · · an

(a1, a2, . . . , an)
.

From Lemma 5.1.2, we prove the following.

Lemma 5.1.3. Fix the edge labels on (G,A), where A = {a1, a2 . . . , an}. Let Q =

a1a2 · · · an
(a1, a2, . . . , an)

. If F 1, F 2, . . . , Fn ∈ Sn(A), then Q
∣∣|F 1, F 2, . . . , Fn|.

Proof. From Lemma 5.1.1, we know that âj
∣∣|F 1, . . . , Fn|, where âj is defined as âj =

a1a2 · · · aj−1aj+1 · · · an, for 1 ≤ j ≤ n. This implies, [â1, â2, . . . , ân]
∣∣|F 1, F 2, . . . , Fn|. Then,

from Lemma 5.1.2, this means that
a1a2 · · · an

(a1, a2, . . . , an)

∣∣∣|F 1, . . . , Fn
∣∣.

We now generalize Lemma 4.3.7, but we will not go in depth with the proof since it

follows the same logic.

Lemma 5.1.4. Fix the edge labels on (G,A), where A = {a1, a2, . . . , an}. Let F 1, . . . , Fn

form a basis for Sn(A) and let J1, . . . , Jn be linear combinations of F 1, . . . , Fn. Then,

|F 1, . . . , Fn|
∣∣∣|J1, . . . , Jn|.
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Proof. Since F 1, . . . , Fn form a basis for Sn(A), then J1, . . . , Jn can be written as a

linear combination of F 1, . . . , Fn. Now, let xs,t ∈ Z, where s denotes the row entry and t

denotes the column entry. Then,

|J1, . . . , Jn| = |F 1, . . . , Fn| ·

∣∣∣∣∣∣∣∣∣
x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xn1 xn2 . . . xnn

∣∣∣∣∣∣∣∣∣ .

Hence, |F 1, . . . , Fn|
∣∣∣|J1, . . . , Jn|, since xs,t ∈ Z implies

∣∣∣∣∣∣∣∣∣
x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xn1 xn2 . . . xnn

∣∣∣∣∣∣∣∣∣ ∈ Z.

Similarly, we will not prove a generalized version of Lemma 4.3.8 in depth.

Lemma 5.1.5. Fix the edge labels on (G,A), where A = {a1, a2, . . . , an}. If F 1, . . . , Fn

form a basis for Sn(A) and J1, . . . , Jn is another basis for S3(A), then |F 1, . . . , Fn| =

±|J1, . . . , Jn|.

Proof. Let |F 1, . . . , Fn| = D. Then, from Lemma 5.1.4, D
∣∣|J1, . . . , Jn|. In other words,

for some x ∈ Z, Dx = |J1, . . . , Jn|. A similar application of Lemma 5.1.4 shows that for

some y ∈ Z, |J1, . . . , Jn|y = |F 1, . . . , Fn|. That is to say, (Dx)y = D ⇒ xy = 1⇒ y = ±1.

Hence, |F 1, . . . , Fn| = ±|J1, . . . , Jn|.

We now generalize Lemma 4.3.1.

Lemma 5.1.6. Fix the edge labels on (G,A), where A = {a1, a2, . . . , an}. Let Q =

a1, a2, . . . an
(a1, a2, . . . , an)

and let F 1, . . . , Fn, D ∈ Sn(A). Suppose |F 1, . . . , Fn| = ±Q. Then, QD

is in the span of {F 1, . . . , Fn}.

Proof. We need to show that there exist x1, . . . , xn ∈ Z such that, QD = x1F
1 + · · · +

xnF
n.
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Now,

x1 =

∣∣QD, F 2, F 3, · · · , Fn
∣∣∣∣F 1, F 2, F 3, · · · , Fn
∣∣ By Cramer’s Rule over Q (5.1.5)

=Q

∣∣D, F 2, F 3, · · · , Fn
∣∣

±Q
Properties of Determinants (5.1.6)

=±
∣∣D, F 2, F 3, · · · , Fn

∣∣ . (5.1.7)

Hence, x1 exists and is in Z since the entires in the determinant are also in Z. A reappli-

cation of Cramer’s Rule over Q, shows that there exist x2, . . . , xn ∈ Z. Hence, QD is in

the spanZ{F 1, . . . , Fn}.

We now show that Theorem 4.3.9 can be generalized for n-cycles.

Theorem 5.1.7. Fix the edge labels on (G,A), where A = {a1, a2, . . . , an}. Let Q =

a1a2 · · · an
(a1, a2, . . . , an)

and let G1, . . . , Gn ∈ Sn(A). Then, G1, G2, . . . , Gn form a module basis

for Sn(A) if and only if
∣∣G1, G2, . . . , Gn

∣∣ = ±Q.

Proof. ⇒ From Theorem 3.3.9, we know that the smallest flow-up classes, F0, . . . , Fn−1

form a module basis for Sn(A). From Corollary 4.2.4, we know that

|F0, . . . , Fn−1| =
a1a2 · · · an

(a1, a2, . . . , an)
.

From Lemma 5.1.5, we know that if G1, G2, . . . , Gn is another basis for Sn(A), then

|F0, . . . , Fn−1| = ±|G1, G2, . . . , Gn| ⇒ ±|G1, G2, . . . , Gn| = a1a2 · · · an
(a1, a2, . . . , an)

.

Therefore, |G1, G2, . . . , Gn| = ±Q.

⇐ Since
∣∣G1, G2, . . . , Gn

∣∣ = ±Q 6= 0, then G1, G2, . . . , Gn are linearly independent.

Now, to show that G1, G2, . . . , Gn span Sn(A), we need to show that for D ∈ Sn(A), D

is a linear combination of G1, G2, . . . , Gn.

Now, from Lemma 5.1.6, we know that for some y1, y2, . . . , yn ∈ Z

QD = y1G
1 + · · ·+ ynG

n. (5.1.8)
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Now,

±y1Q = y1
∣∣G1, G2, . . . , Gn

∣∣ (5.1.9)

=
∣∣y1G1, G2, . . . , Gn

∣∣ Properties of Determinants (5.1.10)

=
∣∣y1G1 + y2G

2 + · · ·+ ynG
n, G2, . . . , Gn

∣∣ Properties of Determinants (5.1.11)

=
∣∣QD,G2, . . . , Gn

∣∣ By Lemma 5.1.6 (5.1.12)

= Q
∣∣D,G2, . . . , Gn

∣∣ Properties of Determinants. (5.1.13)

Hence, y1 = ±|D,G2, . . . , Gn|. From Lemma 5.1.3, we also know that Q
∣∣|D,G2, . . . , Gn| ⇒

y1 = ±k1Q, where k1 ∈ Z. If we repeat Equations 5.1.9 - 5.1.13 for yi, where 2 ≤ i ≤ n,

we see that for ki ∈ Z, yi = ±kiQ. Hence, plugging this result in Equation 5.1.8, we get

QD = y1G
1 + y2G

2 + · · ·+ ynG
n

⇒QD = ±Qk1G
1 ±Qk2G

2 ± · · · ±QknG
n

⇒D = ±k1G1 ± k2G
2 ± · · · ± knG

n.

Hence, D is in the span of G1, . . . , Gn. Therefore, G1, . . . , Gn form a module basis for

Sn(A).

While we omit the proof, it is easy to show that the smallest flow-up classes,

F0, . . . , Fn−1, form a module basis for Sn(A).



6
Future Work

If we had more time we would have looked at the following:

1. Handschy et al. [1] show that star splines exist as long as they fulfill a certain

condition. Can we find the smallest flow-up classes for star splines?

2. Can Theorem 5.1.7 be generalized for any Euclidean Domain?

3. Can Theorem 5.1.7 be generalized for any (G,A), where G is not an n-cycle graph?
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