
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2011 Bard Undergraduate Senior Projects

Spring 2011

Generalized Adinkra Homology Generalized Adinkra Homology

Jacqueline A. Stone
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2011

 Part of the Geometry and Topology Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Recommended Citation Recommended Citation
Stone, Jacqueline A., "Generalized Adinkra Homology" (2011). Senior Projects Spring 2011. 3.
https://digitalcommons.bard.edu/senproj_s2011/3

This Open Access work is protected by copyright and/
or related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any
way that is permitted by the copyright and related
rights. For other uses you need to obtain permission
from the rights-holder(s) directly, unless additional
rights are indicated by a Creative Commons license in
the record and/or on the work itself. For more
information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2011
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2011?utm_source=digitalcommons.bard.edu%2Fsenproj_s2011%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.bard.edu%2Fsenproj_s2011%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://digitalcommons.bard.edu/senproj_s2011/3?utm_source=digitalcommons.bard.edu%2Fsenproj_s2011%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Generalized Adinkra Homology

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Jackie Stone

Annandale-on-Hudson, New York
May, 2011

Abstract

Adinkras are graphs that encode the supersymmetric pairings between particles in physics.
However they are also cubical complexes,which are structures built not only from points
and lines, but also squares, cubes, and hypercubes, and therefore have higher dimensional
topological structure. Additionally, Adinkras are equivalent to N -cubes quotiented by
doubly-even codes of length N , which are a specific type of subgroup of Z2

N . Within this
paper, we consider generalized Adinkras, which are N -cubes quotiented by any codes of
length N .

Homology is an algebraic invariant of topological spaces. In order to learn more about
their topology, we compute the homology of a variety of generalized Adinkras. Within this
paper we examine the relationship between the codes by which we are quotienting and
the homology of the cubes quotiented by these codes. Our main result is that the first
homology group of any N -cube quotiented by a code of length N is isomorphic to the code
itself.

Contents

Abstract 1

Dedication 5

Acknowledgments 6

1 Introduction 7

2 Background 10
2.1 Codes . 10
2.2 Generalized Adinkras . 11
2.3 Homology . 11

3 Computing Homology 15
3.1 Simple Example: Homology of a Square . 15
3.2 Notation and Quotienting by Codes . 16

4 Adinkra and Generalized Adinkra Homology 19
4.1 Homology of N = 4 Adinkras . 19
4.2 Homology of an N = 5 Adinkra . 22
4.3 Homology of an N = 6 Adinkra . 24
4.4 Other Homology Computations . 26

5 More About Generalized Adinkra Homology 29
5.1 Codes That Obey Poincaré Duality . 29
5.2 Code Weights and Homology . 30
5.3 Homology of N -cube Quotiented by 2N -code 32
5.4 The First Homology Group . 33

Contents 3

6 Other Methods and Topics for Future Study 37
6.1 Equivariant Homology . 37
6.2 Cross Polytopes . 40
6.3 Integer Homology . 42
6.4 Additional Future Research . 44

Bibliography 45

Appendix A 45

List of Figures

1.0.1 An N = 4 Adinkra [2] . 8

2.3.1 An unfolded cube . 12
2.3.2 A square as a cubical complex . 13

3.2.1 1-cube before identification . 18
3.2.2 1-cube quotiented by {0, 1} . 18

Dedication

To my family and friends, for their love and support.

Acknowledgments

First I’d like to thank my adviser, Greg Landweber, for his time, patience, enthusiasm, and
excellent guidance. Working with him made my senior project both intellectually fulfilling
and a lot of fun. I’d also like to thank Matt Deady for being on my senior project board,
for advising me for the past four years, and for teaching me Plato, Quantum Mechanics
and everything in between. I’d like to thank Jim Belk for all of his suggestions for my
project, for his contributions to my mathematical knowledge in general, and for being on
my senior project board.

Additionally, I’d like to thank the entire Bard Mathematics Department for helping me
discover my passion for math and for all the help and support they have given me over
the past four years. Finally, I’d like to thank Julie Bergner for giving me my first taste of
Algebraic Topology, Marisa Hughes for her helpful correspondence about homology and
orbifolds, and Chris Stone for helping me write the 7 pages of code that can be found in
the appendix.

1
Introduction

In algebraic topology, a common way to learn more about topological spaces is to associate

algebraic invariants with them. These algebraic invariants help us classify spaces. Two of

the major invariants that are used are the fundamental group (and other homotopy groups)

and homology and cohomology groups. Homology groups are often easier to compute

than homotopy groups, since homology groups can be computed combinatorially, whereas

homotopy groups need to be computed topologically. Therefore, even if we do not know

what these spaces look like topologically, if we know the type of cells the space is built

from, we can compute its homology. Additionally, homotopy groups are not necessarily

abelian, whereas homology groups always are. In this paper we will be computing cubical

homology of Adinkras and generalizations of Adinkras.

Adinkras, as defined by Faux and Gates, are graphs that encode information about

off-shell supersymmetry [3] [6]. However, in addition to being graphs, Adinkras are ac-

tually cubical complexes. That means that Adinkras have additional, higher dimensional

topological structure. Figure 1.0.1 is an example of an N = 4 Adinkra. As proved in [4]

[5], Adinkras are equivalent to N -cubes quotiented by a class of codes called doubly-even

1. INTRODUCTION 8

Figure 1.0.1. An N = 4 Adinkra [2]

codes. Codes are subgroups of Z2
N , and they are used as error correcting mechanisms in

the transmission of binary or digital data. There will be a more detailed explanation of

Adinkras, codes, and quotienting cubes by codes in Sections 2.2, 2.1, and 3.2. Our original

hope was to be able to use homology to classify the topological spaces that these Adinkras

are associated with. However, we soon realized that the topology of these quotients were

more complicated than we originally thought, and that rather than manifolds, these spaces

were actually orbifolds. Manifolds are spaces that look locally like RN , whereas orbifolds

look locally like a quotient of RN by a finite group, and are obtained when we quotient by

a group where the action fixes some points [12]. Since in many of our cases the action of

the code on the cube is not free of fixed points, the way we were computing the homology

of these quotients turned out to be combinatorial, rather than topological.

To learn more about how the homology of these spaces behaves, we decided to compute

the homology of generalized Adinkras, which are cubes quotiented by any type of code,

not just doubly even codes. This allowed us to notice certain relationships between the

code and the cubical Z2-homology of these spaces.

In Chapter 2, we will give a more formal introduction to codes, Adinkras, and homology.

In Chapter 3 we will explain how to compute the homology of cubical complexes, introduce

the notation we are using to talk about these quotients, and describe exactly how we are

1. INTRODUCTION 9

creating these quotient spaces. In Chapter 4, we compute the homology of the N = 4, N =

5 and N = 6 Adinkras, and then list the homology of various other generalized Adinkras.

After computing the homology of a variety of generalized Adinkras, we formulated several

conjectures, some false and some true, about the relationship between the homology of

these quotients and the codes by which we were quotienting. In Chapter 5 we present

these conjectures with either proofs or counterexamples. Our first theorem is that that

the homology of the N -cube quotiented by the maximal code of length N (in other words,

Z2
N) is the same as the homology of the N -torus, which is the product of N 1-spheres.

The second is that the first homology group of an N -cube quotiented by a code of length

N is isomorphic to the code itself. In Chapter 6 we will introduce some other ways we

explored to compute homology, such as Equivariant Homology, Integer Homology, and the

homology of the cross polytopes, and discuss some topics of future study.

2
Background

2.1 Codes

Since a generalized Adinkra is a cube quotiented by a code, we will have to specify what

we mean by a code. We are specifically referring to binary linear codes.

Definition 2.1.1. A binary linear code of length N is a linear subspace of Z2
N as a vector

space over Z2 or equivalently a subgroup of Z2
N [4]. 4

The elements of a code C are called codewords, and the weight of a codeword is the

number of 1s in the codeword. For example, if C = {0000, 1111, 1100, 0011} then the

codeword 1111 has weight 4, the codewords 1100 and 0011 have weight 2, and the codeword

0000 has weight 0. An even code is a code which only has codewords with even weight.

The code C above is an example of an even code. A doubly even code is a code which only

has codewords with weights divisible by four, such as {1111, 0000}. We are specifically

interested in doubly even codes because Adinkras are quotients of N -cubes by doubly

even codes. However, we will be looking at N -cubes quotiented by codes with arbitrary

codeword weights as well.

2. BACKGROUND 11

2.2 Generalized Adinkras

An Adinkra is a specific type of graph with additional markings on its vertices and edges

that encode information about off-shell supersymmetry. It turns out these graphs are

cubical complexes, which means they are actually topological objects. By learning about

the topological spaces that these Adinkras are associated with, we hoped to be able to

learn more about the algebra or the physics that they represent.

From Reference [2], we have that every connected Adinkra is the quotient of an N -

cube by a binary linear, doubly even code C of length N . We will actually be looking at

generalized Adinkras, which are N -cubes quotiented by binary linear codes of length N ,

where the code words can have any weight. In the next chapter we will explain what it

means to quotient a cube by a code.

2.3 Homology

Homology is a method of associating a series of abelian groups to a topological space.

The homology groups of a space are algebraic invariants. In other words, if two spaces

have different homology, then they are not homeomorphic. Since Adinkras are cubical

complexes, we will be using cubical homology, which is very similar to simplicial homology

as presented in [8]. We will be computing homology using Z2-coefficients, which allows us

to ignore signs. We were hoping that the homology groups of some of the Adinkras would

correspond to the homology groups of topological spaces we were already familiar with,

since that would suggest that these spaces may be the same, and could in turn tell us more

about the Adinkra. As mentioned earlier, since these spaces turned out to be orbifolds,

the homology did not end up telling us what we expected it to. However, when we started

looking at the homology of generalized Adinkras, we noticed some relationships between

the homology of the quotient space and the code by which we were quotienting.

2. BACKGROUND 12

Before we can define homology, we must first define the boundary homomorphism and

the chain groups. The boundary homomorphism just maps an n-cube to its boundary. For

example, consider a cube.

Figure 2.3.1. An unfolded cube

As you can see in Figure 2.3.1 it has 6 faces, so the boundary of the cube, which is

denoted ∂(cube) is just the sum of the 6 faces (again, we are working mod 2 so signs do

not matter). Thus, ∂(cube) = A+B + C +D + E + F .

The boundary homomorphisms are maps between chain groups. An element of the nth

chain group is a linear combination of the n-cells. For instance in the example of the cube

above, a general element of the second chain group C2 would be αA + βB + γC + δD +

λE + µF where α, β, γ, δ, λ, µ are elements of the coefficient group.

Definition 2.3.1. The nth chain group, denoted Cn, is isomorphic to the direct sum of

one copy of the coefficient group, G for each n-cube. In Z2-homology, if Wn is the set of

n-cubes in a space, then Cn = Z2[Wn]. 4

For example a cube has eight vertices, so W0 = {1, 2, 3, 4, 5, 6, 7, 8}. Then C0 is isomor-

phic to

Z2[1]⊕ Z2[2]⊕ Z2[3]⊕ Z2[4]⊕ Z2[5]⊕ Z2[6]⊕ Z2[7]⊕ Z2[8] ∼= (Z2)
8.

2. BACKGROUND 13

Definition 2.3.2. Let ω ∈ Cn. Then ω = λ1c1n + λ2c2n + ... + λkckn, where λi ∈ Z2 for

i ∈ {1, ..., k} and the cins are n-cubes. Then the nth boundary map ∂n : Cn −→ Cn−1 can

be defined as

∂n(ω) = ∂n(λ1c1n + λ2c2n + ...+ λkckn) = λ1∂n(c1n) + λ2∂n(c2n) + ...+ λk∂n(ckn),

where the ∂n(cin) is just the sum of the (n − 1)-cubes on the boundary of cin, as shown

in the example above. Note that this definition is specific to Z2-homology, and if we were

not working over Z2 we would have to consider signs. 4

Definition 2.3.3. The nth homology group is

Hn =
ker ∂n

im ∂n+1
.

4

This definition involves taking ker ∂n modulo im ∂n+1. Therefore, we must show that

im ∂n+1 ⊂ ker∂n, or in other words, ∂n ◦ ∂n+1 = 0. First consider the square f in Figure

2.3.2, with edges a, b, c, d and vertices 1, 2, 3, 4.

Figure 2.3.2. A square as a cubical complex

2. BACKGROUND 14

Then
∂1(∂2(f)) = ∂1(a+ b+ c+ d)

= ∂1(a) + ∂1(b) + ∂1(c) + ∂1(d)

= 1 + 4 + 1 + 2 + 2 + 3 + 3 + 4

= 0.

The reason ∂1(∂2(f)) is zero is because each vertex is attached to two edges. In general,

on an (n+ 1)-cube, each (n− 1)-cube will be attached to two n-cubes. Therefore, for any

(n+ 1)-cube cn+1, we have (∂n ◦ ∂n+1)(cn+1) = 0. By Definition 2.3.2 this implies that for

any (n+ 1)-chain ω we have (∂n ◦ ∂n+1)(ω) = 0.

Since the nth chain group is generated by the n-cubes, we can find the image of ∂n by

finding the boundaries of all the n-cubes and then finding all possible linear combinations.

Then, if we know the dimension of the chain group, we can use the rank-nullity theorem to

find the dimension of the kernel of the ∂n. In the next section we will do a simple example

in which we compute the homology of a square.

3
Computing Homology

3.1 Simple Example: Homology of a Square

The chain groups are generated by the n-cells of the square. For example there are four

0-cells, which are the four vertices, a, b, c, d, so C0
∼= Z2[a]⊕Z2[b]⊕Z2[c]⊕Z2[d] ∼= (Z2)

4.

Similarly, there are four edges, so C1
∼= (Z2)

4, and one face, so C2
∼= Z2.

Now we consider the boundary of each of the cells. Each vertex is a 0-cube, so it has no

boundary and thus ∂0(1) = ∂0(2) = ∂0(3) = ∂0(4) = 0. Therefore, ker ∂0 ∼= (Z2)
4.

The boundary of each edge is the two vertices it connects. Thus we have:

3. COMPUTING HOMOLOGY 16

∂1(a) = 1 + 4,

∂1(b) = 1 + 2,

∂1(c) = 2 + 3,

∂1(d) = 3 + 4.

We do not care about the signs, since we are working mod 2. Since the edges generate

C1, to find the image of the ∂1 map, we need to find all the linear combinations of the

boundaries of the edges. We end up with a total of 8 elements, so im ∂1 ∼= (Z2)
3.

Finally, the boundary of the face f is the four edges. Thus, ∂2(f) = a + b + c + d, so

im ∂2 ∼= Z2 and ker ∂2 ∼= 0.

Now, we have enough information to compute the homology groups of the square.

H0
∼=

ker ∂0
im ∂1

∼=
(Z2)

4

(Z2)3
∼= Z2,

H1
∼=

ker ∂1
im ∂2

∼=
Z2

Z2

∼= 0,

H2
∼=

ker ∂2
im ∂3

∼=
0

0
∼= 0.

3.2 Notation and Quotienting by Codes

It becomes harder to keep track of all the vertices, edges, and faces with just letters and

numbers once we get to higher dimensional cases. From now on we will use the notation

presented in [2]. In other words, the N -cube is [0, 1]N , and we use a star ∗ to represent

the interval [0, 1], so for example, the 3-cube can be represented by (∗ ∗ ∗). Each of the

faces that is on the boundary of the 3-cube can be found by substituting a 1 or 0 in place

3. COMPUTING HOMOLOGY 17

of one of the stars. Therefore, the boundary of the 3-cube is as follows:

∂3(∗ ∗ ∗) = (1 ∗ ∗) + (0 ∗ ∗) + (∗ 1 ∗) + (∗ 0 ∗) + (∗ ∗ 1) + (∗ ∗ 0).

Similarly, each of the edges that is on the boundary of a given face can be found by

substituting a 1 or 0 in place of one of the stars. For example,

∂2(1 ∗ ∗) = (11 ∗) + (10 ∗) + (1 ∗ 1) + (1 ∗ 0).

The same process can be repeated to find the boundaries of the edges. Once again, if we

were not working over Z2, we would have to consider signs when computing the boundary.

We will often specifically refer to n-cubes with stars in the same entries as each other.

For instance, the 2-cubes (∗ 1 ∗) and (∗ 0 ∗) or the 1-cubes (10 ∗) and (00 ∗) have all of

their stars in the same entries. We will say that these n-cubes are of the same type. Later

on, it will be especially useful to refer to specific edge types. We can specify an edge type

by the location of the ∗ .

Definition 3.2.1. An edge of type m is an edge with a star in the mth position. 4

Therefore, (∗ 10) is an edge of type 1, (1 ∗ 10) and (1 ∗ 0) are both examples of edges of

type 2, although (1 ∗ 10) is on a 4-cube and (1 ∗ 0) is on a 3-cube, and so on.

When we talk about quotienting by a code, we mean that we are identifying n-cubes

that can be mapped to each other by addition of one of the codewords. For instance, when

we quotient the 3-cube by the code {000, 111}, the 2-cube (1 ∗ ∗) gets identified with the

2-cube (0 ∗ ∗), since (1 ∗ ∗) + (111) = (0 ∗ ∗). Similarly, (∗ 1 ∗) is identified with (∗ 0 ∗),

and (∗ ∗ 1) with (∗ ∗ 0). The same can be done with the 1-cubes, or edges. For example,

(11 ∗) is identified with (00 ∗) and (0 ∗ 1) is identified with (1 ∗ 0). Note that two n-cubes

can be identified only if they are of the same type. For example, there is no possible

codeword that could be added to (∗ 11) to get (1 ∗ 1) since adding a codeword can change

only entries that contain a 1 or 0.

3. COMPUTING HOMOLOGY 18

It is important to note that our generalized Adinkras are really only quotients of cubes

by codes at the level of the vertices. We are not taking the quotient of the cube as a

topological space. Instead we are identifying certain vertices by addition of codewords.

Therefore, the quotient Adinkra is not the same as the quotient topological space. For

example, consider the 1-cube, which is just two vertices and one edge, as shown in Figure

3.2.1. Using our method, quotienting by the code {0, 1} identifies the two vertices, giving

us a circle, as shown in Figure 3.2.2, as opposed to identifying point along the line segment,

giving us the original segment folded in half.

Figure 3.2.1. 1-cube before identification

Figure 3.2.2. 1-cube quotiented by {0, 1}

4
Adinkra and Generalized Adinkra Homology

4.1 Homology of N = 4 Adinkras

The two connected four dimensional Adinkras, by which we mean 4-cubes quotiented

by doubly-even codes, are the hypercube and the hypercube quotiented by the code

{0000, 1111}. This is because {0000, 1111} is the only non-trivial doubly-even code of

length 4. Since we know that the hypercube is contractible, then we have H0
∼= Z2 and

Hk = 0 for all k > 0. The homology of the quotiented hypercube is more interesting.

To determine the chain groups, we need to consider how the code acts on the hypercube.

Each vertex gets identified with its antipode by addition of the codeword 1111. Since a

hypercube has 16 vertices, the quotiented hypercube has 8. Each edge gets identified with

another edge, so the number of edges drops from 32 to 16. Similarly, the number of faces

goes from 24 down to 12 and the number of cubes goes from 8 to 4. Therefore, the chain

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 20

groups of the quotiented hypercube are as follows:

C0
∼= (Z2)

8,

C1
∼= (Z2)

16,

C2
∼= (Z2)

12,

C3
∼= (Z2)

4,

C4
∼= Z2 .

To compute the homology, we must find the image and kernel of each of the boundary

maps. First, consider ∂4 : C4 → C3. This is the map from the 4-cube to its boundary,

which consists of 3-cubes. We have

∂4(∗ ∗ ∗ ∗) = (1 ∗ ∗ ∗) + (0 ∗ ∗ ∗) + (∗ 1 ∗ ∗) + (∗ 0 ∗ ∗)

+(∗ ∗ 1 ∗) + (∗ ∗ 0 ∗) + (∗ ∗ ∗ 1) + (∗ ∗ ∗ 0).

The code identifies (1 ∗ ∗ ∗) ∼ (0 ∗ ∗ ∗), and (∗ 1 ∗ ∗) ∼ (∗ 0 ∗ ∗) and so on. Therefore,

since we are working mod 2, we have that ∂4(∗ ∗ ∗ ∗) = 0. That means that ker ∂4 ∼= Z2

and im ∂4 ∼= 0.

Now, we consider ∂3 : C3 → C2. To find the image and kernel of the boundary map, we

need to consider where it maps each of the 3-cubes. We have

∂3(1 ∗ ∗ ∗) = (11 ∗ ∗) + (10 ∗ ∗) + (1 ∗ 1 ∗) + (1 ∗ 0 ∗) + (1 ∗ ∗ 1) + (1 ∗ ∗ 0),

∂3(∗ 1 ∗ ∗) = (11 ∗ ∗) + (01 ∗ ∗) + (∗ 11 ∗) + (∗ 10 ∗) + (∗ 1 ∗ 1) + (∗ 1 ∗ 0),

∂3(∗ ∗ 1 ∗) = (1 ∗ 1 ∗) + (0 ∗ 1 ∗) + (∗ 11 ∗) + (∗ 01 ∗) + (∗ ∗ 11) + (∗ ∗ 10),

∂3(∗ ∗ ∗ 1) = (1 ∗ ∗ 1) + (0 ∗ ∗ 1) + (∗ 1 ∗ 1) + (∗ 0 ∗ 1) + (∗ ∗ 11) + (∗ ∗ 01).

To find the image ∂3, we need to find all the linear combinations of these four maps. This

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 21

is equivalent to finding the rank of the following matrix:

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 0 1
0 1 0 1
0 0 1 1
0 0 1 1

.

Using SAGE, we were able to determine that the rank of this matrix is 3, so im ∂3 ∼= (Z2)
3.

Since C3
∼= (Z2)

4, then by the rank-nullity theorem, ker ∂3 ∼= Z2.

By a similar process, we can find the image and kernel of the remaining boundary maps.

Using SAGE to find the rank of the matrices corresponding to each of the boundary maps,

we found

im ∂2 ∼= (Z2)
8,

ker ∂2 ∼= (Z2)
4,

im ∂1 ∼= (Z2)
7,

ker ∂1 ∼= (Z2)
9.

Since ∂0 : C0 → 0, we have that im ∂0 ∼= 0 and ker ∂0 ∼= C0
∼= (Z2)

8. Also, since ∂5 : 0→ C4,

we have im ∂5 ∼= 0. Now that we have the image and kernel of all the boundary maps, we

have enough information to compute the homology groups.

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 22

The homology of the quotiented hypercube is

H0
∼=

ker ∂0
im ∂1

∼=
(Z2)

8

(Z2)7
∼= Z2,

H1
∼=

ker ∂1
im ∂2

∼=
(Z2)

9

(Z2)8
∼= Z2,

H2
∼=

ker ∂2
im ∂3

∼=
(Z2)

4

(Z2)3
∼= Z2,

H3
∼=

ker ∂3
im ∂4

∼=
Z2

0
∼= Z2,

H4
∼=

ker ∂4
im ∂5

∼=
Z2

0
∼= Z2 .

This is also the homology of RP 4, which is not surprising, since this Adinkra can also be

thought of as a solid three dimensional cube, with edges connecting its antipodes.

4.2 Homology of an N = 5 Adinkra

Computing the homology of the 5-cube quotiented by the code {00000, 11110} is similar

to the previous example. However, in this case, the top cube has a non-zero boundary. We

have that ∂5 : C5 → C4 is

∂5(∗ ∗ ∗ ∗ ∗) = (1 ∗ ∗ ∗ ∗) + (0 ∗ ∗ ∗ ∗)

+(∗ 1 ∗ ∗ ∗) + (∗ 0 ∗ ∗ ∗)

+(∗ ∗ 1 ∗ ∗) + (∗ ∗ 0 ∗ ∗)

+(∗ ∗ ∗ 1 ∗) + (∗ ∗ ∗ 0 ∗)

+(∗ ∗ ∗ ∗ 1) + (∗ ∗ ∗ ∗ 0).

Since (1 ∗ ∗ ∗ ∗) + 11110 = (0 ∗ ∗ ∗ ∗) we have that (1 ∗ ∗ ∗ ∗) ∼ (0 ∗ ∗ ∗ ∗). Simi-

larly, (∗ 1 ∗ ∗ ∗) ∼ (∗ 0 ∗ ∗ ∗) and (∗ ∗ 1 ∗ ∗) ∼ (∗ ∗ 0 ∗ ∗) and (∗ ∗ ∗ 1 ∗) ∼ (∗ ∗ ∗ 0 ∗).

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 23

However, (∗ ∗ ∗ ∗ 1) + 11110 = (∗ ∗ ∗ ∗ 1) and (∗ ∗ ∗ ∗ 0) + 11110 = (∗ ∗ ∗ ∗ 0). There-

fore, (∗ ∗ ∗ ∗ 1) is not equivalent to (∗ ∗ ∗ ∗ 0), and thus ∂5(∗ ∗ ∗ ∗ ∗) = (∗ ∗ ∗ ∗ 1) +

(∗ ∗ ∗ ∗ 0). Therefore, the rank of ∂5 is 1, which means im ∂5 ∼= Z2.

We can find the image of the rest of the boundary maps by the same method we used

for the 4-cube: by finding the corresponding matrices and computing their ranks. We also

find the chain groups in the same way as before. After identification, there are 16 0-cubes,

40 1-cubes, 40 2-cubes, 20 3-cubes, 6 4-cubes, and 1 5-cube. Therefore, the chain groups

are

C0
∼= (Z2)

16,

C1
∼= (Z2)

40,

C2
∼= (Z2)

40,

C3
∼= (Z2)

20,

C4
∼= (Z2)

6,

C5
∼= Z2 .

The homology of the 5-cube quotiented by the code {00000, 11110} is as follows:

H0
∼=

ker ∂0
im ∂1

∼=
(Z2)

16

(Z2)15
∼= Z2,

H1
∼=

ker ∂1
im ∂2

∼=
(Z2)

25

(Z2)24
∼= Z2,

H2
∼=

ker ∂2
im ∂3

∼=
(Z2)

16

(Z2)15
∼= Z2,

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 24

H3
∼=

ker ∂3
im ∂4

∼=
Z2

5

Z2
4
∼= Z2,

H4
∼=

ker ∂4
im ∂5

∼=
Z2

2

Z2

∼= Z2,

H5
∼=

ker ∂5
im ∂6

∼=
0

0
∼= 0.

4.3 Homology of an N = 6 Adinkra

The homology of theN = 6 Adinkra, which is the 6-cube quotiented by {00000, 111100, 001111, 110011}

can be computed in the same way as the N = 5 and N = 4 cases. The chain groups are

C0
∼= (Z2)

16,

C1
∼= (Z2)

48,

C2
∼= (Z2)

60,

C3
∼= (Z2)

40,

C4
∼= (Z2)

18,

C5
∼= (Z2)

6,

C6
∼= Z2 .

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 25

The homology of the 6-cube quotiented by the code {00000, 111100, 001111, 110011} is as

follows:

H0
∼=

ker ∂0
im ∂1

∼=
(Z2)

16

(Z2)15
∼= Z2,

H1
∼=

ker ∂1
im ∂2

∼=
(Z2)

33

(Z2)31
∼= (Z2)

2,

H2
∼=

ker ∂2
im ∂3

∼=
(Z2)

29

(Z2)26
∼= (Z2)

3,

H3
∼=

ker ∂3
im ∂4

∼=
(Z2)

14

(Z2)10
∼= (Z2)

4,

H4
∼=

ker ∂4
im ∂5

∼=
(Z2)

8

(Z2)3
∼= (Z2)

5,

H5
∼=

ker ∂5
im ∂6

∼=
(Z2)

3

0
∼= (Z2)

3,

H6
∼=

ker ∂5
im ∂6

∼=
Z2

0
∼= Z2 .

According to Poincaré duality, for a closed, oriented manifold, the kth homology group

should be isomorphic to the (N − k)th cohomology group, that is Hk
∼= HN−k, where

N is the top dimension [8]. Since we are computing Z2-homology, and Z2 is a field, then

by the Universal Coefficient Theorem, the kth homology group is isomorphic to the kth

cohomology group, or in other words Hk
∼= Hk [8]. Thus, Poincaré duality implies that

for the Z2-homology of a closed, oriented manifold, Hk
∼= HN−k. The 4-cube, quotiented

by {0000, 1100, 0011, 1111} is an example of a manifold that obeys Poincaré duality, and

the homology can be found in the next section. As we can see above, for the N = 6

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 26

Adinkra, Poincaré duality does not hold. This means that the Adinkra must not give rise

to a manifold.

4.4 Other Homology Computations

When we realized Poincaré Duality does not always hold for the homology of Adinkras,

to see where it started to break down, we tried to find the simplest code for which the

homology of the quotient did not obey Poincaré duality.

The homology of the 1-cube, quotient {0, 1} is

H0
∼= Z2,

H1
∼= Z2 .

The homology of the 2-cube, quotient {00, 11} is

H0
∼= Z2,

H1
∼= Z2,

H2
∼= Z2 .

The homology of the 3-cube, quotient {000, 111, 100, 011} is

H0
∼= Z2,

H1
∼= (Z2)

2,

H2
∼= (Z2)

2,

H3
∼= Z2 .

The homology of the 3-cube, quotient {000, 110, 011, 101} is

H0
∼= Z2,

H1
∼= (Z2)

2,

H2
∼= (Z2)

3,

H3
∼= Z2 .

This quotient is not Poincaré Dual.

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 27

The homology of the 4-cube, quotient {0000, 1100, 0011, 1111} is

H0
∼= Z2,

H1
∼= (Z2)

2,

H2
∼= (Z2)

3,

H3
∼= (Z2)

2,

H4
∼= Z2 .

The homology of the 4-cube, quotient {0000, 1000, 0111, 1111} is

H0
∼= Z2,

H1
∼= (Z2)

2,

H2
∼= (Z2)

2,

H3
∼= (Z2)

2,

H4
∼= Z2 .

The homology of the 4-cube, quotient {0000, 1100, 0010, 0001, 0011, 1101, 1110, 1111} is

H0
∼= Z2,

H1
∼= (Z2)

3,

H2
∼= (Z2)

4,

H3
∼= (Z2)

3,

H4
∼= Z2 .

The homology of the 4-cube, quotient {0000, 1110, 0011, 1101} is

H0
∼= Z2,

H1
∼= (Z2)

2,

H2
∼= (Z2)

3,

H3
∼= (Z2)

3,

H4
∼= Z2 .

4. ADINKRA AND GENERALIZED ADINKRA HOMOLOGY 28

This quotient is not Poincaré Dual.

The homology of the 4-cube, quotient {0000, 1100, 0110, 1010, 0001, 1101, 0111, 1011} is

H0
∼= Z2,

H1
∼= (Z2)

3,

H2
∼= (Z2)

5,

H3
∼= (Z2)

4,

H4
∼= Z2 .

This quotient is not Poincaré Dual.

The homology of the 5-cube, quotient {00000, 11100, 00111, 11011}

H0
∼= Z2,

H1
∼= (Z2)

2,

H2
∼= (Z2)

3,

H3
∼= (Z2)

4,

H4
∼= (Z2)

3,

H5
∼= Z2 .

This quotient is not Poincaré Dual.

In summary, from the computations above, the codes that give quotients that do satisfy

Poincaré Duality are {0, 1}, {00, 11}, {000, 111, 100, 011}, {0000, 1100, 0011, 1111}, and

{0000, 1100, 0010, 0001, 0011, 1101, 1110, 1111}.

5
More About Generalized Adinkra Homology

5.1 Codes That Obey Poincaré Duality

The computations above seem to suggest that the generalized Adinkras that obey Poincaré

duality are precisely those that have the element containing N 1’s in the code. Thus, we

made the following conjecture.

Conjecture 5.1.1. Let X be an N -cube and C be a code. Then the Z2-homology of X/C

will obey Poincaré duality if and only if C contains the codeword of N 1s.

However, after writing SAGE code (see Appendix A) to compute the homology of ad-

ditional generalized Adinkras, we found a counterexample.

Example 5.1.2. The set {01010101, 00110011, 00001111, 11111111} is a basis for a

doubly even code of length 8. The 8-cube, quotiented by the code generated by

{01010101, 00110011, 00001111, 11111111} is an N = 8 Adinkra. The homology of this

5. MORE ABOUT GENERALIZED ADINKRA HOMOLOGY 30

Adinkra is

H0
∼= Z2,

H1
∼= (Z2)

4,

H2
∼= (Z2)

10,

H3
∼= (Z2)

20,

H4
∼= (Z2)

35,

H5
∼= (Z2)

42,

H6
∼= (Z2)

28,

H7
∼= (Z2)

8,

H8
∼= (Z2).

Thus, since the code generated by {01010101, 00110011, 00001111, 11111111} contains

the codeword 11111111, this Adinkra is a counterexample to Conjecture 5.1.1. ♦

5.2 Code Weights and Homology

We know that the homology of these quotients of cubes by codes is an invariant under per-

mutation of the code. That is, if two codes C1 and C2 have length N and are permutation

equivalent, then the homology groups of the N -cube quotiented by C1 are the same as

the homology groups of the N -cube quotiented by C2. For example, the homology of the

4-cube quotiented by {0000, 1000, 0111, 1111} is the same as the homology of the 4-cube

quotiented by {0000, 1110, 0001, 1111}.

Definition 5.2.1. Let C be a binary linear code of length N . The weight distribution of

a code specifies the number of codewords in C of each weight from 1 to N . We can denote

the weight distribution of C by A0(C), A1(C), ..., AN (C) where Ai(C) is the number of

codewords of weight i[9]. 4

5. MORE ABOUT GENERALIZED ADINKRA HOMOLOGY 31

Example 5.2.2. Let C = {0000, 1000, 0111, 1111}. Then the weight distribution is A0 =

1, A1 = 1, A2 = 0, A3 = 1, A4 = 1. ♦

Two codes have the same weight distribution if they have the same number of codewords

of each weight. We noticed that many cubes quotiented by codes that have the same weight

distribution also have the same homology, which lead us to the following conjecture.

Conjecture 5.2.3. Suppose X is an N -cube and C1 and C2 are two codes with the name

weight distribution. Then Hk(X/C1) ∼= Hk(X/C2) for all k.

It turns out this conjecture is false. Since many codes that have the same weight distribu-

tion also are permutation equivalent, to test this conjecture, we computed the homologies

of the 6-cube quotiented by the code generated by {110000, 001100, 000011} and the 6-

cube quotiented by {110000, 101000, 111111}. Both of these codes have weight distribution

A0 = 1, A1 = 0, A2 = 3, A3 = 0, A4 = 3, A5 = 0, A6 = 1 but they are not permutation

equivalent [9].

Example 5.2.4. The homology of the 6-cube quotiented by the code generated by

{110000, 001100, 000011} is

H0
∼= Z2,

H1
∼= (Z2)

3,

H2
∼= (Z2)

6,

H3
∼= (Z2)

7,

H4
∼= (Z2)

6,

H5
∼= (Z2)

3,

H6
∼= Z2 .

However, the homology of the 6-cube quotiented by {110000, 101000, 111111} is

5. MORE ABOUT GENERALIZED ADINKRA HOMOLOGY 32

H0
∼= Z2,

H1
∼= (Z2)

3,

H2
∼= (Z2)

6,

H3
∼= (Z2)

7,

H4
∼= (Z2)

7,

H5
∼= (Z2)

4,

H6
∼= Z2 .

Therefore these two codes are a counterexample to Conjecture 5.2.3. Note also that the

homology of the 6-cube quotiented by {110000, 101000, 111111} is another counterexample

to Conjecture 5.1.1. ♦

5.3 Homology of N -cube Quotiented by 2N -code

The homology of the cube quotiented by the maximal code, which is the code containing

all possible codewords of length N is actually the same as the homology of a recognizable

space: the N -torus.

Theorem 5.3.1. For the N -cube, quotiented by the code containing all 2N codewords,

Hk
∼= (Z2)

(Nk). In other words, the kth homology group is isomorphic to the kth homology

group of the N -torus.

Proof. Let C be the code with all 2N possible code words of length N . Suppose A and

B are two k-cubes of the same type. Then, there exists cn ∈ C such that A + cn = B.

Therefore, these two k-cubes are equivalent, after quotienting the N -cube by C. We have

that the kth chain group is generated by the k-cubes. Since each k-cube has k stars, then

there will be
(
N
k

)
different possible types of k-cubes, and thus there are

(
N
k

)
non-equivalent

k-cubes. Thus, Ck
∼= (Z2)

(Nk).

5. MORE ABOUT GENERALIZED ADINKRA HOMOLOGY 33

Since the boundary of any (k+1)-cube contains exactly two k-cubes of a given type, these

terms will cancel (mod 2), so ∂k+1 = 0. Since im ∂k+1
∼= 0, we have Hk

∼= Ck
∼= (Z2)

(Nk),

which is the same as the kth homology group of the N -torus [10].

5.4 The First Homology Group

After computing the homology of many N -cubes quotiented by codes, we noticed that the

first homology group was always isomorphic to the code. In Reference [2], Theorem 4.1

states that for the quotient of an N -cube by a binary linear [N, k] block code C, if the

minimal weight of a non-zero codeword in C is greater than or equal to 4, then H1 = (Z2)
k.

We will generalize this theorem to include codes with codewords of any weight but first

we will need the following definitions and lemmas.

Definition 5.4.1. A graph is edge-N-partite if for each vertex v, there is a unique edge

of each type incident with v. 4

Lemma 5.4.2. Let X be a N -cube and C be a binary linear code of length N and dimension

k. Then X/C is edge-N -partite.

Proof. Any N -cube is edge-N -partite. Since quotienting by C does not change the type

of any edge, then X/C is also edge-N -partite.

Lemma 5.4.3. Let X be a N -cube and C be a binary linear code of length N and dimension

k. Fix a vertex, v0 ∈ X/C. Any path of edges starting at v0 in X/C can be uniquely specified

by a sequence of edge types.

Proof. Since X/C is edge-N -partite then a path in X/C beginning at v0 can be specified

by the edge types that are followed, in order.

5. MORE ABOUT GENERALIZED ADINKRA HOMOLOGY 34

Lemma 5.4.4. Let X be a N -cube and C be a binary linear code of length N and dimension

k. Fix a vertex, v0 ∈ X/C. For any path of edges f , beginning at v0 in X/C, there exists

a unique lift of f to a path of edges f̃ beginning at a corresponding vertex ṽ0 in X.

Proof. By the previous lemma, we can lift a path f beginning at v0 in X/C to a path f̃ in

X by starting at a corresponding vertex ṽ0 (where ṽ0 is a vertex in X that gets mapped

to v0 by C) and following the same sequence of edge types. This path is unique because

X is edge-N -partite.

Lemma 5.4.5. Suppose we have a cycle beginning at v0 with a sequence of edge types

{t1, t2, ..., tn}. This cycle is homologous to a cycle beginning at v0 with the sequence of

edge types {t1, t2, ..., ti+1, ti, ..., tn} for any i ∈ {1, ..., n}. In other words, switching any

two adjacent edge types in a cycle gives us a homologous cycle.

Proof. In the cube, starting at any vertex v and following ti, ti+1, ti, ti+1 will give us the

boundary of a face. Since under the quotient, face get mapped to faces, ti, ti+1, ti, ti+1 is the

boundary of a face in the quotient. Then {t1, t2, ..., tn} differs from {t1, t2, ..., ti+1, ti, ..., tn}

only by a face. Since H1 is the cycles of edges modulo boundaries of 2-cells, then these

two cycles are homologous.

Corollary 5.4.6. Let l be a cycle beginning at v0 with a sequence of edge types

{t1, t2, ..., tn}. Any path beginning at v0 that is a permutation of these edge types is a

cycle that is homologous to l.

Proof. Any permutation of {t1, t2, ..., tn} can be obtained by switching two edges at a

time.

Lemma 5.4.7. Let l be a cycle beginning at v0 with a sequence of edge types

{t1, t1, t2, ..., tn} and l′ be a cycle beginning at v0 with a sequence of edge types {t2, ..., tn}.

Then [l] = [l′].

5. MORE ABOUT GENERALIZED ADINKRA HOMOLOGY 35

Proof. We are working mod 2, which means in C1 we have that {t1, t1, t2, ..., tn} and

{t2, ..., tn} are the equivalent, since 2t1 = 0t1 (mod 2).

Lemma 5.4.8. Any cycle of edges in X/C is homologous to a cycle based at v0.

Proof. Suppose l is a cycle in X/C. If l passes through v0 then we can choose v0 as our

basepoint, since homology does not depend on choice of basepoint. Suppose l is cycle based

at v and does not go through v0. There exists a path of edges from v to v0 that we can

specify by a sequence of edge types {t1, t2, ..., tn}. Then let l′ be a cycle that starts at v and

follows {t1, t2, ..., tn, t1, t2, ..., tn}. Then l′+ l is a cycle that starts at v and passes through

v0. Since by Lemma 5.4.7 l′ is homologous to the trivial cycle, then l′ + l is homologous

to l.

Now, we must specify a map from w ∈ C to elements of H1(X/C). Fix a vertex v0 ∈

X/C. Recall Definition 3.2.1 of edge type. Then let Pw be the path obtained by starting

at v0 and following the edge types specified by the locations of the 1s in the codeword, w.

For instance the if w = (10110), we would start at v0 and follow an edge of type 1, then

an edge of type 3, and then an edge of type 4.

Theorem 5.4.9. Fix a basepoint, v0 in X/C. Define a function φ : C −→ H1(X/C) where

φ(w) = [Pw]. Then φ is an isomorphism.

Proof. First, we will show that φ is a homomorphism. Let l be the cycle that begins at v0

and follows the sequence of edge types for Pw1 and then for Pw2 . Then l ∈ [Pw1] + [Pw2].

We can delete any edge types that occur twice, which will be precisely those edges types

that correspond to the location of a 1 in both codewords. Thus, [Pw1] + [Pw2] = [Pw1+w2].

To show φ is injective, we will show φ has a trivial kernel. Suppose φ(w) is homologous to

the constant loop. Then any cycle must only differ from the constant loop by a boundary,

5. MORE ABOUT GENERALIZED ADINKRA HOMOLOGY 36

or a sum of boundaries, of a 2-cell. Since boundaries of 2-cells always have 2 edges of a

given type, we can cancel these edges. Therefore, w is the codeword of all 0s.

Finally, we must show φ is surjective. Suppose [l] ∈ H1(X/C). Since any cycle is homolo-

gous to a cycle based at v0 then for any homology class inH1(X/C), choose a representative

of [l] that is based at v0. Deleting any duplicate edges types gives us a cycle l′ ∈ [l] that

has at most one of any edge type. Let K be the set of edge types that are in l′. Then let

w be the code word that has a 1 in entry k for each k ∈ K, and a 0 in every other entry.

Therefore, φ(w) = [l′] = [l], so φ is surjective.

6
Other Methods and Topics for Future Study

6.1 Equivariant Homology

The fact that the homology of some of the Adinkras did not obey Poincaré duality sug-

gests that these Adinkras are not manifolds. Instead, they might be orbifolds, which are

manifolds quotiented by a group where the group action is not free.

Definition 6.1.1. Let G be a group and X be a set. Suppose g, h ∈ G. If gx = hx if and

only if g = h for all x ∈ X then we say that the action of G on X is free. 4

In our case, the group is the code, and it acts of the sets of vertices, edges, faces, cube,

etc by identification via addition of codewords.

Example 6.1.2. Let C = {000, 110, 011, 101}. Consider the set of faces of the 3-cube

{(1 ∗ ∗), (0 ∗ ∗), (∗ 1 ∗), (∗ 0 ∗), (∗ ∗ 1), (∗ ∗ 0)}. We have that (1 ∗ ∗) + 101 = (0 ∗ ∗)

and (1 ∗ ∗)+110 = (0 ∗ ∗). Therefore C does not act freely on the faces of the 3-cube. ♦

We hoped to fix this problem by computing the equivariant homology of these Adinkras.

Definition 6.1.3. For any group G we can define a space EG such that EG is contractible

and has a free G action. 4

6. OTHER METHODS AND TOPICS FOR FUTURE STUDY 38

By crossing a space that does not have a free G-action with EG, we can “free up” the

action without changing the topology. Then we can compute the equivariant homology,

which is defined as follows.

Definition 6.1.4. The nth equivariant homology group is defined as follows:

HG
n (X) = Hn((X × EG)/G).

4

First, we tried to compute the Z2-equivariant homology of the 1-cube. To do this, we

cross by a space E Z2 and mod out by a Z2-action. The space E Z2, which has a free

Z2-action and is contractible, has the chain complex of S∞. The space S∞ is the limit

of Sn as n −→ ∞, via inclusion. We have that S∞ is contractible because it is the union

of all Sn and each Sn is contractible in Sn+1. The cells of E Z2 are {c+n , c−n |n ∈ Z≥0},

where c±n correspond to upper and lower n-hemispheres. The boundary of the cells are

∂c±n = c+n−1 + c−n−1. The 1-cube that we are crossing with E Z2 has two 0-cells, a and b,

and one 1-cell, e. The boundary of e is a+ b.

If we have two spaces X and Y , then an n-cell of X × Y is an ordered pair (xp, yq),

where xp is a p-cell of X and yq is a q-cell of Y and p+ q = n. The boundary of this n-cell

is

∂(xp, yq) = (∂xp, yq) + (xp, ∂yq).

Thus, when we cross the 1-cube with E Z2, the 0-cells are {(a, c+0), (a, c−0), (b, c+0), (b, c−0)},

the 1-cells are {(e, c+0), (e, c−0), (a, c+1), (a, c−1), (b, c+1), (b, c−1)}, the 2-cells are {(e, c+1), (e, c−1), (a, c+2),

(a, c−2), (b, c+2), (b, c−2)} and so on. Some of these cells get identified by the Z2-action. The

chain groups and the boundary maps are computed below.

The 0th chain group is

C0 = span{(a, c+0), (a, c−0), (b, c+0), (b, c−0)}.

6. OTHER METHODS AND TOPICS FOR FUTURE STUDY 39

Under the Z2 action, (a, c+0) gets identified with (b, c−0) and (a, c−0) gets identified with

(b, c+0). Therefore

C0

Z2
= span{[(a, c+0)], [(a, c−0)]} ∼= (Z2)

2.

Similarly, since

C1 = span{(e, c+0), (e, c−0), (a, c+1), (a, c−1), (b, c+1), (b, c−1)},

then

C1

Z2
= span{[(e, c+0)], [(a, c+1)], [(a, c−1)]} ∼= (Z2)

3.

Next we have

C2 = span{(e, c+1), (e, c−1), (a, c+2), (a, c−2), (b, c+2), (b, c−2)}.

Which, after quotienting by Z2 gives us

C2

Z2
= span{[(e, c+1)], [(a, c+2)], [(a, c−2)]} ∼= (Z2)

3.

In general, we have

Cn

Z2
= span{[(e, c+n−1)], [(a, c

+
n)], [(a, c−n)]} ∼= (Z2)

3

for all n > 0. We now consider ∂1 : C1
Z2
→ C0

Z2
. We have

∂1(e, c
+
0) = (a, c+0) + (b, c+0) = (a, c+0) + (a, c−0),

∂1(a, c
+
1) = (a, c+0) + (a, c−0),

∂1(a, c
−
1) = (a, c+0) + (a, c−0).

Since ∂1(e, c
+
0) = ∂1(a, c

+
1) = ∂1(a, c

−
1) then im ∂1 = Z2. Then, consider ∂2 : C2

Z2
→ C1

Z2
. We

have
∂2(e, c

+
1) = (a, c+1) + (b, c+1) + (e, c+0) + (e, c−0) = (a, c+1) + (a, c−1),

∂2(a, c
+
2) = (a, c+1) + (a, c−1),

∂2(a, c
−
2) = (a, c+1) + (a, c−1).

6. OTHER METHODS AND TOPICS FOR FUTURE STUDY 40

Since ∂1(e, c
+
1) = ∂1(a, c

+
2) = ∂1(a, c

−
2) then im ∂1 = Z2. In general, we have ∂n : Cn

Z2
→

Cn−1

Z2
such that

∂n(e, c+n−1) = (a, c+n−1) + (a, c−n−1),

∂n(a, c+n) = (a, c+n−1) + (a, c−n−1),

∂n(a, c−n) = (a, c+n−1) + (a, c−n−1).

Since ∂n(e, c+n−1) = ∂n(a, c+n) = ∂n(a, c−n) then im ∂n = Z2, for all n > 0. Therefore, we

have

H0 =
ker ∂0
im ∂1

=
(Z2)

2

Z2
= Z2,

Hn =
ker ∂n

im ∂n−1
=

(Z2)
2

Z2
= Z2

for all n > 0.

6.2 Cross Polytopes

The reason we get orbifolds for some of these quotients is because there are certain points

that are fixed under the group action. Often these points occur somewhere in the middle

of an edge or a face, so we decided instead to try to compute the homology of the cross

polytope, which is the dual of the N -cube.

Definition 6.2.1. Suppose we have an N -cube, [0, 1]N . Let P0 be the set of points con-

sisting of all possible permutations of (1/2, 1/2, ..., 0) and P1 be the set of points consisting

of all possible permutations of (1/2, 1/2, ..., 1). Then the corresponding cross polytope that

is dual to this N -cube is the N -dimensional regular polytope that is the convex hull of

P0 ∪ P1 [1]. 4

The cross polytope is dual to the N -cube in that it has a k-cell for every (N−k−1)-cell

of the N -cube. When we are comparing the N -cube to its cross polytope, we will throw

out the top dimensional cube. The cross polytope will have its fixed points on vertices,

rather than in the middle of an edge or face, so we thought it might be helpful to consider

the homology of the quotient of this space instead. Since the cross polytope is dual to

6. OTHER METHODS AND TOPICS FOR FUTURE STUDY 41

the original polytope, the homology of the cross polytope should be the cohomology of

the original polytope. Cohomology is a way of associating a series of abelian groups to

a topological space that is similar to homology. In fact, the coboundary operators in the

cohomology are just the transpose of the boundary operators from the homology, and the

cochain groups are isomorphic to the chain groups. It makes sense that the homology of

cross polytope should be the same as the cohomology of the N -cube, due to the duality

of the cells described above. Since we are working with Z2 as our coefficient group, the

Universal Coefficient Theorem implies that their homologies should be the same. As an

example, we computed the homology of the cross polytope of the cube, i.e. the octahedron,

quotiented by the code {000, 110, 011, 101}. The homology is

H0
∼= Z2,

H1
∼= 0,

H2
∼= Z2 .

There is no H3, since there is no 3 dimensional cell in the octahedron. This homology

is not the same as the homology of the cube, quotiented by {000, 110, 011, 101}, which as

we listed earlier is
H0
∼= Z2,

H1
∼= (Z2)

2,

H2
∼= (Z2)

3.

However, the homology of the octahedron quotiented by {000, 110, 011, 101} is the same

as the homology of the 2-sphere. We tried to picture the quotient, in order to see why. It

has 3 vertices, 3 edges, and 2 faces. Therefore, the quotient looks like a triangular pillow, or

two triangles sewn together, which is like a sphere but has 3 orbifold points. This suggests

that we might need to use some type of orbifold homology to study these spaces further.

Regardless, the discrepancy between the homology of the quotient of the N -sphere and

the homology of the quotient of the cross polytope is interesting and merits further study.

6. OTHER METHODS AND TOPICS FOR FUTURE STUDY 42

6.3 Integer Homology

So far, we have computed only the Z2-homology of generalized Adinkras. However, we

can also compute the homology using another coefficient group, such as the integers.

Computing homology over the integers is more difficult, because we now have to take

signs into account. That means N -cubes must have an orientation, and we must keep

track of the orientation when computing the boundary maps. For instance, consider an

edge, connected by two vertices.

Before, when we were computing Z2-homology, the boundary of e would have been a+b.

However, when computing integer homology, we must assign an orientation to this edge.

Now the boundary of e is a − b. We can do the same with the faces, cubes, etc. We

computed the integer homology of the N = 4 Adinkra, which is the 4-cube quotiented by

{0000, 1111}. As an example, the boundary of the 4-cube is

∂4(∗ ∗ ∗ ∗) =(1 ∗ ∗ ∗)− (0 ∗ ∗ ∗)

−(∗ 1 ∗ ∗) + (∗ 0 ∗ ∗)

+(∗ ∗ 1 ∗)− (∗ ∗ 0 ∗)

−(∗ ∗ ∗ 1) + (∗ ∗ ∗ 0).

6. OTHER METHODS AND TOPICS FOR FUTURE STUDY 43

This time, when we are identifying n-cube by addition of a codeword, adding a 1 to a ∗

flips the orientation. Therefore, after identification, the boundary becomes

∂4(∗ ∗ ∗ ∗) =(1 ∗ ∗ ∗) + (1 ∗ ∗ ∗)

−(∗ 1 ∗ ∗)− (∗ 1 ∗ ∗)

+(∗ ∗ 1 ∗) + (∗ ∗ 1 ∗)

−(∗ ∗ ∗ 1)− (∗ ∗ ∗ 1)

= 2 [(1 ∗ ∗ ∗)− (∗ 1 ∗ ∗) + (∗ ∗ 1 ∗)− (∗ ∗ ∗ 1)].

Therefore im ∂4 ∼= 2Z. Since we are working over the integers, the image of the boundary

map can now be a subgroup of Zk, where k is the rank of the boundary map. Thus, when

we form the boundary matrix, we need to find the Smith Normal Form of the matrix,

which is a diagonal form that can be obtained by multiplying on the left and right by

square integer matrices with determinant ±1, in addition to the rank and nullity, to be

able to find im ∂n [7]. After doing these computations in SAGE, we find that the integer

homology of the N = 4 Adinkra is

H0
∼=

ker ∂0
im ∂1

∼=
(Z)8

(Z)7
∼= Z,

H1
∼=

ker ∂2
im ∂3

∼=
(Z)9

(Z)8 ⊕ 2Z
∼= Z2,

H2
∼=

ker ∂1
im ∂2

∼=
(Z)3

(Z)3
∼= 0,

H3
∼=

ker ∂3
im ∂4

∼=
Z

2Z
∼= Z2,

H4
∼=

ker ∂4
im ∂5

∼=
0

0
∼= 0.

6. OTHER METHODS AND TOPICS FOR FUTURE STUDY 44

Again, this is the same as the integer homology of RP 4, as we expected. It would be

interesting to compute the integer homology of some of the other spaces we considered

when we were finding Z2-homology, to see we can find any additional information about

these spaces.

6.4 Additional Future Research

As mentioned earlier, when we were quotienting cubes by codes, we were really taking

only the quotient at the level of the vertices. It is also possible to consider the topological

quotient space, where the code acts linearly on the cube as a topological space, and to

compute the homology of those spaces. In Reference [11], Ed Swarz classifies quotients

of spheres by groups of the form (Zp)
N , where p is a prime. It would be interesting to

consider these spaces, their homology, and their relation to Adinkras.

Bibliography

[1] H. S. M. Coxeter, Regular Polytops, Dover Publications, New York, 1973.

[2] C.F. Doran, M.G. Faux, S.J. Gates Jr., T. Hübsch, K.M. Iga, and G.D. Landweber,
An Application of Cubical Cohomology to Adinkras and Supersymmetry Representa-
tions.

[3] , On graph-theoretic identifications of Adinkras, supersymmetry representa-
tions and superfields, International Journal of Modern Physics A 22 (2007).

[4] C.F. Doran, M.G. Faux, S.J. Gates Jr., T. Hübsch, K.M. Iga, G.D. Landweber, and
R.L. Miller, Topology Types of Adinkras and the Corresponding Representations of
N-Extended Supersymmetry.

[5] , Adinkras for Clifford Algebras, and Worldline Supermultiplets.

[6] M.G. Faux and S.J. Gates Jr., Adinkras: A graphical technology for supersymmetric
representation theory, Physical Review D 71 (2005).

[7] John Guillaume Dumas, Frank Heckenbach, B. David Saunders, and Volkmar Welker,
Algebra, Geometry, and Software Systems, Springer, 2003.

[8] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[9] William Cary Huffman and Vera Pless, Fundamentals for Error Correcting Codes,
Cambridge University Press, 2003.

[10] V. V. Prasolov, Elements of Homology Theory, American Mathematical Society, 2007.

[11] Ed Swarz, Matroids and Quotients of Spheres, Mathematische Zeitschrift 241 (2002).

[12] William P. Thurston, The Geometry and Topology of Three-Manifolds (2002).

Appendix A
#Takes an n-cube (a list of *s, 0s, and 1s) and outputs a list
of n-1 cubes, by taking each * in turn and replacing it with a 1.
def boundary1(cube):
 a = []
 i = 0
 while i < len(cube):
 if cube[i] == '*':
 y = []
 y = y + cube
 y[i] = '1'
 a = a + [y]
 i = i + 1
 return a

#Takes an n-cube (a list of *s, 0s, and 1s) and outputs a list
of n-1 cubes, by taking each * in turn and replacing it with a
0.
def boundary0(cube):
 a = []
 i = 0
 while i < len(cube):
 if cube[i] == '*':
 y = []
 y = y + cube
 y[i] = '0'
 a = a + [y]
 i = i + 1
 return a

#Function for adding '1', '0', and '*', mod 2. Takes two
strings, containing either *, 0, or 1 and adds them, so that 1+1
= 0, 1+0 = 0+1 = 1 and *+1 = 1+* = *+0 = 0+* = *. Returns a
string containing the sum.
def mod2(a,b):
 if a == '*' or b == '*':
 return '*'
 elif a == '0':
 return b
 elif b == '0':
 return a

 else:
 return '0'

#Takes a code (which is a list of codewords, i.e. a list of
strings of 0s and 1s) and a list of n-cubes (which are lists
'0', '1', and '*'), and creates a list of equivalence classes.
An equivalence class is a list of n-cubes that can be mapped to
each other by mod 2 addition of a codeword. This may output
duplicates of equivalence classes, and n-cubes within the
equivalence classes.
def codeAdd(code, cubes):
 output = []
 i = 0
 while i < len(cubes):
 outputi = []
 j = 0
 while j < len(code):
 outputj = []
 k = 0
 while k < len(code[j]):
 outputj = outputj + [mod2(code[j][k], cubes[i]
[k])]
 k = k + 1
 outputi = outputi + [outputj]
 j = j+1
 output = output + [outputi]
 i = i+1
 return output

#Takes a list of equivalence classes that contains duplicate
equivalence classes, and returns a list of equivalence classes
with no duplicates.
def equivclass(classes):
 newlist = []
 i = 0
 while i < len(classes):
 j = i + 1
 number = 0
 while j < len(classes):
 k = 0
 while k < len(classes[j]):
 if classes[i][0] == classes[j][k]:
 number = number + 1
 k = k + 1
 j = j + 1

 if number == 0:
 newlist = newlist + [classes[i]]
 i = i + 1
 return newlist

#Takes a list of equivalence classes that contains duplicate
elements within the equivalence classes, and returns a list of
equivalence classes with no duplicates within the equivalence
classes.
def equivclass2(classes):
 classes = equivclass(classes)
 newlist = []
 i = 0
 while i < len(classes):
 nlist = []
 j = 0
 while j < len(classes[i])-1:
 k = j + 1
 number = 0
 while k< len(classes[i]):
 if classes[i][j] == classes[i][k]:
 number = number + 1
 k = k + 1
 if number == 0:
 nlist = nlist + [classes[i][j]]
 j = j + 1
 nlist = nlist + [classes[i][len(classes[i])-1]]
 newlist = newlist + [nlist]
 i = i + 1
 return newlist

#Takes a list of equivalence class and returns a list of one
element of each equivalence class.
def chaingp(eqclasses):
 cg = []
 i = 0
 while i < len(eqclasses):
 cg = cg + [eqclasses[i][0]]
 i = i + 1
 return cg

#Takes an an equivalence class and returns a list of 0s, one for
each equivalence class. This is later used to make a vector for
the boundary matrix.
def nlist(eqclasses):

 newvec = []
 i = 0
 while i < len(eqclasses):
 newvec = newvec + [0]
 i = i + 1
 return newvec

#Takes a list of equivalence classes, the boundary of n-cube,
and a list of 0s and makes a vector that represents boundary map
of the n-cube.
def vectorop(eqclasses, boundary, newvec):
 j = 0
 while j < len(boundary):
 k = 0
 while k < len(eqclasses):
 l = 0
 while l < len(eqclasses[k]):
 if boundary[j] == eqclasses[k][l]:
 newvec[k] = (newvec[k] + 1) % 2
 l = l + 1
 k = k + 1
 j = j + 1
 return newvec

#Takes a list of equivalence classes and the list of elements on
the boundaries of all n-cubes. Creates vectors for each
boundary and then combines all the vectors into a matrix and
returns this boundary operator matrix.
def matrixop(eqclasses, boundarylist):
 i = 0
 newmat = []
 while i < len(boundarylist):
 newmat = newmat + [vectorop(eqclasses, boundarylist[i],
nlist(eqclasses))]
 i = i + 1
 return newmat

#Takes a list of n-cubes and makes a list of the boundaries of
the n-cubes. (The boundary of an n-cube is a list of the n-1
cubes that are on its boundary). Returns the list of the
boundaries.
def bdoflist(cubes):
 i = 0
 bd = []
 while i < len(cubes):

 bd = bd + [boundary1(cubes[i]) + boundary0(cubes[i])]
 i = i + 1
 return bd

#Takes a list of n-cubes and returns a list of all the possible
n-1 cubes.
def bigbdoflist(cubes):
 chaingrouplist
 i = 0
 bd = []
 while i < len(cubes):
 bd = bd + boundary1(cubes[i]) + boundary0(cubes[i])
 i = i + 1
 return bd

#Takes a code, the highest dimensional cube, and the dimension
of the cube and returns a list of all of the boundary operator
matrices.
def bdryops(code, topcube, n):
 i = n
 bdoplist = [0]
 while i > 0:
 ec = equivclass2(codeAdd(code, bigbdoflist(topcube)))
 matrixbd = matrixop(ec, bdoflist(topcube))
 bdoplist = bdoplist + [matrixbd]
 topcube = chaingp(ec)
 i = i - 1
 return bdoplist

#Takes a list of boundary operators, computes the output of
each, and returns a list of the ranks, from the highest
dimensional boundary operator to the lowest.
def ranks(bdoplist):
 i = 0
 ranklist = []
 while i < len(bdoplist):
 ranklist = ranklist + [Matrix(Integers(2),
bdoplist[i]).rank()]
 i = i + 1
 ranklist = ranklist + [0]
 return ranklist

#Takes a code, the highest dimensional cube, and the dimension
of the cube and returns a list of the dimension of the chain
groups, from the highest dimensional chains to the lowest.

def chaingrouplist(code, topcube, n):
 i = n
 chaingplist = [1]
 while i > 0:
 ec = equivclass2(codeAdd(code, bigbdoflist(topcube)))
 #print ec
 matrixbd = matrixop(ec, bdoflist(topcube))
 chaingplist = chaingplist + [len(chaingp(ec))]
 topcube = chaingp(ec)
 i = i - 1
 return chaingplist

#Takes the list of ranks, and the list of chain groups and uses
the Rank-Nullity theorem to compute the dimension of the
homology groups. Returns a list, from the the nth homology
group, down to the 0th homology group.
def homology(ranklist, chaingplist):
 homlist = []
 i = 0
 while i < len(chaingplist):
 homlist = homlist +
[chaingplist[i]-ranklist[i]-ranklist[i+1]]
 i = i + 1
 return homlist

#Example of the homology of 6-cube, quotiented by the code
['000000', '101000', '111111', '100111', '110000', '011000',
'001111',
'010111'].
topcube = [['*', '*', '*', '*', '*', '*']]
code = ['000000', '101000', '111111', '100111', '110000',
'011000', '001111',
'010111']
n = 6

print chaingrouplist(code, topcube, n)
print ranks(bdryops(code, topcube, n))
homology(ranks(bdryops(code, topcube, n)), chaingrouplist(code,
topcube, n))

[1, 6, 18, 32, 36, 24, 8]
[0, 0, 2, 9, 16, 14, 7, 0]
[1, 4, 7, 7, 6, 3, 1]

#Takes in a generating set and returns the code that it
generates. This will have some duplicate codewords.

def genCode1(genset):
 m = len(genset)/2
 l = 0
 while l < m+1:
 n = len(genset)
 i = 0
 while i < (n-1):
 j = i + 1
 while j < n:
 k = 0
 cdwd = ''
 while k < len(genset[i]):
 cdwd = cdwd + mod2(genset[i][k],genset[j][k])
 k = k+1
 genset = genset + [cdwd]
 j = j+1
 i = i + 1
 l = l + 1
 return genset

#Takes in a generating set, and uses genCode1 to generate a code
with duplicates. Then deletes the duplicate codewords and
returns the code that is generated from genset.
def genCode2(genset):
 i = 0
 newcode = []
 while i < len(genset)-1:
 j = i + 1
 number = 0
 while j < len(genset):
 if genset[i] == genset[j]:
 number = number + 1
 j = j + 1
 if number == 0:
 newcode = newcode + [genset[i]]
 i = i + 1
 newcode = newcode + [genset[len(genset)-1]]
 return newcode

	Generalized Adinkra Homology
	Recommended Citation

	tmp.1303750134.pdf.D3T7Z

