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Abstract

Elliptic curves are cubic curves that have been studied throughout history. From Dio-
phantus of Alexandria to modern-day cryptography, Elliptic Curves have been a central
focus of mathematics. This project explores certain geometric properties of elliptic curves
defined over finite fields.

Fix a finite field. This project starts by demonstrating that given enough elliptic curves,
their union will contain every point in the affine plane. We then find the fewest curves
possible such that their union still contains all these points. Using some of the tools
discussed in solving this problem, we then explore what can be said about the number of
solutions for a particular class of elliptic curves.
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1
Introduction

1.1 Mathematical Importance and Practical Application of Elliptic
Curves

Though we will soon define an elliptic curve as a solution set to an algebraic equation,

elliptic curves can also be seen graphically and in the 19th century were shown to also

be able to be made into groups. Because of their inherent group structure, elliptic curves

often allow conjectures that seem to be arithmetic in nature to be answered with algebra

or number theory. For this reason elliptic curves appear all over various areas of mathe-

matics. Perhaps the most famous example of this is Andrew Wiles’ proof of Fermat’s Last

Theorem in which elliptic curves played a central role. Elliptic curves are also used by

mathematicians for Integer factorization, testing primality.

In terms of practical application, elliptic curves are utilized in cryptography. Elliptic

Curve Cryptography (ECC) is a public key system and is believed to be as unbreakable as

RSA, the current standard for most secure information. The advantage to ECC is that it

can be implemented with a small group of curves requiring less storage and transmission.
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Elliptic curves also allow for digital signatures and identification. In 2005 the United States

National Security Agency moved much of its protection to Elliptic Curve Cryptography.

1.2 Overview of The Project

This project started when John introduced me to elliptic curves. Elliptic curves are defined

by two constants a and b and can be viewed over any field. John’s suggestion was to graph

a fixed elliptic curve for various prime fields. The goal he had in mind was to see if for

certain primes, points on this fixed curve clustered in some particular region. Following

this advice I started graphing curves for various primes using the computer language sage.

While looking at graphs I started to be curious about how it might look if different curves

were graphed over the same prime field. This lead to an interesting discovery which became

the focus of the project.

In Chapter 2 we will give a basic definition and establish several properties of elliptic

curves modulo prime fields that will be used throughout the project. Chapter 3 describes

the previously mentioned graphic discovery and poses the question that the rest of the

project attempts to solve. In Chapter4 we use sage to gather data and estimate a solution.

Chapter 5 utilizes tools from number theory including quadratic reciprocity to provide

an actual solution. From this solution another interesting fact arises with regard to the

number of solutions an elliptic curve has. In Chapter 6 this fact is proven using both

number theory and traditional calculus for a specific elliptic curve. Chapter 7 attempts

to make the same proofs as the previous chapter but generalized to a specific class of

curves. Chapter 9 demonstrates data for brute force proofs and 8 provides the sage code

for earlier estimates.



2
Background

2.1 Definition of Elliptic Curves and Prime Fields

To begin with we must define an elliptic curve. For more details and a less simplified

formula, see chapter III of “The Arithmetic of Elliptic Curves” by Joseph H. Silverman.

[1]

Definition 2.1.1. Let F be a field and let a, b ∈ F such that 4a3 + 27b2 6= 0. An elliptic

curve E(F) is the set {(x, y) ∈ F× F : y2 = x3 + ax+ b} .

We will refer to 4a3+27b2 6= 0 as the discriminant test. This test ensures that x3+ax+b

has no repeated roots. Since a, b can be elements of any field we will look specifically at

the field Fp, that is, the field Z/pZ where p is a prime number. We will use the notation

E(Fp) to denote the solutions to y2 = x3+ax+b, which also specifies which prime field we

are using. We may also use the notation Ea,b with the understanding that we are referring

to the prime field Fp because a, b ∈ Fp.

With this choice of field we must alter our definition slightly for p = 2 and p = 3. The

altered definitions are as follows:
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Definition 2.1.2. An elliptic curve E(F2) is either the set {(x, y) ∈ F2 × F2 : y2 + xy =

x3 + ax+ b and b 6= 0} or the set {(x, y) ∈ F2 × F2 : y2 + ay = x3 + bx+ c and a 6= 0} for

a, b, c ∈ F2.

Definition 2.1.3. An elliptic curve E(F3) is either the set {(x, y) ∈ F3 × F3 : y2 =

x3 + ax2 + b and ab 6= 0} or the set {(x, y) ∈ F3 × F3 : y2 + ay = x3 + ax+ b and a 6= 0}

for a, b ∈ F3.

The majority of this project will focus on primes greater than three so these altered

definitions will only be used in a few instances.

2.2 Properties of Elliptic Curves

2.2.1 Number of Elliptic Curves mod p

This section will demonstrate that for each prime p ≥ 5 there are p2 − p elliptic curves

defined over Fp. To do this first we define F×p to be the units of Fp which are simply

Fp − {0}. It is a theorem of abstract algebra that F×p is a cyclic group of order p− 1.

Lemma 2.2.1. There are p solutions to the equation 4a3 + 27b2 = 0 mod p.

Proof. If one of a, b = 0 and 4a3 + 27b2 = 0 mod p, then both a, b = 0. Thus we see that

there is one solution at a = 0, b = 0 and can assume a, b 6= 0.

Suppose a, b ∈ F×p . By simple algebraic manipulation it is clear that 4a3 + 27b2 = 0

mod p is equivalent to the statement b2 = −4a3
27 . We can divide by 27 safely because p 6= 3.

So the number of solutions will be how many times −4a
3

27 is a perfect square. But because

b2 = (−b)2 we get two choices of b for each time −4a
3

27 is a square. So it will suffice to show

that −4a
3

27 is a square for p−1
2 distinct choices of a, non of which are the additive inverse

of each other.

Let C : F×p −→ F×p defined by C(a) = a3. It is easy to see that C is a homomorphism.
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Case 1: Suppose p ≡ 2 mod 3. Then p− 1 = 1 mod 3. Let α be a generator of F×p . Then

1 = αp−1. Because (p − 1) - 3 there is no n > 0 such that αn
3

= αp−1. So | kerC| = 1.

So the image of C is F×p . But because the elements of F×p can be expressed as consecutive

powers of α. This can be seen as {α, α2, α3, α4 . . . } or equivalently. {α, (α)2, α3, (α2)2 . . . }.

From this it is easy to see that half of the group are squares. So the number of squares is

p−1
2 .

Case 2: Suppose p ≡ 1 mod 3. Then p− 1 ≡ 0 mod 3. Let α be a generator of F×p . Then

1 = αp−1. Because p− 1 | 3 there exist n such that αn
3

= αp−1. In fact there are exactly

three n which can be written as 0, p−13 , 2(p−1)3 . So | kerC| = 3. So | imC| = p−1
3 . But

because the image is a subgroup of F×p , it is cyclic, and can be expressed as consecutive

powers of some δ so we know that half of these elements are squares. So the number

of squares is p−1
6 . Each one of these squares can be expressed as δn where n | 3. Then

n
3 ,

n
3 + p−1

3 , n3 + 2(p−1)
3 . all cube to n. So there are three choices of a such that a3 is a

square. Thus the number of squares is p−1
2 .

It is clear that that if a 6= b then −4a
3

27 6=
−4b3
27 . Thus −4a

3

27 is a square p−1
2 times.

This proof tells us how many curves there can be for a given Fp. This knowledge is

essential in order to state main problem of this project.

Theorem 2.2.2. The number of (a, b) ∈ Fp × Fp such that y2 = x3 + ax+ b is an elliptic

curve is p2 − p.

Proof. There are p choices for a and p choices for b. So there are p2 choices for (a, b). By

Lemma 2.2.1 there are p solutions to the equation 4a3 + 27b2 = 0 mod p, which means

p curves fail the discriminant test. Thus there are p2 − p choices of (a, b) that produce

elliptic curves.
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2.3 Number of Solutions For a Curve mod p

Let E be defined over Fp. Then by Hasse’s theorem the number of solutions of E(Fp) is

an integer given by the formula: |E(Fp)| = p− ap where ap is in the range −2
√
p < ap <

2
√
p.[2, Chapter V, Page 132]

Lemma 2.3.1. Let p > 7 and let E be an elliptic curve over Fp, then |E(Fp)| ≥ 2.

For this proof we will look at the minimum value of number of solutions p− 2
√
p.

Proof. Let f : R −→ R defined by f(x) = x − 2
√
x. Taking the derivative f ′(x) = 1 − 1√

x

we see that if x > 1 then f is always increasing. Also f(11) > 3. So for x ≥ 11, f(x) > 3.

So for every p ≥ 11 there are more than two solutions. Since every prime greater than 11

is also greater than 7 it is clear that our lemma holds.

2.4 Equivalence of Elliptic Curves

We will now define what it means for two elliptic curves to be equivalent.

Definition 2.4.1. Let E1, E2 defined by the equations y2 = x3 + a1x + b1 and y2 =

x3 + a2x+ b2, respectively, be elliptic curves. Then E1 and E2 are equivalent if they have

the same solution set, i.e. E1(Fp) = E2(Fp) as sets.

We will use the notation ∼ to mean equivalence. It is very easy to see that if a1 = a2

and b1 = b2 then the curves E1, E2 are equivalent. However we will prove that if a1 6= a2

or b1 6= b2 then E1 � E2. By contrapositive we can state the theorem as follows.

Theorem 2.4.2. If E1 ∼ E2 then a1 = a2 and b1 = b2.

Proof. Let p ≥ 3 and let E1 ∼ E2. Suppose (xo, yo) ∈ E1, E2 and (xα, yα) ∈ E1, E2 such

that xo 6= xα. By lemma 2.3.1 we know that two such points must exist for p ≥ 11.

For p = 5 or 7 this Theorem is easily proven by brute force as you can see in Section
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9.1. Then y2o = x3o + a1xo + b1, y
2
o = x3o + a2xo + b2 and similarly y2α = x3α + a1xα + b1,

y2α = x3α + a2xα + b2. Taking the difference of each pair of equations we see that

a1 = (y2o − y2α − x3o + x3α)(xo − xα)−1 = a2

So it is easy then to see that

b1 = y2o − x3o − a1xo = b2

Thus a1 = a2 and b1 = b2.

This proof reveals more than just equivalence of elliptic curves. From it we see that two

elliptic curves with distinct a, b values can have at most two points as common solutions.

These shared points will be of the form (xo, yo), (xo,−yo). This result will be particularly

important in Section 3.3.

2.5 Intersection of Elliptic Curves

When two elliptic curves do not have equivalent a’s and/or b’s, we can show some facts

with regard to how many common solutions the two curves have.

Theorem 2.5.1. If a1 = a2 and b1 6= b2 then E1, E2 have no common solutions.

Proof. Let a1 = a2 and b1 6= b2. Let (xo, yo) ∈ E1 and assume (xo, yo) ∈ E2. Then

y2o = x3o + a1xo + b1, and y2o = x3o + a2xo + b2. We can solve for the bi’s and see that

b1 = y2o − x3o − a1xo = y2o − x3o − a2xo = b2. This is a contradiction so we see that no such

(xo, yo) can exist.

We can also learn something interesting when a1 6= a2 and b1 = b2. In terms of equiva-

lence, the properties we can prove depend on whether b1 is a perfect square or not.

Theorem 2.5.2. Suppose b1, b2 are not square modulo p. If a1 6= a2 and b1 = b2 then

E1, E2 have no solutions in common.
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Proof. Let a1 6= a2 and b1 = b2. Since b1, b2 are not perfect squares, E1(Fp), E2(Fp)

can not have any solutions of the form (0, yo). Assume (xo, yo) ∈ E1(Fp), E2(Fp). Then

y2o = x3o + a1xo + b1, and y2o = x3o + a2xo + b2. We can solve for the ai’s and see that

a1 = (y2o − x3o − b1)x−1o = (y2o − x3o − b2)x−1o = a2. This is a contradiction so E1, E2 have

no common solutions.

Theorem 2.5.3. Suppose b1, b2 6= 0 and are not square modulo p. If a1 6= a2 and b1 = b2

then E1, E2 have exactly two points as common solutions.

Proof. Since b1, b2 are perfect squares, E1, E2 have the solutions (0,
√
b1), (0,−

√
b1), where

√
b1 refers to a fixed square root of b1 mod p. Assume (xo, yo) ∈ E1, E2 such that xo 6= 0.

Then y2o = x3o + a1xo + b1, y
2
o = x3o + a2xo + b2. We can solve for the ai’s and see that

a1 = (y2o − x3o − b1)x−1o = (y2o − x3o − b2)x−1o = a2. This is a contradiction so the only

common solutions E1, E2 have are (0,
√
b1), (0,−

√
b1).

These facts about overlap will be useful in Chapter 4 while trying to find bounds for

the main problem of this project.



3
The Spanning Property and Minimal Spanning
Curves

This chapter will describe a property of all the elliptic curves over a fixed prime field

that we call the spanning property. The Spanning Property will be the main focus of this

project.

3.1 Visualizing the Spanning Property

As well as having an algebraic formula and a group structure [2, Chapter 3, Page 68],

elliptic curves can be studied geometrically. To show this we will start by taking the single

curve E(F11) defined by the curve y2 = x3 + 2x+ 4. We can plot each solution on an xy

axis representing F11 × F11.



3. THE SPANNING PROPERTY AND MINIMAL SPANNING CURVES 15

With this example in mind we can ask what happens when all 110 elliptic curves in F11

are plotted on the same graph? Using sage we can plot all these graphs together and see

the result.

This result is interesting because it means each point in F11 × F11 is on at least one

elliptic curve. It is natural then to try and generalize this and see for which primes p do

all the curves together cover Fp × Fp. It turns out the answer is that every prime p has

this property but to show this we will turn away from geometry and instead use number

theory.
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3.2 Proof of the Spanning Property

In this section we will prove that for every point (xo, yo) in Fp×Fp there is an elliptic curve

that has that point as a solution. This means when all the elliptic curves are graphed on

the same axes the entire field is covered. Because it is entirely covered we call this the

Spanning Property.

Theorem 3.2.1. Let p be a prime. For every (x, y) ∈ Fp × Fp, there exists an elliptic

curve E defined over Fp such that (x, y) ∈ E(Fp).

Proof. To prove this theorem we use brute force for p = 2 and p = 3 and then a unified

approach for p > 3. The following tables show the possible points in each field on the left

and elliptic curves for which those points are solutions on the right. Note that each of

these curves also pass the appropriate discriminant test for E(Fp). It is clear that in each

table are all possible (x, y) in the respective field are covered.

First suppose p = 2.

(x, y) E(F2)
(1,0), (1,1) y2 + xy = x3 + 1

(0,1) y2 + xy = x3 + x2 + 1

(0,0) y2 + y = x3

Now suppose p = 3.

(x, y) E(F3)
(0,0), (1,0), (2,1) y2 = x3 + x

(0,1), (0,2), (2,2) y2 = x3 + x+ 1

(1,1), (1,2), (2,0) y2 = x3 + x+ 2

Now suppose p > 3. Let xo, yo ∈ Fp×Fp. We see that (xo, yo) is a solution on an elliptic

curve if there exist an (a, b) ∈ Fp × Fp such that y2o = x3o + axo + b and 4a3 + 27b2 6= 0

(mod p).

To show that for every (xo, yo) ∈ Fp × Fp there exists E with (xo, yo) ∈ E(Fp) we have

two cases.
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Case 1: Suppose x3o 6= y2o . Choose a = 0 and b = y2o − x3o. With this choice of (a, b) we

see that the curve passes the discriminant 4a3 + 27b2 6= 0 (mod p) and thus is an elliptic

curve E/Fp. Then by substitution we see that X3 + aX + b = X3 + 0 ·X + (y2o − x3o) =

x3o + 0 · xo + (y2o − x3o) = y2o . Thus (xo, yo) ∈ E(Fp)

Case 2: Now suppose x3o = y2o . We see that 0 = axo + b and subsequently b = −xo. Choose

a = 1. Then (xo, yo) is a solution to the equation Y 2 = X3 +X − xo unless 4 + 27x2o = 0

(mod p).

If 4 + 27x2o = 0 (mod p) then choose a = −1. Then b = xo. Then (xo, yo) is a solution

to the equation Y 2 = X3 −X + xo unless −4 + 27x2o = 0 (mod p).

If both 4 + 27x2o = 0 (mod p) and −4 + 27x2o = 0 (mod p) then we can add these two

equations. Thus 54xo = 0 (mod p). Since 54 = 33 × 2 this is only possible if xo = 0. Since

x3o = y2o , y
2
o = 0.

For (xo, yo) = (0, 0) choose (a, b) = (1, 0). This is true because y2o = 0 = x3o + xo and

4 6= 0 (mod p). Thus (xo, yo) ∈ E(Fp).

3.3 Minimum Number of Curves to Span the Plane Fp × Fp

Now we have a proof that with all the curves we can cover the plane made by Fp × Fp.

It is then natural to ask wether we need all the curves to span the plane. What is the

minimum number of curves one can use to span the plane? This problem can be stated

precisely as follows.

Problem: Let {E1, E2, . . . Ep2−p} the set of all elliptic curves over Fp. From Theorem 3.2.1

we know that |
⋃p2−p
i=1 Ei(Fp)| = p2. What is the smallest n ∈ N such that |

⋃n
i=1Ei(Fp)| =

p2.



4
Computational Bounds

Since there is no immediately obvious way to calculate the minimum number of curves

n needed to span the plane, we can computationally look for upper and lower bounds

instead. We already know that n is bounded above by p2 − p. However it is very easy

to show that this is not the least upper bound. Similarly while 1 must be a lower bound

because we would need at least 1 curve, we know that this is not the greatest lower bound.

The following subsections will discuss methods for finding upper then lower bounds both

theoretically and computationally. It is worth noting that because any combination of the

p2−p curves may span Fp it is not feasible to use brute force to find a minimum spanning

set.

4.1 Upper Bound

The following three methods produce upper bounds on the minimum number of curves

needed. After describing each algorithm I will offer analysis as well as a table of results.

Also in Chapter 8 there is the sage code for each of these methods.
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4.1.1 Proof Method

The proof of the spanning property defines an elliptic curve for each point in the plane. We

can simply go through the same checks as the proof and maintain a list of the curves used.

This runs as follows. Create a list of the p2 points in the plane. For each point (xo, yo):

1. If x3o 6= y2o add the curve (0, y2o − x3o) to the list of required curves if it isn’t already

there.

2. If x3o = y2o and 27x2o + 4 = 0 mod p add the curve (1,−xo) to the list of required

curves if it isn’t already there.

3. If x3o = y2o and 27x2o − 4 = 0 mod p add the curve (−1, xo) to the list of required

curves if it isn’t already there.

4. If the point is (0, 0) add the curve (1, 0) to the list of required curves if it isn’t already

there.

4.1.2 Largest Curve Method

To find a better upper bound we can use sage to run a program that works as follows:

1. Create a list of the p2 points in the plane and all p2 − p curves that pass the

discriminant test.

2. Find the curve that has the most of solutions on the list of points. Add this curve

to the list of required curves.

3. Remove the solutions of this curve from the list of points and that curve from the

list of unused curves.

4. Repeat steps two and three until there are no points left in the original list.
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4.1.3 Random Method

Since the above two methods do not provide a guaranteed lower bound it may be possible

for a computer to find a better lower bound using brute force and random selection. So in

sage one can write a program that runs as follows.

1. Generate a list of all possible (a, b) that pass the discriminant test for p.

2. Pick a random (a, b) from this list and put any solution points that aren’t already

there into a list of covered points.

3. Remove (a, b) from the list of curves.

4. Repeat steps 2 and 3 until the list of solution points has length p2. Record the

number of curves used.

5. Repeat steps 1 through 4 a large number of times (1,000,000). Find the smallest

number recorded.

Running this program a million times for the small primes 5, 7 gives better solutions

than the two other estimates. For primes greater than 9 though the other methods for

estimating are both more effective and more efficient.

4.1.4 Results of Computational Upper Bound Methods

This table shows the results of the three algorithms. Because the random algorithm was

so inefficient its results are only listed up to p = 41.
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p Largets Curve Proof Technique Random

5 5 8 4

7 9 11 8

11 11 20 17

13 17 22 25

17 22 29 40

19 28 35 49

23 33 41 63

29 42 50 94

31 46 54 107

37 63 64 135

41 69 71 158

43 64 75

47 84 84

53 81 92

59 109 107

61 113 106

67 100 119

71 137 127

73 109 127

79 118 141

83 165 149

89 179 155

97 145 169

101 150 176

103 154 183

107 230 191

109 176 190

113 242 197

127 202 225

131 294 236

137 204 239

139 208 248

149 236 260

4.1.5 Worst Case Scenario Method

Using what we know about how curves intersect from Section 2.5 and what we know about

the size of curves from Section 2.3 we can try create a theoretical upper bound.
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Hasse’s theorem tells us that the smallest number of solutions a curve can have is

p− b2√pc. To see the worst case scenario then, the obvious thing to do then is to divide

p2 by this smallest size. This produces a result of d p2

p−b2√pce.

Though this is good, it is not necessarily an upper bound as it does not account for

points intersecting on various curves. We know that each curve can intersect with each

previously chosen curve at most 2 points. Since we are looking at the worst case we can

assume each curve intersects with each previous curve at two points. This means when

we add the nth curve we get p− b2√pc − 2(n− 1) new points. We will define f(n) to be

p − b2√pc − 2(n − 1). So the upper bound will be n such that
∑n

i=0 f(i) ≥ p2. However

we will show that no such n exists. First we will find a polynomial expression for the

summation. For clarity let c = p− b2√pc

n∑
i=0

f(i) =
n∑
i=0

c− 2(i− 1) =
n∑
i=0

c+ 2− 2i

= nc+ 2n− 2
n∑
i=0

i = nc+ 2n− 2
n(n+ 1)

2

= nc+ 2n− n2 − n = −n2 + nc+ n = n(−n+ c+ 1)

So we see that this is a parabola with negative concavity and roots at 0, c+ 1. So we know

the maximum must be halfway between the roots at c+1
2 .We now show that

∑ c+1
2

i=0 f(i) <

p2.

c+1
2∑
i=0

f(i) =
c+ 1

2
(
1− c

2
+ 1 + c)

=
−c2 − 2c− 1

4
+

2c2 + 2c

4
+

2c+ 2

4
=
c2 + 2c+ 1

4

=
(p− b2√pc)2 + 2(p− b2√pc) + 1

4

=
p2 − 2pb2√pc+ (b2√pc)2 + 2p− 2b2√pc+ 1

4
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Because we know that p− b2√pc ≤ p− 2
√
p we see that,

≤
p2 − 2p(2

√
p) + (2

√
p)2 + 2p− 2(2

√
p) + 1

4

=
p2 − 4p

√
p+ 4p+ 2p− 4

√
p+ 1

4

=
p2 − 4p

√
p+ 6p− 4

√
p+ 1

4

To see that
p2−4p√p+6p−4√p+1

4 < p2 we can simply graph the two functions together. We

can see that p2 is always greater.

Thus
∑ c−1

2
i=0 f(i) ≤ p2−4p√p+6p−4√p+1

4 < p2.

This means our attempt to make a generalized upper bound does not work because

we must account of intersection between curves. However we can do better looking for a

theoretic lower bound.

4.2 Lower Bound

We can find a lower bound by finding a set of curves that do not necesarily span the

field but are required to span the field or, by using the size curves to estimate a mini-

mum number that would be needed. The following two sections will lay out each of these

techniques.
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4.2.1 Table Method

One method to look for a lower bound is to make a table. Across the top of the table goes

a list of all the points in the plane. The curves that pass the discriminant test are listed

down the side. Where a point is a solution to the curve we put a 1 and we put a 0 every

where else. If any column has a single 1 then we know the corresponding curve must be

in the minimum set in order to cover the point corresponding to that column.

An example of this can be seen for p = 3:

Curves/Points (0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

y2 = x3 + x 1 1 1

y2 = x3 + x+ 1 1 1 1

y2 = x3 + x+ 2 1 1 1

y2 = x3 + 2x 1 1 1

y2 = x3 + 2x+ 1 1 1 1 1 1 1

y2 = x3 + 2x+ 2

As one can see there is no column that sums to 1. By testing several primes in sage it

seems that this in fact never happens. This warrants a proof.

Theorem 4.2.1. For every (x, y) ∈ Fp × Fp, if (x, y) is a solution to E1(Fp) then (x, y)

is a solution to a different elliptic curve E2(Fp).

Proof. Let E1 be defined by y2 = x3 + a1x+ b1 and E2 be defined by y2 = x3 + a2x+ b2

for some a1, a2, b1, b2 ∈ Fp such that E1 � E2. Let (xo, yo) be a solution to E1. Then

y2o = x3o + a1xo + b1.

Case 1: Let xo = 0. It follows easily that y2o = b1. Choose an a2 6= a1 and b2 = b1. Then

E2 is y2 = x3 + a2x + b1. We check that (xo, yo) is a solution to E2 by substitution and

see that indeed y2o = b1.

Case 2: Let xo 6= 0 and b1
xo
6= a1. Choose an a2 = b1

xo
and b2 = a1xo. Note a1 6= a2. Then

E2 is y2 = x3 + b1
xo
x+ a1xo. We check that (xo, yo) is a solution to E2 by substitution and

see that indeed y2o = x3o + a1xo + b1.
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Case 3: Let xo 6= 0, b1
xo

= a1, and b1 6= 0. Choose an a2 = 0 and b2 = 2b1. Note a1 6= a2. It

follows then that y2o = x3o+
b1
xo
xo+b1 = x3o+2b1. Then E2 is y2 = x3+0x+2b1. We check that

(xo, yo) is a solution to E2 by substitution and see that indeed y2o = x3o+0xo+2b1 = x3o+2b1.

Case 4: Let xo 6= 0, b1
xo

= a1, and b1 = 0. Note that this implies that a1 = 0. This means

E1 fails the discriminant test so we need not worry about this case.

Though this proof does not give a lower bound it does demonstrate an interesting aspect

about how elliptic curves intersect. While no two curves can intersect at more than two

points, every point is the intersection of at least two distinct elliptic curves.

4.2.2 Best Case Scenario Method

With Hasse’s theorem we know that n, the number of solutions to the curve E(Fp), is in

the range b−2
√
pc + p < n < d2√pe + p. Let us assume that each curve has completely

distinct solutions. Let us also assume that each curve we choose is as large as possible,

that is it hasd2√pe+ p solutions. Then to cover p2 points we need d p2

p+b2√pce curves. This

gives us a lower bound. Unlike the upper bound we don’t have to worry about intersection

because we know we can have curves that don’t intersect and we are assuming the best

case scenario.

However using a program in sage it is easy to see even without worrying about solutions

being distinct that for many primes there are not this many curves of size d2√pe+ p. The

lack of large enough curves means while this is a lower bound but it is not a a solution to

the spanning property.

4.3 Summary

We can make a table of the lower bound and the best upper bound we calculated to give

an idea of the range for the spanning property. The right most column is 2p to give an

idea of the size of the upper bound.
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p Lower Bound Upper Bound 2p

5 3 4 10

7 5 8 14

11 8 11 22

13 9 17 26

17 12 22 34

19 14 28 38

23 17 33 46

29 22 42 58

31 23 46 62

37 28 63 74

41 32 69 82

43 34 64 86

47 37 84 94

53 42 81 106

59 48 107 118

61 49 106 122

67 55 100 134

71 58 127 142

73 60 109 146

79 66 118 158

83 69 149 166

89 75 155 178

97 82 145 194

101 85 150 202

103 87 154 206

107 91 191 214

109 93 176 218

113 96 197 226

127 109 202 254

131 113 236 262

137 118 204 274

139 120 208 278

149 129 236 298
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Graphically this data can also be displayed as follows:

From the table and graph we see that p is in the range between the upper and lower

bounds. This means it is possible that the minimum number of curves to span Fp is p.

The next chapter will investigate and in fact prove that this is the case.



5
Number Theoretic Solution

This chapter will demonstrate two alternate solutions to the spanning problem. The first

will use bounds and asymptotes. The second will use number theory to solve the spanning

problem for p ≡ 3 mod 4.

5.1 p Curves that Span Fp × Fp

From the table in Section 4.3 we get the inkling that the answer may be p. So it seems

reasonable to look for an easy way to make sets of p curves. One obvious way to do this

is to fix either a and vary b or vice versa. However we know that this cannot work for

every a, b because of the discriminant test. Some a’s do provide p curves that pass the

discriminant test when b varies from 0 to p − 1. We can demonstrate exactly how many

such a’s there are.

Lemma 5.1.1. Let ai, b ∈ F×p . There are p−1
2 distinct values of ai such that 4a3i +27b2 6≡ 0

mod p.

Proof. Recall from Lemma 2.2.1 that there are p solutions to 4a3 + 27b2 ≡ 0 mod p. In

Lemma 2.2.1 we showed that the only solution where a = 0 is a = 0, b = 0. So there are
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p − 1 solutions where a 6= 0. Let G be the set of these p − 1 solutions. Mathematically,

G = {(a, b)|a 6= 0, 4a3 + 27b2 = 0 mod p}. Let (ao, bo) ∈ G. Because x2 = (−x)2, we know

then that (ao,−bo) ∈ G. We can also see there is no other b ∈ F×p such that (ao, b) ∈ G.

This means for each ao there are exactly two values of b. Because there are p− 1 solutions

and two choices of b for every a then there must be p−1
2 ai such that (ai, b) ∈ G. So of the

p possible ai,
p−1
2 + 1 fail the discriminant test for some choice of b. Equivalently, there

are p− p−1
2 + 1 or, p−1

2 ai such that 4a3i + 27b2 6≡ 0 mod p for any b ∈ Fp.

Now we have p−1
2 sets of p curves that are easy to discuss. We can demonstrate that

any one of these sets spans Fp × Fp.

Theorem 5.1.2. Let p ≥ 5. If ao ∈ F×p such that 4a3o + 27b2 6≡ 0 mod p for any b ∈ Fp,

then |
⋃p−1
b=0 Eao,b| = p2.

Proof. Let ao ∈ F×p such that 4a3o + 27b2 6≡ 0 mod p for any b ∈ Fp. Note that because ai

is equal for each curve Eai,b we know from Lemma 2.5.1 that each point will be distinct.

Let (xo, yo) ∈ Fp × Fp. We can show that either (xo, yo) ∈ Eao,0 or (xo, yo) ∈ Eao,b for

some b ∈ F×p . Assume (xo, yo) 6∈ Eao,0. Then y2o 6= x3o + aoxo and y2o − x3o − aoxo 6= 0. So

choose b = y2o − x3o − aoxo. Then x3o + aoxo + b = x3o + aoxo + (y2o − x3o − aoxo) = y2o . Thus

(xo, yo) ∈ Eao,b.

A careful reader will notice that this is does not guarantee a minimum spanning set but

creates an upper bound of p. To demonstrate that this is a minimal solution we can show

that the lower bound discussed in Section 4.2.2 is asymptotic to p.
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5.2 Asymptotic Bounds

As we established in Section 4.2.2 the lower bound for the minimum number of elliptic

curves needed to span the field is d p2

p+b2√pce. However, using calculus, we can show that

as p approaches infinity this bound is asymptoticly close to p.

Theorem 5.2.1. We have the following limit lim
p−→∞d

p2

p+ b2√pc
e = p.

Proof. lim
p−→∞d

p2

p+ b2√pc
e = lim

p−→∞d
1
p
1
p

× p2

p+ b2√pc
e = lim

p−→∞d
p

1 +
b2√pc
p

e

It is clear that as we take this limit
b2√pc
p goes to 0. So, = d p

1+0e = dpe = p.

This proof completes the problem of finding a minimal number of elliptic curves to span

Fp× Fp. We know p is a constant upper bound and that the lower bound approaches p so

for large enough primes the minimum number of curves needed will be p.

5.3 Alternate Proof When p ≡ 3 mod 4

In this section we can utilize number theory to demonstrate how the previous proof can

be done differently. We must begin with a definition and some explination.

Definition 5.3.1. An element q 6= 0 ∈ Fp is a quadratic residue if there exists x ∈ Fp

such that x2 ≡ q mod p and a quadratic nonresidue if no such x exists.

From the law of quadratic reciprocity we will take it as fact that the product of two

nonresidues is a residue and the product of a nonresidue and a residue is a nonresidue. Also

from Euler’s theorem we know that −1 is a residue when p ≡ 1 mod 4 and a non residue

when p ≡ 3 mod 4.[3, Chapter 5, Page 100] From this it follows that if p ≡ 1 mod 4

the negative of a residue is a residue and the negative of a nonresidue is a nonresidue. If

p ≡ 3 mod 4 the negative of a residue is a nonresidue and the negative of a nonresidue is

a residue.
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With this knowledge from number theory we can make very strong statments about

the number of solutions for a given curve. We will use the notation len(a, b) to mean the

number of solutions to Ea,b.

Lemma 5.3.2. If (xo, 0) ∈ Ea,b then (−xo, 0) ∈ Ea,−b.

Proof. Let (xo, 0) ∈ Ea,b. Then 0 = x3o + axo + b. Multiplying by −1 we see that

0 = −x3o − axo − b = (−xo)3 + a(−xo)− b.

Thus (−xo, 0) ∈ Ea,−b.

Lemma 5.3.3. Let p ≡ 3 mod 4 and yo ∈ F×p . If (xo, yo) ∈ Ea,b then (−xo, Y ) 6∈ Ea,−b

for any Y ∈ F×p .

Proof. Let yo ∈ [1, . . . p − 1] and (xo, yo) ∈ Ea,b. Assume there exists some Y such that

(−xo, Y ) 6∈ Ea,−b Then,

Y 2 = (−xo)3 + a(−xo)− b

Y 2 = −1(x3o + axo + b)

Y 2 = −y2o .

This is a contradiction because we know yo is a quadratic residue and when p ≡ 3

mod 4 the negative of a residue must be a non residue. Thus (−xo, Y ) 6∈ Ea,−b for any

Y ∈ [1, . . . p− 1].

Theorem 5.3.4. If p ≡ 3 mod 4 then len(a, b) + len(a,−b) = 2p.

Proof. Let Ea,b, Ea,−b be elliptic curves. Let z be the number of solutions to Ea,b of the

form (xo, 0) and n be the number of solutions to Ea,b of the form (xo, yo) where yo 6=

0. By lemma 5.3.2 we see that Ea,−b must have z solutions of the form (X, 0). Let m

represent the number of solutions to Ea,−b not of this form. We can see that at most
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m ≤ 2(p − z − 1
2n). We know this is true because p − z − 1

2n represent those x that are

not already solutions to Ea,−b and are not restricted by lemma 5.3.3. At each of these x

values Ea,−b could have at most 2 solutions. Assuming m = 2(p − z − 1
2n) we see that

len(a, b) + len(a,−b) = n + m + z + z = n + 2z + 2(p − z − 1
2n) = 2p. So we must show

that at each of these x values Ea,−b has two non zero solutions.

Assume (w, Y ) 6∈ Ea,−b for some z, Y ∈ F×p and w 6= −xo for any xo such that (xo, Y ) ∈

Ea,b. This means that w3+aw−b is a non residue. Since we know that −1 is a non residue

we can expect a residue from the product of −1 and w3 + aw − b. So,

Y 2 = −w3 − aw − b

Y 2 = (−w)3 + a(−w) + b

Thus (−w, Y ) ∈ Ea,b. This is a contradiction to the definition of w because w can not

equal the negative of any x value that provides a solution to Ea,b. Thus (w, Y ), (w,−Y ) ∈

Ea,−b. This produces the two solutions at each point and shows that m does in fact equal

2(p− w − 1
2n), so our theorem holds.

Corollary 5.3.5. Let ao ∈ F×p . If p ≡ 3 mod 4 then len(ao, 0) = p.

Proof. From Theorem 5.3.4 we know that

len(ao, 0) + len(ao,−0) = 2len(ao, 0) = 2p

Thus, len(ao, 0) = p.

Theorem 5.3.6. If p ≡ 3 mod 4 then there are p distinct elliptic curves such that their

union has size p2.

Proof. Let p ≡ 3 mod 4.By Corollary 5.3.5 we know that len(a, 0) has p solutions. Let us

then fix an ao ∈ Fp such that Eao,b is an elliptic curve for all b ∈ Fp. Then,

|
p−1⋃
b=0

Eao,b| = (

p−1∑
b=1

len(ao, b)) + p
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We know that Ea,b can be paired with Ea,−b into p−1
2 distinct pairs of curves so,

= (

p−1
2∑
b=1

len(ao, b) + len(ao,−b)) + p

From Theorem 5.3.4 we know that the union of each of these p−1
2 pairs has 2p distinct

points. Thus,

= (

p−1
2∑
b=1

2p) + p

= 2p
p− 1

2
+ p = p2 − p+ p = p2

.



6
Supersingularity

This chapter will demonstrate how some of the number theory from previous chapters can

be used to provide facts about elliptic curves. We will start by looking at the specific curve

y2 = x3 + x. For this curve we will show a traditional proof involving calculus and group

theory of a property called supersingularity. Then we will demonstrate how the converse

can be done easily with number theory. Then we will demonstrate an attempt to generalize

these proofs into a very powerful theorem. But first a few quick definitions.

Definition 6.0.7. A prime is supersingular for a given elliptic curve if |E(Fp)| = p.

By attaching a point σ to Fp × Fp we can create a set called Projective Space. We call

σ the point at infinity. We will not go into elaborate detail because we will only need

Projective Space for a few proofs.

Using σ as the additive identity it is a fact that the solutions to an elliptic curve form

an Abelian group.

To clarify in the previous definition when we say σ is an additive identity we do not

mean addition as it is commonly used. Instead we mean elliptic curve addition. To add

two points, say P and Q, we draw a line through those points. It is a nontrivial fact that
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we will not prove here that this line intersect the elliptic curve in a third place denoted

−R. If this line is vertical we use σ as −R. We then reflect −R across the x axis to get

P +Q = R. We are assured a value at the reflection of −R because of the y2 in the formula

for E. Adding a point to itself works in exactly the same way except we use a tangent

line. The graphic below demonstrates P + P = R.

With this understanding of elliptic curve addition we can move forward. [4].

6.1 Traditional Proof of Supersingularity for y2 = x3 + x

Let E be the curve defined by y2 = x3+x. The following theorems will demonstrate which

primes are supersingular for E.

Theorem 6.1.1. In projective space the number of solutions to E(Fp) ≡ 0 mod 4 .

Proof. Case 1: Let p ≡ 1 mod 4. Also let y = 0. Then 0 = x(x2 + 1). Solutions then exist

at (0, 0) and x2 + 1 = 0. We have already seen that x2 = −1 has two solutions mod p

when p ≡ 1 mod 4, which we denote ±
√

1. So

y2 = x3 + x = x(x+
√
−1)(x−

√
−1)
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This means the points {(
√
−1, 0), (−

√
−1, 0), (0, 0), σ} are all elements of E(Fp ∪ {σ}).

These points form a subgroup using Elliptic curve addition. Because the order of any

subgroup divides the order of the group we see that 4|#E(Fp ∪ {σ}).

Because −1 is a quadratic non residue when p ≡ 3 mod 4 we will have to use a different

technique for our second case.

Case 2: Let p ≡ 3 mod 4. Unlike the above case we see that there is only one point on E

when y = 0. Let y = 0. Then 0 = x(x2 + 1). So (0, 0) is a solution point but there are no

solutions to x2 + 1 = 0 mod p. So we must find a point P , on E such that P +P = (0, 0).

Because (0, 0) has order 2 such a P would form a subgroup of order 4.

Let P = (A,B) ∈ E for A,B ∈ Fp. As described above to add P + P we must find the

tangent line. We can use calculus to see that 2yy′ = 3x2 +1 which simplifies to y′ = 3x2+1
2y .

At P the slope of the tangent line, m, is 3A2+1
2B . Using the formula for a line y = mx + b

we can calculate b = B − 3A2+1
2B A. Also notice that 0 = −B2 +A3 +A. Then

y2 = x3 + x

(mx+ b)2 − x3 − x = 0

−x3 +m2x2 + (2mb− 1)x+ b2 = 0

−x3+9A4 + 6A2 + 1

4B2
x2+3A2x+

9A4 + 6A2 + 1

4B2
x2Ax+

9A4 + 6A2 + 1

4B2
x2A2−2A3−A3−A+B2 = 0

−x3 +
9A4 + 6A2 + 1

4B2
x2 + 3A2x+

9A4 + 6A2 + 1

4B2
x2Ax+

9A4 + 6A2 + 1

4B2
x2A2 − 2A3 = 0

Here we can factor out (x−A)2 to find the third point of intersection between the tangent

line and E.

(x2 − 2Ax+A2)(−x+
9A4 + 6A2 + 1

4B2
− 2A)

So the x value at the third point of intersection is 9A4+6A2+1
4B2 − 2A.
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We can then solve for the y value of this third point by solving y = mx+ b. Thus,

2(A,B) = (
9A4 + 6A2 + 1

4B2
− 2A,B + (

3A2 + 1

2B
)3 − 3A

3A2 + 1

2B
)

To get a point of order 4 solve we set y = 0:

B + (
3A2 + 1

2B
)3 − 3A

3A2 + 1

2B
= 0

B +
27A6 + 27A4 + 9A2 + 1

8B3
+
−9A3 +−3A

2B
= 0

8B4 + 27A6 + 27A4 + 9A2 + 1 + 4B2(−9A3 +−3A)

8B3
= 0

We know this can only be zero if the numerator is zero. Also notice that B2 = A3 +A and

B4 = (A3 +A)2 So,

8(A6 + 2A4 +A2) + (4A3 + 4A)(−9A3 +−3A) + 27A6 + 27A4 + 9A2 + 1 = 0

8A6 + 16A4 + 8A2 +−36A6 − 12A4 − 36A4 − 12A2 + 27A6 + 27A4 + 9A2 + 1 = 0

−A6 − 5A4 + 5A2 + 1 = 0

It is clear that 1 and -1 are solutions to this equation for A. Substituting 1,-1 into y2 =

x3 + x we get that the points (1,
√

2) and (−1,
√
−2). We know that either 2 or −2 is a

residue so one of these two points does exist. Since elliptic curves are Abelian groups, that

point generates a subgroup of order four. Thus 4|#E(Fp ∪ {σ}).

Corollary 6.1.2. If p is supersingular for y2 = x3 + x then the number of solutions to

E(Fp) is p ≡ 3 mod 4 .

Proof. Since there is no point at infinity as there is in projective space, the number of

solutions in Fp equals the number of solutions in projective space minus one. This means

the number of solutions to #E(Fp) ≡ 3 mod 4. So if p is supersingular then p = #E(Fp) ≡

3 mod 4.
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This proof does not actually provide primes for which y2 = x3 + x is supersingular. It

only says that if such a prime exists it must be true that p ≡ 3 mod 4. Though this is

certainly non trivial the next theorem will show that we can do much better.

Combining Corollary 5.3.5 and the traditional proof from 6.1 we can show the following

theorem.

Theorem 6.1.3. A prime p is supersingular for y2 = x3 + x if and only if p ≡ 3 mod 4.

Proof. Let p be supersingular for y2 = x3 +x. Then by theorem 6.1.2 we know that p ≡ 3

mod 4.

Let p ≡ 3 mod 4. By corollary 5.3.5 we see that len(1, 0) = p. Thus p is supersingular

for y2 = x3 + x.



7
Generalizing Chapter 6 and Unsolved Conjectures

In this chapter we will try and generalize Theorem 6.1.3 to all curves of the form y2 =

x3 + aox. Most of the cases can be done fairly easily but, the one remaining case will be

left as a conjecture. Though left unsolved we will demonstrate data to show its likelihood

as well a lemma that if proven would imply our desired result. To be precise about what

we are trying to generalize we will write the conjecture as such.

Conjecture 7.0.4. Let ao ∈ F×p . Then p is supersingular for the curve y2 = x3 + aox if

and only if p ≡ 3 mod 4.

7.1 Solved Cases

7.1.1 p ≡ 3 mod 4

Recall Corollary 5.3.5 tells us that if p ≡ 3 mod 4 then len(ao, 0) = p . So we see that if

p ≡ 3 mod 4 then p is supersingular for the curve y2 = x3 + aox. Now it will suffice to

show that when p ≡ 1 mod 4, p is not supersingular for any curve y2 = x3 + aox.

7.1.2 p ≡ 1 mod 4 case 1

To serve as a reminder that a is a residue we will use the notation a�.
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Lemma 7.1.1. If p ≡ 1 mod 4 and let a� ∈ F×p be a quadratic residue modulo p then

len(a�, 0) 6≡ p.

Proof. Let p ≡ 1 mod 4 and let a� be a quadratic residue modulo p. Because a� and

−1 are both residues their product −a� must also be a residue. This means we know

√
−a� and −

√
−a� exist in Fp. Suppose y = 0. Then 0 = x(x2 + a�). Solutions then exist

at (0, 0) and x2 + a� = 0. This means the points {(
√
−a�, 0), (−

√
−a�, 0), (0, 0), σ} are

all elements of E(Fp ∪ {σ}). These points form a subgroup using elliptic curve addition.

Because the order of any subgroup divides the order of the group we see that 4|#E(Fp∪σ).

Thus #E(Fp) = #E(Fp ∪ {σ}) − 1 ≡ 3 6≡ 1 mod 4 so p can not be supersingular for

y2 = x3 + a�x.

7.2 Unsolved Case

Before diving into this case we will show some data to try and demonstrate that no value

of ao will make p be supersingular. Below is a table demonstrating this for p = 13. From

this table we will make several observations that will help us elaborate on our conjecture.

ao residue (y/n) len(ao, 0) len(ao, 0) mod 4

1 y 19 3

2 n 9 1

3 y 19 3

4 y 7 3

5 n 9 1

6 n 9 1

7 n 17 1

8 n 17 1

9 y 19 3

10 y 7 3

11 n 17 1

12 y 7 3

To serve as a reminder that a is a nonresidue we will use the notation a4. Let p ≡ 1

mod 4 and a4 be a quadratic non residue in Fp. Perhaps the first thing to notice is that

len(a4, 0) ≡ 1 mod 4. We can prove this.
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Theorem 7.2.1. If p ≡ 1 mod 4 and a4 is a quadratic non residue then len(a4, 0) ≡ 1

mod 4.

Proof. Let xo, yo ∈ Fp such that yo 6= 0. Suppose (xo, yo) ∈ Ea4,0. We know then

that (xo,−yo) ∈ Ea4,0. We can ask does Ea4,0 have any solutions at −xo. We know

that y2o = x3o + xo, so (−xo)3 − xo = −1(x3o + xo) = −yo = (
√
−1yo)

2. This means

(−xo, yo), (−xo,−yo) ∈ Ea4,0. Thus the number of points on Ea4,0 where y 6= 0 is divisi-

ble by 4. Let y = 0 then 0 = x(x2 + a4). Because a4 is a non residue we know that there

are no possible values of x ∈ Fp such that x2 = −a4.Thus when y = 0 there is only a

solution at (0, 0). Thus len(a4, 0) ≡ 1 mod 4.

This proof leaves open the possibility of supersingularity because len(a4, 0) ≡ 1 mod 4

and p ≡ 1 mod 4. With our next observation we will demonstrate a theorem and then

finish with a unproven conjecture that would in fact prove our desired result. To show this

theorem and conjecture we will narrow our focus on the table.

a4 residue (y/n) len(ao, 0) len(a4, 0) mod 4

2 n 9 1

5 n 9 1

6 n 9 1

7 n 17 1

8 n 17 1

11 n 17 1

From this we might conjecture that len(a4, 0) + len(−a4, 0) = 2p and len(a4, 0) 6=

len(−a4, 0) which would provide the result we desire. However for p = 17 we see this is

not true.
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a4 residue (y/n) len(a4, 0) len(a4, 0) mod 4

3 n 25 1

5 n 25 1

6 n 9 1

7 n 9 1

10 n 9 1

11 n 9 1

12 n 25 1

14 n 25 1

It does seem to be the case however that there is a way of pairing curves such that their

solutions total 2p. Using a series of lemmas we can prove that curves can be paired to add

to 2p. We will start by looking at the curves Ea4,0 and Ea34,0
when y = 0.

Lemma 7.2.2. If y = 0 then the only solution to Ea4,0 and Ea34,0
is (0, 0).

Proof. Let y = 0. Then 0 = x(x2 + a4) and 0 = x(x2 + a34). It is clear then that (0, 0) is

a solution to Ea4,0 and E(a34, 0). Also we see that 0 = x2 + a34 and 0 = x2 + a4 have no

solutions because a4 is a nonresidue.

Now we can focus on the p− 1 values where x, y ∈ F×p .

Lemma 7.2.3. Let xo, yo ∈ F×p . If (xo, yo) ∈ Ea4,0 then (a4xo, Y ) 6∈ Ea34,0
for any

Y ∈ F×p .

Proof. Let (xo, yo) ∈ Ea4,0. Then y2o = x3o + a4xo. Assume (a4xo, Y ) ∈ Ea34,0 for some

Y ∈ F×p . Then Y 2 = (a4xo)
3 + a34(a4xo) = a34(x3o + a4xo) = a34y

2
o We see though that

a34y
2
o is a non residue since a34 is a non residue and y2o is a residue. This is a contradiction

so our theorem holds.

Lemma 7.2.4. Let z ∈ F×p . If z 6≡ a4x for any x such that (x, Y ) ∈ Ea4,0 for any Y ∈ F×p

then (z, Y ) ∈ Ea34,0 for some Y ∈ F×p .

Proof. Let z 6≡ a4x for any x such that (x, Y ) ∈ Ea4,0 for any Y ∈ F×p . Assume (z, Y ) 6∈

Ea34,0
for any Y ∈ F×p . Then z3 + a34z is a non residue. We know that a−14 is also a
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non residue since a4 ∗ a−14 = 1. So a−34 (z3 + a34z) must be a residue. But we see that,

a−34 (z3+a34z) = a−34 z3+z = (a−14 z)3+a4(a−14 )z Thus (a−14 z, Y ) ∈ Ea4,0 for some Y ∈ F×p .

This is a contradiction of the definition of z so (z, Y ) ∈ Ea34,0.

Now with these three lemmas we can show that the solutions Ea4,0 and Ea34,0
sum to

2p.

Theorem 7.2.5. If p ≡ 1 mod 4 then len(a4, 0) + len(a34, 0) = 2p.

Proof. We know from lemma 7.2.2 that Ea4,0 and Ea34,0
have one solution at (0, 0). Let

n be the number of solutions to Ea4,0 of the form (xo, yo) where xo 6= 0. Let m be the

number of solutions to Ea34,0
where xo 6= 0.

We can see that at most m ≤ 2(p − 1 − 1
2n). We know this is true because p − 1 − 1

2n

represent all possible x’s that are not 0 or restricted by lemma 7.2.3 because a−14 x ∈ Ea4,0.

By lemma 7.2.4 we know that Ea34,0
has two solutions at each of these x values. So

m = 2(p− 1− 1
2n).

Thus len(a4, 0) + len(a34, 0) = n+m+ 1 + 1 = n+ 1 + 2(p− 1− 1
2n) = 2p.

This theorem is almost sufficient to prove that Ea4,0 is never supersingular for p ≡ 1

mod 4. What’s missing and left proven is the following conjecture.

Conjecture 7.2.6. If p ≡ 1 mod 4 then len(a4, 0) 6= len(a34, 0).

Assuming this conjecture is true it is easy to show that our generalized conjecture about

supersingularity holds.

Let a4 be a non residue and p ≡ 1 mod 4. Assume len(a4, 0) = p. From Theorem

7.2.5 we know that len(a4, 0) + len(a34, 0) = 2p. So, len(a34, 0) = 2p − p. This means

len(a34, 0) = p. This would contradict Conjecture 7.2.6. Thus len(a4, 0) 6= p which would

prove the last case for Conjecture 7.0.4.
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Appendix: Samples of SAGE Code

We will start with some utility methods that do things like find the solutions to elliptic
curves or produce Fp × Fp as a list tuples. These do not warrant much description.

def solveCurveForList(a,b,p, list):
pointsOnCurve = [ ]
for point in list:

x,y = point
if (y^2)%p == ((x^3) + a*x + b)%p:

pointsOnCurve.append((check(x,p),check(y,p)))
return pointsOnCurve

def check(z, p):
r = z
if (z > (p-1)/2):

r = - (p-z)
return r

def generateField(p):
pointsInField = [ ]
for x in range(p):

for y in range(p):
pointsInField.append((check(x,p),check(y,p)))

return pointsInField

def generateCurves(p):
curvesInField = [ ]
for a in range(p):

for b in range(p):
if (4*(a^3) + 27*(b^2)) %p != 0:

curvesInField.append((a,b))
return curvesInField
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def isNotIn(element, list):
for i in list:

if i == element:
return False

return True

The following method is used in Section 4.1.1 to create an upper bound based on the
proof of the spanning property in Section 3.2.1.

def proofTechniqueUpperBound(p):
pointsInField = generateField(p)
curvesNeeded = [ ]
for point in pointsInField:

x,y = point
if point == (0,0):

if isNotIn((1,0), curvesNeeded):
curvesNeeded.append((1,0))

elif (x^3)%p != (y^2)%p:
b = ((y^2)-(x^3))%p
element = (0,b)
if isNotIn(element, curvesNeeded):

curvesNeeded.append((0, b))
elif (x^3)%p == (y^2)%p:

if (4 + 27*x^2)%p != 0:
if isNotIn((1,-x), curvesNeeded):

curvesNeeded.append((1,(-x)%p))
elif (-4 + 27*x^2)%p != 0:

element = (-1, x)
if isNotIn(element, curvesNeeded):

curvesNeeded.append((-1,(x)%p))
return curvesNeeded

The following method is used in Section 4.1.2 to create an upper bound by the curve
with the largest number of solutions to the points left uncovered.

def largestCurveUpperBound(p):
pointsInField = generateField(p)
curvesNeeded = [ ]
unusedCurves = generateCurves(p)
largestCurve = [ ]
currentCurve = [ ]

while(len(pointsInField) > 0):
for curve in unusedCurves:

a,b = curve
currentCurve = solveCurveForList(a,b,p, pointsInField)
if len(currentCurve) len(largestCurve):

largestCurve = currentCurve
for point in largestCurve:

x,y = point
pointsInField.remove((x,y))

largestCurve = [ ]
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curvesNeeded.append((a,b))
unusedCurves.remove((a,b))

return curvesNeeded

This method and for loop discussed in Section 4.1.3 uses randomly selected curves to try
and find an upper bound. It is incredibly inefficient.

def randomUpperBound(p):
pointsInField = generateField(p)
unusedCurves = generateCurves(p)
currentCurve = [ ]
count = 0
curvesNeeded = 0

while(count < p^2):
range = len(unusedCurves)
curve = unusedCurves[int(random() * len(unusedCurves))]
a,b = curve
currentCurve = solveCurveForList(a,b,p, pointsInField)
for point in currentCurve:

x,y = point
pointsInField.remove((x,y))
count += 1

curvesNeeded += 1
unusedCurves.remove((a,b))

return curvesNeeded

for p in prime_list:
i = 0
bestGuess = p^2 - p
while(i < 1000000):

currentGuess = guessRandom(p)
if currentGuess < bestGuess:

bestGuess = currentGuess
i += 1

print bestGuess
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Appendix: Brute Force for Small Primes

9.1 Equivalence of elliptic curves for p = 5, 7

In this section we will construct and run a sage to prove Theorem 2.4.2 for p = 5, 7. The
program utilizes the methods solveCurve and generateCurves discussed in the previous
chapter. The first method areEqual compares two curves and returns True if they are
equivalent sets. The second method takes a prime p as input. For this fixed p it makes
a list of every elliptic curve. For each curve it compares it with each other curve with a
different a’s or b’s and checks to make sure the two curves are not equal. It prints out any
two elliptic curves that have the same solution set but different a’s or b’s.

def areEqual(listOne, listTwo):
same = True
for point in listOne:

if point not in listTwo:
same = False

for point in listTwo:
if point not in listOne:

same = False
return same

def test(p):
eCurves = generateCurves(p)
for curveOne in eCurves:

a,b = curveOne
solOne = solveCurve(a,b,p)
for curveTwo in eCurves:

c,d = curveTwo
if a != c or b != d:

solTwo = solveCurve(c,d,p)
if areEqual(solOne, solTwo):

print a,b, ’is the same as’, c,d
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print ’Done.’

If our Theorem is correct then for p = 5, 7 the method will simply print done. Below is a
graphic of this program being run in sage and as expected our theorem holds for 5, 7.
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